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Abstract

In this paper, I develop a model of optimal taxation of capital income in which wealth

and income inequality is a result of capital income shocks together with frictions in finan-

cial markets. I use the model to study optimal taxation of various types of capital income:

capital income from controlled businesses, outside the business as well as bequests. In

presence of risk-return trade-offs, i.e., when more productive investments are riskier, I

show that it is typically optimal to have progressive saving taxes. Furthermore, in an inter-

generational context, I show that bequest taxes should be negative and develop a method

for characterization of long run efficient distribution of wealth.
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1 Introduction

How should wealth be taxed? The answer to this question requires taking a stand on the
process of wealth accumulation. Much of the optimal tax theory has tackled this question by
using models where households are subject to idiosyncratic labor income risk and accumulate
wealth as buffer against future income shocks. However, it has been documented that models
with idiosyncratic labor income risk fail to generate a concentration of wealth similar to that
observed in the data. It has also been argued that models with entrepreneurs who are subject
to capital income risk can generate a concentration of wealth similar to that in the data1. In
this paper, motivated by this insight, I study optimal taxation of entrepreneurial income and
wealth.

I analyze optimal design of tax schedules by developing a model where households are
subject to idiosyncratic capital income risk and private information. The productivity of in-
vestment projects stochastically evolves over time. In particular, productivity has two compo-
nents, a component that is known by the entrepreneurs in advance at the time of investment and
a residual component that is realized once investment is made2. The first component of pro-
ductivity can be interpreted as entrepreneurial ability. I assume that productivity, investment
and consumption are all private information to the entrepreneur. In such an environment, a
planner would want to insure entrepreneurs against productivity and income risk via redis-
tributive schemes. These redistributive motives together with private information, leads to a
trade-off between incentives to invest and insurance as in Mirrlees (1971); hence a Mirrleesian
approach to capital accumulation.

In this environment, I first analyze how taxes should be designed to achieve efficiency.
Second, I show how the developed model can generate long run distribution of wealth with
Pareto tail. Using techniques from probability theory, I provide a method for calculation of
the tail of the long run wealth distribution in incomplete market and constrained efficient
allocation. Thus shedding light on the question of what the wealth distribution should look
like.

As for the analysis of taxes, there are two main take aways from the model: First, hetero-
geneity in risk and return leads to progressive taxes on capital income outside the business.
The forces behind this result are constant return to scale and moral hazard. Due to constant
return to scale, the planner would like to have the most productive unit produce. However,
this comes at a cost due to moral hazard. In fact, as the desired investment increases it
becomes increasingly costly to provide incentive to invest. This convexity of cost of moral

1Aiyagari (1994)’s seminal paper is an example with idiosyncratic labor income risk that fails to capture the
concentration of wealth among the wealthy. For successful models with capital income risk, see Quadrini (2000),
Cagetti and De Nardi (2006), and Benhabib and Bisin (2009).

2This environment nests the models of entrepreneurship in Evans and Jovanovic (1989) and Gentry and
Hubbard (2004).
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hazard implies that projects with higher return should have higher investment. This implies
that more productive households are bearing higher risk and hence should be discouraged
from investing outside the firm through progressive taxes on saving(outside of business).

Second, when ideas do not persist across generations, i.e., productivities are stochastic,
bequests should be subsidized. This result is driven by the way savings affect incentive to
invest for future generations. In fact, in this model contrary to models with labor income risk,
household’s consumption increases upon lying. This means that when saving is increased, the
value of truth-telling increases by more than value of lying. Hence, saving relaxes incentives
to invest in the future.

Finally, I provide a method to determine the properties of the tail of long-run distribution
of wealth. I show that a simple modification of the model can deliver a stationary distribution
for wealth and that this distribution is fat tailed. Similar to Benhabib et al. (2011), the main
idea behind this result is the fact that consumption growth across generations is stochastic.
This property together with appropriate borrowing limits for agents imply that a stationary
distribution exists. I show that the tail of the wealth distribution can be calculated using
a rather simple formula in both an incomplete market version of the model as well the con-
strained efficient version of the model. The methodology here therefore allows me to compute
the efficient distribution of wealth and compare it to data using simple formulas.

This paper is a first attempt in the analysis of optimal capital taxation in a model that can
capture reasonable properties of the wealth distribution. As I argue the model is consistent
with a concentration of wealth at the top. In addition, the data on business ownership and
entrepreneurship suggests that capital income risk is an important determinant of wealth
inequality at the top. In particular, as noted by Quadrini (2000) and Gentry and Hubbard
(2004) , there is a high concentration of business owners at tope of the wealth distribution.
They establish that of the top %5 of the wealthiest americans, around %70 are business owners.
Furthermore, most of the entrepreneur’s wealth is held in their business, approximately %41
and therefore subject to significant risk.

Despite this evidence, the literature on capital taxation has widely focused on labor income
heterogeneity as the main driving factor of inequality3. In this paper, I have investigated
the other extreme where capital income together with frictions in financial markets leads to
income and wealth inequality. Given that the results are very different from models with
labor income risk, the analysis here is a first step toward a more thorough analysis of capital
taxation.

Related Literature. This paper builds on the literature on optimal dynamic taxation(see
Golosov et al. (2003), Farhi and Werning (2010a), Golosov et al. (2010) among others.) This

3An exception is Piketty and Saez (2012) who develop a model with accidental bequests and study its effect on
capital taxation. While their argue that accidental bequests are consist with micro data, they do not investigate
the implications of their model about the distribution of wealth in the economy. Another exception is Albanesi
(2011). However, she does not explore the implications of her model on the wealth distribution.
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literature has mainly focused on environments with idiosyncratic labor income risk and their
implications about dynamic taxation of various sources of income. In this paper, I study
optimal taxation of various sources of income in a model with capital income risk and show
that capital income risk overturns some of the main lessons from the literature, namely that
the intertemporal wedge can be negative.

This paper is also related to a growing literature on the effect of taxation on entrepreneurial
behavior. Cagetti and De Nardi (2009) consider the effect of elimination of estate taxes on
wealth accumulation. Kitao (2008) and Panousi (2009) study how changes in the capital in-
come tax rate affects investment by entrepreneurs . However, none of these studies considers
the optimal taxation of entrepreneurial income. In developing my model of entrepreneurs,
I have relied on their benchmark models while abstracting from some details for higher
tractability.

Albanesi (2011) and Scheuer (2010) are early attempts in studying optimal design of tax
system for entrepreneurs. Scheuer (2010) focuses on the decision of entry into entrepreneur-
ship and its implication for differential treatment of entrepreneurs and workers. Albanesi
(2011) is perhaps the closest study to this. She considers a two period model where the en-
trepreneurs are ex-ante identical and invest in risky projects. She shows that it is possible to
have negative wedge on observable risky capital since it relaxes incentive constraint – while
the wedge on risk-free asset is positive in contrast to the negative bequest tax in this pa-
per. Furthermore, she considers different financing patterns by the firm and optimal taxes on
various securities.

An important implication of my paper is the emergence of bequest subsidies when en-
trepreneurs are subject to capital income risk. This result is related to a large literature on
optimal capital taxation including Chamley (1986), Judd (1985), Kocherlakota (2005), and
Conesa et al. (2009), among others. In most of these studies the optimal tax rate on cap-
ital income/wealth is positive or zero4. Exceptions are Farhi and Werning (2008) and Farhi
and Werning (2010b) in which negative marginal tax rates emerge either as a result of a higher
social discount factor or binding enforcement constraints in the future. In my model, however,
subsidies are optimal since they relax future incentive constraints.

This paper is related to a body of research that studies power laws in economics, Cham-
pernowne (1953), Simon (1955), Gabaix (1999) and Benhabib et al. (2011)5. It is specially close
in its spirit to Benhabib et al. (2011). They show that in an intergenerational model with labor
and capital income risk and warm-glow bequest motives, the long-run distribution of wealth
is Pareto at the top with the tail being determined by the capital income risk only. In my

4Kocherlakota (2005) actually shows that wealth taxes are zero in expectation and hence some time negative
and some time positive. However, that result is specific to a particular implementation and there are other
implementations for which capital income tax rate is equal to the investment wedge and hence positive; see
Werning (2010).

5See Gabaix (2009) for an extensive review.
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paper, I achieve this via borrowing constraint and a more powerful technique introduced by
Mirek (2011). Moreover, to my knowledge, this is the first study to characterize properties of
the efficient distribution of wealth. Further, Benhabib et al. (2011)’s analysis relies on a partic-
ular market structure. The analysis in this paper is more powerful in that I can characterize
the efficient distribution of wealth.

Finally, from a technical point of view, the model in this paper contains two main frictions,
a hidden action problem and hidden type problem. In general, this makes the problem very
hard to analyze. However, I use the first order approach, as in Pavan et al. (2009), to simplify
the set of incentive constraints and we derive conditions under which this first order approach
is valid. Since there are two types of private information, this model shares the same structure
as the model in Laffont and Tirole (1986) who study optimal regulation of a monopolist and
more recently Garrett and Pavan (2010) and Fong (2009).

The paper is organized as follows: in section 2, I develop intuition via a two period model.
Section 3, contains the dynamic extension of the two period model to an overlapping genera-
tions model. Section 4, discusses the properties of the long-run distribution of wealth. Section
5 concludes.

2 A Two Period Example

In this section, we focus on a two period economy in order to identify the key economic
forces. We start with a two period example to show one of the main results of the paper –
progressivity. As we see, the Modified Inverse Euler Equation – an equation governing time
series properties of consumption – proves useful in the analysis of the intertemporal wedge.
Hence, we derive a version of it for the two period example and further analyze saving wedge
for a case with log utility.

Consider a two period economy in which t = 0, 1. The economy is populated by a contin-
uum of entrepreneurs. Each entrepreneur is the sole owner of an investment technology or
project that is subject to idiosyncratic risk. In particular, entrepreneurs draw a productivity
shock, θ ∈ [θ, θ̄], at t = 0. I assume that θ is distributed according to the distribution function
F(θ). I also assume that F(·) is differentiable over the interval [θ, θ̄] and f (θ) = F′(θ). The
value of the shock, θ, determines the distribution of returns to individual investment. If an
entrepreneur with type θ invests k1 in his private project, the project will yield an output of
y ∈ R+ that is distributed according to the c.d.f. function G(y|k1, θ)(Gy(y|k1, θ) = g(y|k1, θ))
where G(·|·, ·) is C1 in all of its argument. Moreover, the mean value of y, given θ, k1 is given
by θk1, i.e.,

∫ ȳ
0 yg(y|k1, θ)dy = θk1. That is the production technology exhibits constant return

to scale. Notice this formulation can stand-in for a more general constant return to scale pro-
duction function that employs labor and capital with labor being supplied competitively in
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the labor market6. In section 3, I illustrate how an extension of this model to an overlapping
generations model can generate a long run distribution of wealth with fat tail.

