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Abstract

What is the impact of artificial intelligence on the legal system? In a general deterrence
model, we show that although machine learning might optimally reduce type I and type II
errors, basing legal decisions on machine predictions can undermine incentives to abide by the
law. We discuss under which assumptions machine learning methods can be adapted to obtain
optimal deterrence. In a planned empirical application on a corpus of 14 million Brazilian labor
lawsuits, we assess the amount of statistical discrimination under various machine learning
decision rules.

1 Introduction

Artificial intelligence (AI), fueled by machine learning, rapidly transforms society. One sector where
AI both shows great promise and spurs controversy is the legal sector. Lawyers and judges have, until
recently, largely been insulated from automation. Now, machine learning algorithms can analyze
millions of pages of legal texts in minutes and outperform human lawyers in predicting outcomes
of certain court cases.1 Predictive analytics are used by lawyers and litigants to guide filing and
settlements decisions (Sadka, Seira, and Woodruff 2018) and are increasingly demanded and adopted
by judges. Artificial intelligence in courts promises speedier decisions, considerable cost savings,
reduced legal uncertainty, and the elimination of human biases (Ludwig and Mullainathan 2021).

Algorithms can, however, introduce new problems. An extensive literature in computer science
and economics discusses concerns that algorithms might reproduce historical patterns of discrimina-
tion (Rambachan et al. 2020). This literature has largely ignored how machine learning can impact
the broader aims of the judicial system beyond discrimination. Perhaps the chief aim of justice is
deterrence—preventing violations of the law. While existing machine learning applications in courts
center around bail decisions where deterrence is not the main goal (Kleinberg et al. 2018b), artificial
intelligence is creeping into other aspects of judicial decision-making where deterrence is central.
For instance, Estonia is developing an algorithm to adjudicate small claims disputes, and China
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is experimenting with robot judges to settle e-commerce disputes.2 Moreover, the use of machine
learning by lawyers and litigants to decide settlements of cases could adversely impact deterrence.

In this paper, we use a model to study how machine learning algorithms in courts impact in-
centives to abide by the law and how they can be designed to improve deterrence. Our baseline
model considers the consequences of basing judicial decisions purely on machine predictions. While
such a direct usage of machine learning is unrealistic in real settings, this stylized case helps to
clarify key mechanisms that generalize to more realistic applications of AI, such as using machine
learning to guide judicial decisions or settlements. To make our argument transparent, we consider
an ideal environment for machine learning. In particular, we assume a machine learning algorithm
that perfectly estimates the probability that the defendant is guilty given the observed data. Thus,
we essentially assume an algorithm trained on an infinite number of past court cases where guilt was
perfectly determined. We also disregard selection issues such as the selection of cases into litigation.

In this ideal setting, we find that basing judicial decisions on machine predictions is optimal
if the aim is to avoid judicial errors. In fact, for any trade-off between type I errors (convicting
innocents) and type II errors (acquitting guilties), optimal punishment relies on predicted guilt. But
this encouraging result does not imply that machine learning is optimal if the aim is to provide ex
ante incentives to abide by the law. To study that question, we consider a general deterrence model
where agents engage in crime if the gain from crime exceeds the increase in expected punishment.
We distinguish between evidence—data causally affected by the choice to engage in crime—and fixed
characteristics—data observed independent of this choice, such as gender or social status. In this
model, basing judicial decisions on predicted guilt can severly lower deterrence. For instance, if all
agents with a specific fixed characteristic are innocent, the machine learning rule never punishes
agents of this type, no matter how strong the evidence is. While this is optimal to reduce judicial
errors, it is fatal for incentives: No agent of this type has incentives to stay innocent. Similarly,
if all agents with a specific fixed characteristic engage in crime, the machine learning rule always
punishes agents of this type, no matter how weak the evidence. Such agents also have no incentives
to abstain from crime. Sub-optimal deterrence arises not only in these extreme cases. For instance,
when the crime rate within a type is large enough, agents of this type are punished even at evidence
more likely to be seen when the agent is innocent than when she engages in crime. In that case, we
can improve deterrence and reduce punishment costs by lowering the punishment threshold.

Allowing the machine learning punishment rule to be updated with new data as agents respond to
the rule only exacerbates these problems. For instance, assume the profit from crime can be deduced
from the fixed characteristics. Then all agents of a given fixed characteristics behave in the same way,
and the fixed characteristics become perfect predictors of crime. A machine learning punishment rule
will always punish criminal types and never punish innocent types, providing nobody with incentives
to abide by the law. The optimal response to this punishment rule is for all agents to engage in
crime. Thus, in the unique equilibrium, all agents engage in crime and the punishment rule always
punishes. There could be other equilibria when the profit from crime is not a direct function of the

2Eric Niiler “Can AI Be a Fair Judge in Court? Estonia Thinks So”, Wired, January 26, 2022,
https://www.wired.com/story/can-ai-be-fair-judge-court-estonia-thinks-so/ and Joshua Park “Your Honor, AI”, Har-
vard International Review, January 26, 2022, https://hir.harvard.edu/your-honor-ai/.
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fixed characteristics. These equilibria, however, exhibit a positive crime rate and might be unstable.
Can machine learning models be adapted to improve deterrence? In the ideal scenario, data is

labeled as either evidence or fixed characteristics. It is then tempting to predict guilt using only
evidence. But it turns out that judicial decisions based on evidence-predicted guilt suffer from many
of the same problems as when fixed characteristics are included as predictors. In particular, there
are no equilibria with a zero crime rate, and equilibria with low crime rates might be unstable.
Instead, we consider a modification of the punishment rule—focusing on the odds of being guilty
given the evidence rather than predicted guilt, and normalizing by the population ratio between
criminals and innocents. It turns out that this modified punishment rule is equivalent to an optimal
non-discriminatory punishment rule. Thus, in our model, a machine learning punishment rule can
sustain optimal deterrence when we can distinguish evidence from fixed characteristics.

