Appendix

A Proof of Proposition 1

The agents' expected present values are

$$
\begin{align*}
& V_{i}(i)=\frac{1}{1+r d t}\left(\lambda_{i} d t\left(\int_{e \in \mu_{i}(i)} \max \left\{\pi_{i}\left(i, e, c^{*}\right), V_{i}(i)\right\} d F(e)+\int_{e \notin \mu_{i}(i)} V_{i}(i) d F(e)\right)+\left(1-\lambda_{i} d t\right) V_{i}(i)\right),(15) \tag{15}\\
& V_{e}(e)=\frac{1}{1+r d t}\left(\lambda_{e} d t\left(\int_{i \in \mu_{e}(e)} \max \left\{\pi_{e}\left(i, e, c^{*}\right), V_{e}(e)\right\} d F(i)+\int_{i \nexists \mu_{e}(e)} V_{e}(e) d F(i)\right)+\left(1-\lambda_{e} d t\right) V_{e}(e)\right)(.16)
\end{align*}
$$

Consider the expression for $V_{i}(i)\left(V_{e}(e)\right.$ is symmetric). Multiply both sides by $1+r d t$, cancel out the two terms that contain $V_{i}(i)$ but not $d t$, and divide by $d t$ to obtain

$$
r V_{i}(i)=\lambda_{i} \int_{e \in \mu_{i}(i)} \max \left\{\pi_{i}\left(i, e, c^{*}\right), V_{i}(i)\right\} d F(e)+\lambda_{i} \int_{e \notin \mu_{i}(i)} V_{i}(i) d F(e)-\lambda_{i} V_{i}(i)
$$

Move $\lambda_{i} V_{i}(i)$ to the left-hand side and divide everything by $r+\lambda_{i}$. Equation (8) follows.

B Example contract terms: Reata Pharmaceuticals (NAS: RETA)

Sections of Reata Pharmaceuticals 2003 Series A certificate of incorporation that contain contract term information.

B. 1 Equity sold and share price

The Series A investors purchased $1,751,000$ shares at $\$ 1.00 /$ share at an approximate $\$ 8.25 \mathrm{~m}$ premoney, $\$ 10 \mathrm{~m}$ post-money valuation (17.5% of equity):

The total number of shares of capital stock that the Corporation shall have authority to issue is $90,000,000$, consisting of $55,000,000$ shares of common stock, par value $\$ 0.001$ per share (the "Common Stock"), and 35,000,000 shares of preferred stock, par value $\$ 0.001$ per share (the "Preferred Stock"). [...] 1,751,000 shares of Preferred Stock are designated as the Corporation's Series A Convertible Preferred Stock (the "Series A Preferred Stock"). [...] for each share of Series A Preferred Stock then held by them equal to $\$ 1.00$ (as adjusted for any stock splits, stock dividends, recapitalizations, combinations, or similar transactions with respect to such shares after the filing date of this Certificate, the "Original Issue Price").

The equity stake sold is calculated by data providers Pitchbook and VC Experts using a proprietary model that estimates the total number of issued shares out of the total shares authorized. Pitchbook estimates that a total of 10 million shares were issued at the time of the Series A financing. ${ }^{28}$

[^0]
B. 2 Cumulative dividends

The following details the cumulative dividends available to the Series A investors:
The holders of the outstanding shares of Series A Preferred Stock shall be entitled to receive dividends from time to time out of any assets legally available for payment of dividends equal to $\$ 0.08$ per annum per share [...] Dividends on each share of Series A Preferred Stock shall be cumulative and shall accrue on each share from day to day until paid, whether or not earned or declared, and whether or not there are profits, surplus, or other funds legally available for the payment of dividends.

B. 3 Liquidation preference and participation

This section details the liquidation preference for the Series A shareholders:
The Series A Preferred Stock ranks senior with respect to distributions on liquidation to any Equity Securities that do not by their terms rank senior to or on a parity with Series A Preferred Stock, including the Common Stock. In the event of any liquidation, dissolution, or winding up of the Corporation, either voluntary or involuntary, the holders of the Series A Preferred Stock shall be entitled to receive, after payment or distribution and setting apart for payment or distribution of any of the assets or surplus funds of the Corporation required to be made to the holders of Liquidation Senior Stock (the "Liquidation Senior Stock Preference"), but prior and in preference to any payment or distribution and setting apart for payment or distribution of any of the assets or surplus funds of the Corporation to the holders of the Common Stock and to the holders of any other Equity Securities ranking junior to the Series A Preferred Stock with respect to distributions on liquidation, an amount for each share of Series A Preferred Stock then held by them equal to $\$ 1.00$. [...] plus all accrued or declared but unpaid dividends on the Series A Preferred Stock up to and including the date of payment of such Liquidation Preference (the "Liquidation Preference").
This text details the participation rights of the Series A investors:
If, after full payment of the Liquidation Senior Stock Preference, if any, the assets and funds of the Corporation legally available for distribution to the Corporation's stockholders exceed the aggregate Liquidation Preference payable pursuant to Section 2.2 (a) [i.e, see quote above] of this Article Four, then, after the payments required by Section 2.2(a) of this Article Four shall have been made or irrevocably set apart for payment, the remaining assets and funds of the Corporation available for distribution to the Corporation's stockholders shall be distributed pro rata among (i) the holders of the Common Stock, (ii) the holders of the Series A Preferred Stock (with each such holder of Series A Preferred Stock being treated for this purpose as holding the greatest whole number of shares of Common Stock then issuable upon conversion of all shares of Series A Preferred Stock held by such holder pursuant to Section 2.5 of this Article Four), and (iii) among the holders of any other Equity Securities having the right to participate in such distributions on liquidation, in accordance with the respective terms thereof.

B. 4 Board rights

Along with data collected by data providers such as VentureSource and Pitchbook, the certificate of incorporation shows that the Series A investors also have at least one board seat:
[I]ncluding at least one member of the Board appointed by the holders of the Series A Preferred Stock.

C Contraction mapping details

The discrete-time representation derived in Proposition 1 allows us to numerically solve the contraction mapping (8) and (9) as a system of interdependent Bellman equations. Specifically,

1. We assume that $F_{i}(i)$ and $F_{e}(e)$ are flexible Beta distributions on $[0,10]$. We discretize qualities $i \sim F_{i}(i)$ and $e \sim F_{e}(e)$ by using a quadrature with 50 points for each distribution, resulting in 2,500 possible combinations of partner qualities. This fine grid proves more than sufficient to adequately approximate continuous distributions. The technical role of the support normalization is to allow for a sufficiently wide support of qualities so that the tails of the Beta distributions disappear at the boundaries. If the support is too narrow so that the density of qualities is positive at its boundaries, this would indicate that some qualities are not captured by the distribution. Our results are robust in the presence of wider and slightly narrower supports.
2. For any i and e, we set the initial guess of continuation values equal to $V^{0}=\left(V_{i}^{0}(i), V_{e}^{0}(e)\right)=$ $(0, \bar{V})$, where \bar{V} is sufficiently large. For example, if the only contract term is the fraction of equity that the investor retains, then $\bar{V}=v_{e}(\bar{i}, \bar{e}, 0)$: the entrepreneur is guessed to retain the entire firm. ${ }^{29}$ For any i and e, we set the initial guess of qualities of those agents from the opposite population, who are willing to match, equal to $\left(\mu_{i}^{0}, \mu_{e}^{0}\right)=\left(\mu_{i}^{0}(i), \mu_{e}^{0}(e)\right)=$ $\left(\mathbf{1}_{i=\bar{i}}[\underline{e}, \bar{e}],[\underline{i}, \bar{i}]\right)$. This choice implies that few agents are initially guessed to match, so the initial update to V^{0}, explained below, is smooth.
3. For every $n \geq 1$, we obtain $V^{n}=\left(V_{i}^{n}(i), V_{e}^{n}(e)\right)$ and $\left(\mu_{i}^{n}, \mu_{e}^{n}\right)=\left(\mu_{i}^{n}(i), \mu_{e}^{n}(e)\right)$ by inputting V^{n-1} and ($\mu_{i}^{n-1}, \mu_{e}^{n-1}$) into the right-hand side of the system of equations (8)-(9) and solving for the left-hand side. Because the system is a contraction mapping, $V=\lim _{n \rightarrow \infty} V^{n}$ is the equilibrium. We stop the process when $\left\|V^{n}-V^{n-1}\right\|<\varepsilon$, where $\varepsilon>0$ is sufficiently small.