To further simplify the analysis, we make the following assumption:

Assumption 1 The distribution of output at t = 1 is exponential, i.e., it satisfies:

y = ε (θk) , ε ∼ Γ(η,
1
η
), η > 0

This implies that Eε = 1 and that its variance is 1
η . Moreover, the distribution of y satisfies

g (y|θ, k) =
(θk)−1 ηη

Γ (η)
(y (θk)−1)η−1e−ηy(θk)−1

We will refer to the p.d.f. of the ε distribution as h (ε). As we will see, the above assump-
tion together with the log-utility assumption below, implies that optimal consumption in the
second period should be linear in income. This would further simplify the analysis in charac-
terizing saving taxes. Note that the above assumption implies that gk(y|k1,θ)

g(y|k1,θ) or the likelihood
ratio is increasing and linear (and hence it satisfies the conditions in see Jewitt (1988) and
Rogerson (1985b).),

gk (y|k, θ)

g (y|k, θ)
=

1
k

η
[ y

θk
− 1
]

In addition, entrepreneurs preferences are standard and given by

log(c0) + β log(c1)

where c0 and c1 are consumption of the entrepreneur at each period7. Entrepreneurs, there-
fore, consume in each period and invest at t = 0. We assume for simplicity that each agent is
endowed with e0 units of labor income at t = 0.

For this economy, an allocation is given by {c0(θ), c1(θ, y), k1(θ)}θ̄
θ=θ. An allocation is said

to be feasible if it satisfies the following:

∫ θ̄

θ
[c0(θ) + k1(θ)] dF(θ) ≤ e0 (1)∫ θ̄

θ

∫ ȳ

0
c1(θ, y)g(y|k1(θ), θ)dydF(θ) ≤

∫ θ̄

θ
θk1(θ)dF(θ) (2)

6Suppose that the production function is given by y = εψ Aθkα1 l1−α1 where l is labor input and ε is a shock
realized once capital is put in place. If managers employ labor at t = 1, the profit maximization decision of the
firm in t = 1 is given by

max
l

εψ Aθαkα1 l1−α1 − wl

and therefore, α2εψ Aθαkα1 l−α1 = w. Hence, α2, α1, ψ, and A can be chosen so that y = εθαkα.
7In the appendix, we also provide how our results would change with u (c) = c1−σ

1−σ , σ 6= 1.
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2.1 Saving Distortions with Observable Productivity

It is useful to characterize efficient allocations when a planner can observe entrepreneurs’
project type, θ, but cannot observe their consumption and investment. Note that when every-
thing is observable, it is optimal to have only the highest productivity entrepreneur θ̄ operate.
This is because of constant return to scale and full risk sharing. With consumption and in-
vestment unobservable, each project is risky and hence it is optimal to operate all projects.
Our goal is to characterize distortions to the saving arising from the moral hazard and how it
varies with average returns across projects.

Under this specification, an allocation is incentive compatible if

log (c0 (θ)) + β
∫

log (c1 (θ, y)) g (y|θ, k (θ)) dy ≥

max
k̂

log
(

c0 (θ) + k1 (θ)− k̂
)
+ β

∫
log (c1 (θ, y)) g

(
y|θ, k̂

)
dy

The above specification, satisfies the conditions for the first order approach described in Jewitt
(1988) and Rogerson (1985b). As shown by Jewitt (1988), the first order approach is sufficient
in moral hazard problems when: 1)

∫ y
0 G(ŷ|θ, k)dŷ convex and decreasing in k, 2)

∫
ydG(y|θ, k)

is concave and increasing in k, 3) hazard ratio gk
g is increasing and concave in y. Jewitt (1988)

shows that all of these results are satisfied for gamma distribution. Hence, we can replace the
above with its first order condition:

1
c0 (θ)

= β
∫

log (c1 (θ, y)) gk (y|θ, k1 (θ)) dy (3)

Hence, the planning problem is given by

max
c0(θ),c1(θ,y),k1(θ)

∫ θ̄

θ

[
log(c0(θ)) + β

∫ ȳ

0
log(c1(θ, y))g(y|k1(θ), θ)dy

]
dF(θ) (4)

subject to (3), (1), and (2).
We start characterizing the optimal allocation via the following lemma:

Lemma 1 Consumption at t = 1 is a linear function of income, or

c1 (θ, εθk1 (θ)) = φ (θ) + ζ (θ) ε

for some φ (θ) , ζ (θ) > 0.

The above lemma implies that in a tax implementation of the constrained efficient alloca-
tion, the marginal tax rate on capital income inside the business is constant, i.e., tax function
is linear with respect to income.

7



Proof. Consider increasing log(c1 (θ, y)) by 1 unit for y ∈ [ŷ, ŷ + δ] while decreasing
log(c1 (θ, y)) for all other y’s by δg(ŷ|θ, k1 (θ)) for δ small. This perturbation leaves the ex-
pected utility unchanged. Furthermore, it affect the incentives to invest by δgk (ŷ|θ, k1 (θ)).
The cost of this perturbation is therefore given by

c1 (θ) δg (y|θ, k1 (θ))− δg (y|θ, k1 (θ))
∫

c1 (θ, y) g (y|θ, k1 (θ)) dy

At the optimal allocation, this cost has to equate the incentive benefits and hence

c1 (θ, ŷ) δg (ŷ|θ, k1 (θ))− δg (ŷ|θ, k1 (θ))
∫

c1 (θ, y) g (y|θ, k1 (θ)) dy = µ2 (θ) δgk (ŷ|θ, k1 (θ))

and therefore

c1 (θ, ŷ) =
∫

c1 (θ, y) g (y|θ, k1 (θ)) dy + µ2 (θ)
gk (ŷ|θ, k1 (θ))

g (ŷ|θ, k1 (θ))

= φ (θ) + µ2 (θ) ŷ

or
c1 (θ, εθk1 (θ)) = φ (θ) + ζ (θ) ε, ∀ε ∈ R+

for some φ (θ), φ (θ) > 0.
Q.E.D.
In order to further characterize the forces present in the model, we show the following:

Lemma 2 Average consumption at t = 1,
∫ ∞

0 c1 (θ, y) g (y|θ, k) dy, is equated across different types.

Proof. To see this, note that perturbing the allocation via multiplying c1 (θ, y) by 1 + δ for
δ > 0 small, has no effect on incentive since∫

log (c1 (θ, y) δ) gk (y|θ, k) dy =
∫

[log (c1 (θ, y)) + log δ] gk (y|θ, k) dy

=
∫

log (c1 (θ, y)) gk (y|θ, k) dy

The marginal cost of such perturbation is δ
∫ ∞

0 c1 (θ, y) g (y|θ, k) dy. Since θ is observable, this
marginal cost should be equated across types.

Q.E.D.
Given the definition of φ and ζ, we must have

φ (θ) + ζ (θ) = φ
(
θ′
)
+ ζ

(
θ′
)

Note the above result is very similar to full risk sharing across different types. Since the plan-
ner can observe average productivity types θ, the marginal cost of delivering utility u (c1 (θ, y))
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uniformly should be equated across types. With log-utility, this translates to equating average
consumption across productivity types θ.

To characterize distortions to saving, we first define wedges for general securities. Con-
sider, a risky security D with dividends per unit held, d, distributed according to Ψ (d). For
this security, we can define the following wedge:

τD : u′ (c0) = β (1− τD) E(d,y)[u
′ (c1) d]

Note that this wedge can be thought of as a marginal tax rate on each additional unit of
income earned from this security and it affects agent’s incentives to invest in that security. For
example, consider a bond that pays r units in each state of the world – for all ε, τS defined by

u′ (c0) = β (1− τS) rE
[
u′ (c1)

]
can be thought of as marginal tax rate on gross income from the bond, i.e., principal plus
interest. Note that given the above lemma, for a project of type θ, there is a wedge on equity
– claim to the revenue of the firm and is equal to 1− 1

θk1(θ)
ζ (θ). This is because for every

unit increase in the revenue from the firm, the entrepreneur’s consumption increase by ζ (θ).
Although, these wedges resemble taxes, there is no reason that market mechanisms cannot
achieve efficiency. Given this definition, we can state the main result of this section:

Theorem 1 Suppose that q θ
η − 1 < x̄ where x̄ = min0≤x≤ 1

η

[
1
x + βηe

1
x−1( 1

x − η)ηΓ
(
−η, 1

x − η
)]−1

,

then c0 (θ),
k1(θ)
c0(θ)

, ζ (θ) , −φ (θ) as well as τS (θ) are increasing functions of θ.

where in the above Proposition, Γ (·, ·) is the incomplete gamma function, q is the price of
consumption in the second period relative to consumption in the first period, and τS (θ) is the
wedge associated with a risk free bond with gross rate of return q−1.

Proof. In the Appendix.
The above proposition states that when θ is bounded above, first period consumption,

capital-consumption ratio, as well as the riskiness of c1(θ, y) increases with type. To see how
this implies an increasing wedge τS (θ), note that by definition

1
1− τS (θ)

= βq−1c0 (θ)
∫ ∞

0

1
φ (θ) + ζ (θ) ε

h (ε) dε

When −φ (θ), ζ (θ), and c0 (θ) are increasing in θ, then so is τS (θ).
Intuitively, the planner would like to invest as much possible in the highest productivity

project. However, due to moral hazard, this comes at a cost. Hence, the planner would like to
set the cost of moral hazard equal to the return to the investment, qθ − 1. Since the marginal
cost of moral hazard is bounded above, this is possible only up to a certain level. In other
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words, when the return to investment is very high the cost of moral hazard is not enough to
prevent the planner from investing all the funds in the highest productivity project. It can also
be shown that the cost of moral hazard is convex in k. This implies that optimal investment
has to be increasing. Essentially, the presence of moral hazard introduces decreasing returns
to scale to an otherwise constant return to scale technology8.

More intuitively, since average consumption is equated across type and ζ is increasing in
θ, consumption is risker for higher productivity types and hence leads to a lower continuation
utility. Facing this increased risk, an entrepreneur would like to decrease its investment in the
project and increase its holding of a risk-free bond. Hence in order to achieve the efficient level
of investment, the planner should increase distortions on bond holdings, thereby discouraging
investment outside of business.

It is perhaps worth discussing the incentives for truth-full reporting given the above ef-
ficient allocation. Note that in this model, average continuation utility is decreasing in θ.
However, first period consumption as well as investment are increasing in θ. Hence, when
θ’s are private and households face the above mechanism, it is not clear whether households
would like to lie upward or downward. However, we can characterize the incentives for opti-
mal reporting strategy. When an agent of type θ pretends to be θ̂ the utility attained by that
agent is given by

U
(
θ̂, θ
)
= max log

(
c0
(
θ̂
)
+ k1

(
θ̂
)
− k̂
)
+ β

∫
log
(

c1

(
θ, εθk̂

))
dH (ε)

Using the envelope theorem and after some manipulations, we can show that

∂

∂θ̂
U (θ, θ) =

d
dθ

(
k1 (θ)

c0 (θ)

)
+

∂

∂θ̂
log

(
c0
(
θ̂
)
+ k1

(
θ̂
) (

1− θ̂

θ

))∣∣∣∣∣
θ̂=θ

The first term above, the saving rate, is increasing in θ, following proposition 1. Hence, the
sign of the above is positive, if c0

(
θ̂
)
+ k1

(
θ̂
) (

1− θ̂
θ

)
is increasing, i.e., when lying upward

utility in the first period increases. It turns out that in mose simulations, this term is positive.
Hence, facing the above mechanism, households would like to pretend to be of higher pro-
ductivity. Through this strategy, they would receive a higher transfer from consumption and
investment at t = 0 and this effect dominates the increase in risk in consumption at t = 1.