In reality, however, we are unlikely to obtain such ideal training data. In realistic scenarios,
machine learning algorithms are fed large quantities of unprocessed text containing both evidence
and descriptive information about the defendant. While a human might do a reasonably good job
at categorizing pieces of information as fixed characteristics or evidence, this task is essentially
impossible for a machine learning algorithm. Distinguishing fixed characteristics from evidence is a
question of causal inference. As piece of information should count as evidence if it would not have
been observed had the defendant not committed the crime. Without experimental data or strong
assumptions, we can not learn anything about this counterfactual.

Instead of proposing a data-driven way of distinguishing evidence from fixed characteristics, we
consider situations where parts of the data are manually labeled as fixed characteristics or evidence.
This is a plausible scenario. Human annotators likely have a good intuition about pieces of informa-
tion that are clearly fixed characteristics, and experienced judges will be able to list clear examples of
evidence. We consider three approaches. First, if all relevant evidence is labeled, optimal deterrence
can be obtained by training the algorithm just on the labeled evidence. We view this situation as
unlikely. As an alternative where we lose less data, we consider training the algorithm on all data not
labeled as fixed characteristics. This approach is also unlikely to succeed. For instance, if skin color
is excluded from the training data, a machine learning algorithm can likely reconstruct this variable
from other fixed characteristics, such as neighborhood. Instead, we prefer a third approach—in the
spirit of Kleinberg et al. (2018a)—where all data is used for prediction and the punishment rule
is “debiased” ex post using the labeled fixed characteristics. This method replicates the optimal
non-discriminatory punishment rule if the labeled fixed characteristics sufficiently control for the
propensity of a defendant to engage in crime. One advantage of this method is that we can exploit
structured data, such as biographical data on the defendant, to debias the algorithm. Machine
predictors based on draw text typically rely on vector representations that are difficult to interpret,
while identifying fixed characteristics in external structured data is more feasible. None of these
solutions, however, are guaranteed to work. We believe that any use of machine predictions to guide
legal decisions should be accompanied with interpretable representations of the identified evidence
to be manually inspected by human lawyers or judges.

To assess the properties of machine learning decision rules in practice, we collaborate with a
Brazilian legal intelligence firm to predict outcomes of labor-related lawsuits. The firm accesses 14
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million lawsuits, including all legal briefs filed before the final decision. To obtain fixed characteristics
of the firm and the plaintiff, we rely on matched employer-employee data for the entire Brazilian
formal sector. We plan to construct machine learning based punishment rules based purely on
predicted guilt and as well as our proposed solutions. We rely on the ratio between type I and type
II errors to measure statistical discrimination. In particular, machine learning predictors tend to
allow more type II errors for firms with a high ex ante likelihood of being guilty than for other firms.
Such statistical discrimination is optimal for reducing overall errors but detrimental to deterrence.
With this method, we can assess the severity of statistical discrimination under a machine learning
punishment rule and the extent to which our proposed solutions lower statistical discrimination.
The results of this exercise will be ready for the conference.

Our results build on a literature on the use of probabilistic reasoning in courts. In partic-
ular, we are not the first to note that reducing judicial errors might lower deterrence. While
early work maintains that accuracy improves deterrence (Kaplow and Shavell 1994), several authors
(Demougin2006Preponderance; Lando 2002) argue that judges should disregard their prior be-
liefs about a defendant’s guilt. Many legal procedures—especially rules of evidence—restrict the
ability of judges to engage in Bayesian inference (Daughety and Reinganum 2000). For instance,
evidence proving that a defendant has a high prior likelihood of engaging in crime is generally
inadmissible.3 These rules increase the likelihood of committing errors but can be rationalized if
the aim is deterrence (Sanchirico 2001). Mirroring our result that a machine learning decision-rule
trained only on evidence can ensure optimal deterrence, Demougin2006Preponderance show
that Bayesian inference under exclusionary rules of evidence can be optimal. That punishments
based on Bayesian beliefs are inefficient is also well known in the literature on moral hazard models
(Holmstrom 1979). There, in the optimal contract, the principal needs to withdraw the bonus when
the agent produces low output even though, in equilibrium, the principal knows the agent exerted
high effort.

In Section 2, we present our model of machine learning punishment. We discuss how to adapt
machine learning algorithms to improve deterrence in Section 3. In Section 4, we discuss how our
results generalize to settings where machine learning does not directly decide cases but is instead
used to guide judicial decisions or settlements. We explain our planned empirical application in
Section 5. Section 6 concludes.

2 A Model of Machine Learning Punishment

In this section, we propose a simple model of machine learning punishment and show that using
predicted guilt to decide court cases is optimal for reducing judicial errors but not for optimizing
deterrence. Assume a probability space (Ω,F ,Pr) with each ω ∈ Ω being an agent. The random
variable A ∈ {0, 1} indicates whether the agent is guilty of a crime.4 Let Z ∈ Z be a random vector
of evidence. We assume that evidence might be causally affected by the choice of engaging in crime.