While theoretically there can be multiple equilibria in the search and matching game, we were unable to find parameters for which the equilibrium is not unique, despite examining a very broad parameter set.

[^1]
D Derivation of theoretical moments

Let w_{e} be the discretized probability that an investor meets an entrepreneur of quality $e ; w_{i}$ be the discretized probability that an entrepreneur meets an investor of quality i; and the match indicator $m(i, e)=1$ if i and e form a startup, and zero otherwise.

D. 1 Contract-related moments

The expected value of contract term $c_{k}^{*}(i, e), k \in\{1 . . D\}$ across all deals is

$$
\begin{equation*}
E\left(c_{k}^{*}\right)=\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e) c_{k}^{*}(i, e)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)} \tag{17}
\end{equation*}
$$

The variance of $c_{k}^{*}(i, e)$ across all deals is

$$
\begin{equation*}
V\left(c_{k}^{*}\right)=\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)\left(c_{k}^{*}(i, e)-E\left(c_{k}^{*}\right)\right)^{2}}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)} . \tag{18}
\end{equation*}
$$

For terms that only take values of zero or one, the variance does not contain additional, compared to the expected value, information, so we do not use it in the estimation. Finally, the covariance between any two contract terms $c_{k}^{*}(i, e)$ and $c_{l}^{*}(i, e), k, l \in\{1 . . D\}$ across all deals is

$$
\begin{equation*}
\operatorname{Cov}\left(c_{k}^{*}, c_{l}^{*}\right)=\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)\left(c_{k}^{*}(i, e)-E\left(c_{k}^{*}\right)\right) \cdot\left(c_{l}^{*}(i, e)-E\left(c_{l}^{*}\right)\right)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)} . \tag{19}
\end{equation*}
$$

D. 2 Moments related to expected time between deals

Recall that after a successful deal, the distribution of the number of new encounters for investor i is a Poisson random variable with intensity λ_{i}. Each encounter, in equilibrium, results in a deal with probability $p_{i}=\sum_{e} w_{e} m(i, e)$. The distribution of the number of deals, conditional on k meetings, is therefore an independent Binomial distribution with number of trials k and success probability p_{i}. This implies that the distribution of the number of deals is a Poisson distribution with intensity $\lambda_{i} p_{i}$. Therefore, the time between deals, τ, for investor i has mean and variance equal to

$$
\begin{equation*}
E(\tau \mid i)=\frac{1}{\lambda_{i} p_{i}} ; \quad V(\tau \mid i)=\frac{1}{\left(\lambda_{i} p_{i}\right)^{2}} . \tag{20}
\end{equation*}
$$

Across all deals done by investors with different qualities, the expected time between deals is, from the law of iterated expectations,

$$
E(\tau)=E[E(\tau \mid i)]=\sum_{i} w_{i}^{*} E(\tau \mid i),
$$

where $w_{i}^{*}=w_{i} \frac{\sum_{e} w_{e} m(i, e)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)}$ is the equilibrium share of deals done by investor i among all deals. This is different from w_{i}, the probability distribution of investors, because some investors match more frequently than others. Inserting w_{i}^{*} into the above equation and using (20),

$$
\begin{equation*}
E(\tau)=\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e) \frac{1}{\lambda_{i} p_{i}}}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)} . \tag{21}
\end{equation*}
$$

Because τ is random for any given deal, its variance is, from the law of total variance,

$$
\begin{equation*}
V(\tau)=E[V(\tau \mid i)]+V[E(\tau \mid i)] \tag{22}
\end{equation*}
$$

Using (20), the first term of (22) is

$$
E[V(\tau \mid i)]=\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e) \frac{1}{\left(\lambda_{i} p_{i}\right)^{2}}}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)}
$$

additionally using (21), the second term is

$$
V[E(\tau \mid i)]=\sum_{i} w_{i}^{*}(E(\tau \mid i)-E(\tau))^{2}=\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)\left(\frac{1}{\lambda_{i} p_{i}}-E(\tau)\right)^{2}}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)},
$$

The covariances between τ and contract term $c_{k}^{*}(i, e), k \in\{1 . . D\}$ across all deals can similarly be derived from the law of total covariance,

$$
\begin{equation*}
\operatorname{Cov}\left(\tau, c_{k}^{*}\right)=E\left[\operatorname{Cov}\left(\tau, c_{k}^{*} \mid i\right)\right]+\operatorname{Cov}\left[E(\tau \mid i), E\left(c_{k}^{*} \mid i\right)\right] \tag{23}
\end{equation*}
$$

The first term of (23) is zero, because the time between deals does not vary with contract terms for a given investor. Using (17), (20), (21), and $E\left(c_{k}^{*} \mid i\right)=\frac{\sum_{e} w_{e} m(i, e) c_{k}^{*}(i, e)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)}$, the second term is

$$
\begin{aligned}
\operatorname{Cov}\left[E(\tau \mid i), E\left(c_{k}^{*} \mid i\right)\right] & =\sum_{i} w_{i}^{*}(E(\tau \mid i)-E(\tau)) \cdot\left(E\left(c_{k}^{*} \mid i\right)-E\left(c_{k}^{*}\right)\right) \\
& =\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)\left(\frac{1}{\lambda_{i} p_{i}}-E(\tau)\right) \cdot\left(c_{k}^{*}(i, e)-E\left(c_{k}^{*}\right)\right)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)} .
\end{aligned}
$$

D. 3 Success outcome-related moments

Recall that the probability of success for a given deal is

$$
\begin{equation*}
\operatorname{Pr}(\text { Success }=1 \mid i, e)=\Phi\left(\kappa_{0}+\kappa_{1} \cdot \pi\left(i, e, c^{*}(i, e)\right)\right), \tag{24}
\end{equation*}
$$

with Φ the standard normal c.d.f. The expected success rate across all deals is then

$$
\begin{align*}
E(\text { Success }) & =E[E(\text { Success }=1 \mid i, e)] \tag{25}\\
& =E[\text { Pr }(\text { Success }=1 \mid i, e)] \\
& =\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e) \Phi\left(\theta_{0}+\theta_{1} \cdot \pi\left(i, e, c^{*}(i, e)\right)\right)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)} .
\end{align*}
$$

