
A Regulatory Details: For Online Publication

This appendix presents the formulas for programmed withdrawal and the minimum pension

guarantee in detail.

A.1 Programmed Withdrawal

The exposition in this subsection follows Pino (2005). PW payouts in each month of year t for

an individual of age x and gender g are

PWt(x,g) =
Balancet

CNUt(x,g) ·12

where balance is the beginning of year account balance in the PFA and CNU is the expected

present discounted value of paying out a unit pension. To calculate the CNU, we need to de-

fine a few objects. A mortality table issued in year m defines a gender-specific death probability

qm(x,g) for every age x and an adjustment factor AFm(x,g) - a value meant to correct for increasing

longevity expectations for a fixed mortality table.

In year t, the appropriate value for qt(x,g) is

qt(x,g) = qm(x,g) · ∗(1−AFm(x,g))t−m

Regardless of gender, the tables assume that the probability of being alive at 20 equals 1 and

that the probability of being alive at 110 equals 0. For intermediate values, define lt(x,g), the year
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t probability of being alive at age x, as

lt(x,g) = lt(x−1,g) · (1−qt(x−1,g)) for x ∈ (20,110]

Then CNUt(x,g) is

CNUt(x,g) =
110

∑
j=x

lt( j,g)
lt(x,g) · (1+ rRP) j−x −

11
24

for x ∈ (20,110]

where rRP = 0.8 ·rA+0.2 · r̄, rA is the previous year’s implicit interest rate for annuities and r̄ is the

10 year average return for PW balances. Finally, note that CNU calculations vary for individuals

with dependents. We do not report those adjustments, as we work with a no-dependents sample.

See Pino (2005) for details. Readers wishing to obtain CNU values will benefit from also reading

Vega (2014) and the accompanying Stata module.

A.2 Minimum Pension Guarantee

There are two minimum pension regimes in Chile during our sample period: pre and post 2008.

In the first period, any individual with at least 20 years of contributions into the pension system who

receives a pension below a minimum guaranteed amount receives a top-up from the government.

Since annuity offers cannot fall below this amount, during this period the minimum guaranteed

amount is only relevant for valuing programmed withdrawal contracts and for calculating annuity

payouts after a default. We value both contracts by taking the UF denominated value of the pension

guarantee at the time of retirement and holding it fixed throughout the lifetime of the contract.

Starting in 2008, this guarantee is replaced by an expanded top-up that is available to individ-

uals whose pension falls below a maximum amount. To be precise, the new regime sets a new

floor, called the “Pensión Básica Solidaria” or PBS, and a maximum, called the “Pensión Máxima
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con Aporte Solidario”, or PMAS. Annuity offers after this reform cannot fall below the PBS, and

individuals funding offers above the PMAS receive no subsidy. For individuals who fund an offer

(“Pensión Base”, or PB) in between the PBS and the PMAS, the government top up (“Comple-

mento Solidario”, or CS) is

CS = PBS · (1− PB
PMAS

)

This amount is added to any annuity offer accepted, regardless of contract type, provided the retiree

is 65 or older, has lived in Chile for 20 years after the age of 20, has lived in Chile for 4 of the

last 5 years, and is in the 60% percentile or lower in a needs-based poverty index (“Puntaje de

Focalización Previsional”).

For PW offers, a corrected version of the CS is added to the payout schedule. The correction is

meant to ensure that the expected present discounted value of the subsidy is equal under PW and

an annuity. See (2018) for details.
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B Grid Selection: For Online Publication

As mentioned in the main text, we incorporate a grid selection step into the estimation pro-

cedure. Through this step we are able to start with a grid that plausibly spans the support of the

distribution of types, but that is infeasible to take to the data, and reduce its dimensionality without

greatly affecting the outcomes that the model can cover or the predictions that will later be made

in the counterfactuals of interest.

We start with an initial grid that has 17 grid points per dimension of the type space, which

corresponds to 83,251 total points. For bequest motive β , the grid is logarithmic and spans from

0 to 7.88e03. For intuition, an individual with risk aversion coefficient equal to 3 who knew they

will be dead tomorrow would consume all their wealth today if their bequest motive were 0, while

they would consume 5% of their wealth today if β = 7.88e03. Table 6 presents this mapping for

every point in the grid of bequest motives. For risk aversion, the grid spans from 0 to 10, while

for outside wealth the grid spans from 0.2 to 20 thousand UFs.38 Finally, the mortality shifter grid

spans from -15 to 15. Recall that a retiree aged x with a mortality shifter value of y solves the

optimal consumption savings problem using the mortality probabilities of an x+ y year old. Table

7 presents the grid points for each dimension.

We then group these points into 16 bins according to their choices under four counterfactual

scenarios: a choice between allocating the full pension balance to an actuarially fair annuity or

to programmed withdrawal, and a choice between allocating the remaining pension balance to an

actuarially fair annuity or to lumpsum withdrawal when 0%, 50% and 90% of pension balances

are placed in an actuarially fair annuity. We do this separately by gender. For women, we value

these counterfactuals for a 60 year old with median pension balance, while for men we value them

for a 65 year old with median pension balance.