3According to Federal Rules of Evidence, Rule 404, “evidence of a person’s character or character trait is not
admissible to prove that on a particular occasion the person acted in accordance with the character or trait.”

4By assuming only two possible actions, we abstract away chilling effects—that the prospect of punishment might
deter socially desired actions—as considered by Kaplow2011Optimal.
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In particular, we denote potential evidence by Z1 if A is set to 1 and Z0 if A is set to 0. We only
observe Z1 if A = 1 and Z0 if A = 0, thus Z = AZ1 + (1−A)Z0. Denote by F ∈ F a random
vector of fixed characteristics. Unlike evidence, the fixed characteristics of an agent do not depend
on whether A is set to 0 or 1. We will refer to F as the agent’s type. Let X = {F,Z} ∈ X be the
combined vector of evidence and fixed characteristics. A key challenge will be that an algorithm can
not distinguish fixed characteristics from evidence when fed a vector of observational data X. A
punishment rule is a function π : X → [0, r] where r is the maximal possible punishment. For a given
punishment rule, define the conviction rule as the mapping c (X) = 1 [π (X) > 0]. We assume that
we observe the joint distribution of (A,X). By assuming this, we abstract away issues of imperfect
training data and assume that we can form the best possible prediction of A given X. In other
words, we assume

Assumption 1. We can perfectly estimate E [A | X] by machine learning.

Informally, the implicit assumption is that we have access to a large body of previous cases where
guilt was perfectly determined. We also abstract away selection issues, such as the selection of cases
into litigation. We seek to relax some of these assumptions later. Under these optimal conditions,
it is tempting to use machine learning to determine punishment. In particular, one might consider
a conviction rule that punishes if predicted guilt is above a threshold.5

Definition 1. π is a machine learning conviction rule if

E [A | X] > k ⇒ c (X) = 1

E [A | X] < k ⇒ c (X) = 0

for a constant k ∈ [0, 1].

In fact, in this ideal setting, such a machine learning conviction rule is optimal if the aim is to
reduce judicial errors. To see this, define the type I error rate—the probability of falsely punishing an
innocent—by Pr [c (X) = 1 | A = 0] and the type II error rate—the probability of falsely acquitting
a guilty—by Pr [c (X) = 0 | A = 1]. We are agnostic about the optimal trade-off between type I and
type II errors, but consider conviction rules that reduce both rates as better:

Definition 2. A conviction rule optimally reduces errors if there is no rule with lower type I and
type II error rates.

With this definition, a machine learning conviction rule is optimal. Furthermore, it is the only
optimal rule:

Proposition 1. c optimally reduces errors ⇔ c is a machine learning conviction rule.

The threshold k might depend on the preferred trade-off between type I and type II errors.
For instance, if convicting one innocent is deemed as bad as letting ten guilty go free, one can set
k = 0.91. Thus, there is an optimal machine learning conviction rule for any trade-off between type
I and type II errors.

5When E [A | X] = k, we allow for randomization.
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2.1 Optimal Deterrence

If the aim of justice is deterrence rather than reducing errors, a machine learning conviction rule
might not be optimal. To discuss deterrence, we need assumptions about the agents’ incentives.
Assume agents differ by an unobserved profit from engaging in crime, defined by the random variable
Π > 0. Let the random variable C ∈ {0, 1} indicate whether the agent is an irrational criminal—
engaging in crime no matter what the punishment is. Assume that for each type f ∈ F there is a
share ε > 0 of irrational criminals:

Assumption 2. For all f ∈ F , Pr [C = 1 | F = f ] = ε > 0 with ε→ 0.

We need some irrational agents to get a positive crime rate under the optimal punishment rule—
if all agents have A = 0, a machine learning predictor can not be trained. We assume ε → 0 to
simplify our results.6 The remaining rational agents commit crimes if the profit from crime exceeds
the increased expected cost of punishment. In particular, we assume

A =

1 if Π > E [π (F,Z1)− π (F,Z0) | F ] or C = 1

0 if Π ≤ E [π (F,Z1)− π (F,Z0) | F ] and C = 0

We implicitly assume that an agent does not know her realization of potential evidence, Z0 and
Z1. Instead, she knows the distribution of potential evidence among agents of her type F and
maximize expected utility given this belief. To obtain a simple closed form solution to optimal
punishment, we maintain the following assumption.

Assumption 3. Assume Z1, Z0 ⊥ F .

This is a strong assumption—we essentially assume all types produce the same potential evi-
dence. In reality, certain types might be more inclined to produce certain types of evidence, even
conditional on guilt. We will later discuss the consequences of relaxing this assumption. Under
these assumptions, we seek to find the punishment rule that deters crime among rational agents at
minimal social cost.7

Definition 3 (Optimal punishment.). A punishment rule π is optimal if it deters all rational agents
at minimal punishment E [π (X)].

When all rational agents are deterred from crime, minimizing E [π (X)] amounts to minimizing
the punishment of innocents. Define the strength of evidence z ∈ Z by the likelihood ration s (z) ≡
Pr[Z1=z]
Pr[Z0=z]

, the probability of producing evidence z if the agent is guilty divided by the probability of
producing z if the agent is innocent. As in Becker1968Crime, the optimal punishment rule is to
punish at a high level when the strength of evidence crosses a certain threshold:

6When ε→ 0 we do not have to worry about the utility of irrationals when designing the optimal punishment rule.
7For simplicity, we assume society wants to deter all crime. In reality, it might be optimal to allow some crime in

equilibrium, to reduce the social cost of punishment.
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Proposition 2. The unique optimal punishment rule can be written as

π (f, z) =

L (f) if s (z) ≥ B (f)

0 if s (z) < B (f)

for functions B and L.