Similarly to (22), because Success is random for any given deal, its variance is, from the law
of total variance,

$$
\begin{align*}
V(\text { Success })= & E(\text { V(Success } \mid i, e))+V(E(\text { Success } \mid i, e)) \tag{26}\\
= & E(\operatorname{Pr}(\text { Success }=1 \mid i, e) \cdot(1-\operatorname{Pr}(\text { Success }=1 \mid i, e)))+V(\text { Pr }(\text { Success }=1 \mid i, e)) \\
= & \frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e) \Phi\left(\theta_{0}+\theta_{1} \cdot \pi\left(i, e, c^{*}(i, e)\right)\right) \cdot\left(1-\Phi\left(\theta_{0}+\theta_{1} \cdot \pi\left(i, e, c^{*}(i, e)\right)\right)\right)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)} \\
& +\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)\left(\Phi\left(\theta_{0}+\theta_{1} \cdot \pi\left(i, e, c^{*}(i, e)\right)\right)-E(\text { Success })\right)^{2}}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)},
\end{align*}
$$

where we use (24) and (25) to arrive at the final expression.
The covariances between Success and contract term $c_{k}^{*}(i, e), k \in\{1 . . D\}$ across all deals are

$$
\begin{align*}
\operatorname{Cov}\left(\text { Success }, c_{k}^{*}\right) & =E\left(\operatorname{Cov}\left(\text { Success }, c_{k}^{*} \mid i, e\right)\right)+\operatorname{Cov}\left(E(\text { Success } \mid i, e), E\left(c_{k}^{*} \mid i, e\right)\right) \tag{27}\\
& =\operatorname{Cov}\left(\operatorname{Pr}(\text { Success } \mid i, e), c_{k}^{*}(i, e)\right) \\
& =\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)\left(\Phi\left(\theta_{0}+\theta_{1} \cdot \pi\left(i, e, c^{*}(i, e)\right)\right)-E(\text { Success })\right) \cdot\left(c_{k}^{*}(i, e)-E\left(c_{k}^{*}\right)\right)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)},
\end{align*}
$$

where $E\left(\operatorname{Cov}\left(\operatorname{Success}, c_{k}^{*} \mid i, e\right)\right)$ is zero because the contract is deterministic for a given pair of investor and entrepreneur, and therefore does not vary with the startup's success outcome. To arrive at the final expression, we use (17), (24), and (25).

Finally, the covariance between Success and τ across all deals is

$$
\begin{align*}
\operatorname{Cov}(\tau, \text { Success }) & =E[\operatorname{Cov}(\tau, \text { Success } \mid i)]+\operatorname{Cov}[E(\tau \mid i), E(\text { Success } \mid i)] \tag{28}\\
& =\operatorname{Cov}[E(\tau \mid i), E(\text { Success } \mid i)] \\
& =\sum_{i} w_{i}[E(\tau \mid i)-E(\tau)] \cdot[E(\text { Success } \mid i)-E(\text { Success })] \\
& =\frac{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)\left(\frac{1}{\lambda_{i} p_{i}}-E(\tau)\right) \cdot\left(\Phi\left(\theta_{0}+\theta_{1} \cdot \pi\left(i, e, c^{*}(i, e)\right)\right)-E(\text { Success })\right)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)},
\end{align*}
$$

where $E[\operatorname{Cov}(\tau, \operatorname{Success} \mid i)]$ is zero because the time between deals does not vary with the startup's success outcome for a given investor. To arrive at the final expression, we use (20), (21), (24), (25), and $E(I P O \mid i)=\frac{\sum_{e} w_{e} m(i, e) \operatorname{Pr}(I P O \mid i, e)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)}=\frac{\sum_{e} w_{e} m(i, e) \Phi\left(\theta_{0}+\theta_{1} \cdot \pi\left(i, e, \kappa^{*}(i, e)\right)\right)}{\sum_{i} \sum_{e} w_{i} w_{e} m(i, e)}$.

E Positively assortative matching in matching models with contracts

Figure 3 shows that better VCs tend to match with better entrepreneurs, but this pattern is imperfect. The following proposition shows that if the contracts were, instead, exogenous, and the matching function $g(i, e)$ exhibited a sufficient degree of complementarity, we would obtain positively assortative matching (e.g., good VCs would always match with good entrepreneurs):

Proposition 2. Suppose that $\rho \leq 0$ in specification (10) for $g(i, e)$, and that $c^{*}(i, e) \equiv$ const is exogenous. Then, the model solution admits positively assortative matching.

Proof: The result follows from Shimer and Smith (2000) and Smith (2011). Specifically, when $\rho=0$ and $c^{*}(i, e) \equiv$ const, $\pi\left(i, e, c^{*}\right)$ depends on types i and e multiplicatively and is therefore logmodular. As a result, the model solution admits block segregation, in which VCs within a certain band of qualities only match with entrepreneurs within a certain band of qualities and never with anyone else, and vice versa. Formally, for $k \geq 1$, any VC quality $\left[\hat{i}_{k}, \hat{i}_{k-1}\right]$ matches with any entrepreneur quality $\left[\hat{e}_{k}, \hat{e}_{k-1}\right]$, where $\left(\hat{i}_{0}, \hat{e}_{0}\right)=(\bar{i}, \bar{e})$ and $\left(\hat{i}_{k}, \hat{e}_{k}\right), k \geq 1$ are endogenous functions of model parameters. Block segregation immediately implies positively assortative matching. Further, when $\rho<0$ and $c^{*}(i, e) \equiv$ const, $\pi\left(i, e, c^{*}\right)$ is log-supermodular, which implies strict positively assortative matching.

When contracts are endogenous, there is no guarantee that the model solution admits positively assortative matching. In particular, Figure 3 shows that this matching pattern does not occur under our parameter estimates. This pattern is even more distorted in settings, in which qualities are weaker complements (e.g., in the IT market, as shown in Table A4). Intuitively, because contracts are chosen endogenously, it can pay, for a lower-quality VC who otherwise would have been excluded by the best entrepreneurs, to offer a larger fraction of the startup to these entrepreneurs to make a deal. The lower the VC quality, the higher is the fraction it has to offer to a given entrepreneur, and the higher is the cut-off on the entrepreneur quality, at which this VC can benefit. ${ }^{30}$ This result suggests that it may be risky to simply assume positively assortative matching in settings that are affected by contracts (e.g., Cong and Xiao, 2018; Sannino, 2019).

F Calibration of the value of convertible preferred equity

To rationalize the 13.5% estimated valuation gap between common equity and (nonparticipating) convertible preferred in the value-maximizing contract of the search model, consider the following example. A startup raises $\$ 1$ million using a preferred equity security that is convertible into 14.7% of common equity (the estimated value-maximizing equity share). As is common for first rounds, the liquidation preference is 1X. The annual risk-free rate is 2% and the expected time until exit is 5 years (these are the average numbers over our sample period). The startup's value is $\$ 4$ million, with return volatility of 50% per year. For simplicity, assume no future financing rounds are expected to be necessary.

Metrick and Yasuda (2010) derive the contingent claims valuation of convertible preferred equity. Under the above assumptions, the Black-Scholes value of the convertible preferred is $\$ 1.0$ million, or 25.0% of firm value, which is close to the estimated 28.2% of firm value that the VC receives in our model. Relative to 14.7% of common equity, the Black-Scholes valuation implies that the convertible preferred feature is worth 10.3% of firm value.

The contingent claims example ignores other contractual features of the convertible preferred equity security, such as voting rights and protective provisions, which are nearly always present. These features increase the security's value and widen the valuation gap with common equity.

Note that the true $\$ 4$ million valuation is different from the post-money valuation computed as $\$ 1$ million $/ 0.147=\$ 6.8$ million. The post-money valuation overstates the true value because

[^2]its calculation assumes common equity (Gornall and Strebulaev, 2019).
Finally, note that the estimated valuation gap between convertible preferred and common equity is substantially smaller for the average observed contract $c^{*, A v g}$ and the unconstrained VC contract $c^{*, U n c}$.