38In December 12, 2017, the dollar equivalent range was between 8,170 and 817,000
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Bequest Motive Percentage Consumed
1 0 100.00%
2 8.99E-07 99.09%
3 6.07E-05 96.38%
4 7.58E-04 91.99%
5 4.85E-03 86.09%
6 2.20E-02 78.90%
7 8.21E-02 70.68%
8 2.72E-01 61.79%
9 8.52E-01 52.50%

10 2.60E+00 43.25%
11 8.05E+00 34.33%
12 2.61E+01 26.10%
13 9.06E+01 18.92%
14 3.44E+02 13.01%
15 1.37E+03 8.62%
16 4.63E+03 5.91%
17 7.89E+03 5.00%

Table 6: Map from bequest motive to fraction of wealth consumed before certain death

Bequest Motive Risk Aversion Outside Wealth Health Shifter
1 0 0 0.2 -15
2 8.99E-07 0.09 0.39 -14
3 6.07E-05 0.38 0.95 -13
4 7.58E-04 0.84 1.87 -12
5 4.85E-03 1.46 3.1 -10
6 2.20E-02 2.22 4.59 -8
7 8.21E-02 3.08 6.31 -5
8 2.72E-01 4.02 8.17 -2
9 8.52E-01 5 10.1 0
10 2.60E+00 5.98 12 2
11 8.05E+00 6.91 13.9 5
12 2.61E+01 7.78 15.6 8
13 9.06E+01 8.54 17.1 10
14 3.44E+02 9.16 18.3 12
15 1.37E+03 9.62 19.2 13
16 4.63E+03 9.9 19.8 14
17 7.89E+03 10 20 15

Table 7: Gridpoints by dimension of types for initial grid
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We take a random 5% subsample of individuals and solve the optimal consumption-savings

problem for every annuity offer and programmed withdrawal offer these individuals receive, and

for every one of these 83,251 points. To reduce the dimensionality of this grid, as it is computa-

tionally infeasible to estimate demand on the whole sample with this grid size, we group together

points that predict the same choice for at least 99% of offer sets in this subsample and that predict

the same choice in each of the 16 counterfactual bins. This yields 2089 groups for men and 5812

for women.

We select an element of each bin by random sampling, and estimate equation in our subsample.

This estimation procedure yields that 106 points for women and 36 points for men have estimated

mass over 10−5, and that these points have a cumulative mass of 99.99%. This is the grid we take

to our full dataset. The full list of points for each gender is available upon request.
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C Additional Tables and Figures: For Online Publication
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(1)

Time to Death

Choose annuity -0.164**

(0.0601)

Insurance co. agent 0.195**

(0.0646)

Insurance broker 0.160*

(0.0682)

Financial advisor 0.0841

(0.103)

Direct thru insurance co. 0.133

(0.189)

Wealth/age controls 

Observations 45091

Figure 16: Correlation between death hazard and choice to annuitize, Gompertz baseline hazard

Number of Previous Policies Percentage of Acceptances

0 96.80%

1 2.90%

2 0.20%

3 or more 0.10%

Figure 17: Evidence that majority of retirees have never previously interacted with annuity com-
pany (Castro et al. (2018))

(1) (2) (3) (4)
Log(0-0 Offer Amount) Log(0-0 Offer Amount) 0-0 Offer Amount 0-0 Offer Amount

1[Request a Guarantee Period] -0.00504 0.0724
(0.00149) (0.0361)

1[Request a Deferral Period] -0.00490 -0.0630
(0.000681) (0.0173)

1[Request Both] -0.000122 -0.0101 -0.188 -0.178
(0.00152) (0.000655) (0.0367) (0.0168)

1[Only Request a Guarantee Period] -0.00490 -0.0630
(0.000681) (0.0173)

1[Only Request a Deferral Period] -0.00504 0.0724
(0.00149) (0.0361)

Pension Balance Spline X X X X
Age, Gender, Month-Year FE X X X X
Observations 430921 430921 430921 430921
Notes: This table reports results of a linear regression of an individual’s received offers for a 0 guarantee, 0 deferral period contract (“0-0 
contract”) on dummies for whether the individual also requested offers for contracts with guarantee periods or deferral periods. Offer 
amounts are in UFs – in December 12, 2017, one UF was worth 40.85 USD. 1[Request a Guarantee Period] is a dummy variable that is equal 
to 1 if the individual requests at least one contract type that includes a guarantee period. 1[Request a Deferral Period] and 1[Request Both] 
are defined analogously. 1[Only Request a Guarantee Period] is a dummy variable that is equal to 1 if the individual requests at least one 
contract type that includes a guarantee period and does not request any contracts with a deferral period. 1[Only Request a Deferral Period] 
is defined analogously. All regressions include a spline of pension balances and the full interaction of age, gender and retirement month-
year fixed effects. Robust standard errors in parentheses. 

Figure 18: Testing for Information Revelation in the Request Stage
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Panel A: CDF Summary
Mass Cutoff 1.00E-01 1.00E-02 1.00E-03 1.00E-04

Number of Points with Mass Greater than Cutoff 1 24 43 45
Total Mass for these Points 27.93% 89.01% 99.85% 100.00%

Panel B: Top 10 Mass Points
Bequest Motive Risk Aversion Outside Wealth Health Shifter Mass 95% CI

1 621 0.000 10.100 15 27.93% (26.12%, 29.74%)
2 7.89E+03 1.250 17.525 -9 5.43% (4.42%, 6.45%)
3 7.89E+03 1.875 17.525 15 4.74% (3.19%, 6.29%)
4 0.414 0.000 0.200 15 4.74% (3.47%, 6.01%)
5 44.6 0.625 18.762 -5 4.48% (2.82%, 6.15%)
6 7.89E+03 4.375 0.200 -1 4.29% (2.86%, 5.71%)
7 0.000289 1.250 20.000 1 3.88% (3.24%, 4.52%)
8 137 2.500 0.200 -15 3.46% (0.81%, 6.11%)
9 7.89E+03 5.625 0.200 -5 3.26% (1.47%, 5.04%)

10 17.5 1.250 0.200 -3 3.06% (1.93%, 4.19%)
Notes: Panel A reports the number of points whose estimated mass is above different values and the total
mass for those points. Panel B reports the ten points with the highest estimated masses, as well as their
estimated weights and 95% confidence regions. These confidence intervals are calculated using clustered
standard errors at the individual level.