The intuition for this result—similar to Becker’s argument—is that reserving punishment for the
strongest levels of evidence can reduce wrongful convictions while keeping incentives unchanged. The
amount of punishment L (f) can be lower than the maximal punishment r only when punishment
occurs exclusively at the strongest possible evidence (arg maxz s (z)). The thresholds B (f) might
differ according to types f . If a type f includes agents with large profits from crime Π, punishment
must happen at weaker evidence to deter all agents of this type. The optimal punishment rule thus
engages in discrimination—some agents are more likely to be punished just because of their type.
Such discrimination might not be desirable due to fairness concerns, and we might want to constrain
the punishment rule to not take into account fixed characteristics:

Definition 4. A punishment rule is non-discriminatory if π (f, z) = π (f ′, z) for all f, f ′ ∈ F and
z ∈ Z

The optimal non-discriminatory rule has the same structure as the optimal rule, except that the
threshold for punishment and the amount of punishment does not depend on f .

Proposition 3. The unique optimal non-discriminatory punishment rule is

π (f, z) =

l if s (z) ≥ k

0 if s (z) < k

for constants k ∈ [0, 1] and l.

We now consider how a punishment rule based on machine learning compares to this optimal
punishment rule.

2.2 Machine Learning and Deterrence

How does machine learning impact incentives to follow the law? To analyze this, we consider the
following punishment rule.

Definition 5. Define a machine learning punishment rule as

π (X) =

l if E [A | X] > k

0 if E [A | X] ≤ k

for constants k ∈ [0, 1] and l.
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The structure of punishing a constant amount l when predicted guilt crosses a certain threshold is
chosen to mimick the optimal punishment rule. It turns out that such a machine learning punishment
rule shares several properties with the optimal rule. In particular, an agent is punished by a machine
learning punishment rule if the strength of evidence crosses a certain threshold:

Proposition 4. An agent with Z = z and F = f is punished by a machine learning punishment
rule iff

s (z) >
1− E [A | F = f ]

E [A | F = f ]

k

1− k

Also, as in the optimal rule, the threshold depends on the type f . Unfortunately, however, the
machine learning punishment rule is not optimal. For now, we keep A fixed to look at the “short
term” effects of a machine learning punishment rule on incentives. In Section 2.3, we consider the
“long term” effects—what happens when A is allowed to endogenously respond to the punishment
rule. To see why the machine learning punishment rule creates suboptimal incentives, it is useful
to look at some examples. First, consider an “innocent type” f ∈ F consisting only of innocent
agents and irrational criminals: E [A | F = f ] = ε. For this type, the machine learning rule punishes
if s (z) > limε→0

1−ε
ε

k
1−k = ∞. Thus such innocent types are never punished, no matter how

strong the evidence is. This is optimal if the aim is to reduce errors, but has fatal consequences for
incentives: No agent of this type has incentives to stay innocent. Conversely, members of “criminal
types” consisting only of agents engaging in crime (E [A | F = f ] = 1) are always punished, no
matter how weak the evidence is. These agents also have no incentives to abstain from crime.
More generally, if E [A | F = f ] > k, agents of type f are punished even when the evidence favors
innocence (s (z) < 1). This can never be optimal: By increasing the threshold for punishing above
1 one can both improve incentives and reduce punishment. The reason that the machine learning
punishment rules fails to be optimal is that it engages in statistical discrimination against “criminal
types” and in favor of “innocent types”. Note that machine learning engages in discrimination in this
model even though there is no discrimination in the training data, contrary to the common wisdom
that algorithmic bias is caused by biased data.8

2.3 Endogenous Data

What happens if agents optimally respond to the machine learning punishment rule and the training
data is updated in real time? To study this, fix a type f . Denote the machine learning punishment
rule for type f when E [A | F = f ] = α by:

πα (z) ≡

l s (z) > 1−α
α

k
1−k

0 s (z) ≤ 1−α
α

k
1−k

For any given punishment rule πα, denote by g (α) the share not deterred among type f :

g (α) = Pr [Π > E [πα (Z1)]− E [πα (Z0)] | F = f ]

8See Rambachan2019Bias for a related point.
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In equilibrium, we need the share not deterred by πα to be exactly α. Thus

Definition 6. An equilibrium is a fixed point: g (α) = α

We are unable to solve analytically for this equilibrium. Instead, we will discuss certain patho-
logical features of equilibrium. The most striking example of how machine learning punishment rule
can go wrong is when all agents of the same type have the same profit from crime. In that case,
all agents of a given type behave in the same way. Thus, the machine learning algorithm can use
the agent’s type as a perfect predictor of crime. Agents of “criminal types” are always punished and
agents of “innocent types” are never punished. Nobody has incentives to abstain from crime. We
thus get

Proposition 5 (No deterrence when Π is observable.). Assume Π = h (F ) and a machine learning
punishment rule. Then all agents engage in crime in equilibrium.

We now consider what happens when the profit from crime can not be perfectly proxied by
observable fixed characteristics. To analyze the properties of equilibrium, it is useful to note the
following:

Proposition 6. g is u-shaped with lowest point at α = k and g (0) = g (1) = 1.