G Counterfactual analysis: Removing contractual features

Because some contractual features appear to benefit VCs at the expense of the startup, we consider the effect of removing certain contract terms that implement these features on deal values, the frequency of deals, and the present value of all deals in the market. A naive approach would be to simply remove a term that implements a particular feature and recalculate the startup value and its split for all deals, but this approach ignores the fact that, in the new equilibrium, agents rebalance the remaining terms that implement the remaining features and they may match differently. Instead, we consider the aggregate equilibrium effect and decompose it into two partial effects. The first effect captures the rebalancing of contract terms, while constraining VCs to compensate entrepreneurs enough to retain the match. This effect is still off-equilibrium, as some VCs who suffer a decrease in their expected value have incentives to rematch. Still, this exercise helps to understand the impact of contracts on the firm in the absence of market effects. The first three columns of Table A2 show that the average effect of re-balancing terms on the startup's value and its split is uniformly negative and very small. For example, if contractual features implemented by participation (VC board seats) are removed, rebalancing results in a 0.01% (0.14%) decrease in the startup's value. The VC's value decreases by the same amount (all effects in Panel A are expressed as percentages of the average startup value from our main model).

The second effect captures the rematching that occurs when VCs rebalance the remaining contract terms without constraining them to keep the same matches. If contractual features implemented by participation are removed, the aggregate equilibrium effect is a 2.45% decrease in average startup value, implying that rematching alone is responsible for a 2.44% decrease. The aggregate equilibrium distribution of value to the VC (entrepreneur) decreases by 1.51% (0.94%), so that rematching alone is responsible for a 1.50% (0.94%) decrease. Removing contractual features implemented by VC board seats has comparable effects, decreasing the aggregate equilibrium distribution of value to the VC (entrepreneur) by 1.62% (0.81%). The effects from removing pay-to-play features are much smaller.

One explanation for the modest value effects is that the market for venture capital exhibits a high degree of contractual completeness, so that removed features are easily replicated by the remaining contract terms. Alternatively, it may be that deal-specific effects are large, but they cancel out in the aggregate. We find only limited evidence for this alternative explanation. In unreported analysis, the largest effect from removing participation is for entrepreneurs with qualities in the lowest decile, whose startups increase in value by 41.57%, with VCs (entrepreneurs) gaining 20.40% (21.17%). However, these deals' values are too small to strongly impact the average startup value across all deals. At the same time, the effect is small for startups formed by entrepreneurs with qualities above the median and for startups financed by investors of any quality. The effect from removing VC board seats is similar, while that of removing pay-to-play is small across all qualities.

The fourth column of Table A2 Panel B shows the effects on deal frequencies. If features implemented by participation are removed, deal frequency increases by 5.30% on average. Similarly
to deal values, this is mainly driven by entrepreneurs of low qualities: for example, entrepreneurs with qualities in the lowest decile match 27.42% more frequently, while entrepreneurs with qualities in the top decile, in fact, match 3.69% less frequently. Additional deals with low-quality entrepreneurs are conducted by low-quality investors: investors with qualities in the 10th to 50th percentiles match 13.85% more frequently, while investors with qualities in the 50 th to 90 th percentiles lose entrepreneurs and match 2.46% less frequently. Removing VC board seats has a similar effect, while removing pay-to-play does not materially affect deal frequencies.

The combined intuition behind the value and frequency results is as follows. Elimination of VC -friendly terms reduces, in any given deal, value for the VC and improves value for the entrepreneur and startup as a whole. The agents' values of waiting are similarly impacted. As a result, entrepreneurs become more selective and are prepared to wait for investors of higher quality and drop investors of lower quality. The opposite is true for investors. Whether the average startup value across all deals increases or not depends on the eagerness with which investors of high versus low quality are prepared to accept deals with entrepreneurs of lower quality than before. For our estimated parameters, the density of investors of low quality (and hence their competitiveness) is high, so elimination of VC-friendly terms strongly decreases their bargaining power, which leads to an influx of low-value deals signed with entrepreneurs of low quality who were hitherto virtually ignored. This influx positively affects the average deal frequency (despite the counterbalancing impact of entrepreneurs of high quality dropping their worst matches) and negatively affects the average startup value (despite the counterbalancing impact of higher-value deals signed by entrepreneurs of high quality). ${ }^{31}$

The above intuition suggests that even though the average deal value decreases in the absence of VC-friendly terms, there are more deals in the market, which can lead to a larger overall market size. The last three columns of Table A2 show how the changes in deal values and frequencies combine to affect the expected present value of all deals in the market (the market size). For example, when participation is removed, the expected present value of all deals increases by 1.70%. VCs (entrepreneurs) on average lose 0.20% (gain 1.90%) (all effects are expressed as a percentage of the expected present value of all deals under estimated parameters). More detailed analysis reveals that entrepreneurs of high quality benefit disproportionately: top decile entrepreneurs capture 15.8% of the total entrepreneurial gain in present value, or 17.7% of the total change in the present value of all deals. When VC board seats are removed, the present value of all deals increases by 1.66%, while VCs (entrepreneurs) on average lose 0.35% (gain 2.00%). Pay-to-play has little impact, since its impact on both values and frequencies is negligible.

To summarize, a removal of VC-friendly features could lead to modest firm value creation, suggesting that the market could benefit from (self-)regulation by restricting some VC-friendly features, such as the "double-dip" of participation. However, attempts to regulate contracts will likely encounter resistance from certain VCs and entrepreneurs (including high quality VCs), because they lose out following the removal of such terms. A few other caveats apply. First, because we do not explicitly model mechanisms through which contractual terms affect values, we cannot examine the effect of including a new feature, or removing a feature that is always present. Second, we cannot control for VCs devising new contract terms that implement the same

[^3]features as the terms that are taken away, and it is complicated to write legal rules that prevent such contractual engineering. Finally, we do not consider entry and exit into the VC market. Because VC values are less affected than entrepreneurs, removing VC-friendly contract features would likely add more value from newly entering entrepreneurs than what is lost from departing VCs.

H Extensions

H. 1 Overconfidence

There is ample evidence that entrepreneurial individuals are overconfident, i.e., assign a higher precision to their information than the data would suggest. ${ }^{32}$ Our model easily extends to allow for overconfidence on the part of agents. Modify (5) and (6) as

$$
\begin{align*}
\pi_{i}^{j}\left(i, e, c^{*}\right) & =\alpha\left(c^{*}\right) \cdot \pi^{j}\left(i, e, c^{*}\right) \tag{29}\\
\pi_{e}^{j}\left(i, e, c^{*}\right) & =\left(1-\alpha\left(c^{*}\right)\right) \cdot \pi^{j}\left(i, e, c^{*}\right) \tag{30}
\end{align*}
$$

where superscript $j \in\{i, e\}$ indicates that VCs and entrepreneurs compute the total value and its split using potentially different beliefs. Let counterparty $j \in\{i, e\}$ believe that with probability p_{j}, signal e about entrepreneur quality is correct, and with probability $1-p_{j}$, the signal is completely uninformative, so that entrepreneur quality is a random draw from $F_{e}(e)$. Then, $\pi^{j}\left(i, e, c^{*}\right)=$ $i \cdot\left(p_{j} e+\left(1-p_{j}\right) \bar{e}\right) \cdot h\left(c^{*}\right)$. For example, the case of entrepreneurs entirely relying on the signal about their quality but VCs doubting it is $p_{e}=1$ and $p_{i}<1$. In the presence of the difference in beliefs, the incentive rationality condition of the entrepreneur, (7), becomes

$$
\begin{equation*}
c^{*}(i, e)=\underset{c \in C: \pi_{e}^{e}(i, e, c) \geq V_{e}(e)}{\arg \max } \pi_{i}^{i}(i, e, c) . \tag{31}
\end{equation*}
$$

Note that even though the VC solves its optimization problem under its own beliefs, it has to provide the entrepreneur with at least its expected present value from continued search under the entrepreneur's beliefs. We compare parameter estimates of the main model with those of the modified model for $\left(p_{i}, p_{e}\right)=(0.75,1)$. Panel B of Table A7 shows that even a rather substantial entrepreneurial overconfidence does not appear to affect the estimates.