2.2 Private Information About Productivity

Here we assume that agents are privately informed about their productivities. Moreover, the
planner cannot observe consumption and investment by a particular agent at t = 0. The
planner can only observe income y at t = 1. By the Revelation Principle, we can focus on

8A similar result shows up in Bennardo and Chiappori (2003).
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direct mechanisms in which each type reports his productivity. We call an allocation incentive
compatible if it satisfies the following:

log(c0(θ)) + β
∫ ∞

0
log(c1(θ, y))g(y|k1(θ), θ)dy (5)

≥ max
θ̂,k̂

log
(

c0(θ̂) + k1(θ̂)− k̂
)
+ β

∫ ∞

0
log(c1(θ̂, y))g(y|k̂, θ)dy

The RHS of the above inequality is the utility that a type θ receives when he reports θ̂ and
invests k̂. Moreover, I call an allocation incentive feasible, if it is incentive compatible and
feasible.

The assumption about private information features two type of incentive problems: a
hidden type problem and a hidden action problem. The hidden type problem implies that,
when facing the full information efficient allocation, agents with higher productivity – θ,
have incentive to lie downward about their productivity type even if they invest "the right"
amount. By lying downward and investing θ̂k1(θ̂)

θ , higher productivity agents can enjoy higher
consumption in the first period. Moreover, the hidden action problem implies that even if the
agents tell the truth, the full insurance in the second period leads to under-investment in the
first period.

Given above definitions, a utilitarian planner that maximizes entrepreneurs’ ex-ante utility
solves the following problem:

max
c0(θ),c1(θ,y),k1(θ)

∫ θ̄

θ

[
log(c0(θ)) + β

∫ ∞

0
log(c1(θ, y))g(y|k1(θ), θ)dy

]
dF(θ)

subject to (1), (2), and (5).
First Order Approach. As can be seen, the set of incentive compatibility constraints is large

and this complicates the characterization of optimal allocations. Here, as before, I appeal to
the first order approach to simplify the set of incentive compatibility constraints and discuss
the validity of this approach in this environment. In particular, let U(θ) be the utility of type
θ from truth-telling. Then we must have

U(θ) = max
θ̂,k̂

log
(

c0(θ̂) + k1(θ̂)− k̂
)
+ β

∫ ∞

0
log(c1(θ̂, y))g(y|k̂, θ)dy

If we assume that the allocations are C1 in θ and y, then incentive compatibility yields the
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following first order conditions and Envelope condition:

1
c0 (θ)

= β
∫ ∞

0
u(c1(θ, y))gk(y|k1(θ), θ)dy (6)

1
c0 (θ)

[
c′0(θ) + k′1(θ)

]
+ β

∫ ∞

0

1
c1(θ, y)

c1θ(θ, y)g(y|k1(θ), θ)dy = 0 (7)

The Envelope condition associated with this problem is given by

U′(θ) =
∂

∂θ
log
(

c0(θ̂) + k1(θ̂)− k̂
)
+ β

∫ ∞

0
log(c1(θ̂, y))g(y|k̂, θ)dy

∣∣∣∣
θ̂=θ,k̂=k1(θ)

= β
∫ ∞

0
log(c1(θ̂, y))gθ(y|k̂, θ)dy

Note that since g(y|k1, θ) is a function of θk1, I can write gθ(y|k1, θ) = k1
θ gk(y|k1, θ). Hence,

the above envelope condition combined with the first order condition simplifies to

U′(θ) =
1
θ

k1(θ)

c0 (θ)
(8)

We say an allocation is locally incentive compatible if it satisfies (6) and (8).
The above conditions are necessary for incentive compatibility. However, it is not clear

that they are sufficient for incentive compatibility. Our aim, here, is to provide sufficient
conditions under which the local incentive compatibility implies incentive compatibility, i.e.,
the First Order Approach(FOA) is valid. As mentioned before, there are two frictions in this
model: an adverse selection problem and a moral hazard problem. Regarding the adverse
selection problem, there has not been much success in finding general assumptions on primi-
tives that validate the FOA9. In the appendix and in line with Pavan et al. (2009), we provide
monotonicity conditions on endogenous allocations that can be easily checked and are sufficient
to ensure that FOA is valid.

Given the above discussion and conditions provided in Appendix, in what follows, we
relax the set of incentive compatible constraints and only impose local incentive compatibil-
ity. This further simplifies the analysis of the planning problem and enables us to further
characterize the properties of the optimal allocations.

Hence, the relaxed problem becomes the following:

max
c0(θ),c1(θ,y),k1(θ),U(θ)

∫ θ̄

θ
U(θ)dF(θ) (P1)

9There are special cases for which assumptions on fundamentals exist. For example Myerson (1981) and
Guesnerie and Laffont (1984) show that when principal and agent are both risk neutral, a monotone likelihood
ratio assumption on the distribution of types validates the FOA.
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subject to

∫ θ̄

θ
[c0(θ) + k1(θ)] dF(θ) ≤ e0 (9)∫ θ̄

θ

∫ ∞

0
c1(θ, y)g(y|k1(θ), θ)dydF(θ) ≤

∫ θ̄

θ
θk1(θ)dF(θ) (10)

U(θ) = log(c0(θ)) + β
∫ ∞

0
log(c1(θ, y))g(y|k1(θ), θ)dy

U′(θ) =
1
θ

k1(θ)

c0(θ)
(11)

β
∫ ∞

0
log(c1(θ, y))gk(y|k1(θ), θ)dy =

1
c0 (θ)

(12)

In what follows, we refer to (11) as the adverse selection constraint and to (12) as moral hazard
constraint.

Unfortunately, the analytical characterization of saving wedge proves impossible with pri-
vate information about θ. However, here we provide partial characterization by providing a
modified inverse Euler Equation that will prove useful in characterizing taxes and wedges.
We call this the Modified Inverse Euler Equation. We have the following proposition:

Proposition 1 (Modified Inverse Euler Equation). Suppose that ct, k1 > 0, a.e. Then any solution
to (P1) must satisfy

k1 (θ) (qθ − 1) +
q
β

∫ ȳ

0

1
u′(c1(θ, y))

g(y|k1(θ), θ)dy =
1

u′(c0(θ))
(13)

where q is the relative intertemporal price of consumption, and u (c) = log c.

The proof can be found in the appendix.
This equation extends the results in Rogerson (1985a) and Golosov et al. (2003) to the

described environment. A key condition in deriving the IEE in Golosov et al. (2003) is the fact
that marginal utility is observable by the planner. In general optimality of allocations implies
that a perturbation of the allocations that keeps utility of all types unchanged must keep the
cost unchanged. In particular, any such perturbation at any given period t should imply that

MCt + MCt+1 = 0

where MCt is the marginal cost of such perturbation. When marginal utility is observ-
able, i.e., consumption is separable from the source of private information, a perturbation in
consumption that keeps utility unchanged along every history does not change incentives –
βtu(ct(ht)) + βt+1u(ct+1(ht, ht+1)) is unchanged for all ht+1. Since, the source of private in-
formation is separate from consumption and the utility from consumption has not changed,
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the perturbed allocation must be incentive compatible. This implies that the marginal cost
of the perturbation at period t is given by MCt = 1

βtu′(ct)
while at period t + 1, it is given

by MCt+1 = −qt+1E
[

1
βt+1u′(ct+1)

|ht
]

– with qt+1 being the relative shadow value of aggregate
consumption. In our environment, however, consumption is non-separable from the source
of private information. Hence, a perturbation in consumption alone will induce some agents
to lie and breaks the incentive compatibility requirement. Therefore, there are incentive cost
associated with such perturbations. The last terms in (13) capture these costs. Here, we give a
heuristic derivation of (13).

Consider a proportional perturbation in c0 (θ) , k1 (θ) by 1+ δ, and φ (θ) , ζ (θ) by (1 + δ)
− 1

β .
Note that this perturbation, does not change the incentive compatibility constraints nor the
utility of type θ. To see this, consider the utility of type θ,from the perturbed allocation Ũ (θ).
We must have:

Ũ (θ) = log c0 (θ) + β
∫ ∞

0
log (φ (θ) + ζ (θ) ε) h (ε) dε

= U (θ)

Furthermore,∫ ∞

0
u (c̃1) gkdy =

1
k̃1 (θ)

∫ ∞

0
log ((1 + δ) (φ (θ) + ζ (θ) ε)) (ηε− 1) h (ε) dε

=
1

1 + δ

1
k1 (θ)

∫ ∞

0
log ((φ (θ) + ζ (θ) ε)) (ηε− 1) h (ε) dε

=
1

1 + δ

∫ ∞

0
u (c1) gkdy =

1
c̃0 (θ)

and k1(θ)
c0(θ)

is unchanged as a result of the perturbation. This implies that the cost of such
perturbation should be equal to its benefits. In terms of t = 0 consumption, the benefit is
given by

(qθ − 1) k1 (θ) δ + q
[
1− (1 + δ)−1/β

] ∫ ∞

0
c1 (θ, y) g (y|k1 (θ) , θ) dy

while the cost of the perturbation is δc0 (θ). Equating the cost and the benefit would result in
equation (13).

Equation (13) is useful in partial characterization of the saving wedge. Note that when
capital consumption ratio k1(θ)

c0(θ)
is increasing in θ, one can show that the saving wedge is

increasing. Mechanically this is because both k1
c0

and E [u′ (c1)] E 1
u′(c1)

are both increasing

functions of ζ
φ . Hence, we have the following proposition:

Proposition 2 Suppose that in the solution to (P1), investment-consumption ratio, k1(θ)
c0(θ)

, is increasing
in θ. Then τPI

S (θ) is increasing in θ.
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where τPI
S is the saving wedge implied by the solution to (P1). Intuitively, when the planner

would like to achieve higher saving rate in the form of risky capital by higher productivity
types, it needs to tax other forms of saving heavier, i.e., increasing τS (D). In all of the
calculated numerical simulations, investment-consumption ratio is increasing in θ.

Note also that as it is common in problems with hidden information, the local incentive
constraint (11) does not bind at the extreme values of θ = θ, θ̄, i.e., its associated multiplier is
0. This implies that the distortion to saving is equal to those characterized in section 2.1. So
we have the following corollary:

Corollary 1 Consider the solution to (P1) and its implied saving wedge τPI
S (θ). Then τPI

S (θ) =

τFI
S (θ) for θ = θ, θ̄. Furthermore, τPI

S
(
θ̄
)
> τPI

S (θ).

Numerical Example. In order to shed more light on mechanisms at play, I provide a
numerical example10. Figure 1, displays average consumption at t = 1 and how it moves with
θ. Note that due to private information, average consumption in the second period cannot be
equated across types. However, as we have mentioned above, households would like to lie
upward and in order to prevent them from doing so, it is optimal to have a decreasing average
value of consumption.