Thus incentives to abstain from crime is zero when all agents are innocent, increasing in the
share of criminals until E [A | F = f ] = k, and then decreasing again. In Figure 1, we show two
examples of g functions compatible with Proposition 6. Proposition 6 implies that there are most
three equilibria. All agents committing crime is always an equilibrium. In addition, there might
be two other equilibria with positive crime rates. There is never an equilibrium with zero crime.
Furthermore, the equilibria with the lower crime rates might be unstable. For instance, assume g is
as in Figure 1 a) and assume we start in the lowest crime equilibrium. If the crime rate increases
slightly, the machine learning rule punishment punishes at weaker evidence leading to a lower crime
rate than in equilibrium. This lower crime rate leads to a more lenient punishment rule which causes
a crime rate that is even larger than the initial deviation from equilibrium. The dynamic responses
lead towards the equilibrium where all agents commit crimes, the only stable equilibrium. A low
crime equilibrium can be stable, however, as shown in Figure 1 b). Stable equilibria can occur if the
density of indifferent agents in equilibrium is low. In other words, when agents close to indifference
differ sufficiently in their profit from crime.

3 Adapting Machine Learning Punishment

Can the machine learning punishment rule be improved? In this section, we first show that a
machine learning punishment rule trained only on evidence can mimick the optimal punishment
rule. Then, we discuss three different ways to approximate the optimal rule when evidence and fixed
characteristics is not perfectly distinguished in the data.
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Figure 1: Example equilibria

(a) An unstable equilibrium
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Note: Example of possible g functions. There are three equilibria characterized by g (α) = α. The arrows indicate
the dynamics after the crime rate deviates slightly from the low crime equilibrium value.
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3.1 Evidence-based Machine Learning Punishment

Since statistical discrimination against certain types lead to , it is tempting to use a machine learning
punishment rule that is based only on evidence. Setting issues of distinguishing evidence from fixed
characteristics aside, would such a rule be optimal? In particular, we might want to use a punishment
rule of the form

π (f, z) =

l if E [A | Z = z] > k

0 if E [A | Z = z] ≤ k

for constants k and l. This rule is, unfortunately, also not optimal and also suffer from the issues
discussed in Sections 2.2 and 2.3. In particular, there are up to three equilibria—all with a positive
crime rate—and the equilibria with low crime rates might be unstable. While the rule does not
discriminate based on f , it statistically discriminates based on the overall level of crime in society,
E [A]. It is impossible to deter all rational agents from crime since when E [A] = ε and ε → 0 no
agents are ever punished. It turns out, however, that a modification of this rule is able to mimick
the optimal non-discriminatory punishment rule.

Definition 7. Define an evidence-based machine learning punishment rule by

π (f, z) =


l if Pr[A=1|Z=z]

Pr[A=0|Z=z]

/
Pr[A=1]
Pr[A=0] > k

0 if Pr[A=1|Z=z]
Pr[A=0|Z=z]

/
Pr[A=1]
Pr[A=0] ≤ k

for constants k and l.

Instead of focusing on predicted guilt, this formula depends on the odds of being guilty given the
evidence, Pr [A = 1 | Z = z] /Pr [A = 0 | Z = z]. We normalize the odds by the ratio of criminals to
innocents in the whole population to avoid a punishment rule that depends on the population crime
rate. This rule punishes with a positive probability even when all rational agents are innocent. In

fact, one can show that Pr[A=1|Z=z]
Pr[A=0|Z=z]

/
Pr[A=1]
Pr[A=0] = s (z). Thus

Proposition 7. The optimal non-discriminatory punishment rule can be implemented by an evidence-
based machine learning punishment rule.

All parts of the evidence-based machine learning punishment rule can be estimated with machine
learning. Thus, under the maintained assumptions, if we know which pieces of information should
count as evidence, machine learning can be used to sustain optimal punishment. In reality, however,
it might be difficult to distinguish evidence from fixed characteristics.

3.2 Imperfectly Labeled Data

In reality, fixed characteristics and evidence can not easily be distinguished. While a trained human
judge might be able to disentangle evidence from fixed characteristics, a machine learning algorithm
can not. Knowing which pieces of information should count as evidence is essentially a causal
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question. Information that is causally affected by an agent’s choice of engaging in crime should be
labeled evidence and information that is not affected should be labeled fixed characteristics. Without
experimental data, an algorithm—let alone a predictive algorithm—can not succeed in this task.
Instead, in this section, we consider the use of machine learning algorithms to determine punishment
when parts of the data are labeled as fixed characteristics or evidence. Human annotators can easily
label some pieces of information as fixed characteristics—e.g., race, neighborhood of residence, and
education level of the defendant. Similarly, some pieces information might be manually labeled as
evidence by experienced judges. Thus, assume the data is given by the vector

X = {X1, . . . , Xn}

and that each entry in X is either labeled as evidence, labeled as a fixed characteristic, or unlabeled.
With this data, we consider three approaches. First, we consider using only data known to be
evidence when training the machine learning model. Second, we consider training the algorithm on
all data except what is known to be fixed characteristics. Finally, we consider using all data for
prediction and debias ex post using the known fixed characteristics.

Training algorithm on data known to be evidence

Let W be the vector of data known to be evidence. Since the entries in W is a subset of all pieces
of evidence in Z, there is a function h such that W = h (Z). Using W instead of Z leads to optimal
punishment if W contains all the relevant pieces of evidence:

Proposition 8. The optimal punishment rule with no discrimination can be written as

π (w) =


l if Pr[A=1|W=w]

Pr[A=0|W=w]

/
Pr[A=1]
Pr[A=0] > k

0 if Pr[A=1|W=w]
Pr[A=0|W=w]

/
Pr[A=1]
Pr[A=0] ≤ k

if h (z) = h (z′)⇒s (z) = s (z′).