H. 2 Match-specific shocks

Two key results of the main model is that the set of counterparties a VC or entrepreneur matches with is fixed in equilibrium (however, within this set, the agents can match randomly), and that a given combination of agents always signs the same contract. One limitation of our model is that in reality, deal-specific information revealed during due diligence and contract negotiation may prevent a match between good-quality counterparties or allow a match between counterparties of vastly different qualities, or result in very different contracts between identical pairs of VCs and entrepreneurs by quality. Another limitation is that for many parameters, the model imposes a theoretical bound on the VC fraction of equity and firm value, which is estimated at 44.5% and 52.8%. However in practice, there are deals in which VCs sign deals with more VC-friendly terms.

[^4]To address both concerns, we extend the model to include match-specific shocks. Specifically, we change (4) as

$$
\begin{equation*}
\pi(i, e, c, z)=g(i, e) \cdot h(c, z) \tag{32}
\end{equation*}
$$

where z is a match-specific shock drawn from $N\left(0, \sigma^{2}\right)$. An alternative specification, in which z affects g instead, gives similar results but does not address the second limitation of the main model, because the bound on VC-friendly contracts is entirely determined by $h . h(c, z)$ is parameterized as

$$
\begin{equation*}
h\left(c^{*}, z\right)=\exp \left\{\beta_{1} c_{1}^{*}+\left(\beta_{2}+z\right) c_{1}^{* 2}+\beta_{3: D+1}^{\prime} c_{1}^{*}\left(1-c_{1}^{*}\right) c_{2: D}^{*}\right\} \tag{33}
\end{equation*}
$$

The idea behind this particular parameterization is that deals between identical pairs of VCs and entrepreneurs by quality can still differ in terms of entrepreneurial risks and cost of effort, and agency conflicts between the parties, which tend to be more important as the VC owns a larger fraction of the firm. Alternative parameterizations, in which z impacts β_{1} or all coefficients at once, give similar results.

Due to high computational complexity of adding an additional state variable, we discretize quality distributions on a 30 point grid and the distribution of match-specific shocks on a five point grid. The extended model's theoretical bound on the VC fraction of equity is 100% (for very low realizations of z) and thus encapsulates all observable deals. Panel C of Table A7 shows that the addition of a match-specific shock does not substantially affect the estimates.

H. 3 Investment amount

In the main model, we do not treat capital raised by an entrepreneur as an endogenous contract term. This assumption is consistent with the view that the entrepreneur's idea requires a fixed amount of capital and constitutes a fraction of the entrepreneur's quality. An alternative polar case would be to treat capital raised as an entirely endogenous term. This assumption is consistent with the view that it is the entrepreneur's intrinsic quality, but not the startup's financing requirements, that determines the amount of capital a VC will give it. The reality is somewhere in between the two polar cases. Entrepreneurs may be unable to realize their idea at all if the amount of capital is below a certain threshold, while incremental improvements from the amount of capital above their initial estimate may be modest. Additionally, legal conventions in VC agreements produce a natural upper bound on capital invested in a single startup. In particular, VCs typically cannot have an investment in any startup exceed $10-15 \%$ of the total fund size.

In this section, we take an alternative polar view that capital raised is entirely endogenous. Specifically, we modify (11) as

$$
\begin{equation*}
h\left(c^{*}\right)=\exp \left\{\beta_{0} \log c_{0}^{*}+\beta_{1} c_{1}^{*}+\beta_{2} c_{1}^{* 2}+\beta_{3: D+1}^{\prime}\left(1-c_{1}^{*}\right) c_{2: D}^{*}\right\}, \tag{34}
\end{equation*}
$$

and modify (5) as

$$
\begin{equation*}
\pi_{i}\left(i, e, c^{*}\right)=\phi\left(c_{0}^{*}\right) \cdot \alpha\left(c^{*}\right) \cdot \pi\left(i, e, c^{*}\right), \tag{35}
\end{equation*}
$$

keeping (6) unchanged. Equation (34) implies that the matching function in the presence of endogenous investment exhibits returns to scale with factor β_{0}. Equation (35) implies that the VC experiences costs of investment $1-\phi\left(c_{0}^{*}\right)$ per unit of profit. These include direct costs, such as loss of c_{0}^{*} at the time of financing, and indirect costs, such as time and effort spent monitoring
and making decisions on the board of directors. We parameterize $\phi\left(c_{0}^{*}\right)=\exp \left\{\gamma_{0} c_{0}^{*}\right\} .{ }^{33}$
The model with endogenous investment amount (an additional continuous contract term) is very computationally complex, therefore we do not attempt to estimate it. Instead, we examine its comparative statics with respect to β_{0} and γ_{0}. For all reasonable parameter values, the model produces several unsatisfactory results. First, for a given entrepreneur, investments by the worst VCs it matches with are substantially higher than by the best VCs, as the worst VCs try to retain better entrepreneurs despite (as a practical concern) facing tighter upper bounds on capital invested in a single startup. Second, this pattern of investments results in a lower variance of the VC equity share, moving it farther away from that in the data. Finally, the dispersion of VC investments scaled by the industry-time average investment in the data is 144%, but the model underestimates it by a factor of 10 even for β_{0} close to 1 (high returns to scale should result in a high dispersion). A fixed entrepreneur quality-related component in the VC investment amount would move the model output closer to the data, but this correction essentially amounts to assuming that investments are largely exogenously determined by agents' qualities. In any case, even if the investment amount is indeed endogenous, it does not appear to affect moments of the model unrelated to investment for all reasonable parameter values. ${ }^{34}$ In turn, it is unlikely that the impact of other contract terms on deal values and their split would be substantially affected.

[^5]Table A1: Summary statistics: follow-on sample.
Descriptive statistics of startups and their first round equity financings for the samples described in section 3. The "Follow-on sample" includes financing rounds between 2002 and 2015 where the outcome variable is a dummy variable equal to one if the startup raised a new round of financing or had a successful exit within two years of their first financing. A financing is in this sample if the equity stake and contract terms are known. "All deals" are all the financings in 2002-2015 regardless of missing data. The variables are as defined in Table I. Only means are reported for indicator variables.
Panel A: Firm and financing characteristics

	Follow-on sample				All deals 2002-2015			
	Obs	Mean	Median	Std dev	Obs	Mean	Median	Std dev
Firm age at financing (yrs)	2,581	1.624	1.147	1.65	10,613	1.691	1.169	1.70
Information technology	2,581	0.462	0.000	0.50	10,613	0.476	0.000	0.50
Healthcare	2,581	0.234	0.000	0.42	10,613	0.183	0.000	0.39
Time since last VC financing (yrs)	2,343	0.707	0.255	1.27	8,938	0.793	0.304	1.34
Syndicate size	2,581	1.821	2.000	1.03	10,613	1.649	1.000	1.02
Capital raised in round (2012, \$ mil.)	2,581	7.207	4.586	9.27	9,754	5.502	2.894	8.16
Post-money valuation (2012, \$ mil.)	2,581	22.069	12.927	41.47	6,104	19.036	11.399	34.16
Financing year	2,581	2008.491	2008.000	3.59	10,613	2009.600	2010.000	3.92
Seed round	2,581	0.150	0.000	0.36	10,613	0.227	0.000	0.42

