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A Asymptotic Properties of the H-MIDAS Estimator

In this section, we analyze the asymptotic properties of the H-MIDAS estimator. We de-
rive its asymptotic variance for inference purpose and demonstrate that not using our
H-MIDAS estimator can introduce bias to the estimation of the coefficients under certain
circumstances.

Let τ =
[

β, θ>
]>

, θ =
[
θ1, θ2, . . . θp−1

]>, then we have wj (θ) = θj, if 1 ≤ j ≤ p −

1, and wp (θ) = 1 − ∑
p−1
k=1 θk, note that the first order derivative of the weights can be

expressed as
∂w (θ)

∂θ>
=

[
Ip−1
−ι>p−1

]
,

where ι is a column vector with all elements to be 1. If we define g(X̃ t, τ) = βXnew
t (w) =

β ∑
p
j=1 wj(θ)X̄(lj)

t = ∑
p
j=1 βwj (θ)

1
lj

∑
lj−1
i=0 Xt− i

m
,, we have the derivatives of g(X̃ t, τ) as

∂g
(
X̃ t, τ

)
∂τ

=

 ∂g(X̃ t,τ)
∂β

∂g(X̃ t,τ)
∂θ

 =

[
Xnew

t (w)
∂w(θ)

∂θ>
βX̃ t

]
=

[
w>X̃ t

β
∂w(θ)

∂θ>
X̃ t

]
,

and the regression problem can be viewed as

Yt = g
(
X̃ t, τ

)
+ εt

which can be estimated by the nonlinear least square method. According to Andreou, Ghy-
sels, and Kourtellos (2010), the estimator of τ, which is denoted by τ̂, has asymptotically
distribution

√
T (τ̂ − τ)

d→ N

0, σ2

[
E

(
∂g(X̃ t, τ)

∂τ

∂g(X̃ t, τ)

∂τ

>)]−1
 .

We derive the asymptotic variance of the estimator of β in the following lemma

Lemma 0 Suppose Xh
t− i

m
is an AR(1) process

Xh
t− i

m
= ρX(h)

t− i−1
m

+ et− i
m

,

where |ρ| ∈ (0, 1) is the AR coefficient and the error term et− i
m

iid∼
(
0, σ2

e
)
. The asymptotic

variance of the estimated coefficient β̂ is

AVar
(

β̂
)

= σ2
e

[
w>E

[
X̃ tX̃

>
t

]
w−w>E

[
X̃ tX̃

>
t

] ∂w (θ)

∂θ>
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×
(

∂w (θ)

∂θ>

>
E
[

X̃ tX̃
>
t

] ∂w (θ)

∂θ>

)−1
∂w (θ)

∂θ>

>
E
[

X̃ tX̃
>
t

]
w

−1

,

where the ith element of E
[

X̃ tX̃
>
t

]
is

Cov
(

X̄(li)
t , X̄(ls)

t

)
=

li
(
1− ρ2)+ ρ

(
1− ρli

)
As,j

lils (1− ρ)2 (1− ρ2)

where
As,j ≡

(
1− ρls − ρls−lj

) (
ρls−lj+1 + 1

)
− ρ

(
1− ρlj

)
+ ρls − 2.

Proof of Lemma 0 Since Xh
t− i

m
is an AR(1) process

Xh
t− i

m
= ρXh

t− i−1
m

+ et− i
m

,

with an error term et− i
m

iid∼
(
0, σ2

e
)
, following the derivatives of g(X̃ t, τ), the general for-

mula for estimating the asymptotic variance of the estimator of β is

AVar
(

β̂
)

= σ2
e

[
w>E

[
X̃ tX̃

>
t

]
w−w>E

[
X̃ tX̃

>
t

] ∂w (θ)

∂θ>

×
(

∂w (θ)

∂θ>

>
E
[

X̃ tX̃
>
t

] ∂w (θ)

∂θ>

)−1
∂w (θ)

∂θ>

>
E
[

X̃ tX̃
>
t

]
w

−1

.

However, we still need to derive the ith element of E
[
X̃ tX̃

>
t
]

from the above equation.

The regressors Xh
t− i

m
can be expressed as

Xh
t− i

m
= ρXh

t− i−1
m

+ et− i
m
=

m−i−2

∑
j=0

ρjet− i+j
m
+ ρm−i−1Xh

t−m−1
m

.