Table 8: Descriptive Statistics for Estimated Type Distribution - First Quartile Females

Panel A: CDF Summary
Mass Cutoff 1.00E-01 1.00E-02 1.00E-03 1.00E-04

Number of Points with Mass Greater than Cutoff 1 30 59 60
Total Mass for these Points 28.06% 85.66% 99.95% 100.00%

Panel B: Top 10 Mass Points
Bequest Motive Risk Aversion Outside Wealth Health Shifter Mass 95% CI

1 621 0.000 10.100 15 28.06% (26.70%, 29.41%)
2 7.89E+03 1.250 17.525 -9 4.31% (0.38%, 8.25%)
3 7.89E+03 1.875 17.525 15 3.20% (1.80%, 4.61%)
4 0.414 0.000 0.200 15 3.03% (2.22%, 3.84%)
5 44.6 0.625 18.762 -5 3.03% (1.89%, 4.17%)
6 7.89E+03 4.375 0.200 -1 2.88% (1.68%, 4.08%)
7 0.000289 1.250 20.000 1 2.86% (2.47%, 3.25%)
8 137 2.500 0.200 -15 2.78% (0.83%, 4.74%)
9 7.89E+03 5.625 0.200 -5 2.37% (0.98%, 3.75%)

10 17.5 1.250 0.200 -3 2.35% (1.29%, 3.40%)
Notes: Panel A reports the number of points whose estimated mass is above different values and the total
mass for those points. Panel B reports the ten points with the highest estimated masses, as well as their
estimated weights and 95% confidence regions. These confidence intervals are calculated using clustered
standard errors at the individual level.

Table 9: Descriptive Statistics for Estimated Type Distribution - Second Quartile Females
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Panel A: CDF Summary
Mass Cutoff 1.00E-01 1.00E-02 1.00E-03 1.00E-04

Number of Points with Mass Greater than Cutoff 1 27 48 51
Total Mass for these Points 35.19% 90.03% 99.85% 100.00%

Panel B: Top 10 Mass Points
Bequest Motive Risk Aversion Outside Wealth Health Shifter Mass 95% CI

1 621 0.000 10.100 15 35.19% (33.51%, 36.86%)
2 7.89E+03 1.250 17.525 -9 4.83% (2.70%, 6.96%)
3 7.89E+03 1.875 17.525 15 3.72% (1.70%, 5.74%)
4 0.414 0.000 0.200 15 3.27% (2.15%, 4.40%)
5 44.6 0.625 18.762 -5 3.19% (1.50%, 4.87%)
6 7.89E+03 4.375 0.200 -1 3.12% (1.45%, 4.80%)
7 0.000289 1.250 20.000 1 2.73% (2.11%, 3.34%)
8 137 2.500 0.200 -15 2.52% (1.33%, 3.71%)
9 7.89E+03 5.625 0.200 -5 2.43% (0.36%, 4.50%)

10 17.5 1.250 0.200 -3 2.38% (1.10%, 3.66%)
Notes: Panel A reports the number of points whose estimated mass is above different values and the total
mass for those points. Panel B reports the ten points with the highest estimated masses, as well as their
estimated weights and 95% confidence regions. These confidence intervals are calculated using clustered
standard errors at the individual level.

Table 10: Descriptive Statistics for Estimated Type Distribution - Fourth Quartile Females

Bequest Motive Risk Aversion Outside Wealth Health Shifter
Bequest Motive 1.00 0.62 0.02 -0.06
Risk Aversion 0.62 1.00 -0.60 -0.23

Outside Wealth 0.02 -0.60 1.00 0.15
Health Shifter -0.06 -0.23 0.15 1.00

Table 11: Correlations Across Dimensions of Unobserved Type - First Quartile Females

Bequest Motive Risk Aversion Outside Wealth Health Shifter
Bequest Motive 1.00 0.73 -0.23 -0.08
Risk Aversion 0.73 1.00 -0.61 -0.39

Outside Wealth -0.23 -0.61 1.00 0.21
Health Shifter -0.08 -0.39 0.21 1.00

Table 12: Correlations Across Dimensions of Unobserved Type - Second Quartile Females
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Figure 19: Marginal Distribution of Bequest Motive - Females

Bequest Motive Risk Aversion Outside Wealth Health Shifter
Bequest Motive 1.00 0.66 -0.12 -0.22
Risk Aversion 0.66 1.00 -0.49 -0.45

Outside Wealth -0.12 -0.49 1.00 0.23
Health Shifter -0.22 -0.45 0.23 1.00

Table 13: Correlations Across Dimensions of Unobserved Type - Fourth Quartile Females
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Figure 20: Marginal Distribution of Health Shifter - Females

Bequest Motive Risk Aversion Outside Wealth Health Shifter
Bequest Motive 1.00 0.45 0.45 -0.17
Risk Aversion 0.45 1.00 -0.05 -0.61

Outside Wealth 0.45 -0.05 1.00 -0.05
Health Shifter -0.17 -0.61 -0.05 1.00

Table 14: Correlations Across Dimensions of Unobserved Type - First Quartile Males
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Figure 21: Marginal Distribution of Outside Wealth - Females
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Figure 22: Marginal Distribution of Risk Aversion - Females
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(a) First Quartile

(b) Second Quartile

(c) Third Quartile

Figure 23: Simulated Equilibria under Chilean System - Females
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(a) First Quartile

(b) Second Quartile

(c) Third Quartile

Figure 24: Simulated Equilibrium with 50% Mandatory Annuitization and Lump-Sum Withdrawal
- Females
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(a) First Quartile

(b) Second Quartile

(c) Third Quartile

Figure 25: Simulated equilibria for different levels of wealth in the mandatory annuity - Females
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Figure 26: CDF of equivalent variation (left) and mean equivalent variation (right), for first quartile
females, across different amounts in the mandatory annuity.

