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Abstract

The problem of simultaneously identifying and controlling a time-
varying, perfectly-observed linear system is posed. The parameters are
assumed to obey a Markov structure and are estimated with a Kalman filter.
The problem can be solved conceptually by dynamic programming, but even
with a quadratic loss function the analytical computations cannot be
carried out for more than one step because of the dual nature of the
optimal control law. All approximations to the solution that have been
proposed in the literature, and two approximations that are presented
here for the first time, are analyzed. .They are classified into dual
and non-dual methods. Analytical comparison is untractable; hence
Monte Carlo simulations are used. A set of experiments is presented in
which five non-dual methods are compared. The numerical results indicate

a possible ordering among these approximations.
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1. INTRODUCTION

‘Econamic science attempts to understand the eccnomic behaviour of
individual units like the household and the firm as well as their aggregates.
There is huge diversity in the ways of people and firms, hence there is a
lot of uncertainty inherent in any economic system. The difficulty of
understanding economic behaviour is compeunded by the fact that attitudes
change, and technological innovations and political factors tend to always
change the status quo. We live in a changing world and we must find ways
to understand, describe, and deal with these changes.

To date most quantitative economic research has dealt with system
models in which the structure is completely fixed and is not allowed to
change. There has been a lot of work, under the name of econcmetrics,
that has dealt with constant parameter estimation of econometric models.

A very good indicator of the state of the art is the bock by Theil (1871).

Recently theré has been some research into the development of
methods of describing and estimating changing parameters. The work of
Rosenberg (1968), Cooley (1971) and Sarris (1973) are representative of
the research to date.

This paper deals with policy in the presence of structural
uncertainty as evidenced by parameter variations. There has been some
research into the problem of policy formulation in the presence of

canstant but unknown system parameters. Prescott (1967) was the first



economist to deal with such an "adaptive" problem. Since then McRai
(1972), Poporic (1972), Rauser and Freebaim (1973), and Chow (13873)
have also dealt with the same problem.

The problem of controlling a plant with unknown parameters is
not new to engineers. Fel'dbaum (1960 a, b, 1961 a, b) was the first
one to analyze the complexities of "learning while controlling," i.e. the
dual nature of control. Since then there have been numerous books
(Sworder (1966), Fel'dbaum (1966), Aoki (1967) ) and papers (see ref. 16
for an extensive bibliography) dealing with policy in the presence of
uncertain parameters. However, there have been very few papers,
addressing themselves specifically to the problem of controlling a system
whose parameters are varying in a random fashion. Exceptions are the
papers by Wieslander and Wittenmark (1971) and Wouters (1972), in which
some numerical results were given. The papers by Bar-Shalom and Sivan
(1969), Tse and Athans (1972), Tse et. al. (1973 a,b) also treated time
varying parameters although the numerical results reported were for
systems with constant parameters. |

In 'this.paper we attempt to wnify most of the methods available
for controlling systems with parameter adaptaticn. To this end we shall
consider only systems with perfect stafe information. We shall extend
the methods that have been developed for the constant parameter case, to

include the varying parameter case. We shall also propose some new



methods. In section 2 we present the problem to be tackled. Section
3 analyzes the estimation technique for the time varying parameters.
Section 4 presents the general method of solution and indicates the
difficulties of applyihg it to owr problem. In section 5, we present
the ideal case of known parameters and one control technique based on
it. In section 6 we present four non-dual control methods and try
to indicate their shortcomings. In section 7 we present three dual
methods, one of which is presented here for the first time. Section
8 presents same Monte Carlo comparisons of the nan-dual methods, and
in section 9 we summarize the results and indicate directions for

further research.



2. STATEMENT OF THE PROBLEM

Our purpose is to analyze énd compare various methods so we
shall try to keep the complexity of the systens to be analyzed, minimal.
Generalizations of the methods to more complicated problems are straight
forward in most cases. We shall confine ourselves to discrete time linear

systems described by the following equations.

= + + +
X 41 Atxi Btut Ctzt € (1
Vi = Htxt v | (2)

. where

Xy - is the unobservable state vector at time t
- is a vector of policy or control variables at time t
z, - is a vector of exogenous variables
Yy T is the vector of state measurements at time t
€s Vy T are vectors Qf systemn and measurement noises respectively.
The model as stated in (1) and (2) is general enough to include
many engineering models of interest and also reduced form econometric
models. However, it is still too general for our purposes. Therefore,
we shall consider the following model composed of the most elementary
building blocks. |
Ve+ 1T 3 TP T & (3)

where
Vi ~ is the perfectly observed scalar state

u, - is a scalar control

€ - is scalar system noise.
The model in (3) is a special case of almost every model that has been
dealt with in the literature. Hence we can comparé many methods at this N

level.
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The state Vi will be measured exactly. Let us denote by yt,

ut the following quantities

t -

y {yo, yl"“"yt} 4)

t
u

{u Uy s ut} (5)

~ The controls '{u } will be restricted to the following form.

t t—l)

u, = Yt(y (6) -

where Y is a function to be chosen. Let Y + denote the set in which
the state at time t is restricted to lie, and Vt the set of allowable

..V into

Ty . .
u's. Then Yy 1s a function ffcmeo xY -1

100X Yt VO X Vl-'
Vi« For the purposes of this paper Y, = V. = R for all i.

At time zero we shall assume that the following quantities

are known;
N 2

Yo» p(so, EQsverns Er? = 50, N(O,o€ PLR

I
p(ao,bo) = N a,

— 1, M
iv5 | ©°
LO

The objective is to choose the functicns Yor Y1eeees Yy_1
such that the fbllowing cost criterion is minimized.
N=1

- : 2 . 2 '
V(yo) = E { i2= . (yi 41 Fru i)} (6a)

* p(.) denotes a probability density and N(a,b) denotes a normal density
w1th mean a and varlance b.




Notice that the problem is still not completely formulated because
we do not know how a, and bt are going to vary. We shall impose the

following a-priori probabilistic structure on the parameters.

-
| 1% 1% o
by \Pt-l Ne-1 <

. - [ - 1
or if we denote by pt._[ét bt * and Wy -Eat, n é}

Pr = Ppoy T Ve (8)
This is the structure proposed by Rosenberg (1968) and Sarris (1973).

In order for the problem to be completely specified the joint
probability density of Wy Wyoee oWy mist be given. Since we do not

know a-priori how the parameters vary it is not trivial to specify this

quantity. For the purposes of this paper we shall make the following

assumption
: N
p(Wb, wl, ..... WN) = § N(O,R) (9)
i=1
where
) -2
R = g O ] | (10)
0 o]
n

The choice of appropriate R will not be discussed in this paper.
Tt is discussed somewhat by Sarris (1973).

The problem can now be stated in full.

% (') denotes transposition

A
1




Find the optimum V*(yo) where

viy) =min  E (MY ol +mid) QD

YgoYypoeoYyoy 17 0

subject to the stochastic constraints,

Yes 1" ¢t bu + e (12)

[2)

where'{et} and 'ﬁmt} are series of white normal random variables with the

(13)

Pr = Pyt Vi

properties
- 2
<:§ p( st) = N(O,cs) ;1&)
j p(w,) = N(O, R) | ~@18)
p(si,wj) = si)p(wj) (16)

and the system initial conditions are,

Yo - known (17)

p(p) = N (B, » M) - (17a)

In the sequel we will abuse the notation a little by writing
Ugs Ups seees Wy g in place of YosYqseeeren Yn-1 in (11). This

will be done for the reader's convenience.



3. BAYESIAN ESTIMATION OF THE VARYING PARAMETERS

 As will be seen socon, the solution of the prcblem stated in
section 2 will require the knowledge of the joint conditional distributicn
of the parameters a, and by, conditicned on the data up to the time t.
In this section we shall examine a way of cbtaining this distribution,
which we shall denote by p(pt/yt,u .