1.1 1.2 1.3 1.4 1.5
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0.98
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AverageProductivityΘ

Ùc
1
HΘ
,y
Ld
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Figure 1: Average Consumption as a Function of rate of return

10We solve a cost minimization problem instead of utility maximization problem. Furthermore, we assume
that θ is uniformly distributed so that the average return on investment varies from 3% to 50%. The other
parameter values are q = β = 0.95, and λ– the multiplier associated with promise keeping constraint, is set to 1.
Note that the problem is homogenous in λ or the promise utility w.We will discuss this in more detail in section
3.
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Figure 2, shows the saving wedge as a function of θ as well as its relation to the saving
wedge with full information about θ. Note that the saving wedge with private information
is almost the same as the one with observable. Obviously this depends on the distribution
of θ’s. However, it points to an important observation that in the model with observable
θ’s, households incentive for lying is not that strong and hence the differences between the
two models are small. This can also be further seen from the small variations in the average
consumption at t = 1.
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Figure 2: Saving Wedge with Public and Private Productivity

Finally, Figure 3 shows the slope of y− c1 (θ, y). In implementation with taxes, this can be
interpreted as marginal tax rate on income inside the business. As we have mentioned before,
the tax marginal tax rate with respect to income from the business is independent of y and
dependent on θ. This figure shows that the income tax schedule with respect to income from
the business is progressive, i.e., increasing with respect to average productivity or average
income. Note that this is true despite the fact that ζ (θ) is increasing in θ. The figure also
establishes that perhaps a progressive tax on total capital income – the sum of income from
business and outside business, almost implements the optimal allocation since both tax τs (θ)

and τy (θ) are increasing in θ and are close in numbers.

3 A Dynamic Extension

The two period model, although informative about optimal taxes on capital income, is short
of a full analysis of optimal capital taxes. In particular, any relevant model of optimal capital
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Figure 3: Marginal tax rate on business income, τy

taxes should be consistent with dynamic wealth and its distribution in the society. In this
section, I develop a fully dynamic model of optimal capital taxes based on the the two period
economy described above. The model developed satisfies diminishing returns in the aggre-
gate, constant returns at the individual level as well as bequest motives via altruism. I will
discuss the models implication on optimal capital taxes and estate taxation. Later in section I
discuss the implication of the model on optimal taxes and optimal distribution of wealth.

The basic model is an overlapping generations extension of the two period model. Time
is discrete, t = 0, 1, · · · . At each period t, a continuum of households are born, indexed by
i ∈ [0, 1]. They live for two periods, t and t + 1. At t they are endowed with a unit of labor in
each period, which they supply inelastically to perfectly competitive markets.

When young at period t, households are endowed with a technology that transforms pe-
riod t-consumption and labor input into t + 1-consumption. That is, each household at date t
is endowed with a production function

yit+1 = (Ait+1kit+1)
αl1−α

it+1

where kit+1 is the amount of capital invested at t, lit+1 is the amount of labor hired at t + 1
and Ait+1 is productivity. Similar to the two period model, Ait+1 = θitεit+1 where θit is known
at t, when household i is deciding about how much to invest and εit+1 will be realized at
t + 1. The ex-ante prodcutivity is drawn from a distribution F (θ)(θ ∈ Θ =

[
θ, θ̄
]
) and εit+1

is distributed according to a gamma distribution, Γ
(

η, 1
η

)
. Throughout the paper, we refer

to the distribution of ε as H (ε) and call the distribution of yt+1 induced by kt+1 and lt+1
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as Ĝ (y|θ, k, l). Both θt and εt+1 are i.i.d. In order to produce, households hire labor from
competitive labor market. At t, households decide how much to consume versus to invest in
the technology.11

When old at period t + 1, households collect revenue from the production technology,
consume and leave bequests. Hence a household born at t, consumes c0,t at t and c1,t+1 at
t + 1. It determines how much capital to purchase with wealth inherited from their parents,
kt+1, at t and determines how much labor to employ. A household born at t has the following
utility function:

Vt = Et log c0,t + β log c1,t + β2Vt+2

where Vt is the utility of a household born at t.
Given this environment, an allocation is given by{

c0,t(θ
t, yt−1), c1,t(θ

t, yt), kt+1

(
θt, yt−1

)
, lt+1

(
θt, yt)}

t∈N∪{0}

where

θt = (θt, θt−2, θt−4, · · · , θt mod 2)

yt−1 =
(

yt−1, yt−3, · · · , y(t−1)mod 2

)
are the histories of shocks for a household born at t. Moreover, µ0,t

(
θt, yt−1) is the distribution

of histories for the young generation at t and µ1,t−1

(
θt−1, yt

)
is the distribution of histories

for the old generation at t. We call an allocation feasible if

∫
Θd(t+1)/2e×R

dt/2e
+

[
c0,t

(
θt, yt−1

)
+ kt+1

(
θt, yt−1

)]
dµ0,t

(
θt, yt−1

)
(14)

+
∫

Θdt/2e×R
d(t−1)/2e
+

ct−1,t

(
θt−1, yt

)
dµ1,t−1

(
θt−1, yt

)
≤
∫

Θdt/2e×R
d(t−1)/2e
+

ytdµ1,t−1

(
θt−1, yt

)
∫

Θdt/2e×R
d(t−1)/2e
+

lt
(

θt−1, yt−1
)

dµ1,t−1

(
θt−1, yt

)
= 1 (15)

where µ0,t and µ1,t−1 are the measure of histories induced by the history of investment and
hiring kt, lt.

11Note that there are two ways to interpret this model. One is that capital fully depreciates across periods
and yit is the output produced at t. Another interpretation is that yit is the value of output produced at t plus
the depreciated value of capital. The basic assumption, under this interpretation, is that an outsider cannot
distinguish changes in the value of physical capital from revenue generated from it. This interpretation is
preferred and throughout the paper, I use this interpretation of the model.
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Information. I assume that the agent privately observes θt,εt+1 as well as investment and
consumption. The planner can observe the output from the project as well as labor input and
total transfers

{
τ0,t

(
θt, yt−1) , τ1,t

(
θt, yt+1)} – used for consumption and investment, to the

households. By revelation principle we can focus on direct mechanisms. So given a transfer
scheme τt

(
θt−2, yt−1

)
=
{

ττ,τ
(
θτ, yτ−1) , ττ,τ+1

(
θτ, yτ+1) , θτ < θt−2, yτ−1 < yt−1

}
τ≥t

, each

agent solves the following:

Vt

(
τt

(
θt−2, yt−1

))
= max

c0,t,c1,t,kt+1,lt+1,θ̂

∫
Θ×R+

[log c0,t + β log c1,t

+β2Vt+2

(
τt+2

(
θt−1, θ̂, yt+1

))]
dF (θt) dĜ (yt+1|θt, kt+1, lt+1)

subject to

c0,t (θt) + kt+1 (θt) = τ0,t
(
θ̂ (θt)

)
c1,t (θt, yt+1) = τ1,t

(
θ̂ (θt) , yt+1

)
where in the above budget constraints, I have suppressed the history of shocks prior to t.

An allocation {c0,t, c1,t, kt+1, lt+1} is said to be incentive compatible, if it is a solution to the
above problem for appropriate transfer values.

We assume that a planner evaluates allocation according to the following welfare function:

V0 + βV1

that is the planner cares about the welfare of the first two generations. This welfare criterion,
although time-inconsistent, implies that within each date, the planner puts equal weight on
all the agents alive.

We call an allocation incentive efficient if it maximizes the above objective, feasible and
incentive compatible.

Labor Demand. Before starting to characterize incentive efficient allocations, we show
how one can solve for labor demand by firms. Note that since labor input is hired at the spot
and is observable by the planner, we can write the output by the production unit as

yt = ŷtl1−α
t

and write all the allocations in terms of histories of ŷt as opposed to yt– one can think of ŷt

as labor productivity. Using this modification, the return to lt from planner’s point of view is
(1− α) ŷtl−α

t for each individual production unit with labor productivity ŷt. Hence it should
be equated to its cost which is the same for all entrepreneurs – it is equal to the ratio of the
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Lagrange multiplier on 15 to 14. Hence,

(1− α) ŷtl−α
t = pt (16)

where pt is the same for all households. Replacing the labor demand in the production
function, we will have

yt =

(
1− α

pt

) 1−α
α

ŷ
1
α
t =

(
1− α

pt

) 1−α
α

Atkt

= κtεtθtkt

and hence production is linear in k. We denote the distribution of yt+1 induced by kt+1 and
θt, G(yt+1|kt+1, θt).

Recursive Formulation and Incentive Compatibility. In our setup, since shocks are i.i.d.,
promise utility is a sufficient statistic to keep track of history for each individual. In particular,
for any agent born at t, ex-ante utility is given by

wt

(
θt−2, yt−1

)
=
∫

Θ×R+

[
log c0,t + β log c1,t + β2wt+2

(
θt, yt+1

)]
dF (θt) dG (yt|θt, kt+1)

Given this definition, incentive compatibility can be written as the following

Ut

(
θt, yt−1

)
= log c0,t (θt) + β

∫
R+

[log c1,t (θt, yt+1) + βwt+1 (θt, yt+1)]dG (yt|θt, kt+1) ≥

max
k̂,θ̂

log
(

c0,t
(
θ̂
)
+ kt+1

(
θ̂
)
− k̂
)
+ β

∫
R+

[log c1,t
(
θ̂, yt+1

)
+ βwt+1

(
θ̂, yt+1

)
]dG

(
yt|θt, k̂

)
where history before t is suppressed for easier notation. As before, we focus on local incentive
constraints:

1
c0,t

= β
∫

R+

[log c1,t (θt, yt+1) + βwt+1 (θt, yt+1)]gk (yt|θt, kt+1) dyt

∂

∂θt
Ut

(
θt, yt−1

)
=

1
θt

kt+1

c0,t

Given the above simplification of the incentive compatibility constraint, instead of focusing on
a welfare maximization problem, we focus on minimizing the cost of providing certain level
of utility to households. We also focus on the component planning problem of providing a
certain level of utility to an agent with a certain history. This component planning problem
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can be written as

Pt (w) = max
c0,c1,k,w′,U

∫
Θ
[αqtκt+1θk (θ)− c0 (θ)− k (θ)

+qt

∫ ∞

0

[
−c1 (θ, y) + qt+1Pt+2

(
w′ (θ, y)

)]
dG (y|θ, k (θ)) dF (θ) ((P))

subject to ∫
U (θ) dF (θ) = w

log c0 (θ) + β
∫ [

log (c1 (θ, y)) + βw′ (θ, y)
]

dG (y|θ, k (θ)) = U (θ)

U′ (θ) =
1
θ

k (θ)
c0 (θ)

(17)

β
∫ ∞

0

[
log (c1 (θ, y)) + βw′ (θ, y)

]
gk (y|k (θ) , θ) dy =

1
c0 (θ)

(18)

where qt is the intertemporal price of consumption.
An allocation is incentive efficient if for a sequence {qt, κt} it is the solution to the above

sequence of problems given a w0 and w1 as well as (16). Furthermore, qt, κt as well as w0

and w1 are determined so that (14) and (15) are satisfied. Accordingly, stationary allocation is
defined when qt’s and κt’s are constant.