We can write X̄(li)
t as follows

X̄(li)
t =

1
li

li−1

∑
i=0

Xh
t− i

m
=

1
li

li−1

∑
i=0

(
m−i−2

∑
j=0

ρjet− i+j
m
+ ρm−i−1Xh

t−m−1
m

)

=
1
li

li−1

∑
i=0

m−i−2

∑
j=0

ρjet− i+j
m
+

(
ρm−li 1

li

li−1

∑
i=0

ρli−i−1

)
Xh

t−m−1
m
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=
1
li

li−1

∑
i=0

1− ρk+1

1− ρ
et− k

m
+

1
li
· 1− ρli

1− ρ

m−2

∑
k=li

ρk−li+1et− k
m
+ ρm−li 1

li
· 1− ρli

1− ρ
X(h)

t−m−1
m

≡ A(li) + B(li) + C(li),

where we define A(li), B(li), and C(li) accordingly to simplify the complicated polynomial.

In order to compute the covariance Cov
(

X̄(li)
t , X̄(ls)

t

)
, where ls > li, we first decompose

X̄(li)
t and X̄(ls)

t . For the X̄(li)
t term, we decompose the middle component, B(li), and obtain

X̄(li)
t = A(li) +

(
1
li
· 1− ρli

1− ρ

ls−1

∑
k=li

ρk−li+1et− k
m
+

1
li
· 1− ρli

1− ρ

m−2

∑
k=ls

ρk−li+1et− k
m

)
+ C(li).

For the X̄(ls)
t term, we decompose the A(ls) component as

X̄(ls)
t =

(
1
ls

li−1

∑
i=0

1− ρk+1

1− ρ
et− k

m
+

1
ls

ls−1

∑
k=li

1− ρk+1

1− ρ
et− k

m

)
+ B(ls) + C(ls).

Then, it is straightforward to show that

Cov
(

X̄(li)
t , X̄(ls)

t

)
=

1
lils
· Var

(
li−1

∑
i=0

1− ρk+1

1− ρ
et− k

m

)
≡D

+
1

lils
· 1− ρli

1− ρ
Cov

(
ls−1

∑
k=li

ρk−li+1et− k
m

,
ls−1

∑
k=li

1− ρk+1

1− ρ
et− k

m

)
≡E

+
1

lils
· Cov

(
1− ρli

1− ρ

m−2

∑
k=ls

ρk−li+1et− k
m

,
1− ρls

1− ρ

m−2

∑
k=ls

ρk−ls+1et− k
m

)
≡F

+
1

lils
·

ρ2m−li−ls
(

1− ρli
) (

1− ρls
)

(1− ρ)2 Var
(

Xh
t−m−1

m

)
≡G

=
1

lils
·
(

D + E + F + G
)
,

where D, E, F, and G represent the associated terms.

Since the D term can be explicitly written as

Var

(
li−1

∑
i=0

1− ρk+1

1− ρ
et− k

m

)
=

σ2
e

(1− ρ)2

[
li−1

∑
i=0

(
1− 2ρk+1 + ρ2(k+1)

)]

=
σ2

e

(1− ρ)2

[
li − 2

ρ
(
1− ρli

)
1− ρ

+
ρ2 (1− ρ2li

)
1− ρ2

]

=
li
(
1− ρ2)− 2ρ

(
1− ρli

)
(1 + ρ) + ρ2 (1− ρ2li

)
(1− ρ)2 (1− ρ2)

σ2
e
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=
li
(
1− ρ2)− 2ρ− ρ2 + 2ρli+1 + 2ρli+2 − ρ2li+2

(1− ρ)2 (1− ρ2)
σ2

e , (A1)

the E term can be expressed as

1− ρli

1− ρ
Cov

(
ls−1

∑
k=li

ρk−li+1et− k
m

,
ls−1

∑
k=li

1− ρk+1

1− ρ
et− k

m

)

=
1

(1− ρ)2

ls−1

∑
k=li

(
1− ρk+1

)
ρk−li+1σ2

e

=
1

1− ρ

(
ρ

1− ρls−li

1− ρ
− ρ2 1− ρ2(ls−li)

1− ρ2

)
σ2

e

=

(
1− ρli

) [
ρ
(
1− ρls−li

)
(1 + ρ)− ρ2

(
1− ρ2(ls−li)

)]
(1− ρ)2 (1− ρ2)

σ2
e

=
ρ− ρls−li+1 − ρls−li+2 + ρ2(ls−li)+2 − ρli+1 + ρls+1 + ρls+2 − ρ2ls−li+2

(1− ρ)2 (1− ρ2)
σ2

e (A2)

the F term can be shown as

Cov

(
1− ρli

1− ρ

m−2

∑
k=ls

ρk−li+1et− k
m

,
1− ρls

1− ρ

m−2

∑
k=ls

ρk−ls+1et− k
m

)

=

(
1− ρli

) (
1− ρls

)
(1− ρ)2

m−2

∑
k=ls

ρ2k−li−ls+2σ2
e

=

(
1− ρli − ρls + ρli+ls

)
ρ−li+ls+2

(
1− ρ2(m−ls−1)