In reality, however, it is highly unlikely that all the relevant evidence is labeled as evidence in
the training data. In this case, deterrence may be suboptimal. An alternative route that does not
throw out as much data is to just exclude data known to be fixed characteristics.

Training algorithm on all data except known fixed characteristics

Instead of training a machine learning algorithm only on data known to be evidence one can train
it on all data known to be not fixed characteristics. For instance, one might leave out obvious fixed
characteristics such as skin color from the training data. This is unlikely to work well, however,
since machine learning algorithms are generally able to reconstruct such excluded characteristics.
For instance, neighborhood might be a good proxy for skin color. A better approach—similar to
Kleinberg et al. (2018a)—is to use the fixed characteristics to debias the machine learning predictions
ex post.
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Training algorithm on all data and debias ex post

Let G be the vector of data known to be fixed characteristics. If, after controlling for G, other fixed
characteristics are unrelated to the profit of crime, optimal non-discriminatory punishment can be
acheived by the following rule:

Proposition 9. If Π ⊥ F | G, the optimal punishment rule with no discrimination can be written
as

π (x, g) =


l if Pr[A=1|X=x]

Pr[A=0|X=x]

/
Pr[A=1|G=g]
Pr[A=0|G=g] > k

0 if Pr[A=1|X=x]
Pr[A=0|X=x]

/
Pr[A=1|G=g]
Pr[A=0|G=g] ≤ k

for constants 0 < k < 1 and l.

Here, we first calculate the odds of being guilty given all the data, including fixed characteristics.
Then, we debias by dividing by the share of criminals to innocents among individuals of the same
fixed characteristics g. With this approach, it is not necessary to control for all fixed characteristics.
We do not even have to control for all predictors of Π—once you control for some predictors you
implicitly control for all other perfectly correlated predictors. Thus, we do not have to worry about
other fixed characteristics being able to reconstruct skin color once we have controlled for skin color.
Since Π is unobserved, however, the assumption Π ⊥ F | G can not be directly assessed. This
method must thus be applied with caution.

4 Machine learning guiding judicial decisions and settlements

So far, we have considered deciding court cases based purely on machine learning. Such a direct
usage of machine learning is unrealistic. This section considers how our conclusions generalize to
more realistic use cases. In particular, we discuss judges using machine learning algorithms to guide
decisions and lawyers using machine predictions to inform settlement decisions.

4.1 Machine learning guiding judicial decisions

How would our conclusions be modified if machine learning predictors only guide judicial decisions?
In some court cases, the judge might costlessly determine the correct outcome without the assistance
of an algorithm. In such cases, the presence of a machine prediction will not influence judicial
decisions. However, it is likely that in many cases, the judge will at least partly rely on machine
predictions to save time and effort and perhaps reduce errors. The issues discussed in Section 2
likely arise if machine predictions influence judicial decisions. Exactly how these issues manifest
themselves depends on how the judge combines the machine predictions with external information.
For instance, if the judge knows the crime rate among similar defendants, she might informally
engage in the debiasing exercise proposed in Section 3.2. The effect of machine predictions on
deterrence depends on the judge’s objective function. If the judge aims to provide incentives to
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abide by the law, she might decide to let machine predictions influence her only when she believes it
improves deterrence.9 If, instead, the judge aims to avoid reversals of her decisions, the presence of
a machine learning algorithm can do more harm. In ongoing work, we formalize how judges might
rationally incorporate machine predictions under various assumptions and consider its consequences
for incentives to abide by the law.

4.2 Machine learning guiding settlement decisions

Here, we consider a civil case with a plaintiff (he) and a defendant (she). Assume a judge perfectly
determines guilt if the case goes to trial.10 Moreover, assume the parties have access to a machine
learning algorithm that predicts the judge’s decision perfectly given the data, X.11 In other words,
they can learn E [A | X], the predicted probability that the judge decides in favor of the plaintiff
given X. Assume the parties base their settlements decision on this prediction only.12 Denote the
fixed cost of going to trial by c > 0, payed by the loser of the trial. We assume the defendant
pays the plaintiff a fine k if found guilty. The parties can decide to settle instead of going to trial.
Denote the settlement payment by the random variable V . The expected value of going to trial is
− (c+ k) E [A | X] for the defendant and kE [A | X] − c (1− E [A | X]) for the plaintiff. Since we
have assumed symmetric information, the parties can rationally agree on a range of settlements
values. Assume the parties engage in Nash bargaining. In particular, the surplus from settling the
case, c, is split evenly. The settlement value is then

V = (c+ k) E [A | X]− c

2

Now, consider the ex ante incentives for the defendant to abide by the law. Assume the plaintiff
can credibly threaten to go to court no matter the defendant’s guilt. Let V1 be the settlement value
if A is set to 1 and V0 the settlement value if A is set to 0. Then, the defendant will abide by the
law if and only if

Π < E [V1 − V0] = (c+ k) (E [A | F,Z1]− E [A | F,Z0])

Similar to when predicted guilt is used to decide court cases, defendants of types f ∈ F where
E [A | F = f ] is either large or small have reduced incentives to abide by the law. For instance, if
E [A | F = f ] = 1 defendants of type f settle cases at the same value independent of guilt and thus
have no incentives to abide by the law. Also, as in Section 2.3, once we take into account that
the machine learning algorithm can be updated with new data, there are no equilibria with full
compliance with the law and the equilibria where some abide by the law might be unstable. Thus,
basing settlements decisions on machine learning predictions can lead to the same problems as when
machine learning is used to guide judicial decisions.