Panel B: Contracts

	Follow-on sample		All deals 2002-2015	
	Obs	Mean	Obs	Mean
\% equity sold to investors	2,581	0.367	6,104	0.351
Participating pref.	2,581	0.401	4,733	0.396
Cumulative dividends	2,577	0.168	4,559	0.186
Pay-to-play	2,581	0.101	3,071	0.099
Redemption rights	2,529	0.311	10,613	0.332
VC has board seat	2,581	0.872	4,682	0.624
Liquidation mult. >1	2,558	0.032	3,379	0.031
Full ratchet anti-dilution	1,642	0.014	4,895	0.012
Common stock sold?	2,578	0.082		0.051

Table A2: Counterfactuals: Elimination of contract features
This table reports the results of counterfactual exercises that disallow the use of one of three contract features: participation preference, pay-to-play, or VC board seats. The first column shows the change in the average expected startup value across all deals when moving from the unrestricted model equilibrium (at the parameters shown in Table V) to the restricted contracts counterfactual, $\Delta \pi^{c \rho}($ All $)=$ $\pi^{c f}(\mathrm{All})-\pi^{*}(\mathrm{All})$, as a percentage of the average expected startup value across all deals in the unrestricted model, $\pi^{*}(\mathrm{All})$. The "rebalanced terms only" rows report the partial effect of VCs rebalancing the remaining contract terms such that the set of matches does not change, while the "equilibrium" rows report the total effect of rebalancing and rematching in the new equilibrium. The second and third columns show the change in the average expected value for the VC and entrepreneur, respectively. Both are computed as a percentage of $\pi^{*}(\mathrm{All})$, such that columns 2 and 3 add up to the numbers in column 1. The fourth column reports the change in equilibrium expected deal frequencies (expected number of deals per year) in the market, $\Delta \Lambda^{c f}(A l l)=\Lambda^{c f}(A l l)-\Lambda^{*}(A l l)$, as a percentage of the expected deal

 computed as percentages of the unrestricted equilibrium present value of deals in the market, $P V^{*}(A l l)$, so that columns 6 and 7 add up to the numbers in column 5 .

	Change in percentage of startup value			Change in deal frequencies	Change in PV of deals		
	$\frac{\Delta \pi^{c f}(A l l)}{\pi^{*}(A l l)}$	$\frac{\Delta \pi_{i}^{c f}(A l l)}{\pi^{*}(A l l)}$	$\frac{\Delta \pi_{e}^{c f}(A l l)}{\pi^{*}(A l l)}$	$\frac{\Delta \Lambda^{c f}(A l l)}{\Lambda^{*}(A l l)}$	$\frac{\Delta P V^{c f}(A l l)}{P V^{*}(A l l)}$	$\frac{\Delta P V_{i}^{c f}(A l l)}{P V^{*}(A l l)}$	$\frac{\Delta P V_{e}^{c f}(A l l)}{P V^{*}(A l l)}$
No participation preference	-0.01	-0.01	0	-	-	-	-
Rebalanced terms only	-2.45	-1.51	-0.94	5.30	1.70	-0.20	1.90
Equilibrium						-	-
No pay-to-play	-0.01	-0.01	0	-	-	-	
Rebalanced terms only	-0.29	-0.05	-0.24	-0.31	-0.002	-0.002	-0.000
Equilibrium						-	-
No VC board seats	-0.14	-0.14	0	-	-	-	
Rebalanced terms only	-2.43	-1.62	-0.81	5.30	1.66	-0.35	2.00
Equilibrium							

Table A3: Parameter estimates of model modifications: alternative success outcome and contract definitions.
The table reports parameter estimates of model modifications described in Section 6. Panel A reports the estimates of the model where success outcomes are captured by IPO. Panel B reports the estimates of the model where success outcomes are captured by follow-on financing. Panel C reports estimates of the main model (success outcomes are captured by IPO+Acq. $>2 X$ variable) where missing contract terms are imputed as zeros, provided the VC equity fraction and at least one additional term is non-missing in the data. Significance: ${ }^{* * *}: p<0.01,{ }^{* *}: p<0.05,{ }^{*}$: $p<0.10$.

Parameter	A. IPO		B. Follow-on financing			C. Imputed terms	
	Estimate	S.E.	Estimate	S.E.		Estimate	S.E.
Distribution of qualities, a_{i}	$1.876^{* * *}$	0.579	$2.191^{* * *}$	0.398		$1.921^{* * *}$	0.251
Distribution of qualities, b_{i}	$3.512^{* * *}$	1.166	$2.369^{* * *}$	0.580		$3.653^{* * *}$	1.400
Distribution of qualities, a_{e}	$3.182^{* *}$	1.571	$4.612^{* * *}$	0.667		$3.106^{* *}$	0.710
Distribution of qualities, b_{e}	$4.233^{* * *}$	0.924	$3.711^{* * *}$	1.362		4.062***	0.789
Frequency of encounters, λ_{i}	$13.417^{* * *}$	4.568	$12.936^{* *}$	5.444		$13.475^{* * *}$	3.656
Frequency of encounters, λ_{e}	10.311	7.363	9.076**	4.099		$10.954^{* * *}$	4.127
Substitutability of qualities, ρ	$-1.334^{* * *}$	0.261	-1.307***	0.121		$-1.343^{* * *}$	0.152
Probability of success, intercept, κ_{0}	$-4.072^{* * *}$	1.157	-6.661	7.328		-4.091***	1.235
Probability of success, total value, κ_{1}	0.075***	0.029	0.458	0.488		$0.113^{* * *}$	0.043
Total value, share of VC equity, β_{1}	0.682*	0.367	$0.754^{* * *}$	0.108		0.650**	0.312
Total value, share of VC equity squared, β_{2}	$-2.347^{* * *}$	0.639	$-2.692^{* *}$	0.326		$-2.375^{* * *}$	0.322
Total value, participation, β_{3}	-0.163***	0.032	-0.168**	0.083		-0.163***	0.043
Total value, pay-to-play, β_{4}	0.024	0.066	0.031	0.047		0.023	0.027
Total value, VC board seat, β_{5}	-0.026***	0.010	-0.028*	0.016		-0.026***	0.007
Total value, participation \times pay-to-play, β_{6}	0.016	0.091	0.013	0.035		0.017	0.026
Total value, participation \times VC board seat, β_{7}	0.033	0.032	0.039	0.083		0.032	0.043
Total value, pay-to-play \times VC board seat, β_{8}	0.019	0.020	0.013	0.038		0.019	0.058
Split of value, intercept, γ_{1}	-0.211*	0.116	$-0.215^{* * *}$	0.058		$-0.211^{* * *}$	0.032
Split of value, participation, γ_{2}	-0.175***	0.054	-0.157*	0.089		$-0.171^{* * *}$	0.055
Split of value, pay-to-play, γ_{3}	0.056	0.057	0.053	0.051		$0.057^{* * *}$	0.008
Split of value, VC board seat, γ_{4}	-0.040***	0.006	$-0.041^{* * *}$	0.015		-0.040***	0.002
Split of value, participation \times pay-to-play, γ_{5}	0.016	0.114	0.011	0.035		0.016	0.026
Split of value, participation \times VC board seat, γ_{6}	0.029	0.054	0.028	0.089		0.029	0.055
Split of value, pay-to-play \times VC board seat, γ_{7}	0.012	0.094	0.011	0.036		0.013	0.068
Number of observations	1,695		2,581			2,439	

Table A4: Parameter estimates of model modifications: industry and geography subsamples.
The table reports parameter estimates of model modifications described in Section 6. Panel A reports the estimates of the model using a subsample of deals in the IT industry. Panel B reports the estimates of the model using a subsample of deals in the Healthcare industry. Panel C reports the estimates of the model using a subsample of deals with startups located in California. Significance: ${ }^{* * *}: p<0.01,{ }^{* *}: p<0.05,{ }^{*}: p<0.10$.