Figure 27: CDF of equivalent variation (left) and mean equivalent variation (right), for second
quartile females, across different amounts in the mandatory annuity.
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(a) No Annuitization at Baseline (b) Partial Annuitization at Baseline

(c) Full Annuitization at Baseline

Figure 28: CDF of equivalent variation for first quartile females, across different amounts in the
mandatory annuity, divided by annuitization at baseline.
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(a) No Annuitization at Baseline (b) Partial Annuitization at Baseline

(c) Full Annuitization at Baseline

Figure 29: CDF of equivalent variation for second quartile females, across different amounts in the
mandatory annuity, divided by annuitization at baseline.
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(a) No Annuitization at Baseline (b) Partial Annuitization at Baseline

(c) Full Annuitization at Baseline

Figure 30: CDF of equivalent variation for third quartile females, across different amounts in the
mandatory annuity, divided by annuitization at baseline.
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D Model: For Online Publication

This appendix section presents the detailed explanation of how the values of annuity and pro-

grammed withdrawal offers are calculated. It is divided into four subsections. The first derives

the Euler equations for the annuity problem; the second derives the Euler equations for the PW

problem; the third presents the computational details of how to solve the annuity problem; and the

fourth does the same for the PW problem.

D.1 Derivations for the Annuity Problem

Consider the problem presented in Equation 3. For expositional clarity, we ignore the no bor-

rowing constraint and derive a solution in an unconstrained setting, and then bring the constraint

back in. It is well known that the problems of the previous form can be re-written recursively. In

any arbitrary period t, the value of the remaining consumption problem given the current death

state dt , bankruptcy state bt and liquid assets mt is Vt(dt ,qt ,mt), and the Bellman equations are:

Vt(dt ,qt ,mt) = max
ct(dt ,qt)

ct(dt ,qt)
1−γ

1− γ
+δ ·Γt(dt ,qt)

′



Et [Vt+1(0,0,mt+1)]

Et [Vt+1(0,1,mt+1)]

Et [Vt+1(1,0,mt+1)]

Et [Vt+1(1,1,mt+1)]


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where Γt(0,0) =



(1−µt+1)(1−ψt+1)

(1−µt+1)ψt+1

µt+1(1−ψt+1)

µt+1ψt+1


, Γt(0,1) =



0

(1−µt+1)

0

µt+1


, Γt(1,0) =



0

0

(1−ψt+1)

ψt+1


, and

Γt(1,1) =



0

0

0

1


, and each equation is subject to the appropriate dynamic budget constraints and

transition rules. We can simplify the previous equation by noting that there is no optimization after

death, so for the absorbing state (dt = 1,qt = 1) we have that:

Vt(1,1,mt) = β
[mt +PDV z

t (1,1,D,G)]1−γ

1− γ

Et [Vt+1(1,1,mt+1)] = β

[
mt+1 +PDV z

t+1(1,1,D,G)
]1−γ

1− γ

where PDV z
t (1,1,D,G) = ∑

G+D
τ=t+1 Rt−τ · zτ(1,1,D,G) is the PDV in period t of the payment stream

of the guarantee period from t +1 to G+D.

The expressions are similar in the ”dead but not bankrupt” case (dt = 1,qt = 0), but take into

account that for guaranteed annuities there is uncertainty in the value of future payments:

Vt(1,0,mt) = β
[mt +E[PDV z

t (1,0,D,G)]]1−γ

1− γ

Et [Vt+1(1,0,mt+1)] = β

[
mt+1 +E[PDV z

t+1(1,0,D,G)]
]1−γ

1− γ

where E[PDV z
t (1,0,D,G)] is the expected present value in t of the payment stream of the guarantee
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period from t +1 to G+D:

E[PDV z
t (1,0,D,G)] =

G+D

∑
τ=t+1

Rt−τ · ((1−Ψτ) · zτ(1,0,D,G)+Ψτ · zτ(1,1,D,G))

Ψτ =
τ

∑
κ=t+1

(
κ−1

∏
κ̃=t+1

(1−ψκ̃)

)
ψκ

and Ψτ is the probability that the firm is bankrupt in τ > t, conditional on not being bankrupt in t.

As for the remaining states (when the individual is alive), the FOCs from (D.1) are:

ct(0,qt)
−γ = δ ·R ·Γt(0,qt)

′



Et
[
V ′t+1(0,0,mt+1)

]
Et
[
V ′t+1(0,1,mt+1)

]
Et
[
V ′t+1(1,0,mt+1)

]
Et
[
V ′t+1(1,1,mt+1)

]


We know that:

Et
[
V ′t+1(1,0,mt+1)

]
= β · [mt+1 +

G+D

∑
τ=t+1

Rt−τ · ((1−Ψτ) · zτ(1,0,D,G)+Ψτ · zτ(1,1,D,G))]−γ

Et
[
V ′t+1(1,1,mt+1)

]
= β ·

[
mt+1 +

G+D

∑
τ=t+1

Rt−τ · zτ(1,1,D,G)

]−γ

Also, from the Envelope Theorem:

V ′t (0,qt ,mt) = δ ·R ·Γt(0,qt)
′



Et
[
V ′t+1(0,0,mt+1)

]
Et
[
V ′t+1(0,1,mt+1)

]
Et
[
V ′t+1(1,0,mt+1)

]
Et
[
V ′t+1(1,1,mt+1)

]


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Combining (D.1) and (D.1), and rolling the equation forward by one year:

ct(0,qt)
−γ =V ′t (0,qt ,mt)

ct+1(0,qt+1)
−γ =V ′t+1(0,qt+1,at ·R+ zt+1(0,qt+1,D,G))

Substituting back into (D.1) yields the Euler equation:

ct(0,qt)
−γ = δ ·R ·Γt(0,qt)

′



Et [ct+1(0,0)−γ ]

Et [ct+1(0,1)−γ ]

Et
[
V ′t+1(1,0,mt+1)

]
Et
[
V ′t+1(1,1,mt+1)

]


Following Carroll (2012), note that in equation (D.1) neither mt nor ct has any direct effect on

V ′t+1. Instead, it is their difference, at , which enters into the function. This motivates the use of

the Endogenous Gridpoint Method to approximate the optimal policy and value functions, as is

derived in subsection D.3. Before moving to computation, however, the next section presents the

analogous derivation for the PW problem.

D.2 Derivations for the PW Problem

Consider for now the problem free of borrowing constraint. As before, utility is CRRA, and in

each state is given by:

u(ct ,dt = 0) =
c1−γ

t

1− γ

u(dt = 1) = β · (mt +PWt)
1−γ

1− γ
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As in the annuity case, to obtain the value of taking a PW offer we re-write the problem in recursive

form. The Bellman equation for the PDV of expected utility under the optimal state-contingent

consumption path, for any period t, given the death state, PW account balance, and asset balance,

denoted by Vt(dt ,PWt ,mt), is:

Vt(dt = 0,PWt ,mt) = max
ct

c1−γ

t

1− γ
+δ ·Γ′t

Et [Vt+1(0,mt+1,PWt)]

Et [Vt+1(1,mt+1,PWt)]



where Γt =

1−µt+1

µt+1

 and, as before, the problem is constrained by dynamic budget constraints

and transition rules. Since there is no optimization after death, and inheritors receive the full PW

balance, for the absorbing state dt = 1 we have that:

Vt(1,mt ,PWt) = β
[mt +PWt ]

1−γ

1− γ

Therefore we can write the expected continuation value for the death state as:

Et [Vt+1(1,mt+1,PWt)] =
β

1− γ

∫ [
mt+1 +(PWt− zt(PWt)) ·RPW ]1−γ

dF(RPW )

For the state where the individual is alive, the expected continuation value is:

Et [Vt+1(0,mt+1,PWt)] =
∫

Vt+1(0,(PWt− zt(PWt)) ·RPW ,mt+1)dF(RPW )

With these definitions, the FOCs from (D.2) are:

c−γ

t = δ ·R ·Γ′t

Et
[
V ′t+1(0,mt+1,PWt)

]
Et
[
V ′t+1(1,mt+1,PWt)

]

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We know that:

Et
[
V ′t+1(1,mt+1,PWt)

]
= β ·R

∫ [
mt+1 +(PWt− zt(PWt)) ·RPW ]−γ

dF(RPW )

Also, from the Envelope Theorem:

V ′t (0,mt) = δ ·R ·Γ′t

Et
[
V ′t+1(0,mt+1,PWt)

]
Et
[
V ′t+1(1,mt+1,PWt)

]


Combining (D.2) and (D.2), and rolling the equation forward by one year:

c−γ

t =V ′t (0,mt)

c−γ

t+1 =V ′t+1(0,mt+1,PWt+1)

Substituting back into (D.2) yields the Euler equation:

c−γ

t = δ ·R ·Γ′t

 Et

[
c−γ

t+1

]
Et
[
V ′t+1(1,mt+1,PWt)

]


D.3 Computation of the Solution to the Annuity Problem

Having derived the conditions that govern the optimal consumption policy and the value func-

tions for both problems, this subsection presents the details of the numerical procedure used to

solve these conditions. Since the problem is solved recursively, we will begin with the solution for

period T and work our way backwards. In period T , µT = 1 and T > G+D, so mT = aT−1 ·R and
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regardless of the bankruptcy state qT :

VT (0,qT ,mT ) = β ·
m1−γ

T
1− γ

Then in the next-to-last period:

VT−1(0,qT−1,mT−1) = max
cT−1

c1−γ

T−1

1− γ
+δ ·β · ((mT−1− cT−1) ·R)1−γ

1− γ

Which generates the optimal policy:

c−γ

T−1 = δ ·β ·R1−γ · (mT−1− cT−1)
−γ

cT−1(0,qT−1,mT−1) =
R

((δ ·β ·R)
1
γ +R)

·mT−1

And implies that the value function in T −1 is:

VT−1(0,qT−1,mT−1) =

(
1+(δ ·β ·R1−γ)1/γ

1− γ

)(
R ·mT−1

(δ ·β ·R)1/γ +R

)1−γ

Note that conditional on mT−1, there is no dependence on qT−1. That is, qT−1 will shift mT−1, as

mT−1 = aT−2 ·R+ zT−1(0,qT−1,D,G), but conditional on mT−1 it becomes irrelevant. Therefore,

given a grid of mT−1 one could easily solve for VT−1(mT−1), and the value of mT−1’s for other

values would be found by interpolation/extrapolation. Note as well that as long as the bequest

motive is positive the no-borrowing constraint can be omitted from this stage without loss as the

the unconstrained solution always satisfies cT−1 < mT−1.