The distribution at time zero is normal as seen in (17a). Assume

that the conditional distribution p(pt_l/yt, u'™) is normal with mean
denoted by Pro1/t-1° and symmetric covariance matrix denoted by Mi_q Je-1t

The relevant equations for the next stage are

Pt Py + Wilq (18)

Yer1 T ZtPr t ¢ (19)
where we have denocted

Z, = [yt ut] (20)

We can use standard Bayesian analysis to find the density p(pt/yt+l,ut)

t+1’ut) - p(yt+1/pt,y ,u )p(pt/y su ) (21)

P(p/y
fp(yt+l/pt,y ,u )p(pt/—‘ )c1pt

From (18) we see that the density p(p. /vy ,ut) = p(pt/yt,ut-l)

is normal with mean equal to Pr/t-1 = Pr-1/t-1 and covariance matrix

Mg = Meog/ear * R (22)

p(yt+l/pt,yt,ut) is also normal from (19). The density in (21) is there-

fore normal. Its mean and covariance matrix, after some calculations,




are given by the following formulas.

- 1
Peje © t/tf e/t-1 Pr/e-1 ¥ %zzt Yt+1-} (23)
€
-1 -1
M5 = M +12' 2 (24)
e T Mejeea it t

The following matrix inversion lemma will help us render (23) and (24)
identical to the standard Kalman filter equations.
lemma 1. (Matrix Inversion Lemma). If

s=[M1 + axB]Y then

S

M-ma[R +BMa] "t
Proof. The proof is by direct computation and is omitted.
' With the help of this lemma (24) can be rewritten.
Mse ® Mooy - Myeer2t (08 2M e 12t el 29
This along with (22) are the well known updating equations for the
covariances of the Kalman filter adapted to our prcblem. We notice
that since M

t/t-1
substitute in (23) the expression for Mt/t found in (25). We obtain

is symmetric then Mt /t is also symmetric. We now

after some manipulation

o+z

. -1
Prse © Prye-1 ¥ Me/e-1%t Mere-12't) TOre1 T 2Ppseo1

Which is the standard Kalman updating formula. Equations (23) and (2u4)

will be useful later.

) (28)
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4, SOLUTION VIA DYNAMLC PROGRAMMING

The problem that was stated in section 2 can in principle be
solved via dynamic programming.  We state now the form that the stochastic
dynamic programming equations take. We can write:

(y2 + rui)/yN-l,uN_ f - (27)

1
=0 itl

N_

Vi(y ) = min Bl

Uy Upseenely g i

We shall now state a theorem, which can be found in Astrdm (1870, ch. 8),
that will be crucial.

Theorem 1. Let E [./y] denote the conditional mean given y. Assume

that the function f(y,u) = E{1(x,y,u)/y] has a unique minimm with

respect to ueV for all yeY¥. Let uo(y) denote the value of u for which

the minimum is achieved. Then

3 El - o - , . N
g%;) (x,y,u) = EL(x,y,u (y)) 5 {hié E [i(x,y,u)/y] }

: N-1 '
Using this theorem and noticing that E[ I ( 2 + ru?) N-1 N-2

is quadratic with respect to uy . therefore having a unique nﬁninmmlwe

can write

N-1
VA(y ) = min Efdn E[Z (yi

N-1 N-2
X N1 N-2] 128
uo,ul,...,uN_2 uN_2 i=20

L, )/
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Now we invoke the principle of optimality, and noticing that the first

N-1 terms in the summation of (28) do not involve Wiy o We write:

N-2

. ) 2 - -
Vi(y,) = min E{ <z (yi+l + rui) + min EEﬁQ + ruzN_l/yN l,uN %I}
Yooty W2 =0 N-1
N-2
= min E{L (f, +rud)+ Vi D)} (29)
T TR
where we have denoted:
N-1 :
Vi(y") = min OB I G, St
UpsUygqoeeey 1=t

By the reasoning used above it is quite straightforward now

to prove the following recursive relation:

w1

+ Vi(y t,ut—l}

VEyO) = min By, + r

- )y
u,

(30)
Equation (30) is the well known recursive relation of stochastic dynamic
programming. If we can solve it then our problem will be solved.

At time N-1 (30) becomes:

ve(y Ly = min E'{yﬁ + ruﬁ_l/yN-l,uN_z} =
U-1
2 2 2 2 .2
min E {(a ;9 ;7 * DyqUno1 oS- b 28-1Pyo1Bn-1dN-1 f

UN-1

2 N-1 N-2} =
2ay_1YNC1€ Ne1 b PNoiW-1tN-1) t WY U
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- ot 2 2 N-1 N-2 2 2 N-1 N-2
= min [ y2 By 1/y" )+ g By g /y u )+
-1 .

N-1 N-2) + (31)

: 2
2 ]
+ -
O + QUN-lyN-lE(aN—le—l/y ,u IgN 1

The minimum of the above expression is easy to find since the quantity inside

the brackets is ‘a quadratic in Uy

c - 2, N-1 N-2,7-1 N-1 N-2
woo= - [r e Eo gy w0 By By /Y e vy (32)

N-1, _ 2
i B RV R VS (39

"KN_lz ZE(aN_l/yN-l,uN—z) - [r + E(b2 / N- l N 2 J lE(aN le 1y N l, N- 2)2 (34)

ea=% @9

Equation (33) might look like a quadratic in YN-1 but a quick look at (34)

will convince the reader that KN—l is a quite complicated functicn of YN-1

(c.f. equations (25)=(26)). It thus becomes impossible to carry the
backward induction any fﬁrther than already. done.

It is our purpose in this paper to examine and compare suboptimal
techniques to solve the problem posed in section 2. This will be done in

the next few sections.

p—



5. OPTIMAL CONTROL WITH PERFECTLY KNOWN PARAMETERS

In this section we shall assume that the parameters at,b , are
known with certainty during the whole interval [O,N] . Equation (30) at
time N-1 becomes:

N-1

VE(y 2

) = min E'{y§+mN
UN-1

-l/yN-l’uN-2} -

.2 2 2 2 2
"u‘;n E'{ay 191 * Pyeivel * 2ayiPy-ieYn-1 T oone1 T
-1

2 N-1 N-2
28y 1VN-18N-1 b PNe1N-1Sn-1 t Ty v

. 2 2 2 2 2 2
"U‘;\In [aN-lyN-l * byoiW-1 T2 Py iN-1YN-1 T e Y mN-l] (36)
-1

The above equation is a quadratic in Uy_p SO its minimum is easily found.

2 -1
* = -
UN-1 [1" * bN-l] a-1PN-1YN-1 (37)
N-1 2
% - )
VE(y " ) HeiYn-1 * -1 (38)
where
' 2 2 -1 2 .2

Hyp = apr -[r+byg] 77 aby (39)
Fo_ = o

N-1~ "¢

vy J¥1 2 ) ) )

Let V“(y:’ ) = Hj+ly 541 + Fj+l' Then at time t=j the dynamic

programming recursian becomes
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iy - . 2 2 2,3 . 3-17._
V*¥(y®) = min E[yj+l+m' +Hj+lyj+l/y Jus J_

u. J
J
22 2 2
mn.n(l+H )(a +b + 2a.b.u.y. + + rul
mi [ 545 asbyusys o) ruj] (10)
J

The minimum of the above equation is again easily found:

21-1
¥ o= - + +
uf [o+ @+ H, D570 4, Dagbay, (41)
Vil = Hyl+ B (42)
373 J
where
-1 22.2
= (1 + H. + + + H. .b.
4102 -[r+Q Hyy )b ] (1+Hy b (43)
F. = F...+ (1+H, o> (44)
J Jtl j+17 e
Y
The equations (41)-¢u44) along with the initial conditions FN=0 and o

}150 are the solution to the problem.