Parameter	A. IT		B. Healthcare		C. California	
	Estimate	S.E.	Estimate	S.E.	Estimate	S.E.
Distribution of qualities, a_{i}	$1.681^{* * *}$	0.259	$2.075 * * *$	0.408	1.920**	0.775
Distribution of qualities, b_{i}	$3.407^{* * *}$	0.912	$3.756^{* *}$	1.653	$3.559^{* * *}$	0.924
Distribution of qualities, a_{e}	$3.131^{* * *}$	1.057	2.709*	1.516	$3.132^{* * *}$	0.728
Distribution of qualities, b_{e}	$4.272^{* * *}$	0.897	4.333**	2.066	$4.161^{* * *}$	1.449
Frequency of encounters, λ_{i}	$13.785^{* * *}$	4.077	10.901**	4.957	$16.494^{* * *}$	5.241
Frequency of encounters, λ_{e}	11.736**	5.138	8.571*	4.488	12.952***	4.099
Substitutability of qualities, ρ	$-1.155^{* * *}$	0.094	-1.597***	0.175	$-1.367^{* * *}$	0.306
Probability of success, intercept, κ_{0}	-4.113*	2.296	-4.308*	2.476	$-3.967^{* *}$	2.000
Probability of success, total value, κ_{1}	0.112*	0.060	0.115*	0.059	0.108*	0.062
Total value, share of VC equity, β_{1}	$0.701^{* *}$	0.290	$0.738^{* * *}$	0.233	0.680	0.569
Total value, share of VC equity squared, β_{2}	$-2.452^{* * *}$	0.204	-2.113***	0.376	-2.373***	0.547
Total value, participation, β_{3}	-0.170*	0.099	$-0.147^{* * *}$	0.022	-0.163***	0.059
Total value, pay-to-play, β_{4}	0.029	0.131	0.022	0.050	0.023	0.152
Total value, VC board seat, β_{5}	-0.026***	0.009	-0.025***	0.008	-0.026***	0.010
Total value, participation \times pay-to-play, β_{6}	0.016	0.097	0.014	0.042	0.016	0.032
Total value, participation $\times \mathrm{VC}$ board seat, β_{7}	0.033	0.099	0.034*	0.020	0.032	0.059
Total value, pay-to-play \times VC board seat, β_{8}	0.016	0.035	0.018	0.089	0.019	0.024
Split of value, intercept, γ_{1}	-0.206***	0.070	$-0.174^{* * *}$	0.054	-0.211***	0.076
Split of value, participation, γ_{2}	-0.177*	0.096	-0.179***	0.031	-0.174**	0.070
Split of value, pay-to-play, γ_{3}	0.058	0.172	0.058*	0.034	0.056	0.173
Split of value, VC board seat, γ_{4}	-0.041***	0.006	$-0.043^{* * *}$	0.005	$-0.041^{* * *}$	0.007
Split of value, participation \times pay-to-play, γ_{5}	0.018	0.121	0.016	0.079	0.016	0.095
Split of value, participation \times VC board seat, γ_{6}	0.028	0.096	0.030	0.031	0.029	0.070
Split of value, pay-to-play \times VC board seat, γ_{7}	0.012	0.025	0.012	0.074	0.013	0.101
Number of observations	788		444		934	

Table A5: Parameter estimates of model modifications: time subsamples.

Parameter	A. Before AWS			B. After AWS			C. Before Lehman		D. After Lehman	
	Estimate	S.E.	,	Estimate	S.E.		Estimate	S.E.	Estimate	S.E.
Distribution of qualities, a_{i}	1.972***	0.542		$2.017^{* * *}$	0.669		$1.924^{* * *}$	0.421	$2.092^{* *}$	0.735
Distribution of qualities, b_{i}	$3.686^{* * *}$	0.952		$3.415^{* * *}$	1.230		$3.748^{* * *}$	1.015	3.485*	1.778
Distribution of qualities, a_{e}	$3.014^{* * *}$	1.381		$3.103^{* * *}$	1.078		$3.154^{* *}$	1.574	$3.110^{* *}$	1.272
Distribution of qualities, b_{e}	$4.057^{* * *}$	1.353		$3.743^{* * *}$	1.375		$4.157^{* * *}$	1.347	3.599	2.412
Frequency of encounters, λ_{i}	$12.117^{* *}$	3.002		$13.409^{* * *}$	5.048		$13.434^{* * *}$	2.965	$13.518^{* *}$	5.304
Frequency of encounters, λ_{e}	8.301**	3.358		$17.037^{* * *}$	5.342		10.431**	4.166	17.699***	6.316
Substitutability of qualities, ρ	$-1.594^{* * *}$	0.218		-1.213***	0.521		$-1.400^{* * *}$	0.162	$-1.301^{* * *}$	0.375
Probability of success, intercept, κ_{0}	-4.058**	1.951		-4.236	3.287		-3.997*	2.252	-4.300	4.203
Probability of success, total value, κ_{1}	$0.103^{* *}$	0.058		0.108*	0.062		0.105*	0.059	0.102	0.808
Total value, share of VC equity, β_{1}	0.673*	0.395		0.656*	0.394		0.682***	0.209	0.556	0.667
Total value, share of VC equity squared, β_{2}	$-2.176^{* * *}$	0.228		$-2.550^{* * *}$	0.542		$-2.333^{* * *}$	0.201	$-2.497^{* * *}$	0.837
Total value, participation, β_{3}	-0.146***	0.015		-0.177***	0.045		-0.159***	0.022	-0.177**	0.077
Total value, pay-to-play, β_{4}	0.024*	0.014		0.026	0.055		0.027	0.018	0.027	0.073
Total value, VC board seat, β_{5}	-0.026***	0.004		-0.027***	0.011		-0.026***	0.004	-0.027*	0.015
Total value, participation \times pay-to-play, β_{6}	0.014	0.043		0.017	0.303		0.016	0.063	0.016	0.257
Total value, participation $\times \mathrm{VC}$ board seat, β_{7}	$0.027^{* * *}$	0.002		0.033	0.045		0.032***	0.0082	0.033	0.077
Total value, pay-to-play \times VC board seat, β_{8}	0.018	0.043		0.016	0.113		0.017	0.047	0.017	0.090
Split of value, intercept, γ_{1}	$-0.216^{* * *}$	0.035		-0.232***	0.040		-0.196***	0.037	-0.230***	0.085
Split of value, participation, γ_{2}	-0.182***	0.018		-0.175***	0.034		-0.174***	0.0183	$-0.172^{* * *}$	0.064
Split of value, pay-to-play, γ_{3}	$0.056^{* *}$	0.027		0.056	0.138		0.057	0.036	0.057	0.105
Split of value, VC board seat, γ_{4}	$-0.045^{* * *}$	0.004		-0.043***	0.011		-0.041***	0.003	-0.040***	0.010
Split of value, participation \times pay-to-play, γ_{5}	0.015	0.171		0.016	0.416		0.015	0.174	0.017	0.458
Split of value, participation \times VC board seat, γ_{6}	$0.033^{* *}$	0.008		0.029	0.034		0.029***	0.008	0.029	0.064
Split of value, pay-to-play \times VC board seat, γ_{7}	0.016	0.081		0.012	0.070		0.012	0.056	0.012	0.104
Number of observations	885			810			1,360		335	

Table A6: Parameter estimates of model modifications: alternative theoretical assumptions I. The table describes parameter estimates of model modifications described in Section 7. Panel A reports model estimates where different investor and entrepreneur qualities encounter counterparties with different frequencies $\left(\lambda_{i}+\right.$ $\Lambda_{i} i$ and $\left.\lambda_{i}+\Lambda_{e} e\right)$. Panel B reports estimates for a model where different investor and entrepreneur qualities encounter counterparties from different quality distributions (c.d.f. $F_{e}(e, i)$ of entrepreneur quality encountered by investor i is

$\xi(e, i)=\left(0.5\left(\frac{e}{\bar{e}}\right)^{\chi}+0.5\left(\frac{i}{i}\right)^{\chi}\right)^{\frac{2}{\chi}}$ is a flexible constant-elasticity-of-substitution (CES) function that captures deviations of $f_{e}(e, i)$ from the random search case $(\chi=0)$; c.d.f. $F_{i}(i, e)$ of investor quality encountered by entrepreneur e is defined symmetrically). Panel C reports estimates where entrepreneurs have additional bargaining power to shift the contract towards the entrepreneur-optimal outcome (the bargaining power parameter is 20%). Significance: ${ }^{* * *}$:
$p<0.01,{ }^{* *}: p<0.05,{ }^{*}: p<0.10$.