)
(1− ρ)2 (1− ρ2)

σ2
e

=

(
ρ−li+ls+2 − ρls+2 − ρ2ls−li+2 + ρ2ls+2) (1− ρ2(m−ls−1)

)
(1− ρ)2 (1− ρ2)

σ2
e

=
ρ−li+ls+2 − ρls+2 − ρ2ls−li+2 + ρ2ls+2 − ρ2m−ls−li + ρ2m−ls + ρ2m−li − ρ2m

(1− ρ)2 (1− ρ2)
σ2

e ,(A3)

and the G term is simply

ρ2m−li−ls
(
1− ρli

) (
1− ρls

)
(1− ρ)2 Var

(
Xh

t−m−1
m

)
=

ρ2m−li−ls
(
1− ρli

) (
1− ρls

)
(1− ρ)2

σ2
e

1− ρ2

=
ρ2m−li−ls − ρ2m−ls − ρ2m−li + ρ2m

(1− ρ)2 (1− ρ2)
σ2

e ,(A4)
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combining the results from Equations (A1), (A2), (A3) and (A4), we have

Cov
(

X̄(li)
t , X̄(ls)

t

)
=

li
(
1− ρ2)− ρ− ρ2 + ρ2ls+2 − ρls−li+1 + ρ2(ls−li)+2 + ρls+1 − 2ρ2ls−li+2 + ρli+1 + 2ρli+2 − ρ2li+2

lils (1− ρ)2 (1− ρ2)
σ2

e

=
li
(
1− ρ2)+ ρ

(
1− ρli

) [
−1− ρls−li − ρ

(
1− ρli

)
+
(

1− ρls − ρls−li
)

ρls−li+1
]

lils (1− ρ)2 (1− ρ2)

=
li
(
1− ρ2)+ ρ

(
1− ρli

)
As,j

lils (1− ρ)2 (1− ρ2)
,

where
As,j ≡

(
1− ρls − ρls−lj

) (
ρls−lj+1 + 1

)
− ρ

(
1− ρlj

)
+ ρls − 2.

This completes the proof.

Remark 1 Lemma 0 and the following Lemma 1 both assume a dynamic autoregressive
data generating process. The high frequency data Xh

t− i
m

in our exercise is the USSI variable,

which quantifies the consumers’ hourly sentiment change. Psychologically speaking, peo-
ple’s past sentiment usually affects his/her current sentiment. Therefore, the dynamic data
generating process assumption is more reasonable than the conventional i.i.d. assumption
in the MIDAS literature.

In line with Andreou et al. (2010), we define the aggregate regressor based on flat

weights as XA
t which is X̄(lp)

t in our case. Following Andreou et al. (2010), the regression
function can be decomposed as the combination of an equal weight component XA

t and a
non-equal weight component XB

t :

Yt = βXnew
t + εt = βX̃>t w + εt = β

p

∑
j=1

wjX̄
(lj)
t + εt

= β
p−1

∑
j=1

wjX̄
(lj)
t + β

(
wp − 1

)
X̄(lp)

t + βXA
t + εt

= β
p−1

∑
j=1

wjX̄
(lj)
t − β

p−1

∑
j=1

wjX̄
(lp)
t + βXA

t + εt

= βXB
t + βXA

t + εt, (A5)

where XB
t ≡ ∑

p−1
j=1 wj

(
X̄(lj)

t − X̄(lp)
t

)
. As shown in Lemma 1, omitting XB

t can introduce

bias to the estimation of β.

5



Lemma 1 (Extended Version) Suppose Xh
t− i

m
is an AR(1) process

Xh
t− i

m
= ρXh

t− i−1
m

+ et− i
m

,

where |ρ| ∈ (0, 1) is the AR coefficient, and consider the H-MIDAS regression model in (A5).
Then, the simple averaging estimator that omits the non-equal weight component XB

t from
Model (A5) can introduce the asymptotic bias ABias

(
β̂, β
)
= γβ to the coefficient β, where

γ =
p−1

∑
j=1

wj

lj
ρ

Ap,jlp

(
1− ρlj

)
+ 2lj

(
1− ρlp

)
B


is the bias coefficient with

Ap,j ≡
(

1− ρlp − ρlp−lj
) (

ρlp−lj+1 + 1
)
− ρ

(
1− ρlj

)
+ ρlp − 2

and

B ≡
lp
(
1− ρ2)− 2ρ + 2ρlp+1

ρ
.

Proof of Lemma 1 Following the definition of omitted variable bias, we know that

γ =
Cov

(
XA

t , XB
t
)

Var
(
XA

t
) .

We first derive the covariance of XA
t and XB

t .