A suboptimal technique of solving the original problem is
based on (41)-(44) and is usually referred to in the literature by the
name of certainty equivalence or enforced separaticn (from here on
abbreviated as CE). It is the following, |
a) At time k we are given the data yk and &1 hence the following

quantities can be computed via the results of section 3:

Pesiet = L3/re1Pince1d ' @9 M
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b) Equation (43) is solved backward from time N until time k+l with the

following conventions:

D oag = agp
_ for all k4l __<_j < N-1
By = Be/i-1

2) Ho=0

Denote the solution by HEEl

c) The control at time k is found by the following equation:
CE_ CE 2 -1 CE
woE=[e 4 G b 0] T BODa b Yy (49)

This suboptimal technique is usually the cne against which most
people compare their suboptimal methods. It is one of the simplest and |
fastest suboptimal techniques and therefore it is attractive. It will
be compared with other suboptimal methods at a later section. It is
interesting to see that if fhe parameters are known exactly CE reduces to

the true control law (u41).
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N

6. NON-DUAL SUBOPTIMAL METHODS. |
In this section we shall examine various suboptimal techniques

that have been suggested in the literature. All these techniques will be

non-dual, in the sense that they calculate the control law at time k under

the assumption that there will be no further measurements after time k.
There are three main elements of a dual control. The first

which can be called the controlling element has to do with the effect of

the control on the criterion function and is the element that characterizes

all optimm controls, dual or not. The second characteristic is a

learning one, namely the information that is accumulated over past controlling

stages is utilized to improve the present knowledge of the system. In

section 3 we analyzed the way that optimal learning will be achieved

—r

in our problem. The third element, which we shall term the dual effect,
hés to do with the experimental nature of the control. Choices of present
controls affect the future probabi]ity densities of the unknown parameters.
Hence a dual control can affect not only the present but also the

future learning of the system. It will be this element that will be
missing from the suboptimal methods presented in this section. In all
stbsequent methods, learning will occur via the method described in

section 3.
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6.1 Wouters' Minimum Variance Control.

This method was proposed by Wouters (1972). It is quite simple.

The logic is the following. Suppose that the objective is to minimize

the index;,
N
lim 1@ y"(k) (46)
Noo N k=1

then the control suggested by Wouters (to be denoted by the letter W) is

u¥ = - %/K-1 vy

u7)
k
By /k-1

Notice that (46) is quite different than our objective (6).
Tt does not, for example, include penalty for the cantrol. Wouters
used this technique to control systems with time varying parameters.
He showed via Monte Carlo experiments that the method is better than

no control at all.
6.2 Wieslander's and Wittenmark's Control.

This method (hereby denoted as WW) was propcsed by Wieslander
and Wittenmark (1971). Their idea is the following. Since the recursive
equation (30) cannot be solved analytically for more than one step,
assume that the next step is the final one. The index to be minimized

in their paper was Eyz(t). The control that they derived is the same
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one as in (32) withr = 0

W 2,k , W
u o= - (B,

y 1] '1E<akbk/yk,<uww)k“1>yk (48)

In the experiments that they did they compared this control
law to no control at all, and it perfonmedibetter. Since it is not
obvious that any control will perform better than no control, their
method deserves some attention. This as well as the previous method
ignores penalty in the control.- However, in this case it is quite easy
to introduce control penalty. In fact the modified control law (to be
denoted by WM) is identical to the one in (32). |

UWM
Tk

= - [r + 2025, W™DT e AWMy e

k

ol

It is interesting to notice that none of the previous three KbJ
methods reduce to the true control law, derived in section 5 (equation
(41)), when the parameters are known exactly. We now examine a method

that has this desirable property.

6.3 Sequential Stochastic Control.

The logic for this nethod is that at time k all future
information is neglected. However, it is recognized that the parameters -
will be changing. The assumption then is that the distribution of the
future values of the parameters will not be affected by the future
measurements. This assumption is similar to the one that assumes the
" future parameters to be random dréwings from a distribution which

depends only on information up to time k. The difference here is that ,TDL
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the distribution is different at every point in time. This method has
been mentioned by Yoshida and Nakamura (1973), but they have not analyzed
it carefully. We now derive it in detail (the method will be abbreviated
by S1).
. _ k k-1
Assume that we are at time k and we have observed y ,u .
Hence we have computed p_, 1 and M, 4 with the help of the Bayesian

formulas developed in section 3. The problem now is the following.

Choose UooWgq e Yy so as to minimize

N-1
V) s E Lz g2+ S (50)
j=k 3
subject to
. = z.p. t €
Yie1 T %3P 3 .
j 2k | (51)
3 = P. + W,
P3 P3-1 7 M1

The assumption that we are making can now be stated precisely.
The vector P; of parameters at time Jj > k will be assumed to be a random

drawing from a Gaussian density with mean

Pi/k-1 = P3-1/k-1 "+ Psk-1 (52)
and covariance matrix
Miper = Miser *OR= e T Mp * GHROR (53)
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. v j 3= k k-1 . .
Thus we approximate p(pj/yj,uJ l) by p(pj/y ,u ). The dynamic programming

recursion now can be analyzed. At the final time (30) becomes

viN D) = min B+ el ) :

UN-1
22 2 2 2
; + + +
ﬁ:n E{ay 1vy1 * byoatn-1 ¥ oen-1 b 2@yoaPneiW-19n-1
-1 v .

2, N1 N-2 . =
+
2a 9181 * Pyt F Y o

k k-1

. 2 2 k k-1 2 2 2
~ min [:yN-l E(aN_l/y ,u )+ gN_lE(bN_l/y U )+ o€‘+
UN-1
k k-1 2 ;
n
ZWLdeH%Lde@'m )+PuMd] (54)
Let us now decompose the matrix Mﬁ/k—l as follows:
Mipep = I@mq_ @ﬁ«l
' (55)
M??k—l M?/k—l

Referring to (10) and (55), (54) reduces to

wr N-1. 2 2 2
VEy™ ™) = min [9 N-1¢@ No1/k-1 Y Mﬁ-l/k-l) * uN—:LCr ¥

) L 2 5 (56)
(by_1/k-1 ¥ Mﬁ-l/k—l)] tog t 2uy 0¥y CGyg ee1Phe1/k-1  Me1e1)
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The control minimizing the above expression is

= L 2 -1 |
UN-1 [r+ ®y e Mﬁ—l/k-l)] (ay_y /k-1PN-1/k-1 * mﬁ—lk—l)yN—l
ar N-1y _ 2
LICARDIED SN N W (58)
where
_ (.2 - 2 -
Hy 1% Guaik-r ¥ Myek-1) —let GOygpan t MbN—l/k-l)]
2
© (@1 k-1PN-1/k-1 F M1 ) (59)
- 2
F-1 © % (60)
If we now assume that -
3+l _ 2
veth = Hoyt ¢ By . (61)

then by an analysis identical to that of section 5 we derive the following:

&
u; -[r+ Hyyp ) /k_ + Mb/k_ Jta o+ Hoyp)-
@5 1P 1 Ma};/k 1 (62)
] = . ? + . 63
vy Hys + Fs (63)
where
) 2
Hy = (L + Hyyp)@, ) * M) -
2 - @b
[r+ Hiy Y02, ) Mlj?/k_l)] (1 + Hy, RE (33 7123 et o5
_ 2 |
Fj = Fj+1 + (1+ Hj+l) e (65)
He = B = 0 . (66)

(57)

)2
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The optimal control at time k is chosen as follows::

uil= u: (67)

where u; is derived recursively as above. After this control is applied
Yic+1 is observed and the cycle is repeated to choose W, @nd so on
until time N-1. It is interesting to note that when the parameters
are known exactly the control derived by this method is reduced to
the true optimal control described in section 5. When R = 0 or
equivalently when we assume that the parameters are constant, then

S1 reduces to a method that has been analyzed among others by Ackil

(1967), Bar-Shalom and Sivan (1969), and Prescott (1967).
6.4 Open Loop Feedback Optimal (OLFO) Control.