Characterization. In what follows, we characterize the solution to the component planning
problem (P) and discuss the main properties of the distortions. The first point to be noted in
characterizing the solution to (P) is that the problem is homogenous in w. That is, we only
needs to study properties of the optimal allocation for when w = 0. We have the following
theorem:

Proposition 3 Given {qt, κt}, the value function and policy functions associated with ((P)) satisfy the
following

Pt (w) = −Btew(1−β)

c0 (θ, w) = c0t (θ) ew(1−β)

c1 (θ, y, w) = c1t (θ, y) ew(1−β)

k (θ, w) = kt (θ) ew(1−β)

w′ (θ, y, w) = ŵt (θ, y) + w

U (θ, w) = Ut (θ) + w
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where At, c0t, c1t, kt, ŵt and Ut solve the following sequence of problems

− Bt = max
∫

Θ
[αqtκt+1θk (θ)− c0 (θ)− k (θ)

−qt

∫ ∞

0

[
c1 (θ, y) + qt+1Bt+2ew′(θ,y)(1−β)

]
dG (y|θ, k (θ))

]
dF (θ) (19)

subject to ∫
U (θ) dF (θ) = 0

log c0 (θ) + β
∫ [

log (c1 (θ, y)) + βw′ (θ, y)
]

dG (y|θ, k (θ)) = U (θ)

U′ (θ) =
1
θ

k (θ)
c0 (θ)

β
∫ ∞

0

[
log (c1 (θ, y)) + βw′ (θ, y)

]
gk (y|k (θ) , θ) dy =

1
c0 (θ)

The above proposition, implies that stationary allocation solve problem (19) in its station-
ary form, i.e, when At, qt are constant.

It is worth noting that (19) is very similar to (P1). The only additional instrument available
to the planner to provide incentive is w′ (θ, y). However, one can show that since the margin
between w′ (θ, y) and c1 (θ, y) is undistorted, the above problem can be written in a similar
fashion to (P1) using a different discount factor β̂ and intertemporal price q̂t. In the appendix,
I show that in the objective the last integral is replaced by

1
1− β

∫
−c1 (θ, y) dG

and continuation utility for the old agent becomes

β

1− β

∫
log c1 (θ, y) dG.

We provide this formulation in the appendix. Given this formulation, one can show that
similar to the two period example, c1 (θ, y) is linear in y.

What the above characterization suggests is that in the stationary version of the problem,
distortions or wedges are independent of history w. When the problem is non-stationary,
wedges depend on time but not on specific history. Hence, they inherit the correlation struc-
ture of the shocks, i.e., they are i.i.d.

Given that the dynamic problem is very similar to the problem discussed in section 2,
similar properties are satisfied and we do not further characterize the saving wedge for the
young, i.e., this is equivalent to τS in section twoperiod. However, an object of interest is
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distortions to saving for the old. One can interpret these distortions as marginal tax rate on
bequest. The following modified inverse Euler equation sheds more light on the forces in
determining the sign of the bequest tax:

Proposition 4 In the solution to (P), optimal consumption must satisfy the following equation:

qt+1

β
Et+1

1
u′ (c0,t+2)

=
1

u′ (c1,t)
+

qt+1

β
Et (αqt+2κt+3θt+2 − 1) (20)

(αqtκt+1θt − 1) +
qt

β
Et

1
u′ (c1,t)

=
1

u′ (c0,t)
(21)

Proof can be found in the appendix.
The above equations show that saving distortions are different when young and old. In

particular, when old, there are forces toward subsidization of saving while when young, sav-
ing should be taxed. The difference lies in the role of saving and its effect on the incentive
constraint. In particular, for an old household, a extra unit of saving would relax their de-
scendants incentive constraint. This is because when lying households are consuming more
and hence have a lower marginal utility. A small increase in consumption in every state of
the world, increases household’s utility from telling the truth more than that of lying and
hence relaxing future incentive constraint. Hence, bequests should be taxed negatively. When
young, this effect is the opposite. An extra unit of saving tightens the young household’s
incentive to invest in the project and hence saving should be taxed.

The above modified Inverse Euler Equations although informative, do not necessarily pin
down the sign of the saving wedge for the old. However, we can show the following result:

Theorem 2 Suppose that in the solution to the component planning problem above ∂
∂θ̂

c0
(
θ̂, w

)
+ k1

(
θ̂, w

) (
1− θ̂

θ

)∣∣∣
θ̂=θ

>

0 and that µ (θ) < 0, where µ (θ) is the multiplier associated with (17). Then

β

qt+1
Et+1u′ (c0,t+2) < u′ (c1,t) .

That is bequests should be subsidized.

Proof can be found in the appendix.
Note that this is in contrast with the results from labor income risk models, e.g., Golosov

et al. (2003). In particular, in models with labor income risk, risk-free saving or bequests
should always be taxed due to its perverse effect on labor supply. Absent bequest taxes,
households would like to save and work a lower number of hours. More technically, the
most attractive lying strategies are those in which consumption decreases upon lying. Due
to concavity of the utility function, a unit of saving increases the value of lying by more than
its impact on the value of telling the truth. Therefore, saving/bequest should be taxed. In
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this model, however, the opposite effect is satisfied. The most attractive lying strategy for the
young is lying upward in which consumption increases. Hence a unit of bequest from the old
relaxes future incentive for their descendants to invest.

3.1 Steady State

Here we consider the effect of private information on steady state level of capital as well as
properties of the stationary distribution of consumption, capital and promised utility. Note
that in a steady state, qt is constant as well as κt and Bt.

We define steady state as an allocation C0, C1, K, Y,and L such that

C0 + C1 + K = Y

L = 1

where C0 is the aggregate consumption by the young, C1 is the aggregate consumption by
the old and K, Y, and L are capital stock, output, and aggregate hours respectively. These
aggregates should be consistent with the solutions of the component planning problem above.

To characterize the steady state of this economy, we start by aggregation. Suppose that dis-
tribution of promised utility for the young in each period is given by Ψ0,t (w). Then aggregates
are given by

C0,t =
∫

Θ
c0 (θ) dF (θ)

∫
ew(1−β)dΨ0,t (w)

C1,t =
∫

Θ
c1 (θ, y) dG (y|θ, k (θ)) dF (θ)

∫
ew(1−β)dΨ0,t−1 (w)

Kt+1 =
∫

Θ
k (θ) dF (θ)

∫
ew(1−β)dΨ0,t (w)

Yt =
1
η

∫
Θ

κθk (θ) dF (θ)
∫

ew(1−β)dΨ0,t−1 (w)

Furthermore, from labor demand, we must have

l = κ
1

1−α εθk (θ)

and hence aggregate labor demand is given by

Lt = κ
1

1−α
1
η

∫
θk (θ) dF (θ)

∫
ew(1−β)dΨ0,t−1 (w)
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Then, feasibility implies that

C0,t + C1,t + Kt+1 = Yt

Lt = 1

Note that given the policy function for w, we must have∫
ew(1−β)dΨ0,t+2 (w) =

∫
eŵ(θ,y)(1−β)dG (y|θ, k (θ)) dF (θ)

∫
ew(1−β)dΨ0,t (w)

The above analysis suggests that in order to have stationarity of the optimal allocation, it must
be that ∫

eŵ(θ,y)(1−β)dG (y|θ, k (θ)) dF (θ) = 1

One can show that in order for ŵ (θ, y) to be the solution to (19), we must have
∫

eŵ(θ,y)(1−β)dG (y|θ, k (θ)) dF (θ) =
β2

q2
12. Therefore, for stationarity, we must have β = q. This result is similar to a result in Farhi

and Werning (2012). They show that in a standard Mirrleesian model, stationarity and log-
utility implies that rate of interest has to be equal to the discount factor. Both results follow
from inverse Euler equation. Here one should note that

q2

β2 Et
1

u′ (c0,t+2)
=

1
u′ (c0,t)

and hence, stationarity of consumption for the young implies that q = β.

3.1.1 Stationary Distribution

It can be show that, similar to most model of dynamic contracting with private information,
the stationary distribution is trivial and almost all the agents will be at the lowest possible
utility level, −∞. To see this, note that wt+2 = wt + ŵ (θt, εt+1). Moreover, Eeŵ(θt,εt+1) =

1and therefore, by Jensen’s inequality, Eŵ (θt, εt+1) < 0. This means that in the long run, wt

converges to−∞. So the so called immiseration result holds. As we will see in the next section,
this property holds in a model with incomplete market as well. In the following section, we
introduce a method to resolve this issue similar to Albanesi and Sleet (2006) and Atkeson and
Lucas (1995). We do so by introducing a lower bound on promised utility. Further, we use a
power mathematical technique to characterize the tail behavior of the stationary distribution
of wealth.

12This is coming from the fact that P′ (w) is a martingale, i.e., P′ (wt) =
q2

β2 EtP′ (wt+2).
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4 Long Run Distribution of Wealth

In this section, I discuss how the model developed above can generate a long-run distribution
of wealth with a Pareto tail and what an optimal Pareto tail looks like. I first illustrate, how an
incomplete market version of the above model can generate a Pareto tail for the distribution
of wealth. We then will illustrate how this tail is affected with optimal taxes.

4.1 An Incomplete Market Model

Our incomplete market version of the model is very similar to Angeletos (2007). Suppose that
when young, households have two options for investment: invest in the risky project with
production function (At+1kt+1)

α l1−α
t+1 , or to borrow and lend using a risk free bond. When

old, households hire labor to produce output form a competitive labor market with wage ωt.
When old, the households leave bequest for their descendants. Given this market structure,
the budget constraints for the young and old households are given by

c0,t + kt+1 + bt+1 = Rtat + ωt

c1,t + at+2 = (εt+1θtkt+1)
α l1−α

t+1 −ωt+1lt+1 + Rt+1bt+1

An equilibrium is defined as the solution to the following problem

Vt (a) = max
∫ [

log c0 + β log c1 + β2Vt+2
(
a′
)]

dGdF (P’)

subject to the budget constraints above as well as

at ≥ −ht = −
∞

∑
j=0

ωt+2j

Rt · · · Rt+2j
.