Cov
(

XA
t , XB

t

)
= Cov

(
X̄(lp)

t ,
p−1

∑
j=1

wj

(
X̄(lj)

t − X̄(lp)
t

))
=

p−1

∑
j=1

wjCov
(

X̄(lp)
t , X̄(lj)

t − X̄(lp)
t

)

=
p−1

∑
j=1

wjCov
(

X̄(lp)
t , X̄(lj)

t

)
−

p−1

∑
j=1

wjVar
(

X̄(lp)
t

)

=
p−1

∑
j=1

wjCov
(

X̄(lp)
t , X̄(lj)

t

)
−
(
1− wp

)
Var

(
X̄(lp)

t

)

= σ2
e

p−1

∑
j=1

wj

 lpρ
(

1− ρli
) [
−1− ρlp−li − ρ

(
1− ρli

)
+
(

1− ρlp − ρlp−li
)

ρlp−li+1
]
+ 2liρ− 2liρlp+1

lil2
p (1− ρ)2 (1− ρ2)

 .

Following the result in Lemma 0, we have

Var(XA
t ) =

lp
(
1− ρ2)− 2ρ + 2ρlp+1

l2
p (1− ρ)2 (1− ρ2) .
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Therefore,

γ =
Cov

(
XA

t , XB
t
)

Var
(
XA

t
)

=
p−1

∑
j=1

wj

lpρ
(

1− ρlj
) [
−1− ρlp−lj − ρ

(
1− ρlj

)
+
(

1− ρlp − ρlp−lj
)

ρlp−lj+1
]
+ 2ljρ− 2ljρ

lp+1

ljl2
p (1− ρ)2 (1− ρ2)

×
l2
p (1− ρ)2 (1− ρ2)

lp (1− ρ2)− 2ρ + 2ρlp+1

=
p−1

∑
j=1

wj

 lpρ
(

1− ρlj
) [
−1− ρlp−lj − ρ

(
1− ρlj

)
+
(

1− ρlp − ρlp−lj
)

ρlp−lj+1
]
+ 2ljρ− 2ljρ

lp+1

lj

[
lp (1− ρ2)− 2ρ + 2ρlp+1

]


=
p−1

∑
j=1

wj

lj
ρ

Ap,jlp

(
1− ρlj

)
+ 2lj

(
1− ρlp

)
B

 ,

where
Ap,j =

(
1− ρlp − ρlp−lj

) (
ρlp−lj+1 + 1

)
− ρ

(
1− ρlj

)
+ ρlp − 2,

and

B =
lp
(
1− ρ2)− 2ρ + 2ρlp+1

ρ
.

This completes the proof.

Remark 2 Lemma 1 states that converting high frequency series to low frequency series
using simple averaging is a special case of our H-MIDAS. Moreover, this special case is
biased since the non-equal weight component XB

t is omitted by simple averaging.
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B Detailed Description of the Forecasting Techniques

B.1 GUM, AIC, and PMA

Researchers who ignore model uncertainty implicitly assume their selected model is the
“true” one that generated the data (yt, X t) : t = 1, ..., n, where yt and X t = [xt1, xt2, ...] are
real-valued. We assume the data generating process for an outcome yt is given as

yt = µt + εt, (A6)

where µt = ∑∞
j=1 β jxtj, E(εt|X t) = 0 and E(ε2

t |X t) = σ2.

For researchers who admit ignorance of the true data generating process, they generally
select one model from a sequence of linear approximation models m = 1, 2, ..., M. An
approximation model m using kh regressors belonging to X t such that

yt =
kh

∑
j=1

βh
j xh

tj + εh
t for i = 1, ..., n, (A7)

where βh
j is a coefficient in model m and xh

tj is a regressor in model m. Approximation
models can be either nested or non-nested and model averaging approaches first involve
solving for the smoothing weights across the set of approximation models based on a
specific criterion. We assume that there are K regressors in total among all the potential
models. The general unrestricted model (GUM) is like a kitchen sink that consists of all the
K regressors we consider in explaining yt. All potential models are nested within GUM.

Formally, the DGP (A6) and approximation model (A7) can be represented in matrix
forms: y = µ+ ε and y = Xhβh + εh, where y is n× 1, µ is n× 1, Xh is n× kh with the tjth

element being xh
tj, βh is kh × 1 and εh is the error term for model m. For an approximation

model m, the least squares estimate of µ from model m can be written as µ̂h = Phy, where
Ph is a projection matrix.

Among all the model selection methods, the most widely used of these is probably the
Akaike information criterion, or AIC by Akaike (1973). There are many versions of AIC,
the one we considered is the following

AICh = n log(SSRh) + 2kh, (A8)

where SSRh is the sum of squared residuals from approximation model m.1 We choose the
model with the lowest AIC score.