Having solved for all the relevant quantities in T − 1 and T , let us consider the unconstrained
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problem in T −2. From the Euler condition in (D.1) and the optimal policy in (D.3):

cT−2(0,qt)
−γ = δ ·R ·ΓT−2(0,qt)

′



Et [cT−1(0,0)−γ ]

Et [cT−1(0,1)−γ ]

Et
[
V ′T−1(1,0,mT−1)

]
Et
[
V ′T−1(1,1,mT−1)

]



= δ ·R ·ΓT−2(0,qt)
′



(
R

((δ ·β ·R)1/γ+R)

)−γ

((mT−2− cT−2(0,qT−2)) ·R+ zT−1(0,0,D,G))−γ(
R

((δ ·β ·R)1/γ+R)

)−γ

((mT−2− cT−2(0,qT−2)) ·R+ zT−1(0,1,D,G))−γ

β ·
[
(mT−2− cT−2(0,qT−2)) ·R+ zT−1(1,0,D,G)+E[PDV z

T−1(1,0,D,G)]
]−γ

β ·
[
(mT−2− cT−2(0,qT−2)) ·R+ zT−1(1,1,D,G)+E[PDV z

T−1(1,1,D,G)]
]−γ


Unfortunately, this is a non-linear system of equations. To find the value function in T − 2, one

could fix a grid of mT−2, and for each point in the grid solve for optimal consumption and obtain

the value function. Interpolation across m’s would yield the value function for any mT−2. Note

also that the previous derivation is also valid for 0 < t < T −2, so backward induction would allow

us to unwind this problem and construct the value function in period 1. The problem in period 0 is

slightly different, as the state is (0,0) and wealth is ω + z0(0,0,D,G)+FDA with certainty39, but

the same tools apply.

One issue we’ve abstracted away from up to now is the no-borrowing constraint: aT−1 ≥ 0. In-

corporating this constraint implies that when mT−1 is sufficiently low, consumption will not be

the solution to the aforementioned problem, but rather mT−1 itself. This creates a discontinuity in

the optimal policy function. Since our approximations to the optimal policy and value functions

are constructed by interpolation, it is crucial to incorporate the point where the discontinuity takes

place into the grid of points to be evaluated. This ensures that the no-borrowing constraint is prop-

erly accounted for in the model. At the point where the no-borrowing constraint binds, m̂T−1, the
39Recall that FDA is the free disposal amount, another attribute of an annuity offer. In most cases, it is 0.
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marginal value of consuming mT−1 must be equal to the marginal utility of saving 0.

We use the Endogenous Gridpoints Method (Carroll (2006)) to find the solution to the aforemen-

tioned problem. At a high level, the strategy is to solve the model for a grid of asset states, and

then to interpolate across states to obtain the policy function and the value function. EGM allows

us to solve the model efficiently, by re-writing the problem in a way that allows us to back out a

solution using an inversion rather than root-finding. The details of the implementation for T − 2

are presented below:

Numerical Calculation of Policy Function in T −2:

1. Select a grid of aT−2 with support [0, āT−2], where:

āT−2 = RT−2
ω +

T−2

∑
τ=0

RT−2−τzτ(0,0,D,G)
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2. Calculate the relevant quantities for the unconstrained problem:

mT−1(dT−1,qT−1,D,G) = aT−2 ·R+ zT−1(dT−1,qT−1,D,G))

cT−1(0,qT−1) =

(
R

((δ ·β ·R)1/γ +R)
·mT−1(0,qT−1,D,G)

)−γ

cT−2(0,qT−2) =


δ ·R ·ΓT−2(0,qT−2)

′



cT−1(0,0)

cT−1(0,1)

β · [mT−1(1,0,D,G)]−γ

β · [mT−1(1,1,D,G)]]−γ





− 1
γ

cT−2(0,qT−2) = cT−2(0,qT−2)
−γ

mT−2(0,qT−2) = cT−2(0,qT−2)+aT−2

VT−1(0,qT−1) =

(
1+(δ ·β ·R1−γ)1/γ

1− γ

)(
R ·mT−1(0,qT−1)

(δ ·β ·R)1/γ +R

)1−γ

VT−1(1,qT−1) = β

(
mT−1(1,qT−1)

1−γ

1− γ

)

VT−2(0,qT−2) =
cT−2(0,qT−2)

1−γ

1− γ
+δ ·ΓT−2(0,qT−2)



VT−1(0,0)

VT−1(0,1)

VT−1(1,0)

VT−1(1,1)



3. Denote m̂T−2(0,qT−2) the solution to equation (2) when aT−2,i = 0. This is the lowest level
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of wealth that is unconstrained. Define

V̂T−1(0,qT−1) =

(
1+(δ ·β ·R1−γ)1/γ

1− γ

)(
R · zT−1(0,qT−1,D,G)

(δ ·β ·R)1/γ +R

)1−γ

V̂T−1(1,qT−1) = β

(
zT−1(1,qT−1,D,G)1−γ

1− γ

)
ĉT−2, j(0,qT−2) = m−γ

T−2, j

V̂T−2, j(0,qT−2,mT−2) =
m1−γ

T−2, j

1− γ
+δ ·ΓT−2(0,qT−2)



V̂T−1(0,0)

V̂T−1(0,1)

V̂T−1(1,0)

V̂T−1(1,1)



4. Use interpolation to obtain c̀T−2(0,qT−2,mT−2), `̂cT−2, j(0,qT−2), V̀T−2,(0,qT−2,mT−2), and

`̂VT−2,(0,qT−2,mT−2) for the unconstrained problem.