This method has been analyzed by Tse and Athans (1972) and
Ku and Athans (1973). The assumption under which the control at time
k is found is that the sequence wy ., 4 q5--.+Uy_1 Will not depend
on any future data and hence can be found at time k by solving an
open loop control problem. Let us make this assurption mre precise.
The problem fo be solved at time k- is the following.
V*(yk) =  min '{E[Ngl y?ﬂ/yk,uk_lj + Ngl W, } (68)
Ul oo ey =k J j=k J

subject to

j> k (69)



N
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Notice that the expectation in (68) does not include the control terms.
This is because they are to be chosen in an open loop fashion. The
solution to this problem is quite complicated. We shall present here
an outline of it and we shall mention the simplifications that were

employed by Tse and Athans, and Ku and Athans.

The problem in (68) and (69) can be solved via deterministic

dynamic programming as follows. Denote by Vd(yj) the quantity

. N-1
vlyd) = min Bz, +
uj' ’uj-+l, * s e ,IJN_l l=J
= min B{ Nt h /1) (70)

UssUsyyaes e sy i=]

Then the dynamic programming recursion is

R 1 ) L
v'(y) = minE {y§+l + mj? + Viygtk-1 3 (71)

"
Notice that since E(./k-1) is known at time k, (71) is a deterministic
dynamic programming recursion.
At the final step we obtain
%, N-1

V( 7) = min E(y§ + ruﬁ_l/k-l) =
UN-1
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—

o 2 2 2 2
= min  Elay vy ¥ bWy v 28 Py o Yn-r Y2 Yn-1tn-1 t
UN-1
2 -
2oy Uy 8y toTYyy /D) =

min{ Ba2_yv2 /D) + ) [r + EGd /1] +
UN-1

2
2uy_Elay (b ¥y /K1) + o} - (72)

The optimal OLFO Uy_1 is

x 1 ‘ ‘ | o
SV R | | (73)
where
- 2 :
Dy_y = T + Elby_;/k-1) (74)
fN—l = E(aN—le-lyN—l/k) : (75) {i)
£ N1, _ 2 2 12 2
VG ) = E@y ¥y /KD - Dy gt o9 (76)

Notice an interesting phenomenon. Since in the state equations
(69) a, b, and y are coupled in a nonlinear manner one cannot separate
E(aﬁ_lyﬁ_l/k—l) for example into E(aﬁ_i/k—l)E(yﬁ_l/k-l). Hence no
interesting canceilétions will occur in the steps prior to the last.
To illustrate this point we will show without proof (which is straight- -
forward) the OLFO control and the cost at time N-2,

* -1
e A | (77)

2 2 .2 4 -1 2
v+ Eby , * 3y gby o/k-1) = Dy qE (e jby by o/k-1) (78)

ol

oo = Elay_oPy_oviyoo * ans18n-2Py-oYn-2 kD) = Oyl Elay 1Py 3y vy p/k-1)- Y

+ Eay_1by 1Dy /K1) 679)
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£ N2, . 2 2 2 2 2 212 L

VYY) =Elay_pVyop * Ayadyop¥n-2/k D) - Dy (ayogPea iV KD
-1 2

Dy-2 fn-2 - (80)

Thus we can see that the exact solution for the OLFO control
at time k becomes increasingly laborious as we proceed in the backwards
induction. The problem arises because we have assumed that éLJ as well
as bfl are random, and this introduces the nonlinearity in (69)’.‘ Tse
and Athans (1972) assumed that only bj is random while as is not. In such
a case

(81)
E(b.,./k-1) = E(b./k-1)
J+l ]

and therefore the conditional expectations evolve linearly, making the
backwards induction of reproducible form from step to step. Ku and

Athans (1973) on the other hand have used the approximaticn

-1) = k- k- E(b. /k~
E(y; 49 /k-1) E(ay/k-DE(y;/k-1) + uy (b3 /k-1) (82)

Their extensive Monte Carlo results showed that OLFO in conjunction with
(82) performed slightly better than CE (or enforced separation, as they
called CE), for stable systems, but considerably worse than CE for unstable

anes.
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7. DUAL SUBOPTIMAL METHOLS.

Dual methods assume explicitly that the choice of the present
control will affect the future probability densities of the parameters.
Hence the control is inevitably a nonlinear function of the present state
and in most cases quite a complicated one too. We shall analyze three
quite different dual methods, the last one appearing here for the first

time.

7.1 One-Measurement-Optimal Feedback Control.

This measurement was developed by Curry (1968-1870), and
has been recently used by Tse et.al. (1873), Tse and Bar-Shalom (1973),
Rausser and Freebairn (1973), and further analyzed by Early and Early
(1973). The idea is the following.

Suppose we chose = Ek . Then we could find the covariance of
P given 'b};uk—l,ﬁk} via (25). We could also assert that the
average value of yk+i would be

R Y S A /k-Yk T Pr-1 % (83)

We could then consider the problem

o ~ N-1
V(Y s¥y,+) = min E{zI
k+1 A
UeppoeeooWy-1

2 2 k — k-1 —
(yi+l + rui)/y Wiep1 2 ,uk}
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with initial conditions

Va1 T Ver1/k-1 (84)
o= oWt L, (86)
k/k k/k-1 = "Xk
2
o
€
where
7. = [ %5 ) (87)
The above problem is solved via the OLFO method and the following nurber
is computed.
k=, . =2 -2 k =
Wy,w}— Vsl ¥ mk'*‘%mow’%dﬂ (88)

Now a new value for Gk is chosen and the whole procedure is
repeated. The usual proceduré is to start with the CE control and then
search in the neighborhood so as to find a better control. The control
ndnimizing_v(yk,ﬁk) is applied and the method is started anew in the next

time step.

The method has at least cne advantage, namely that it guarantees
a better control than the starting one which can be the CE one. Tse and
Bar-Shalom (1973) have shown numerical results in which this method was

better than CE by cne order of magnitude.
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The main disadvantage of it is that in general it invélves a
search in a mdimensional space, where m is the dimension of the control
vector. Unless the control space is bounded, this search will result
in a local minimum of V(yk) with respect to y. In addition, as was
seen in section 6.4, the exact OLFO control is hard to find and approxi-
mations might be used. In such cases the quantity VOLIO in (88) is
substituted by an approximate one. Therefore, the minimization of (88)

with respect to Gk 'will be an approximate one.

Modifications of this method are easy to visualize. One which
seems to us particularly appeéling is to substitute for VoLFO in (88) the
quantity VSl’ namely the cost computed with the S1 method analyzed in {ﬁ>
section 6.3. Without some numerical studies it is quite difficult to

assert a-priori which method would perform better.

The dual nafure of the one-measurement-optimal feedback method
is manifested by the fact that the covariances of the parameters at time
k+l are explicit functions of the control applied at time k. The dependence
of the future covariances on the present control is nonlinear and quite
complicated. Thus since it is hard to compute the explicit dependence
analytically numerical evaluations have to be made. For on line

applications this can be quite costly.
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7.2 Adaptive Covariance Method.

This quite interesting method was proposed by McRae (1972).
Here we shall present the main idea, and we shall extend her results
to our problem, and give them a shape suitable for numerical computation,
which she has not done.

Suppose we are at time k and we have observed yk and uk-l.