On the other hand, model averaging simply assume that there is no one specific model
that dominates all others. Therefore, it is better to take a weighted average of all the

1 A more precise description of this version AIC is n log(SSRh) + 2kh + C with C being a constant term
irrelevant to m. Of course, the term C can be conveniently ignored, since only differences in AIC are mean-
ingful for model selection purpose.
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potential models. Let w =
[
w(1), ..., w(M)

]>
be a weight vector in the unit simplex in RM,

HM ≡
{

w ∈ [0, 1]M :
M

∑
m=1

wh = 1

}
,

which is a continuous set. We define the model average estimator of µ as

µ(w) ≡
M

∑
m=1

whµ̂h =
M

∑
m=1

whPhy. (A9)

By defining the weighted average projection matrix P(w) as P(w) ≡ ∑M
m=1 whPh, equation

(A9) can be simplified to µ(w) = P(w)y. Thus, the effective number of parameters to be
solved is defined as k(w) ≡ ∑M

m=1 whkh. Note that k(w) is not necessarily an integer and is
a weighted sum of the kh.

The prediction model averaging (PMA) estimator of Xie (2015) can be understood as
the model averaging analog of the prediction criterion of Amemiya (1980). Following Xie
(2015), the vector of empirical weight ŵ is the solution to

ŵ = arg min
w∈HM

PMAn(w) = arg min
w∈HM

(
y− µ(w)

)>(y− µ(w)
) (n + k(w)

n− k(w)

)
, (A10)

where µ(w) and k(w) are defined above. The PMA estimator is asymptotically optimal in
the sense of achieving the lowest possible mean square error.

B.2 Tree-based Algorithms

This section consists of four machine learning techniques. The building block is called the
regression tree (RT) proposed by Breiman, Friedman, and Stone (1984). Note that the full
name of the method is Classification and Regression Trees (CART), in which Classification
mostly deals with the categorical response of non-numeric symbols and texts and Regres-
sion Trees concentrate purely on quantitative responses variables. Given the numerical
nature of our data set, we only consider the second part of CART.

Consider the sample of {yt, X t}n
t=1 as defined in Section B.1. A simple regression will

yield a sum of squared residuals, SSR0. Suppose we can split the original sample into
two sub-samples such that n = n1 + n2. The RT method finds the best split of a sample
to minimize the SSR from the two sub-samples. That is, the variable and splitting point
are chosen to reduce the residual sum of squares (SSR) as much as possible after the
split as compared to before the split. This results in partitioning the data into groups that
are as different as possible. We can continue splitting the subsamples until we reach a
pre-determined stopping rule. To combat concerns related to overfitting, the tree can be
pruned using a cost-complexity criterion. This criterion takes into account the amount of
squared error explained by each sub-tree plus a penalty chosen by cross-validation for the
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number of terminal nodes in the sub-tree in an attempt to trade-off tree size and over-
fitting.

Forecasts from RT involve calculating the average of the outcome for the individuals
whose covariates land them in a specific terminal node calculated. Put simply, a local
constant model is estimated in each terminal node of the tree to generate a forecast. Lehrer
and Xie (2018) argue that in the presence of heteroskedastic data, splits made in the tree
are biased to be in regions of high heteroskedasticity at the expense of regions of low
heteroskedasticity. They additionally advocate using model averaging in place of the local
constant model in each terminal leave, an approach we did not consider since the sample
size in our application is quite small.

In general, an RT outperforms conventional regressions as it yields smaller SSR values
since it can allow for more general nonlinearities in the covariates. If the data are station-
ary and ergodic, the RT method also demonstrates better forecasting accuracy. Intuitively,
for cross-sectional data, the RT method performs better because it removes heterogeneity
problems by splitting the sample into clusters with heterogenous features; for time series
data, a good split should coincide with jumps and structure breaks, and therefore, it fits
the data to the model better.

We also consider the bootstrap aggregation (BAG) technique developed in Breiman
(1996). Unlike the RT method, the BAG method involves a training process where the
level of training is predetermined. The BAG algorithm is summarized as below:

(i) Take a random sample with replacement from the data.

(ii) Construct a regression tree.

(iii) Use the regression tree to make forecast, denoted by ŷ.

(iv) Repeat steps (i) to (iii), b = 1, ..., B times and obtain ŷb for each b.

(v) Take a simple average of the B forecasts ŷBAG = 1
B ∑B

b=1 ŷb and consider the averaged
value ŷBAG as the final forecast.

For most of the part, the more bootstrap samples in the training process, the better the
forecast accuracy. However, more bootstrap samples means longer computational time. A
balance needs to be found between accuracy and time costs and constraints.