5. Correct for the no-borrowing constraint by constructing a part exact, part interpolated policy

and value function for this period 40

c̀∗T−2(0,qT−2,mT−2) =


m−γ

T−2 if mT−2 < m̂T−2(0,qT−2)

c̀T−2(0,qT−2,mT−2) otherwise

V̀ ∗T−2(0,qT−2,mT−2) =


V̂T−2,(0,qT−2,mT−2) if mT−2 < m̂T−2(0,qT−2)

V̀T−2,(0,qT−2,mT−2) otherwise

There are three issues worth discussing in this procedure: first, we assume that individuals can-

not borrow against future annuity payments (the lower bound of a is 0). This is consistent with

our knowledge of the Chilean banking system. Second, we set the upper bound of the support of

assets as the PDV of initial wealth plus the PDV of the maximum sequence of previous annuity

payments. This ensures that the grid of a’s spans the optimal asset value in T −2, as in the model

40Note that the solution objects for the T −2 problem are exact when the constraint binds.
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the agent cannot accumulate more wealth than this value. Third, we interpolate over c(·) instead

of c(·). This is suggested by Carroll (2011), as the function that enters into the recursion in earlier

periods is c(·), and not c(·). One could interpolate over c(·), and then raise the interpolated value

to the power of −1
γ
, but that is less accurate is simply interpolating over c̀. With these objects, we

can solve the problem for T −3,T −4, ...,0 by recursion.

Numerical Calculation of Policy Function in t:

1. Select a grid of at with support [0, āt ]:

āt = Rt
ω +

t

∑
τ=0

Rt−τzτ(0,0,D,G)

2. Calculate the relevant quantities for the unconstrained problem (suppressing the dependence
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on D and G to simplify notation):

mt+1(0,qt+1) = at ·R+ zt+1(0,qt+1)

ct(0,qt) =


δ ·R ·Γt(0,qt)

′



c̀∗t+1(0,0,mt+1(0,0))

c̀∗t+1(0,1,mt+1(0,0))

β ·
[
mt+1(1,0)+E[PDV z

t+1(1,0,D,G)]
]−γ

β ·
[
mt+1(1,1)+E[PDV z

t+1(1,1,D,G)]
]−γ





− 1
γ

ct(0,qT−2) = ct(0,qT−2)
−γ

mt(0,qt) = ct(0,qt)+at

Vt+1(1,qt+1) = β

(
mt+1(1,qt+1)

1−γ

1− γ

)

Vt(0,qt) =
ct(0,qt)

1−γ

1− γ
+δ ·Γt(0,qt)



V̀ ∗t+1(0,0,mt+1)

V̀ ∗t+1(0,1,mt+1)

Vt+1(1,0)

Vt+1(1,1)



3. Define m̂t(0,qt) as the level of wealth obtained at at = 0 and

V̂t+1(1,qt+1) = β

(
E[PDV z

t+1(1,qt+1,D,G)]1−γ

1− γ

)

V̂t(0,qt) =
m̂t(0,qt)

1−γ

1− γ
+δ ·ΓT−2(0,qT−2)



V̀ ∗t+1(0,0,zt+1(0,0))

V̀ ∗t+1(0,1,zt+1(0,1))

V̂t+1(1,0)

V̂t+1(1,1)



4. Use interpolation to obtain c̀t(0,qt ,mt), `̂ct, j(0,qt), V̀t,(0,qt ,mt), and `̂Vt,(0,qt ,mt) for the un-

constrained problem.
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5. Correct for the no-borrowing constraint:

c̀∗t (0,qt ,mt) =


m−γ

t if mt < m̂t(0,qt+1)

c̀t(0,qt ,mt) otherwise

V̀ ∗t (0,qt ,mt) =


V̂t(0,qt ,mt) if mt < m̂t(0,qt)

V̀t(0,qt ,mt) otherwise

6. Repeat for t−1

Note that again, the constrained segment requires no additional interpolation and hence its imple-

mentation is both efficient and precise.We can recover the object of interest (the value of an annuity

offer: V (0,0,ωi,D,G)) after the t = 0 step in the previous recursion.

D.4 Computation of the Solution to the PW Problem

In period T , µT = 1 and PWT = 0, so mT = aT−1 ·R and:

VT (0,mT ,PWT ) = β ·
m1−γ

T
1− γ

Then in the next-to-last period:

VT−1(0,mT−1,PWT−1) = max
cT−1

c1−γ

T−1

1− γ
+

δ ·β
1− γ

((mT−1− cT−1) ·R)1−γ
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The optimal policy and value functions in T −1 are then:

cT−1(mT−1) =
R

((δ ·β ·R)
1
γ +R)

·mT−1

VT−1(0,mT−1) =

(
1+(δ ·β ·R1−γ)1/γ

1− γ

)(
R ·mT−1

(δ ·β ·R)1/γ +R

)1−γ

Note that, conditional on mT−1, there is no dependence on PWT−1. This is because PWT−1 will

shift mT−1, as mT−1 = aT−2 ·R+ zT−1(PWT−1,a), but conditional on mT−1 it becomes irrelevant.

Additionally, as in the annuity problem, as long as the bequest motive is not negative the uncon-

strained maximizer satisfies the no-borrowing constraint.