We would like to choose Wosl  1oeee sty SO &S to minimize the

quantity
N-1
VG = BT (vh, + md U s
Nl 2i=}< o
E{ .§ (yi+l + rui)/k-l } (89)
i=k
subject to
Y41 T Z4P5 + 8 J>k (90)

Our future knowledge of the parameters pj will be governed by the postericr
density of P given future data. From section 3 we know that the future
posterior densities of P will be normal with means and covariances

evolving by the formulas:
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-1 '
e,e = Mo, ML, 2Psys + 1 zly. ] (92)
Pis3 = 473 [l j/3-1P3/3-1 —}szJ+l
ce
ML= Mt +1z'z (93)
j/3 i3-1 52373
€

P3/5-1 = P3-1/3-1 (o)

- + R | (95)

Mi/3-1 = Mar/5-1

for j > k with initial conditions given in (31).

In view of (90) the constraints (92)-(93) are stochastic. We
make the following approximation similar to McRae's, that renders them
deterministic. We assume that the evolution of means and covariances

will be deterministic and given by the following formulas.

-1
., = M.,. IM. L ... _ +FQ 2! _
P3/3 77573 [-J/J"lpj/]—l Lzy, /K D] (96)
og 3%l
3/3 j/3-1 6; 33
Pi73-1 = Py21/9-1 (98)
+ R (99)

Myg-r T M54
Thus the future means and covariances are functions of quantities that

are to be calculated at time k, i.e. W oW gqoee ety e

w

Fal
O
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Let us analyze (96) a little further.

R 1] =

-2 :]+l

E(1 z'y /k-1) =1 E[Z'E(y
oz 33+l o L j

€

1 e[z E(pj/yj,ul)/k-l} -
g? 113 :
€
1 Efz'zp /k—l] - (100)

2 tiiis o

Since P3/5-1 is deterministic it can be factored out of (100).

Therefore, (36) becomes

= "t 2 /=10) Ps sy 101)
Py/3 ° PH/j [Pij/j-l + E(%Yzjzj/k li] P3/4-1 (
€

Equation (97) now implies that

Ps/5 % Py5-1 T Pye1/3-1 T vt T Prskel (102)

Thus implicit in assumptions (96)—(99) is the fact that the future
mean is not affected by the controls but the future covariance is via
(97). The problem that we solve is the following.

Minimize V(yk) in-(89) with respect to Wesly g qae e sty g

subject to the stochastic constraints (90), and given that the future

densities of the parameters have means given by (102) and covariances
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by (97). The problem that we pose is both stochastic and deterministic
because half the constraints are stochastic, namely (90), and half
deterministic, namely (97). We solve it, following McRae; by applying
dynamic programming to a criterion which is (89) augmented by products

of the deterministic constraints and deterministic Lagrange multipliers.

The complete analysis is given in appendix A. The result is
that the controls W W 4 q5-.0050y ;7 are linear functions of Vi3Vt
“sYN-1 respectively with gains given by the solution of a two-point-
boundry-value (TPBV) problem. The complete set of equations is the following

(For proof see appendix A).

u = =€ “lry o | o) |
3373 D
2 - b ~
G. =r +(1L+K )b + WP ) _ 1L (104)
] j*¥1 0 3/3-1 3/3-1 T 9L 3
| ab
o= L+ Ky, su®, - 11 0w
3 3/5-1%3/3-1 * My75-1 =2 3
€
Ky = (1+ Ky, e, ) - 113 - gl 106
5 = . 35-1 " M50 TR TG (108)
)
€
-1 -1 -1,
L. = (I + L. R P Me (107
g = (T RE,507 Ly J/J R VA TS VA ! )
Py = 1 -GglF5
R (08
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x; = E(yJ?/k-l) = oé+ x tr P | (p p' +M )Y} 09)
j-1 j-1 3-1/3-2 §-1/3-2  j-1/3-2

373 331 ® Pys3a1 T Pye1/-17 vt T Bykel (110)
b. .
373
-1 -1
M.,.=M.,. + 1 P.x.
373 5/5-1 1, ij (111)
€
Mj/j-l = Mj—l/j—l + R (112)

The boundary conditions are X =0, Ly , = 0, % = Yi » P/p.q &d

Mk/k—l known.

The solutions of the above equations nust be carried at each

step k and only W applied to the system. Then a new measurement is

“taken and the procedure must be repeated. What is interesting about

this method is that the future controls are linear and influence all the
future covariances. We have not as yet examined numerical ways to

solve the above TPBV problem.
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7.3 Two-Step Optimal Adaptive Control.

This method, to our knowledge has not been suggested before. The
idea is the following. Assume that we are at time k having observed
yk,uk—l. Then assume that optimization is to be done only for two more
periods. Also assume that the one future value of the parameter b is
and equal to bk Jk-1" Then carry out the two-step backward dynamic
programming recursion. The assumption that bk+l is constant and equal

to by Jk-1 is sufficient to render the minimization with respect to

U equivalent to minimization of a quadratic function.of u -

% . *
\' (yk) = min E (y}2<+l + r'u}z< + vV (yk+l)/k—l] (113)
. -
where
. _ .
v = minE[y}zd_z ¢ ] (1)

Y+l

At time k+1 the minimization (114) is straightforward. We obtain

*
Uerl T TSVl (115)
where
- 2 -
Gesp = (0 * Byyy) ltﬁ<+18k+1/k , (11§)
* ok+l, _ .2
Vy ") =Hy,, *+ F (117)
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‘where

_ 2 2 -1 2 2
H=an 1vﬁﬂ/k - @+ byyy) lbk+1ak+1/k

At time k we have

%
V) = minE [+ Byl t o+ F/kel]
. uk -

From section 3 we know that

= = X 2.‘.‘a 2 -l —_
41/ T Ak TH/k-l Y Mk Vidkr * 08 Wien

Meri/k = Mok 1O Mi/k— k/k 1yk(ykMi/k 1t *

If we substitute for Vit in (121) the innovation becomes

(@ - a1 ¥ B = by + e

We make the assumption

B, - bpog) =0

which is what will render the problem tractable.

o)

2

(118)

(119)

(120)

3 /k-1Yx P

{121)

(122)

(123)

(124)

/-1
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Of course, if bk is a-priori known then the assumption (124) will be

a true fact, and not an approximation.

By substituting for ak+l/k’r€+l/k in H, via (121)-(122) and
substituting for yj .4 in (120) we arrive at an expression whose con-
ditional expectation is easy to take. In addition the resulting
expression is quadratic in u. The calculations are lengthy but

straightforward and they are showm in appendix C. The optimizing

W is

w = -Df (125)
where -
®)
- 2 ‘. , 2 . N
D = v+ L+ M 0t M) * —r lhya
| B2
k/k-1

2 ' 2 2 2 2
+ By t M) * Xk[E [bitay - & p ) k1] v +

2 -
W Mi/k-l)] } (126)

_ 2
£,0= v Q4 DEED /KD 4 r [ak/k_lE(akbk/k-l) +
; o
T F Dy

>S2< [_ y]iE [akbk(ak - ak/k_l)z/k-l] + cfzz(akbk/k-l)] +

23 1 XE [ady (e - a k1 4
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. 2 2 2
—r [ 2y e[ e - g Yol + zak/k-lbk/k-lxlé’e) (126)
rt 2 ’

By /k-1 ’

where

) 2 2ol
% = M Mk too) (127

The control u is thus a highly nonlinear function of y,.
We can also see that even if we make the assumption that b, is equal
tob 4., T3S impossible to carry out one more recursive
dynamic programming step because of the complex nonlinear dependence

* k
of V (y) on Vi *

This control law is dual and it takes into account future
adaptation of the mean but not the variance of a. It is quite simple
to compute since it does not involve the solution of any iterative

system of equationé like the previous methods.
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8. NUMERICAL COMPARISONS

In this section we show the fesults of some initial Monte Carlo
comparisons of all the non-dual methods mentioned befbré except the
OLFO one, for which exact computations are tedious as seen in secticn 6.4.
and inexact computations give strange results (cf. Ku and Athans (1973)).