9However, if basing decisions on machine predictions saves effort, she might still accept lower deterrence.
10In other words, we assume that the judge will have access to additional evidence upon trial that allows perfect

determination of guilt.
11For simplicity, we assume both parties have access to the same data.
12This strategy is not necessarily optimal if the parties have access to additional information. For instance, the

defendant can exploit that she knows whether she is guilty. In ongoing work, we consider this case.
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5 Planned Empirical Application

We collaborate with a Brazilian legal intelligence firm to predict outcomes of labor-related lawsuits to
assess the properties of machine-learning-based decision rules. The firm accesses 14 million lawsuits,
including all legal briefs filed before the final decision. This setting is ideal for AI-guided legal
decisions. In particular, a large data set with relatively similar cases allows for precise predictions.
Also, anecdotally, Brazilian firms demand AI-powered predictions to guide settlement decisions.
We will merge the legal data with rich data on fixed characteristics of the firm and the plaintiff
using matched employer-employee data for the entire Brazilian formal sector (Relação Anual de
Informações Sociais). Important fixed characteristics include race, gender, the plaintiff’s employment
history, and the firm’s size and sector. We plan to train machine learning predictors of case outcomes
using (i) all data, (ii) only data identified by lawyers as relevant evidence, (iii) all data excluding
known fixed characteristics, and (iv) only fixed characteristics. The latter will be used to debias
predictions based on all data. To assess decision rules, we rely on the ratio between type I and
type II errors, proxied by prediction errors in a hold-out sample. This ratio should not depend on
fixed characteristics under the optimal non-discriminatory punishment rule. A decision rule based
on predicted guilt, however, allows more type II errors for firms with a high ex ante likelihood of
being guilty than for other firms. Such statistical discrimination is optimal for reducing the overall
error rate but is detrimental to deterrence. The relationship between the type I to type II error
ratio and guilt predicted by fixed characteristics is thus informative about deterrence. Using this
approach, we can assess the severity of statistical discrimination under a punishment rule based on
predicted guilt and how our proposed solutions lower such discrimination.

Proposition 10. Under a machine learning punishment rule, the type I (type II) error rate among
agents of type f is increasing (decreasing) in E [A | F = f ].

5.1 Application

We selected the following sample:

• A random sample of 44,000 cases + drop firms with less than 10 cases in total

• We keep only cases that are decided by the judge (removing settled cases, pending cases, and
cases where the plaintiff abandons the case)

• We use as fixed characteristics the sector of the firm, the number of past cases involving the
firm (including pending and settled cases), the share of past cases that are settled/pending or
decided, the share of decided cases where the judge has decided with the plaintiff,

• We consider the last three years and the last year

– For firms that are censored, last three years is all the way back
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6 Conclusions

Basing legal decisions on predicted guilt can be optimal for reducing errors but can lower incentives
to abide by the law. We have disccussed several ways to modify machine learning models to improve
deterrence. None of these solutions are perfect, however, and whether they work depends on strong
untestable assumptions. We thus believe that any usage of machine learning to guide legal decisions
should be accompanied by interpretable representations of the evidence identified by the system.
These representations might be used to draw the attention of the lawyer or judge to potentially
important aspects of the case and to manually verify whether the system indeed identifies relevant
pieces of evidence. Methods for interpretable machine learning (Molnar 2020) can be used to achieve
this goal. In this paper, we have considered an ideal setting for machine learning: an infinite training
sample with no selection issues and perfectly observed guilt. In future work, it will be important
to assess additional issues that might arise from relaxing these conditions. Also, we have assumed
that data can be perfectly classified as either evidence or fixed characteristics. In reality, certain
data might have both properties—i.e., some individuals might have a higher propensity to produce
a specific piece of evidence even conditional on guilt. How to deal with this case is an important
question for future work. X
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A Proofs

Proof. (Proposition 1). Define c (X) ≡ 1 [π (X) > 0]. Denote type I and type II errors of punishment
rule π by

e1 (π) = Pr [π (X) > 0 | A = 0]

e2 (π) = Pr [π (X) = 0 | A = 1]

Assume π satisfies
π (X) > 0⇔ E (A | X) > k

and π′ is a punishment rule that has lower type I and type II error. Denote by B the event that π
incarcerates but not π′.

B ≡ (π′ (X) = 0, π (X) > 0)

Similarly, define
C = (π (X) = 0, π′ (X) > 0)

Then must have
e1 (π′) < e1 (π)⇔ Pr [A = 0, C] < Pr [A = 0, B]

e2 (π′) < e2 (π)⇔ Pr [A = 1, B] < Pr [A = 1, C]

Since π (X) > 0⇔ E (A | X) > k, we have

Pr [A = 1 | B] > Pr [A = 1 | C]

⇔ Pr [A = 1, B]

Pr [B]
>

Pr [A = 1, C]

Pr [C]

Together with Pr [A = 1, B] < Pr [A = 1, C], this implies Pr [C] > Pr [B]. But Pr [A = 0 | B] <