Note that the above borrowing constraint is a natural debt limit and ht is the present value
of labor income by future generations and it can be interpreted as human capital. Further Rt

and ωt are determined so that∫
bt+1 (a, θt) dF (θt) dψ0,t (a) +

∫
adψ1,t−1 (a) = 0∫

lt+1 (a, θt, εt+1) dH (εt+1) dF (θt) dψ1,t (a) = 1

where ψ0,t and ψ1,t−1 are the distributions of asset for the young and the old at period t. As
before, profit maximization implies that

(1− α) (εt+1θtkt+1)
α l−α

t+1 = ωt+1
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and hence

πt = (εt+1θtkt+1)
α l1−α

t+1 −ωt+1lt+1 = α

(
1− α

ωt+1

) 1−α
α

εt+1θtkt+1

= κ̂tεt+1θtkt+1

Once labor demand is determined, the above problem is a classic portfolio problem studied
by Samuelson (1969) . The utility function is homothetic while the budget set is linear in
allocations. This means that the policy functions are linear in an appropriate state variable.
Because of the existence of labor income, assets are not the state variable. However, we can
show that if we define

ât = at + ht

b̂t+1 = bt +
ht+2

Rt+1

Then the budget constraints become

c0,t + kt+1 + b̂t+1 = âtRt

c1,t + ât+2 = πt + Rt+1b̂t+1

where ât and b̂t are physical asset together with present value of future generations labor in-
come – what can be interpreted as human capital. Given this definition, we have the following
theorem13:

Proposition 5 The policy functions in (P’), satisfy the following

kt (θ, a) = sk,t (θ, Rt+1) βRt (a + ht)

bt+1 (θ, a) = sb,t (θ, Rt+1) βRt (a + ht)−
ht+2

Rt+1

c0,t (θ, a) = (1− β) Rt (a + ht)

c1,t (ε, θ, a) = (1− β) β (κ̂t+1εθsk,t (θ, Rt+1) + Rt+1sb,t (θ, Rt+1)) Rt (a + ht)

at+2 (ε, θ, a) = β2 (κ̂t+1εθsk,t (θ, Rt+1) + Rt+1sb,t (θ, Rt+1)) Rt (a + ht)− ht

where sk,t (θ, Rt+1) + sb,t (θ, Rt+1) = 1 and

∫ ∞

0

κ̂t+1εθ − Rt+1

sk,t (θ, Rt+1) (κ̂t+1θε− Rt+1) + Rt+1
dH (ε) = 0 (22)

The above result is familiar from Samuelson (1969) as well more recently Angeletos (2007).
With log utility, the total saving rate is β. Furthermore, the break-down between bond and

13The analysis here closely follows that of Angeletos (2007).

27



equity is given by the portfolio choice equation (22). In the appendix, we show that sk,t (θ, R)
is increasing in θ.

As it can be seen in the above, total value of financial assets and human capital is a random
process with i.i.d. growth. As shown in Champernowne (1953), Gabaix (1999), among others,
such process deliver stationary distribution with Pareto tail. However, pure random growth
usually does not deliver stationary distribution. In particular, for any random variable ζt and
stochastic process Xt with Xt+1 = ζt+1Xt, log Xt+1 is a random walk and hence its variance
converges to ∞.Furthermore, log Xt converges to 0 or ∞ almost surely depending on whether
E log ζ is negative or positive.

In the above model, steady state implies that

β2
∫

(κ̂εθsk (θ, R) + R (1− sk (θ, R))) dF (θ) dH (ε) = 1

and hence from Jensen’s inequality∫
log
[

β2 (κ̂εθsk (θ, R) + R (1− sk (θ, R)))
]

dF (θ) dH (ε) < 0

This implies that at + ht converges almost surely to zero. That is since households can borrow
against their descendants labor income, over time, they accumulate debt so that their financial
wealth, i.e., bequest, is negative and equal to the negative of their human capital.

That households accumulate debt over time suggests that a simple borrowing constraint
would fix this problem. In fact, it can be shown that if we impose at ≥ −ā, where ā > −ht, then
a stationary distribution exists. Furthermore, a result by Mirek (2011) allows us to characterize
what the tail of the distribution looks like. We present a slightly simplified version of the
theorem here:

Theorem 3 Consider a stochastic process Xt+1 = ψ (Xt, λt) with X0 = x where λt ∈ Λ are i.i.d.
according to some measure µ on the metric space Λ and Xt ∈ R+. Suppose that ψ satisfies the following
conditions:

1. ψ is continuously differentiable with ψx bounded above and that for all λ, x, limt→0 tψ
(
t−1x, λ

)
exists and is finite. Furthermore, suppose that M (λ) exists such that

lim
t→0

tψ
(

t−1x, λ
)
= M (λ) x,

2. For all λ ∈ Λ, there is a random variable Nλ such that

|ψ (x, λ)−Mλx| ≤ |Nλ|, ∀x ∈ R+

3. log |Mλ| does not have support of the form rZ,
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4. There exists some α > 0, such that
E
(
|Mλ|α

)
= 1

5. M satisfies E
(
|M|α log |M|

)
< ∞,

6. For the random variable N defined above, E
(
|N|α

)
< ∞.

Then, there exists a unique random variable X with measure ν exists such that

lim
t→∞

tα Pr ({|X| > t}) = ξ

where ξ is non-zero if one of the following two conditions are satisfied:

lim
s→s∞

E
(
|N|s

)
E
(
|M|s

) = 0(for s∞ < ∞) or lim
s→∞

(
E
(
|N|s

)
E
(
|M|s

)) 1
s

< ∞

and Xt converges to X in probability.

Condition 1 is worth discussing. Applying the L’hôpital’s rule implies that

lim
t→0

tψ
(

t−1x, λ
)
= xψx (∞, λ)

Hence Mλ = ψx (∞, λ). Hence, the determinant of the tail of the stationary distribution is the
slope of ψ (x, λ) with respect to x.

Applying this theorem to the incomplete market model with borrowing constraint, it im-
plies that as long as ∂

∂a a′ (ε, θ, a) is bounded above and B (ε, θ) exists such that∣∣∣∣a′ (ε, θ, a)− ∂

∂a
a′ (ε, θ, ∞) a

∣∣∣∣ ≤ B (ε, θ)

and if ∂
∂a a′ (ε, θ, ∞) and B (ε, θ) satisfy all the assumptions above, then a unique stationary

distribution exists with pareto tail parameter given by ν where α satisfies

∫
Θ×R+

(
∂

∂a
a′ (ε, θ, ∞)

)ν

dF (θ) dH (ε) = 1

Note that ∂
∂a a′ (ε, θ, ∞) is the generational saving rate when wealth converges to infinity. If one

is to assume that the ex-ante probability of binding borrowing constraint vanishes as wealth
converges to infinity, ∂

∂a a′ (ε, θ, ∞), is associated with an unconstrained agent’s saving rate.
Now if we suppose that the value function V (â) is proportional to log â for large values of â,
the analysis is identical to the above. Unfortunately, we have to make these assumptions in
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order to proceed with our characterization. Most numerical simulations suggest that they are
reasonable assumptions14.

Assumption 2 The value function associated with incomplete market model with borrowing con-
straint has the following properties:

1. limâ→∞ âV′ (â) = 1
1−β .

2. limâ→∞ Pr ({(ε, θ) : â′ (ε, θ, â) = −ā + h}) = 0.

Under the above assumption, we can show the following:

Proposition 6 Suppose that 2 holds and that Rt and ωt are constant over time. Then we have

lim
â→∞

∂

∂â
â′ (ε, θ, â) = β2 (sk (θ, R) (κ̂θε− R) + R)

where sk (θ, R) satisfies ∫ ∞

0

κεθ − R
(κεθ − R) sk + R

dH (ε) = 0

Now, if we assume that
∫ ∞

0 log
(

β2 ((κεθ − R) sk + R)
)

dFdG < 0, the the above theorem
suggest that the stationary distribution of wealth is given by α such that∫ ∞

0

[
β2 ((κεθ − R) sk + R)

]α
dF (θ) dH (ε) = 1 (F)

The formula (F) is useful in characterizing the tail of the income distribution. Later we use
this to compare the implied tail of the distribution by incomplete market to that of constrained
efficient allocation.

4.2 Efficient Allocations and Stationary Distribution

In this section, we use 3’s powerful result to characterize the tail of the wealth distribution
implied by optimal taxes. We use a similar technique as above to characterize the efficient
distribution of wealth at the top.

Note that given the above characterization of the policy functions in theorem 3, the cost of
delivering promised utility, P (wt) is a stochastic process with i.i.d. random growth. That is15

P (wt+2) = P (wt) eŵ(θt,yt+1)

14One of way of dealing with this problem is a la Benhabib et al. (2011). They assume that each generation gets
a utility of the form log at+2 while this is not the utility that their descendants receive. Their model is slightly
different in that it includes labor income to get around the the convergence problem. But the basic insight
remains the same.

15We have assumed stationarity and hence the value function is time-independent.
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Note that P (wt) is the present value of income less consumption and investment expenditure.
While this can be thought of as wealth, in an environment with taxes, wealth is the present
value of after tax income less expenditure. Hence, in order to define wealth in the constrained
efficient allocation, we have to define taxes.

Taxes. The tax system that we use to implement the optimal allocation is consisted of a tax
function of the following form:

T
(

y
a + h

,
b + h

h

)
a

where a is financial wealth, b is the saving in risk free bond across periods, and h is human
capital. Given this, each generation’s budget constrains are given by

c0,t + kt+1 + bt+1 = Rat + ω

c1,t + at+2 = Rbt+1 + yt − T
(

y
a + h

,
b + h
a + h

)
(a + h)

The following theorem establishes that we can implement a stationary constrained efficient
allocation, using the above tax system:

Proposition 7 Consider a stationary constrained efficient allocation associated. Then one can find T
to implements the optimal allocation with R = β.

The idea behind this implementation is simple, the dependence of T on b makes sure that
productivity types are revealed while the dependence on y provides incentive for efficient
investment. Furthermore, the planning problem is homogenous in a + h and hence at + h is
a process with random growth rate. In the appendix, we show that when q = β, at + h =

−βP (wt). Hence the growth rate of at + h is given by eŵ(θ,y)(1−β).
Evidently, the model described above does not generate a stationary distribution of wealth.

However, it is helpful in guiding us toward possible modifications of the model to achieve
stationarity. In fact, the modification is very similar to the one in 4.1. We assume that there
exists a lower bound w > −∞ on the set of promised utilities. This is a similar technique as in
Atkeson and Lucas (1995). What this constraint implies is that the lower bound on promised
utility is not an absorbing state any more. Note that when w = −∞, the lower bound is an
absorbing state and therefore, a downward drift in promised utility drives everyone’s utility
to the lower bound. With a finite w, however, due to spreading of promise utility, w is not an
absorbing state anymore and hence there exists a non-trivial stationary distribution.

In presence of the lower bound, the component planning problem together with the lower
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bound constraint is given by:

Pc (w) = max
∫

Θ

[
1
η

αqκθk (θ)− c0 (θ)− k (θ)

+q
∫ ∞

0

[
−c1 (θ, y) + qPc

(
w′ (θ, y)

)]
dG (y|θ, k (θ))

]
dF (θ)

subject to ∫
U (θ) dF (θ) = w

log c0 (θ) + β
∫ [

log (c1 (θ, y)) + βw′ (θ, y)
]

dG (y|θ, k (θ)) = U (θ)

U′ (θ) =
1
θ

k (θ)
c0 (θ)

β
∫ ∞

0

[
log (c1 (θ, y)) + βw′ (θ, y)

]
gk (y|k (θ) , θ) dy =

1
c0 (θ)

w′ (θ, y) ≥ w.

Notice that the problem is not homogeneous in w anymore. However, the following assump-
tion helps us in applying theorem 3.

Assumption 3 The value function Pc (w) with the constraint w ≥ w, has the following property:

lim
w→∞

P′c (w) (1− β) B−1e−w(1−β) = 1

lim
w→∞

Pr
{
(θ, y) : w′ (θ, y, w) = w

}
= 0

Under the above condition, the following theorem can be shown:

Proposition 8 Suppose 3 holds. Then we must have

lim
w→∞

∂

∂w
e(1−β)w′(θ,y,w) = e(1−β)ŵ(θ,y)

where ŵ (θ, y) is the solution to the constrained efficient problem (19).