The methods compared are denoted by the following initials:

T - Control with perfectly known parameters (cf. section 5)

CE - Certainty equivalence method (cf. section 5)

W - Wouters' method (cf. section 6.1)

WW - Wieslander's and Wittenmark's method (cf. section 6.2)

WM - Modified WW (cf. equation (49))

S1 - Sequential stochastic control (cf. section 6.3)
For all the methods except T, which does not involve learning, the

parameter updating was done with the Kalman filter analyzed in section 3.

We now state the results for four experiments that were
conducted. - Table 1 summarizes the conditions of each experiment. The
first colum denotes a code name for the experiment. The second colum
denotes a code name for the true parameters used in generating the data.
The third colum lists the covariances of the system error. The random |
nurbers that were created had the indicated covariances and were normal.
The M colum lists the initial covariance matrix of the parameters. For
every run the initial values of the parameters were chosen by random
sampling from a normal density with mean 55, listed in the last colum,
and covariance matrix M . The colum labeled R lists the covariance

matrices used for the error terms in the parameter equations (cf. (7) and

.
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(10)). The remaining three colums list the number of runs, the initial
value of Yo and the control penalty r respectively. All runs were for

30 periods.

In experiment E1 the true parameter ay wasvconstant and the
true bt was a slow trend. In E2 the true ay and bt were generated
using equation (7) with initial values (—.63,.083),‘as shown in the
last colum of Table 1, and normal random efrors with zero means and

8
both time varying with some trends and sudden jumps. In E5 both

covariances 62 = .09 and 0; = .0l. In E3 the true parameters were

the parameters were constant with ap equal to .7 and bt equal to -.h.

In Table 2 we show the average cost for the 20 runs. The
first thing that we notice is that the CE method performs quite well,
surpassed at some experiments only by S1. We see that the W and WW
methods which are minimum variance ones involve excessively high
control cost. In experiment E2 the parameter a; was unstable for
half of the controlling period, and we see thét all suboptimal methods
perfornlpoorly; This is a disturbing fact and was also observed by

Ku and Athans (1973) in their simulations of the OLFO method.

Figures 1-12 show the average control gains and the
average parameter estimated resulting from the 20 Monte Carlo runs
of each experiment. It is interesting to notice that for E2 in

which, as seen in Table 2, none of the methods gave good controls,

IS

e
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nevertheless the estimates of the parameters are quite satisfactory.
In general W, WW, and WM give the worst results with CE and S1 always
superior to those three. The experiments, however, did not result

in a distinct ordering of CE and S1.

There is still a lot of work to be done in comparing these
methods and comparing them with the dual methods described in section 8.
The dual methods should give better results than the non-dual ones.
On the other hand the dual ones are all, with the exception of the

one described in section 7.3, quite costly.
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Control Gains for ES.
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9. SUMMARY AND CONCLUSIONS.

In this paper we have examined the problem of controlling a
system with parameters varying in a fashion unknown to the controller.
We have surveyed all methods available for the solution of such problems
and we have extended some to fit our framework. We have also suggested
and analyzed two methods for the first time. One is a non-dual one (S1)
and the other is a dual one (see section 7.3). We have also presented
a numerical comparison of the non-dual methods, in which S1 was found,
‘along with enforced separation, superior to other non-dual methods

that have been suggested elsewhere.

A major problem with all the methods is that a-priori there is
complefe ignorance about the evolution of the parameters.  From
figures 5 and 6 it was seen that if the parameter variation happens to
be of the same form as.the one assumed, then these paranetzrs are
estimated satisfactorily. Otherwise, we do not have large hope of
identifying them. This raises the whole issue of robust estimation for
some particular kind of parameter variation, it is not clear whether
it will give good results if the parameters'evolve according to a
different structure. The ultimate goal, of course, is to optimize
the criterion. The interaction between identification and control might

be somewhat understood in the case of constant but unknown parameters,

i
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but it is not at all clear in the case of time varying parameters.
There is still a lot of research to be done in this area beginning with
more extensive comparisons of the dual and the non-dual methods,
extensions to higher order systems, and examination of the interaction

between identification and control.
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APPENDIX A
SOLUTION OF THE ADAPTIVE COVARIANCE CONTROL PROBLEM

In this appendix we present the solution to the problem posed
in section 7.2. The solution procedure follows the analysis of McRae
(1972). The problem is the following.

Find Yol paees sty g where

e N-1
V'’ = min E LI (v, + rud)/k-1) (A.1)

Ueolyppoe ety Ik

subject to

Y541 = Z5P3 + €5 i>k (A.2)

Ej independent zero mean white noise with covariance og

P(p3/3) = N(ps /5uMy/5) (A.3)

Pis5 = Pj/j—l = Pyo1/5-1 7 vt T Prgx-l (A.4)

-1 N -1 7 ] 7

Mi5 = M550 B Zfz./k‘l] j>k (A.5)
oz 33

M/5-1 7 Myo1/5-1 ¥ R j>k (A.6)

25 7 [Yj’uj] | j>k (A.7)

We define a set of N-k+1 matrix Lagrange multipliers Lj
k-1 <3j <N-1 where Lj are all symmetric 2x2 matrices. We now form

the following Hamiltonian quantity.



N-1

HGS) = BLE (v, + m/k-l} +
izk '
N-1
| 1 1 .
ol [y - Oyt R -ECL 2'z /k-1)]} =
izk g2 11
€
N-1
T LERS,, + ) - Ltrlz'z Ml] 44} o
=k Oc 11
-1 -1
U‘[ LI\ Lk-le-l/k—l] (A.8)
where .
A, = tr[L Mt - LM + 7L (A.9)
i 111 i-1/i-1  Mi-1/i-1 '

We shall apply stochastic dynamic programming to the augmented
criterion (A.8). We shall be careful, however, to simultaneously impose

the constraints

JHGy) =0 . k <j <N-1 (A.10)
—T
aM L.
373
aHf(zk) =0 k <3 <N-1 (A.11)
9 L.
J
(A.10) and (A.11) correspond to the state-costate equations for Mj /5"

The dynamic programming recursion can now be written as follows

H*(yj) = min { E[Wj + H*(Yjﬂ)/j‘l] + Aj} (A.12)
u. .
J

for
k <3 <N-1
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with

® N -1 -1

HGD = [y g7 - L’k—le-l/k—l] (£13)
W = y2,. + il - 1 tr(Liz'z ) (A.14)
173t 1 7 375 )

2 j
i Wl -1

A = tp[L] ILEPNEIED MUNEYNBE RS ] (A.15)
E[. /3-1 E [ /g3 ,u3° 1] (A.16)

The interesting thing about this arrangement is that we shall
be able to satisfy (A.10) recursively as we proceed backwards.

At time N we have the cost H"‘(yN) given in (A.13). We can
differentiate it with respect to M_I%I-l /N-] Since this quantity will

appear only in H""'(yN). Using (B.4) of appendix B, we have

) o

H ) = e <z ) =Ly, *ly - DIAGL ) =0  (A1D
-1

oM

N-1/N-1 O MN—l/N-

since the Lj are symmetric (A.17) is equivalent to

Ly = 0 (A.18)

H(Y) = - ol ML (A.19)
y LM -1/k-1 '

At time N-1 the recursion (A.12) becomes
* - s ' %
BN = min (B[R + nfy - Lty iz iz ) +H (My/m-2]+

UN-1 Oe

-1 -1
o [y M g = e Mooy ¥ BT (81200
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Only the first three terms in (A.20) involve Uy We partition the

matrices L. and Mj as follows

3
12 &
Lj = J J (A.21)
(& (P
] 3
12 . M.
3/3 3/3
M.,. = (A.22)
373

We now expand (A.20)

£ N-l. _ . -¢2 .2
Hiy O = min &y Gy e ¥ Moineg) b 2191 G /- 2PN-1/8-2
UN-1
2 Y 2 a 2
Mﬁbl/N— BRI B ME—l/N—Z) v o lé(LN-lyN—l *
o [
ab b