Parameter	A. Directed search I			B. Directed search II		C. Ent. bargaining power	
	Estimate	S.E.		Estimate	S.E.	Estimate	S.E.
Distribution of qualities, a_{i}	$1.900^{* * *}$	0.674		$2.008^{* *}$	0.930	2.020***	0.610
Distribution of qualities, b_{i}	3.516***	0.717		4.106^{*}	2.172	$3.576{ }^{* * *}$	1.341
Distribution of qualities, a_{e}	$3.343^{* * *}$	0.250		$3.070^{* *}$	1.771	$3.087^{* *}$	1.483
Distribution of qualities, b_{e}	5.253*	2.725		4.559**	1.977	4.070***	0.949
Base frequency of encounters, λ_{i}	$9.001^{* * *}$	2.280		$13.330^{* *}$	6.228	$9.903^{* *}$	4.383
Base frequency of encounters, λ_{e}	$7.091^{* * *}$	1.878		$10.798^{* * *}$	3.551	12.241*	6.403
Substitutability of qualities (value), ρ	$-1.421^{* * *}$	0.288		$-1.395^{* * *}$	0.422	$-1.216^{* * *}$	0.201
Probability of success, intercept, κ_{0}	-3.979*	2.316		-4.487	2.746	-4.319	2.672
Probability of success, total value, κ_{1}	0.107*	0.064		0.108*	0.056	0.109	0.067
Total value, share of VC equity, β_{1}	0.726^{*}	0.373		$0.716^{* * *}$	0.133	$0.551^{* *}$	0.118
Total value, share of VC equity squared, β_{2}	$-2.271^{* * *}$	0.552		$-2.198^{* * *}$	0.138	$-2.470^{* * *}$	0.287
Total value, participation, β_{3}	$-0.158^{* * *}$	0.061		$-0.160^{* *}$	0.076	$-0.169^{* * *}$	0.046
Total value, pay-to-play, β_{4}	0.024	0.156		0.023	0.079	0.023	0.076
Total value, VC board seat, β_{5}	-0.028	0.026		$-0.029^{* *}$	0.007	-0.026**	0.013
Total value, participation \times pay-to-play, β_{6}	0.016	0.138		0.026	0.154	0.016	0.547
Total value, participation \times VC board seat, β_{7}	0.036	0.061		0.042	0.076	0.034	0.046
Total value, pay-to-play $\times \mathrm{VC}$ board seat, β_{8}	0.016	0.212		0.018	0.290	0.019	0.038
Split of value, intercept, γ_{1}	$-0.247^{* * *}$	0.087		$-0.260^{* * *}$	0.056	$-0.254^{* * *}$	0.073
Split of value, participation, γ_{2}	$-0.173^{* * *}$	0.043		-0.175**	0.079	$-0.171^{* * *}$	0.046
Split of value, pay-to-play, γ_{3}	0.058	0.149		0.059	0.372	0.060*	0.035
Split of value, VC board seat, γ_{4}	-0.049***	0.018		-0.050***	0.008	-0.042***	0.009
Split of value, participation \times pay-to-play, γ_{5}	0.017	0.639		0.014	0.287	0.015	0.137
Split of value, participation $\times \mathrm{VC}$ board seat, γ_{6}	0.028	0.043		0.028	0.079	0.035	0.046
Split of value, pay-to-play $\times \mathrm{VC}$ board seat, γ_{7}	0.012	0.191		0.011	0.199	0.013	0.079
Change in freq. of encounters, Λ_{i}	$1.508^{* * *}$	0.341		-	-	-	-
Change in freq. of encounters, Λ_{e}	$1.484^{* *}$	0.719	I	-	-	-	-
Substitutability of qualities (encounters), χ	-	-		$-2.129^{* * *}$	0.346	-	-
Entrepreneur bargaining power (fixed)	-	-	1	-	-	20\%	-
Number of observations							

Table A7: Parameter estimates of model modifications: alternative theoretical assumptions II.

The table describes parameter estimates of model modifications described in Section 7. Panel A reports model
 where entrepreneurs are overconfident (the overconfidence parameter is 25%). Panel C reports estimates of the model where firm values are affected by a match-specific shock. Significance: ${ }^{* * *}: p<0.01,{ }^{* *}: p<0.05,{ }^{*}: p<0.10$.

A. High discount rate B. Ent. overconfidence C. Match-specific shocks

 ${ }^{\circ}$ O. $\stackrel{\square}{8}$ $\stackrel{\Im}{N}$ 0.016 $\stackrel{\infty}{0}$ H $\stackrel{\infty}{\infty}$ $\stackrel{+}{3}$ $\stackrel{\bullet}{\circ}$ ̇ㅡㅇ 0.071
0.171

[^0]: ${ }^{28}$ See https://my.pitchbook.com/profile/44160-31/company/profile\#deal-history/19114-57T.

[^1]: ${ }^{29}$ The static matching literature shows that this initial guess is consistent with an entrepreneur making an offer to match with a sufficiently good investor, and leads to computation of the so-called "entrepreneur-friendly" equilibrium. This terminology is somewhat confusing in the dynamic setting with contracts, as, once encountered and offered to match, it is an investor who offers the contract to an entrepreneur. The situation where the entrepreneur approaches the investor but is offered a take-it-or-leave-it contract in return is consistent with practice in the venture capital market. Our robustness checks explore the situation when the entrepreneur has extra bargaining power in addition to its threat to walk away from the deal and match with a different investor in the future.

[^2]: ${ }^{30}$ Formally, the VC's payoff may not be log-supermodular in the deal, in which an entrepreneur of the highest quality matches with a VC of the lowest quality allowed for such an entrepreneur in equilibrium: $\frac{\partial \pi_{i}\left(i, e, c^{*}(i, e)\right)}{\partial i \partial e}<0$ (see Theorem 1 in Smith (2011)).

[^3]: ${ }^{31}$ For other parameters (i.e., if investors' qualities are more evenly distributed, decreasing competitiveness among investors of low quality), we find that the influx of low-value deals can be dominated, in terms of its impact on the average value of deals and their frequency, by the impact of less frequent high-value deals signed by entrepreneurs of high quality.

[^4]: ${ }^{32}$ Theoretical and empirical research on entrepreneurial overconfidence includes Cooper, Woo, and Dunkelberg (1988), Busenitz and Barney (1997), Camerer and Lovallo (1999), Bernardo and Welch (2001).

[^5]: ${ }^{33}$ It is easy to justify the positive relationship between total costs of investment and the VC share of the firm via a simple model. See, e.g., Grossman and Hart (1986).
 ${ }^{34}$ These results are available from the authors upon request.