Proof can be found in the appendix.
For the case with lower bound constraint, we can show that the tax implementation takes a

form of a tax function T (y, b + h, a + h) paid by the old. Furthermore in our implementation
as before, at + h = −qP (wt). Hence, a straightforward application of 3 implies that the tail of
the distribution is given by ν̂ where ν satisfies∫

eν̂ŵ(θ,y)(1−β)dG (y|k (θ) , θ) dF (θ) = 1 (23)
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Formula (23) is the formula that determines the tail of the optimal distribution of wealth. Note
that the margin between c1 (θ, y) and ŵ (θ, y) is undistorted, we muse have

(1− β)Be(1−β)ŵ(θ,y) =
β

q
ĉ1(θ, y)

Hence, (23) becomes the following

(
β2

q2 (1− β) B

)ν̂ ∫
Θ

∫ ∞

0
[φ (θ) + ζ(θ)ε]ν̂ dH (ε) dF (ε) = 1 (FF)

Notice that the above formula is very similar to the one describing the tail of the incomplete
market model. In fact, (F) can be written as

(β2R2)ν
∫

Θ

∫ ∞

0

[
1− sk (θ) + (sk(θ)R−1κθ)ε

]ν̂
dH (ε) dF (ε) = 1

The formulas are informative in that they point the forces in determining the tail of the
income distribution. The main force to note is the general equilibrium effect from interest rate
on the wealth distribution. In the efficient allocation, and without a binding lower bound on
promised utility, β = q and (FF) would imply that ν̂ = 1. In presence of a binding lower
bound on promise utility, stationarity implies that q > β. As we will see in the following
numerical example, the tighter the lower bound on promised utility, the higher q and hence
the higher the tail of the wealth distribution. In what follows, I compare the tail of the wealth
distribution implied by incomplete market model as well as constrained efficient allocations.

Numerical Example. Here I provide a numerical example, in order to illustrate the forces
in determining the efficient distribution of wealth. For simplicity, I assume that α = 1 –
no labor input and I calculate the policy functions for various values of interest rate q. I
assume that each generation is around three years implying a discount factor of β = (0.95)30.
Furthermore, I assume that Θ =

[
ε, θ̄
]

where θ̄ = 6.075 which is associated with an annual
rate of return of approximately %5.5 and ε is a very small number16. In our exercise, we
vary the interest rate q = R−1 and study its effect on the wealth distribution. Note that
changing q is equivalent to changing the lower bound on promised utility (wealth in the
incomplete market model). Since the formulas are more insightful with variable q we will use
this approach. Figure 4 illustrates the tail of the distribution of wealth for different values
of q for the constrained efficient allocations. Table 1, contains related information for the
incomplete market model.

Note that as it can be seen, with incomplete market, the tail of the wealth distribution is
non-existent for q close to β – it can be shown that with q < β, the process is non-stationary.

16The rest of the parameters are as follows, θ is Pareto distributed with parameter a = 2 – implied variance of
.5. φ = 1 – an implied variance of 1.
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Figure 4: Tail of the stationary distribution of wealth in the constrained efficient allocation

q νIM

0.9530 − 0.9630 Non–Stationary
1.030930 1
1.031930 1.0423
1.032930 1.0872

Table 1: The tail behavior of stationary distribution in the incomplete market model
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Moreover, for q high enough, the solution to the constrained efficient allocation does not
exists. This is due to the fact that the marginal cost of investment arising from moral hazard is
bounded from above and with q high enough it is optimal to invest only in the most productive
project.

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
0.990

0.995

1.000

1.005

1.010

AverageProductivity, Θ

Γ HΘL+Ζ HΘL, q=.951
30

Figure 5: Average consumption with constrained efficiency

As it can be seen, in the constrained efficient allocation, the tail of the distribution is more
responsive to changes in the interest rate compared to the incomplete market model. This
is perhaps becuase there is more variability in consumption with incomplete market. The
following figures show average consumption as well the slope of the consumption schedule
with respect to ε. As for constrained efficient allocation, average consumption is roughly
constant in θ while the slope is increasing in θ. On the other hand, consumption is much
more volatile in the incomplete market model. Both average value of consumption as well as
its slope with respect to ε. Note that in this model there is also a selection effect: as q varies,
the cutoff for projects used is given by θl where qκθl = 1. With incomplete markets this
effect is more pronounced. When q is high enough, there are many low productivity projects
selected. The high variability of consumption implies a lower ν and hence a fatter tail for the
distribution of wealth with incomplete market.

5 Conclusion

In this paper, I have studied optimal taxation of capital income in presence of capital income
risk. I have shown that allowing households to invest in businesses, thereby being subject to
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Figure 6: Average consumption with incomplete market
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Figure 7: Slope of consumption with respect to ε, constrained efficient
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Figure 8: Slope of consumption with respect to ε, incomplete market

idiosyncratic investment risk, changes the standard results on taxation of wealth and capital
income. I have also shown how the model can be used to study efficient distribution of wealth.

Although, I have interpreted the agents in the model as households subject to capital
income risk, the model can be used for a variety of issues. In particular, it can be interpreted
as a model with risky human capital and private information. Hence, its implications can be
used to draw policy implication for labor income.
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Appendix

A Proofs

Proof of Theorem 1.
Note that the constraint (3) can be written as

1
c0 (θ)

= β
∫ ∞

0
log (c1 (θ, y)) gk (y|θ, k (θ)) dy

=
β

k1 (θ)

∫ ∞

0
log (φ (θ) + ζ (θ) ε) (ηε− η) dH (ε)

⇒ k1

c0
= β

∫ ∞

0
log (φ (θ) + ζ (θ) ε) (ηε− η) dH (ε) (24)

Note that, one can write the objective as

∫ [
log c0 + β

∫
log (φ + ζε) dH (ε)

]
dF (θ)

Given this modification of the constraint, the first order conditions associated with problem
(4) are given by

1
c0
− λ0 + ζ̂

k1

c2
0

= 0 (25)

β
∫ ∞

0

1
φ + ζε

dH (ε)− λ1 + ζ̂β
∫

ηε− η

φ + ζε
dH (ε) = 0 (26)

β
∫ ∞

0

ε

φ + ζε
dH (ε)− λ1 + ζ̂β

∫
ε(ηε− η)

φ + ζε
dH (ε) = 0 (27)

λ1θ − λ0 − ζ̂
1
c0

= 0 (28)

If we multiply the second equation with φ and the third one with ζ and add them together,
we have

β = λ1 (φ + ζ)

If we replace the above in the second FOC, we have

β
∫ 1 + ζ̂η (ε− 1)

φ + ζ + ζ (ε− 1)
dH = λ1 → β

∫ 1 + ζ̂η (ε− 1)
λ−1

1 β + ζ (ε− 1)
dH = λ1

This implies that ∫ ∞

0

1 + ζ̂η (ε− 1)
1 + β−1λ1ζ (ε− 1)

dH = 1
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The left hand side of the above equation is a strictly decreasing function of ζ̂ and the equation
is satisfied for ζ̂ = λ1ζ

βη . Furthermore, the last equation implies that

λ1θ − λ0 = ζ̂
1
c0

.

Multiplying the first FOC by ζ̂
c0

, we have

1
ζ̂
− λ0

c0

ζ̂
+

k1

c0
= 0 (29)

Furthermore

k1

c0
= β

∫ ∞

0
log (φ + ζε) (ηε− η) dH (ε)

= β
∫ ∞

0
log
(

βλ−1
1 + βλ−1

1 ζ̂η (ε− 1)
)
(ηε− η) dH (ε)

= β
∫ ∞

0
log
(
1 + ζ̂η (ε− 1)

)
(ηε− η) dH (ε) = F1

(
ζ̂
)

where F1 (ζ) is an increasing function of ζ. Hence, (29) becomes

1
ζ̂ (θ)

+ F1
(
ζ̂ (θ)

)
=

λ0

λ1θ − λ0
(30)

The LHS of the above is given by

1
ζ̂ (θ)

+ βηe
1

ζ̂(θ)
−1

(
1

ζ̂ (θ)
− η)ηΓ

(
−η,

1
ζ̂ (θ)

− η

)

where Γ (a, z) =
∫ ∞

z xa−1e−xdx is the incomplete gamm function. This confirms that ζ̂ (θ)

exists when λ1
λ0

θ− 1 is less than the minimum of
[

1
x + βηe

1
x−1( 1

x − η)ηΓ
(
−η, 1

x − η
)]−1

. It can
be shown that the above function is U-shaped. If we assume that for the values of θ that (30)
has two solutions, the lower solution is chosen (since it provides more insurance at the same
investment incentive) the an increase in θ increases ζ̂ (θ). This shows that ζ̂ (θ) is increasing
in θ. This implies that k1

c0
is also an increasing function of θ. We can rewrite (29) as

λ0c0 (θ) = 1 +
k1 (θ)

c0 (θ)
ζ̂ (θ)

which implies that c0 (θ) is an increasing function and hence so is k1 (θ). Finally note that the
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saving wedge is given by

1
1− τs (θ)

= β
λ0

λ1
c0 (θ)

∫ ∞

0

1
βλ−1

1 + βλ−1
1 ζ̂ (θ) η (ε− 1)

dH (ε)

= λ0c0 (θ)
∫ ∞

0

1
1 + ζ̂ (θ) η (ε− 1)

dH (ε)

Since c0 (θ) and ζ̂ (θ) are both increasing functions of θ, the above is increasing in θ. This
concludes the proof.

Q.E.D.

Proof of Proposition 1.
If we rewrite (12) as in (24), the the first order conditions associated with the planning

problem P1 are given by

1
c0

γ− λ0 +

(
1
θ

µ + ζ̂

)
k1

c2
0

= 0 (31)

γβ
∫ ∞

0

1
φ + ζε

dH (ε)− λ1 + ζ̂β
∫

ηε− η

φ + ζε
dH (ε) = 0

γβ
∫ ∞

0

ε

φ + ζε
dH (ε)− λ1 + ζ̂β

∫
ε(ηε− η)

φ + ζε
dH (ε) = 0

λ1θ − λ0 −
(

1
θ

µ + ζ̂

)
1
c0

= 0

1− γ− 1
f
(µ f )′ = 0

Note that ∫ ∞

0
c1dG = φ (θ) + ζ (θ) = γβλ−1

1 ⇒
q
β

∫ ∞

0
c1dG = λ−1

0 γ

Reaplcing the fourth FOC into the first one, we have

γ

c0
− λ0 +

k1

c0
(λ1θ − λ0) = 0⇒ γ

λ0
− c0 + k1 (qθ − 1) = 0

⇒ q
β

∫ ∞

0
c1dG + k1 (qθ − 1) = c0

which leads to the Modified Inverse Euler Equation.
Q.E.D.

Proof of Proposition 2.
Equation (31) can be written as

γ− λ0c0 + (λ1θ − λ0)
k1

c0
c0 = 0⇒ c0 =

γ (θ)

λ0 − (λ1θ − λ0)
k1(θ)
c0(θ)
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Also, as before, we must have βλ−1
1 ζ̂ (θ) ηHence, we can rewrite the saving wedge as

1
1− τs (θ)

= β
λ0

λ1

γ (θ)

λ0 − (λ1θ − λ0)
k1(θ)
c0(θ)

∫ ∞

0

1
βλ−1

1 γ (θ) + βλ−1
1 ζ̂ (θ) η (ε− 1)

dH (ε)

= λ0
1

λ0 − (λ1θ − λ0)
k1(θ)
c0(θ)

∫ ∞

0

1

1 + ζ̂(θ)
γ(θ)

η (ε− 1)
dH (ε)

Note that from the moral hazard constraint, k1
c0

is an increasing function of ζ̂
γ . Hence when k1

c0

is increasing, so is ζ̂(θ)
γ(θ)

. Therefore, the above should be increasing in θ.
Q.E.D.