2L

By differentiation we find that the minimizing U is

-1

U-1 * 76 NeafN-aYn-a (A.24)

where

Lﬁ (A.25)

) 2
Gyo1 T Byt ME—l/N—Z

QID—J

L ;

2 5 N -1
N-1VNo1Nn-1 T Igeiiy-p) PR (e oo ™ o1 Mooz * ®



—A5-

ab

1L N-1

g2
€

PN-1 ® AeiN-2Pn-i/n-2 P'raﬁ.l/N_g - (A.26)

We now write H(yk) in a form that will help the differentiation

with respect to M-I%I—Q /N-p dictated by (A.10)
Ky _ o (.2 -1 -1
B = £ [ypet) ¢ [ Mo, - e fMeawe R 14
(terms not involving MN-2 /N—2) =
rE( oz k1) 4 tr [L, Mh S + 7]
Z-1PN-1PN-1AN-1 In-2M Neo/n-2 el Mea/n-2

)
+ (terms without My_o o) = 0 [y P nopes * Meeo/we2t B

' -1 -1
* Ezy_y2zy4/ kD] + ot [LN—2M N-2/N-2 = Dye1My-2/m-z TR J *

(terms without Mip /N—2) (A.27)
With the help of (B.5) and (B.6) we have

aH(y™)

-1

.|
= 0 = =My o BT g DM o Nt
M N_o/N-2 '

DIAG [MN-2/N—2E(ZN—IZN—1/ k=LMoo ~2hyop * DIAG(Ly ) *
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-1 -1 -1 -1
20T + R ) Iy @+ My g neo®
-1 -1 N |
DIAG [(T + RAE_p o )y g (T # M R ] (A.28)

Since all the matrices are symmetric, (A.28)

the following

1

is equivalent to

- -1 -1 ' _
Loy = T+ Ry o) D T+ Muomg® = Myoyn-2® [ZN-IZN-llk_i} '

MN-2/N-2

* N-1
The cost H (y 7)) becomes

£ N-1, _ .2 S N cHR |
HGM = vy gK g to2 B OO+ o Ly oo

where

_ 2 a _ -1 2
Ky-1 © a-am-2 M-z - L Dger ~ € yeafnel

»N

a

™

(A.29)

= Lyg Moot B

(A.31)

—%] (A.30)

So Hd(yN-l) is a quadratic in Yy-1 and the recursion can continue.

Notice that the nonlinear dependence of Ky ; on uy ,»-

ceee has dissappeared

with the introduction of the multiplier matrices. It is easy now to

* .
write the expressions for uj.

Y. cl
u. = = LV
3 57373

(A.32)
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where
. b
.= 4+ (14K )2 + P -1 1f A.33
Gy =7 ( 5410005 /500 * M5 /501 L L (A.33)
OE
ab
Ft = l + K )(a - - l L - Ao 31‘}
3 ( 3/3- 1P j/3-1 3/3-1) = 3 ( )
(o}
€
-1.2
1<.=(1+1< )(a M. ) - 112 - g .F (A.35)
3 -1 3/3-1 =, ] 33
(o}
€
L. = (I + IRM'% DL, (I + M-].‘ .R - - M. .E(zf Z. 1 /k=1)M. (A. 36)
J 37377341 373 &.\/J Jj+173+1 373
The initial conditions are
(A.37)

KN F 0Lyt

Along with (A.4),

(A.5) and (A.6) the above equations define

a camplicated two-point-boundary-value (TPBV) problem. In order to define

the problem completely we need a way to evaluate
t
E(zjzj/k—l) for all k. <j <N-1

We now provide such a recursian.

-1
] -
E(z.z./k-1) = 1 ¢ ij 2 2
3] E (y</k-1) = P.E(y./k-1)
-1 2.2 ] 3]
-G JF. G.°F.
J ] J
L -
2 - -
E(yj/k-l) = o E(z] lp] lp] 12 5- l/k 1

.....

(A.38)
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= g2+ | . ! . ] . 2 .
% tr[PJ‘l(pj-l/j-ij-l/j—2+ Ms_1/5-27 E(y5_y/k-1) (A.39)

Since E(y]i/k—l) = y]i (A,39) is a well defined recursicn. The TPBV

problem is now complete.

‘‘‘‘‘‘



APPENDIX B

SOME USEFUL MATRIX DERIVATIVES

In this appendix we develop certain matrix derivatives that are
useful in the proofs of appendix A. Many formulas for matrix derivatives
have been reported by Athans and Schweppe (1965), and Athans (1967).
However, those derivatives were applicable only to matrices whose elepents

are independent. Here we derive some formulas for symmetric matrices.

Define the operator DIAG which operates on a square matrix A

and creates the following matrix

— -
DIAG (A) = a4, O
0 a, . (B.1)
0
“nhn

let X be a nxn matrix and let f(X) denote a scalar valued function of

the n2 elements of X. Then the matrix derivative of f is defined by

aX 3X..

3 £ = {af(x) } (5.2)
ij

so the matrix derivative of f is a matrix. We now state the following

theorem.

Theorem. Let X,B be symmetric nxn matrices. Then the following equalities

are true
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3 trX=1 | | (B.3) :
X
!
3 trAX = A + A - DIAG(A) B¢ R
5%

5 trA(X + B) T = (X + ) lax + BY L - (X + B)'lA'(x + )L 4

9

prac [(x + By A + B)L] | (B.5)

- - - - - ' —
stea [x1+8] P e tac st v @eBoTA @ T -
3% |

DIAG [(T + BOTIACT + )7 ] (B.6)

Before we proceed with the proofs we state for comparison the corresponding ii)

formulas for matrices whose elements are independent

8 trx=1 (B.7)
3X

3 trAX = A - (8.8
5% |

3 A+ B L= [+ glac + 3] (B.9)
5% |

3 teaCx L+ B) Th= [ BoTAC 4 1] @10
3x

S
-
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Proof. (B.3) is trivial and we omit its proof.

(B.4): 0

3 trAX = trAdX = trA =
0
9Xy3 9%s3 1.. ij
ji 0
aij + aji Q.E.D.
(B.5): 1 1 -1 1
3 A+ BTz A 3 (X4 B)TT = ~trA(X + B)T X (X + B)T =
—toa” 0T+ %)y C 1} = 1.2.,..,00)

where

_ -1
x"‘P_Ex+ B ]mp
B T Yo S S

n n - - L. .
-1z alk(le>3<l ¢ 0T
1=1 k=1

Cfxemacs Tt s aentacenT ) QED
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(B.6): _g_tpA(x'l + )7

= A (XL + B)”

-1 -1

1.1 + B) -

aX (X

9X..
1]

—trAX T + B)

-1 1,,-1 -1

! + B) XIX X (X~ + B)

trA(T + ¥ Tax (1 + B7L

the proof of (B.5) carries over.

and the analysis of



APPENDIX C

COMPUTATION OF THE TWO-STEP ADAPTIVE CONTROL

In this appendix we carry out the calculations called for in

section 7.3. The problem is

% oky _ . 2 2 2
V(") = min E [yk+1 tryo o+ Hyk+1 + F/k-l] (C.1)

We substitute (121) and (122) into (118) keeping in mind the assumption

(124). We obtain

) |
- r c 2 2, 2 2y~2
B2 —— Gt M e ey * o) [ (& =3 ey ¥
r + bk+1
) el1?2 + 2 Mi ( 2Mi + o)1 [ka - ) + e} +
C k] F/k-1k/k=-1Y% Nk /k-1 ¥ e T -1Vt )
t Mo | (C.2)

We notice from (122) that Mi+1/k does not depend on u _ and is
a function of (yk,uk-l) so we will not expand it further. To facilitate

the notation we shall define the quantity

= 2 . 2,-1
S ri/k—lyk(ykyiik-l t o) | (C.3)

X, 1is a function of (yk,uk-l).