The above algorithm is usually executed for cross-sectional data. When the data is time
series (dependent observations), we need to replace step (i) with specific bootstrap meth-
ods for time series based on different assumptions. A straightforward way is to bootstrap
the residuals instead of observations, in which the residual is estimated using an optimal
predictor of the X t’s. For observations following a stationary Markov chain with finite state
space, Kulperger and Prakasa Rao (1989) initiated the Markov bootstrap method. If we are
not willing to assume a specific structural form for a (stationary and weakly dependent)
time series, we can use the moving block bootstrap (MBB) method formulated by Künsch
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(1989). Instead of performing single-data resampling, Künsch (1989) advocated the idea
of resampling blocks of observations at a time. By retaining the neighboring observations
together within each block, the dependence structure of the random variable at short lag
distances is preserved. See Kreiss and Lahiri (2012) for a detailed literature review.

Random forest (RF) by Breiman (2001) is a modification of bagging that builds a large
collection of de-correlated trees, and then averages them. Similar to BAG, RF also con-
structs B new trees with (conventional or MBB) bootstrap samples from the original data
set. But for RF, as each tree is constructed, we take a random sample (without replace-
ment) of q predictors out of the total K (q < K) predictors before each node is split. Such
process is repeated for each node. In our application, q

K is set at its default value of 1
3 , and

the results are robust to other choices for how many variables to consider to split at each
node. Note that if q = K, RF is equivalent to BAG. Eventually, we end up with B trees like
BAG and the final RF forecast is calculated as the simple average of forecasts from each
tree.

The RT method can respond to highly local feature of the data, since it capitalizes on
very flexible fitting procedures. An alternative method to accommodate highly local fea-
tures of the data is to give the observations responsible for the local variation more weight
in the fitting process. If a fitting function fits those observations poorly, we reapply that
function with extra weight given to the observations poorly fitted. For a large number of
trials, we assign relatively more weights to the poorly fitted observations, hence, combine
the outputs of many weak fitting functions to produce a powerful committee, as described
in Hastie, Tibshirani, and Friedman (2009, Chapter 10).

The procedure we just described is called boosting (BOOST). Although they assemble
similarities, the boosting method is fundamentally different from the RF method. Boost-
ing works with the full training sample and all of the predictors. Within each iteration,
the poorly fitted observations are given more relative weight, which eventually forces the
(poor) fitting functions to evolve in boosting. Moreover, the final output values are a
weighted average over a large set of earlier fitting results instead of simple average as in
the RF method. In general, since boosting builds trees in a sequential manner, the size of
the trees are much shorter to be computationally efficient.

Many of the boosting methods are designed for classification issues, for example, the
most popular boosting algorithm AdaBoost.M1 by Freund and Schapire (1997). In this
paper, we consider a simple least squares boosting (LSB) that fits RT ensembles. In line
with Hastie et al. (2009, Chapter 8), at every step, the LSB method applies a new learning
tree to the difference between the observed response and the aggregated prediction of all
trees grown previously. The LSB method fits to minimize MSE.

B.3 Support Vector Machine for Regression

In machine learning, support vector machines (SVM) are supervised learning models with
associated learning algorithms that analyze data used for classification and regression anal-
ysis. The theory behind SVM is developed in Vapnik (1996). The classic SVM was designed
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for classification and a version of SVM for regression, later known as support vector regres-
sion (SVR), was proposed in by Drucker, Burges, Kaufman, Smola, and Vapnik (1996). The
goal of SVR is to find a function f (X t) that deviates from yt by a value no greater than a
predetermined e for each observations X t, and at the same time is as flat as possible.

In this paper, we first consider the SVR for the linear regression model (SVR1). Follow-
ing Hastie et al. (2009, Chapter 12),

yt = f (X t) + εt = X tβ + εt = β0 + X̃ tβ1 + εt,

where X t = [1, X̃ t] and β = [β0, β>1 ]
>. We estimate β through the minimization of

H(β) =
n

∑
t=1

Ve
(
yt − f (X t)

)
+

λ

2
‖β1‖

2, (A11)

where the loss function

Ve(r) =
{

0 if |r| < e
|r| − e otherwise

is called an e-insensitive error measure that ignores errors of size less than e. As a part of
the loss function Ve, the parameter e is usually predetermined. On the other hand, λ is a
more traditional regularization parameter, that can be estimated by cross-validation.

Let β̂ =
[
β̂0, β̂

>
1
]> be the minimizers of function (A11), the solution function can be

shown to have the form

β̂1 =
n

∑
t=1

(α̂∗t − α̂t)X̃>t ,

f̂ (X) =
n

∑
t=1

(α̂∗t − α̂t)XX>t + β̂0ιn,

where ιn is an n × 1 vector of ones and the parameters α̂t and α̂∗t are the nonnegative
multiplier of the following Lagrangian equation

min
α̂t,α̂∗t

e
n

∑
t=1

(α̂∗t + α̂t)−
n

∑
t=1

yt(α̂
∗
t − α̂t) +

1
2

n

∑
t=1

n

∑
t′=1

(α̂∗t − α̂t)(α̂
∗
t′ − α̂t′)X tX>t′

subject to the constraints 0 ≤ α̂∗t , α̂t ≤ 1/λ, ∑n
t=1(α̂

∗
t − α̂t) = 0, α̂tα̂

∗
t = 0 for all t = 1, ..., n.