Having solved for all the relevant quantities in T −1 and T , we can proceed to solve the problem

in T − 2. There are a few additional objects that need to be introduced before proceeding. First,

take K draws from the distribution of RPW . Each draw will be denoted by k, and draws will be held

fixed across time periods. Define R̄K as the largest draw from the distribution of RPW . Second,

define the upper bound of the grid of PW, ¯PW , recursively:

¯PW 1 = R̄K · (PW0− zt(PW0))

¯PW t = R̄K · ( ¯PW t−1− zt( ¯PW t−1))

Finally, define the upper bound of the grid of accumulated assets as:

āt = Rt
ω +

t

∑
τ=0

Rt−τz( ¯PWτ ,0, f )

Numerical Calculation of Policy Function in T −2:

1. Select a grid of (aT−2,i,PWT−2,i) with support [0, āT−2]× [0, ¯PW T−2].
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2. Calculate the relevant quantities for the unconstrained problem:

mT−1,k(0) = aT−2 ·R+ zT−1(RPW
k · (PWT−2− z(PWT−2),0,a)

mT−1,k(1) = aT−2 ·R+RPW
k · (PWT−2− z(PWT−2))

ET−2[cT−1] =
1
K

K

∑
k=1

[
cT−1(mT−1,k(0))

]−γ

ET−2[V ′T−1(1)] =
β

K

K

∑
k=1

[
mT−1,k(1)

]−γ

cT−2 =

δ ·R ·Γ′T−2

 ET−2[cT−1]

ET−2[V ′T−1(1)]



− 1

γ

mT−2 = cT−2 +aT−2 (1)

cT−2 = c−γ

T−2

ET−2[VT−1(0)] =

(
1+(δ ·β ·R1−γ)1/γ

1− γ

)
·
(

R
(δ ·β ·R)1/γ +R

)1−γ 1
K

K

∑
k=1

[
mT−1,k(0)

]1−γ

ET−2[VT−1(1)] =
β

1− γ
· 1

K

K

∑
k=1

[
mT−1,k(1)

]1−γ

VT−2 =
c1−γ

T−2

1− γ
+δ ·Γ′T−2

ET−2[VT−1(0)]

ET−2[VT−1(1)]


3. Denote m̂T−2(PWT−2) the solution to (1) when aT−2 = 0 and the PW balance is PWT−2

define

V̂T−2(mT−2,PWT−2) =
m1−γ

T−2

1− γ
+δ ·Γ′T−2

ET−2[VT−1(0)]

ET−2[VT−1(1)]


with the value of VT−1 determined by aT−2 = 0.
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4. Use interpolation to obtain c̀T−2(mT−2,PWT−2) and V̀T−2(0,mT−2,PWT−2) for the uncon-

strained problem. Form the boundary interpolator `̂mT−2(PWT−2) which determines the min-

imum level of unconstrained wealth for each value of the PW balance.

5. Correct for the no-borrowing constraint by constructing a part exact, part interpolated policy

and value function for this period 41

c̀∗T−2(mT−2,PWT−2) =


m−γ

T−2 if mT−2 < `̂mT−2(PWT−2)

c̀T−2(mT−2,PWT−2) otherwise

V̀ ∗T−2(mT−2,PWT−2) =


V̂T−2,(mT−2,PWT−2) if mT−2 < `̂mT−2(PWT−2)

V̀T−2,(mT−2,PWT−2) otherwise

Armed with these objects, we can solve the problem for T −3,T −4, ...,0 by recursion.

Numerical Calculation of Policy Function in t:

1. Select a grid of (at ,PWt) with support [0, āt ]× [0, ¯PW t ].

41Note that the solution objects for the T −2 problem are exact when the constraint binds.
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2. Calculate the relevant quantities for the unconstrained problem:

mt+1,k(0) = at ·R+ zt+1(RPW
k · (PWt− zt(PWt)),0,a)

mt+1,k(1) = at ·R+RPW
k · (PWt− zt(PWt))

Et [ct+1] =
1
K

K

∑
k=1

`ct+1(mt+1,k(0),PWt+1,k)

Et [V ′t+1(1)] =
β

K

K

∑
k=1

[
mt+1,k(1)

]−γ

ct =

δ ·R ·Γ′t

 Et [ct+1]

Et [V ′t+1(1)]



− 1

γ

mt = ct +at,i

ct = c−γ

t

Et [Vt+1(0)] =
1
K

K

∑
k=1

V̀ (0,mt+1,k(0),RPW
k · (PWt− z(PWt)))

Et [Vt+1(1)] =
β

1− γ
· 1

K

K

∑
k=1

[
mt+1,k(1)

]1−γ

Vt =
c1−γ

t

1− γ
+δ ·Γ′t

Et [Vt+1(0)]

Et [Vt+1(1)]


3. Denote m̂t(PWt) the solution when at = 0 and the PW balance is PWt define

V̂t(mt ,PWt) =
m1−γ

t

1− γ
+δ ·Γ′t

Et [Vt+1(0)]

Et [Vt+1(1)]


with the value of Vt+1 determined by at = 0.

4. Use interpolation to obtain c̀t(mt ,PWt) and V̀t(0,mt ,PWt) for the unconstrained problem.

Form the boundary interpolator `̂mt(PWt) which determines the minimum level of uncon-
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strained wealth for each value of the PW balance.

5. Correct for the no-borrowing constraint by constructing a part exact part interpolated policy

and value function for this period:

c̀∗t (mt ,PWt) =


m−γ

t if mt < `̂mt(PWt)

c̀t(mt ,PWt) otherwise

V̀ ∗t (mt ,PWt) =


V̂t,(mt ,PWt) if mt < `̂mt(PWt)

V̀t,(mt ,PWt) otherwise

6. Repeat for t−1

We can recover the object of interest (the value of a PW offer: V0(0,ω,PW0)) after the t = 0 step

in the previous recursion.
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