V(yk) now becomes



=(C2-

2

VR = Emd ¢ P+ G+ B et Zabo

2ay, & * e, ) Lo Mo

2 : 2
r [ak/k-l ¥ XJ2< [(ak - a1V toad T P

K k-1
[ - apca * ekﬂ} ry )

2 2. 2
¢ F o+ oy 1@ i G- M)

T ¥ B

) | |
of -1t P'gi/k-l)J t 23 1 XE [al<(ak = -1/ k'lﬂ }oos

2

2. 2 2
w L@+ M) Prpr * M}z/k-l) T [a we/x-1 Prsi-1 ¥
r + bk+l

2 2 2 2 2
Mi/k—l) X [E [bi(a - 1)/ 1l g+ ol Mi/k—l)]} *

2 2 2 2. (.2, 2 |
— [ak/k-l(ak/k—l ) f % [ykE laga, - a1 /-1 +

A
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, : 2
2yin {(1 4+ 1"§+l/k)E(akbk/k—l) + r [ak/k_lE(akbk/k—l) +
: 2

r+ by

)i [y]iE [akbk(ak - ak/k-l)z/k-l]- + oéE(akbk/k-l)] +

2241 %NE (33 = agpe 1] b+

2 2
zyké —r_2 [ZXkE [y = agpep ot v + 28y e 192 |+
T+ b

2 2 2
2y (v ) [ZXkaE (b(ay - a g /Kol + 28 i 1Piene-1%0e ] ey
2

r*+brg

Equation (C.4) is a quadratic in W, SO 1ts minimization is

straightforward. We find

% _ D_l
uk = - fk (C.5)
where (remenbering that D41 Was assumed equal to by k-1’
A 2 p 2 2
De=rt QM) O+ 1, D+ _r E e /-1 Pr/k-1
2
T By -1

e Xﬁ(E [,bi(%-ak/k'l)z/k_l]yﬁ ¥ cé(bli/k—l+rvi/k—l)]} (C.

~

e}

)
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o | 2 -
fi = Yk {1+ Mi+1/k)E(akbk/k-l) + r [;k/k_lE(akbk/k—l) +
2
r+boa

sz_[§i§ [akbk(ék ak/k_l)z/k—l] + ogE(akbk/k—ﬂ]*'

23y /1 %IKE [a5 3y = ax-1 k-1 1+

2 R . ;
r [2Xk ykE [bk(ak - ak/k_l)/k—i]oE + 2ak/k—lbk/k—1xkgé](c'7)

2
r+boy

The expectations appearing in Dy and f) are straightforward to compute

from the joint gaussian density of g and by given (yk,u -1.




10.

12.

REFERENCES

Acki, M. (1967), "Optimization of Stochastic Systems," Academic
Press, 1967.

o)
Astrdm, K. J. (1970), Introduction to Stochastic Control Theory,
Academic Press, 1970.

Athans, M. (1967), "The Matrix Minimum Principle,"' Information
and Control, Vol. II, Nos. 5 and 6, November—-December 1967.

Athans, M. and F. C. Schweppe (1965), "Gradient Matrices
and Matrix Calculations," MIT Lincoln Lab. Technical Note
1965-53, Lexington, Massachusetts.

Bar-Shalom, Y. and Sivan, R. (1969), "On the Optimal Control of
Discrete-Time Linear Systems with Random Parameters," IEZEL
Transactions on Automatic Control, Vol. AC-14, No. 1, February 1969.

Chow, G. C. (1973), Private Communication.

Cooley, T. F. (1971), "Estimation in the Presence of Séquential
Parameter Variation," Fh. D. Thesis, Department of Econorics,
University of Pennsylvania, 1971.

Curry, R. E. (1969), "A New Algorithm for Suboptimal Stochastic
Control," IEEE Transactions on Automatic Control, Vol. AC-1u,
No. 5, October 1969.

Curry, R. E. (1970), Estimation and Control with Cuantized
Measurements, MIT Press 1370.

Early, R. H. and B. M. Early (1973), "On the Relative Performance of
the Optimal Control System with M Measurements," IEEE
Transactions on Automatic Control, Vol. AC-17, No. &L, August, 1973.

Fel'dbaum, A. A. (1960a), "Dual Control Theory 1," Automation
and Remote Control, Vol. 21, No. 11, September 1880.

Fel'dbaum, A. A. (1960b), "Dual Control Theory 2," Automaticn
and Remote Control, Vol. 21, No. 11, Novemrber 1960.




.13.
4.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24,

Fel'dbaum, A. A. (196la), "pual Control Theory 3," Automation
and Remote Control, Vol. 22, No. 1, January 1961.

Fel'dbaum, A. A. (1961b), "Dual Control Theory 4," Automation
and Remote Control, Vol. 22, No. 2, February 1961.

Fel'dbaum, A. A. (1966), "Optimal Control Systems," Academic
Press, New York, 1966. .

TEEE Transactions on Automatic Control, "Special Issue on
Linear-Quadratic-Gaussian Problem," Vol. AC-16, December 1971.

Ku, R. and M. Athans (1973), "On the Adaptive Control of Linear
Systems Using the Open—Loop—Feedback—Optimal Approach," TEEE
Transactions on Automatic Control, Vol. AC-18, No. 5, October
1973.

McRae, E. C. (1972), "linear Decision with Experimentation,"
Annals of Economic and Social Measurement, October 1972.

t
Popovic, B. (1972), "Analytic Solutions to Some Stochastic
Adaptive, and Dual Optimal Control Problems for Economic
Decision Making," Ph. D. Thesis, University of Illinois, STy
Urbana-Champaign. ‘ : i

Prescott, E. C. (1967), "Adaptive Decisicn Rules for Macro
Feonomic Planning," Ph. D. Thesis, Graduate School of
Tndustrial Administration, Carnegie-Mellon University, 1967.

Rausser, G. C. and J. W. Freebairn (1973), "Comparison of
Approxinaie.lAdaptive Control Solution to U. S. Beef Trade
Policy," -Presented at the second NBER Conference an Stochastic
Control and Economics, University of Chicago, June 7-9, 1873.

Rosenberg, B. (1968), "Varying-Parameter Estimation," Ph. D.
Thesis, Department of Economics , Harvard University 1568.

Sarris, A. H. (1973), "A Bayesian Approach to Estimaticn of
Time-Varying Regression Coefficients," Annals of Economic and
Social Measurement, October 1973.

Theil, H. (1971), Principles of Econometrics. John Wiley, 1971.




25.

26.

27.

28.

23.

30.

Tse, E. and M. Athans (1972), "Adaptive Stochastic Control for a
Class of Linear Systems," IEEE Transaction on Automatic Control,
Vol. AC-17, No. 1, February 1972.

Tse, E., Y. Bar-Shalom and L. Meier, III (1873a), "Wide Sense
Adaptive Dual Control for Nonlinear Stochastic Systems," IEEE
Transactions on Automatic Control, Vol. AC-18, No. 2, April 1973.

Tse, E. and Y. Bar-Shalom (1973b), "An Activity Adaptive Control
for Linear Systems with Random Parameters via the Dual Control
Approach," IEEE Transaction on Automatic Control, Vol. AC-18
No. 2, April 1973.

Wieslander, J. and B. Wittenmark (1971), "An Approach to Adaptive
Control Using Real Time Identification," Automatica, Vol. 7,
May 1971.

Wouters, W. (1973), "Adaptive Minimum Variance Control for
Linear Discrete Time Systems," Proceedings of the 1972 IEEE
Conference on Decision and Control, December 13-15, 1972.

Yoshida, Y. and Nakamura, K., (1973), "Learning Dual Control
with Complete State Information," Research Reports of Automatic
Control Labcratory Faculty of Engineering, Nagoya University,
Japan, Vol. 20, June 1973.