We usually called the non-zero values of α̂∗t − α̂t for t = 1, ..., n the support vector.

We now extend the above SVR framework from linear regression to nonlinear regres-
sion. We approximate the nonlinear regression function f (X t) in terms of a set of basis
function {hm(X̃ t)} for m = 1, ..., M:

yt = f (X t) + εt = β0 +
M

∑
m=1

βmhm(X̃ t) + εt
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and we estimate the coefficients β =
[
β0, β1, ... , βM

]> through the minimization of

H(β) =
n

∑
t=1

Vε

(
yt − f (X t)

)
+

λ

2

M

∑
m=1

β2
m. (A12)

The solution of (A12) has the form f̂ (X) = ∑n
t=1(α̂

∗
t − α̂t)K(X, X t) + β̂0ιn with α̂∗t and α̂t

being the nonnegative multiplier of the following Lagrangian equation

min
α̂t,α̂∗t

e
n

∑
t=1

(α̂∗t + α̂t)−
n

∑
t=1

yt(α̂
∗
t − α̂t) +

1
2

n

∑
t=1

n

∑
t′=1

(α̂∗t − α̂t)(α̂
∗
t′ − α̂t′)K(X t, X t′)

similar to the linear SVR case. In the nonlinear SVR case, a kernel function K(X t, X t′) =
∑M

m=1 hm(X t)hm(X t′) is used to replace the inner product of the predictors X tX>t′ as in the
SVR1 case. In our paper, we consider the following kernel functions

K(X t, X t′) = exp
(
−‖X t − X>t′ ‖

2
)

, (A13)

K(X t, X t′) =
(

1 + X tX>t′
)p

with p ∈ {2, 3, ...}, (A14)

in which, we label the associated SVR model as SVR2 and SVR3, respectively.

C Comparing Daily USSI with Hourly USSI

In this section, we repeat our main empirical results presented in Section 5 where we use
the daily USSI instead of hourly USSI. The daily USSI is a simple weighted average of the
hourly USSI, where the weights are the hourly volume of tweets used in the construction
of the hourly USSI. The results presented below demonstrate that the main results are
robust. We continue to find that it important to incorporate the USSI in forecasting CCI,
the superiority of the proposed H-MIDAS estimator relative to other strategies to include
the CCI and the general improved forecast accuracy of machine learning strategies relative
to econometric estimators.

Table A1: Summary of Statistics of Daily USSI Variables

Variable Mean Median Minimum Maximum Std.Dev.
USSId 0.3595 0.9323 -18.6684 11.9494 6.3654

USSI′new 0.2962 0.2118 -15.0848 9.1623 5.6586
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Figure A1: Estimated Weights for Daily USSI with Specific Lag Index
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Figure A2: Forecasting Performance of SVR1 Using Daily USSI as Input Data
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Table A2: Estimation Results with Daily USSI

Variables (1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Macroeconomic Variable

MCSI - - - 0.0820 -0.0084 0.0175 0.0853 0.0680
- - - (0.1992) (0.1905) (0.1902) (0.1997) (0.2044)

LEI - - - 0.6444 0.3579 0.5687 0.7309 0.5203
- - - (1.7782) (1.6852) (1.6810) (1.6833) (1.7329)

UR - - - -0.2761 -0.2469 -0.3109 -0.3113 -0.2838
- - - (0.6782) (0.6440) (0.6412) (0.6396) (0.6534)

SR - - - -0.7294 -0.5438 -0.4946 -0.3173 -0.3075
- - - (0.7965) (0.7639) (0.7593) (0.7745) (0.7953)

CPI - - - -0.4856 -1.0217 -0.6788 -0.7249 -0.8132
- - - (1.4254) (1.3319) (1.3497) (1.3470) (1.3830)

Panel B: Financial Variable
SP500 - - - -0.0184 0.0019 -0.0050 0.0122 0.0099

- - - (0.0816) (0.0778) (0.0774) (0.0787) (0.0809)
VIX - - - -0.0938 0.1681 0.0738 0.1045 0.2080

- - - (1.2296) (1.1706) (1.1643) (1.1617) (1.1906)
USD - - - 3.6418 3.9614∗ 3.4278 2.8672 2.8250

- - - (2.4772) (2.3218) (2.3431) (2.3928) (2.4391)
TS - - - 100.8794 97.7550 96.9602 72.5226 93.5743

- - - (75.7207) (72.1231) (71.5883) (74.8274) (80.6411)