Proof of Proposition 3.
We start by guessing that the value function has the form

−Btew(1−β)

Now consider the policy functions c0,t (θ, w), kt+1 (θ, w), c1,t (θ, y, w), w′t (θ, y, w), Ut (θ, w) and
define the following:

ĉ0,t (θ, w) = c0,t (θ, w) e−(1−β)w

ĉ1,t (θ, y, w) = c1,t (θ, y, w) e−(1−β)w

k̂t+1 (θ, w) = kt+1 (θ, w) e−(1−β)w

ŵt (θ, y, w) = w′t (θ, y, w)− w

Ût (θ, w) = Ut (θ, w)− w

Then ĉ0,t (θ, w), k̂t+1 (θ, w), ĉ1,t (θ, y, w), ŵt (θ, y, w), Ût (θ, w) must solve the following problem

max
∫

Θ

[
qtκt+1θk̂1 (θ)− ĉ0 (θ)− k̂1 (θ)− qt

∫ ∞

0

[
ĉ1 (θ, y) + qt+1Bt+2eŵ(θ,y)(1−β)

]
dG (y|θ, k1 (θ))

]
dF (θ)

subject to ∫
Θ

Û (θ) dF (θ) = 0

log ĉ0 (θ) + β
∫ ∞

0
[log (c1 (θ, y)) + βŵ (θ, y)] dG (y|θ, k1 (θ)) = Û (θ)

Û′ (θ) =
1
θ

k̂1 (θ)

ĉ0
(
θ̂
)

β
∫ [

log ĉ1 (θ, y) + βŵ′ (θ, y)
]

dG (y|θ, k1 (θ)) =
1

ĉ0 (θ)
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This implies that these functions are indepdendent of w. Furthermore, if we call the value
of the objective above Bt, that confirms our guess for the value function. This completes the
proof. We can further simplify the above program as follows:

Lemma 3 The solution to 19 solve the following program

max
∫

Θ

[
qtκt+1θk̂1 (θ)− ĉ0 (θ)− k̂1 (θ)− qt

∫ ∞

0

ĉ1 (θ, y)
1− β

dG (y|θ, k1 (θ))

]
dF (θ) (32)

subject to

∫
Θ

Û (θ) dF (θ) =
β2

1− β
log
(

qt+1Bt+2 (1− β)

β

)
log ĉ0 (θ) +

β

1− β

∫ ∞

0
log (c1 (θ, y)) dG (y|θ, k1 (θ)) = Û (θ)

Û′ (θ) =
1
θ

k̂1 (θ)

ĉ0
(
θ̂
)

β

1− β

∫
log ĉ1 (θ, y) dG (y|θ, k1 (θ)) =

1
ĉ0 (θ)

Proof. Note that in 19, the margin between w′ (θ, y) and c1 (θ, y) is undistorted. Hence,

c1 (θ, y) =
(1− β) qt+1Bt+2ew′(θ,y)(1−β)

β
(33)

and hence
w′ (θ, y) =

log c1 (θ, y)
1− β

− 1
1− β

log
(

qt+1Bt+2 (1− β)

β

)
Replacing in (19) proves the result.

Q.E.D.

Proof of Proposition 4.
By lemma 3, optimal consumption is the solution to (32). Equation (33) implies that

c1,t =
(1− β) qt+1Bt+2e(1−β)wt+2

β

Furthermore, application of the Envelope theorem to 19 implies that P′t+2 (w) = − (1− β) Bt+2e(1−β)wt+2 =

−λ where λ is the lagrange multiplier associated with the promise keeping constraint. Fur-
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thermore, the FOC’s associated with c1 (θ) and k (θ) in 19 are the following:

−1 +
γ (θ)

c0 (θ)
+

(
ζ̂ (θ) +

1
θ

µ (θ)

)
k (θ)

c0 (θ)
2 = 0

αqt+2κt+2θ − 1−
(

ζ̂ (θ) +
1
θ

µ (θ)

)
1

c0 (θ)
= 0

and we know that ∫
Θ

γ (θ) dF (θ) = λ

where γ (θ) is the multiplier associated with log c0 + β
∫

log c1dG = U. Using the above, we
have ∫

Θ
c0 (θ) dF (θ) = λ +

∫
Θ
(αqt+2κt+3θ − 1) k (θ) dF (θ)

Hence,
c1,t =

qt+1

β
[λt+2] =

qt+1

β
[Et+1c0,t+2 − Et+2(qt+2κt+3θt+2 − 1)kt+3]

which leads to equation (20). Equation (21) can be derived similar to the one in the two period
example.

Q.E.D.

Proof of Theorem 2.
Suppose that ∂

∂θ̂
log
(

c0
(
θ̂, w

)
+ k

(
θ̂
) (

1− θ̂
θ

))∣∣∣
θ̂=θ

> 0 and that µ (θ) < 0. The first condi-
tion implies that

c′0 (θ) >
1
θ

k (θ)

where we have suppresed dependences of consumption and investment on w. Since µ (θ) < 0,
we must have

−µ (θ) c′0 (θ) > −µ (θ)
1
θ

k (θ)

Note that the FOC with respect to c0 is given by

−1 +
γ (θ)

c0 (θ)
+

(
1
θ

µ (θ) + ζ̂ (θ)

)
k (θ)

c0 (θ)
2 = 0

where γ (θ) = λ− 1
f (θ) (µ (θ) f (θ))′. Hence

− f (θ) +
λ f (θ)− (µ (θ) f (θ))′

c0 (θ)
+

1
θ

k (θ) µ (θ)
f (θ)

c0 (θ)
2 +

ζ̂ (θ) f (θ)
c0 (θ)

2 = 0
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Integrating the above and rearranging gives

λ
∫ dF (θ)

c0 (θ)
= 1 +

∫
Θ

[
(µ (θ) f (θ))′

c0 (θ)
− 1

θ
k (θ) µ (θ) f (θ)

1

c0 (θ)
2

]
dθ −

∫
Θ

ζ̂ (θ)

c0 (θ)
2 dF (θ)

< 1 +
∫

Θ

[
(µ (θ) f (θ))′

c0 (θ)
− µ (θ) f (θ)

c′0 (θ)

c0 (θ)
2

]
dθ −

∫
Θ

ζ̂ (θ)

c0 (θ)
2 dF (θ)

< 1 +
∫

Θ

[
(µ (θ) f (θ))′

c0 (θ)
− µ (θ) f (θ)

c′0 (θ)

c0 (θ)
2

]
dθ

= 1 +
∫

Θ
d
(

µ (θ) f (θ)
c0 (θ)

)
= 1 +

µ (θ) f (θ)
c0 (θ)

∣∣∣∣θ̄
θ

= 1 (34)

where the first inequality follows the above assumption and the second ineqality follows from
the fact that ζ̂ (θ) > 0. From (33), we have

1
c1,t

=
β

qt+1

1
λ
>

β

qt+1
Et+1c0,t+2

following from (34).
Q.E.D.

A.1 Full Info Mechanism and Reporting

Here I derive formulas that determine the direction the households would like to lie in the
optimal allocation derived in section 2.1. Note that the first order conditions in (25)-(28) imply
that

c1 (θ, εθk1 (θ)) = βλ−1
1 + βλ−1

1 ζ̂ (θ) η (ε− 1)

Now define the utility for a household of type θ from pretending to be θ̂:

U
(
θ̂, θ
)

= max
k̂

log
(

c0
(
θ̂
)
+ k1

(
θ̂
)
− k̂
)
+ β

∫
log c1

(
θ, εθk̂

)
dH (ε)

= max
k̂

log
(

c0
(
θ̂
)
+ k1

(
θ̂
)
− k̂
)
+ β

∫
log

(
βλ−1

1 − βλ−1
1 ζ̂ (θ) η + βλ−1

1
ζ̂
(
θ̂
)

θk̂
θ̂k1
(
θ̂
) ηε

)
dH (ε)
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Using Envelope theorem and the fact k1 (θ) is the solution to the above when θ̂ = θ, we have

∂

∂θ̂
U (θ, θ) =

1
c0 (θ)

(
c′0 (θ) + k′1 (θ)

)
+

[
ζ̂
′
(θ)− ζ̂ (θ)

1
θ
− ζ̂ (θ)

k′1 (θ)
k1 (θ)

]
β
∫

ηε

1 + ζ̂ (θ) η (ε− 1)
dH (ε)

−ζ̂ (θ)′ β
∫

η

1 + ζ̂ (θ) η (ε− 1)
dH (ε)

Note that from the incentive compatibility:

k1 (θ)

c0 (θ)
= β

∫ ∞

0
log
(
1 + ζ̂ (θ) η (ε− 1)

)
η (ε− 1)

ηη

Γ (η)
εη−1e−ηεdε

= β
ηη

Γ (η)

∫ ∞

0
log
(
1 + ζ̂ (θ) η (ε− 1)

)
d
(
−εηe−ηε

)
= β

ηη

Γ (η)

∫ ∞

0

ζ̂ (θ) ηε

1 + ζ̂ (θ) η (ε− 1)
εη−1e−ηεdε

= β
∫ ∞

0

ζ̂ (θ) ηε

1 + ζ̂ (θ) η (ε− 1)
dH (ε)

Note that the first expression also implies that

d
dθ

k1 (θ)

c0 (θ)
= β

∫
ζ̂ (θ)′ η (ε− 1)

1 + ζ̂ (θ) η (ε− 1)
dH (ε)

Hence, we can write the above expression as

∂

∂θ̂
U (θ, θ) =

1
c0 (θ)

(
c′0 (θ) + k′1 (θ)

)
−
[

1
θ
+

k′1 (θ)
k1 (θ)

]
β
∫

ζ̂ (θ) ηε

1 + ζ̂ (θ) η (ε− 1)
dH (ε)

+β
∫

ζ̂ (θ)′ η (ε− 1)
1 + ζ̂ (θ) η (ε− 1)

dH (ε)

=
1

c0 (θ)

(
c′0 (θ) + k′1 (θ)

)
−
[

1
θ
+

k′1 (θ)
k1 (θ)

]
k1 (θ)

c0 (θ)

+β
d
dθ

k1 (θ)

c0 (θ)

=
1

c0 (θ)

(
c′0 (θ)−

1
θ

k1 (θ)

)
+ β

d
dθ

k1 (θ)

c0 (θ)

=
∂

∂θ̂
log

(
c0
(
θ̂
)
+ k1

(
θ̂
) (

1− θ̂

θ

))∣∣∣∣∣
θ̂=θ

+ β
d
dθ

k1 (θ)

c0 (θ)
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As we have shown, the second term is positive. As for the first term, most of the numerical
simulations establish that this term is positive.
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