Panel C: Big Data Variable
USSIa - - - - - - - -0.1867

- - - - - - - (0.3308)
USSIh - - - - - - - 0.0994

- - - - - - - (0.1602)
USSInew 0.5479� - - - - - 0.2407 0.2759

(0.1067) - - - - - (0.2203) (0.2301)
USSId - 0.4262� - 0.3740� - 0.1683 0.1595 0.0849

- (0.0940) - (0.1077) - (0.1336) (0.1335) (0.1982)
USSI′new - - 0.5167� - 0.4675� 0.3481† 0.1750 0.1686

- - (0.1021) - (0.1124) (0.1464) (0.2154) (0.2198)

Panel D: Goodness of Fit
R2

c 0.3546 0.2997 0.3480 0.3738 0.4322 0.4549 0.4720 0.4821
R̃2 (0.3412) (0.2851) (0.3345) (0.2132) (0.2865) (0.2971) (0.3007) (0.2750)
∗ 10% level of significance.
† 5% level of significance.
� 1% level of significance.

Table A3: Daily USSI Forecasting Results Measured by MSFE and MAFE

GUM AIC PMA RT BAG RF BOOST SVR1 SVR2 SVR3
Panel A: Mean Squared Forecast Error (MSFE)
Mnew 14.1906 15.1128 13.2115 18.7820 12.5265 13.6034 18.5529 10.3271� 19.6891 24.8384
Md 16.9378 17.5787 16.9245 26.5476 14.7155 15.8912 28.1784 12.1432 19.7022 27.4054
M′

new 19.6599 17.7067 18.2117 35.3171 14.7824 15.0189 26.7917 11.9981 19.7905 39.4239
M′

all 18.4680 16.5564 15.9801 26.2613 12.8549 12.9826 20.5764 13.9349 19.7615 39.0403

Panel B: Mean Absolute Forecast Error (MAFE)
Mnew 2.7981 2.7415 2.6811 3.0674 2.5939 2.7793 3.4075 2.5035� 3.7456 3.7854
Md 3.3534 3.4959 3.4380 3.9928 2.8991 2.9925 3.9965 2.9837 3.7207 4.5058
M′

new 3.4512 3.0836 3.0908 4.2269 2.7442 2.7923 4.0550 2.7254 3.7539 4.7528
M′

all 3.1581 2.7500 2.7642 4.1651 2.6184 2.6592 3.8997 2.8705 3.7325 4.5498

Note: numbers with � indicate the best performing methods in each panel.
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D More Empirical Results

This section presents the tables associated with a variety of robustness checks that are
referenced in the main text. For example, we present a variant of Table 3 where we
replicate the results of Table 3 for a 2-period-ahead forecasting exercise, These results are
presented in Table A4. Similar to the results in the main text, SVR1 under Mnew has the
best forecasting accuracy (indicated by the � symbol) in both panels.

Table A4: Two-period-ahead Forecasting Results Measured by MSFE and MAFE

GUM AIC PMA RT BAG RF BOOST SVR1 SVR2 SVR3

Panel A: Mean Squared Forecast Error (MSFE)
M0 18.2308 18.3155 19.0210 17.1771 15.2140 16.1259 43.0629 26.1228 20.2316 73.9860
Ma 20.2511 18.3089 18.3411 16.1720 16.0738 16.6856 46.2792 15.0084 20.3537 45.3306
Mm 24.5094 21.8483 24.9359 25.5146 17.4539 16.0889 46.8264 27.6693 20.3768 40.2297
Mnew 15.3268 14.1511 14.5746 35.9327 17.8323 17.5119 30.8213 13.1977� 20.5168 46.1630
Mall 26.6746 15.5066 16.9475 42.3883 20.2647 18.2060 45.2701 18.5380 20.7128 31.9512

Panel B: Mean Absolute Forecast Error (MAFE)
M0 3.8519 3.6987 3.8723 3.6061 3.4920 3.4551 5.0305 4.5402 3.7657 6.2458
Ma 4.0248 3.6965 3.8063 3.3751 3.5468 3.4833 5.6841 3.5076 3.7593 5.7095
Mm 4.4515 4.2879 4.5581 4.3620 3.5388 3.3646 5.8107 4.7262 3.7756 5.4154
Mnew 3.6007 3.3624 3.4939 4.2865 3.7569 3.6214 5.0424 3.2378� 3.7881 5.4488
Mall 4.6207 3.5139 3.7173 4.9082 3.8264 3.6267 5.3703 3.7880 3.7978 4.8966

Note: numbers with � indicate the best performing methods in each panel.
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