Pr [A = 0 | C] and Pr [A = 0, C] < Pr [A = 0, B] imply Pr [C] < Pr [B], a contradiction. To show
that no other punishment rule optimally reduces errors, assume a punishment rule π does not
satisfy π (X) > 0 ⇔ E (A | X) > k. Then there exist values x1 ∈ X and x2 ∈ X such that
E [A | X = x1] > E [A | X = x2], π (x1) = 0, and π (x2) > 0. Assume Pr [X = x2] < Pr [X = x1].13

Consider a modified punishment rule

π̃ (x) =


π (x) x /∈ {x1, x2}

π (x1) x = x2R+ x1 (1−R)

π (x2) x = x1

13The case Pr [X = x1] < Pr [X = x2] is analog.
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where R is a random variable with Pr [R = 1] = Pr[X=x2]
Pr[X=x1]

. We have

e1 (π)− e1 (π̃) = Pr [X = x2 | A = 0]− Pr [X = x1 | A = 0]

=
Pr [A = 0 | X = x2]

Pr [A = 0]
Pr [X = x2] Pr [R = 1]− Pr [A = 0 | X = x1]

Pr [A = 0]
Pr [X = x1]

= (Pr [A = 0 | X = x2]− Pr [A = 0 | X = x1])
Pr [X = x1]

Pr [A = 0]

= (E [A | X = x1]− E [A | X = x2])
Pr [X = x1]

Pr [A = 0]
> 0

Similarly
e2 (π)− e2 (π̃) > 0

Proof. (Proposition 2). Fix an f ∈ F and consider the optimal punishment rule for this type. We
need to show that the optimal punishment rule is of the form

π∗ (z) =

l if s (z) ≥ b

0 if s (z) < b

for constants b and l. Assume π is an optimal punishment rule and is not of the above form. Then
there exists z1 ∈ Z and z2 ∈ Z such that π (z1) < K̄, π (z2) > 0 and s (z1) > s (z2). Consider the
punishment rule

π̃ (z) =


π (z) z /∈ {z1, z2}

π (z) + δ z = z1

π (z)− δPr[Z1=z1]−Pr[Z0=z1]
Pr[Z1=z2]−Pr[Z0=z2]

z = z2

where 0 < δ < K̄ − π (x). It is straight forward to verify that

E [π̃ (Z1)− π̃ (Z0)] = E [π (Z1)− π (Z0)]

Thus π̃ also deters all rational agents. Under Assumption 2, the cost of punishment equals

lim
ε→0

E [π (Z)] = E [π (Z0)]

lim
ε→0

E [π̃ (Z)] = E [π̃ (Z0)]

Since E [π̃ (Z0)] < E [π (Z0)], π̃ deters at a lower cost.

Proof. (Proposition 3). Under a non-discriminatory punishment rule, we must ignore F . Thus the
optimal non-discriminatory punishment rule is the optimal punishment rule when F = {1}—when
all agents are of the same type. The result then follows from Proposition 2.
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Proof. (Proposition 4). Consider an agent with Z = z and F = f . The agent is punished if and
only if

E [A | F = f, Z = z] > k

We have
Pr [A = 1, F = f, Z = z]

= Pr [Z = z | A = 1, F = f ] Pr [A = 1, F = f ]

= Pr [Z1 = z] E [A | F = f ] Pr [F = f ]

Similarly
Pr [A = 0, F = f, Z = z] = Pr [Z0 = z] (1− E [A | F = f ]) Pr [F = f ]

This gives

E [A | F = f, Z = z] =
Pr [A = 1, F = f, Z = z]

Pr [F = f, Z = z]

=
Pr [Z1 = z] E [A | F = f ]

Pr [Z1 = z] E [A | F = f ] + Pr [Z0 = z] (1− E [A | F = f ])

=
s (z) E [A | F = f ]

s (z) E [A | F = f ] + (1− E [A | F = f ])

Thus, this agent is punished if and only if

s (z) E [A | F = f ]

s (z) E [A | F = f ] + (1− E [A | F = f ])
> k

⇔ s (z) >
1− E (A | F = f)

E (A | F = f)

k

1− k

Proof. (Proposition 5). Fix a type f ∈ F . When Π = h (F ), all agents of type f face the same
incentives. Thus either all choose A = 1 or all choose A = 0. If all choose A = 1 then, by Proposition
4, a machine learning punishment rule punishes for all z ∈ Z. If the punishment rule punishes for
all z ∈ Z, it is optimal for agents to choose A = 1. Thus, this is a possible equilibrium. If all agents
of type f choose A = 0, the machine learning punishment rule does not punish for any z ∈ Z. Then
it is optimal for all agents to choose A = 1. Thus, the only possible equilibrium is for all agents to
engage in crime (choose A = 1).

Proof. (Proposition 6). The derivative of g has the opposite sign of the derivative of

h (α) ≡ E [πα (Z1)]− E [πα (Z0)] = l

(
Pr

[
s (Z1) >

1− α
α

k

1− k

]
− Pr

[
s (Z0) >

1− α
α

k

1− k

])
with respect to α. Since 1−α

α
k

1−k is decreasing in α and

a > 1⇒ Pr [s (Z1) = a] ≥ Pr [s (Z0) = a]
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a < 1⇒ Pr [s (Z1) = a] ≤ Pr [s (Z0) = a]

we get (using 1−α
α

k
1−k > 1⇔ α < k)

α < k ⇒ h′ (α) > 0

α > k ⇒ h′ (α) < 0

Thus g is u-shaped with lowest point at α = k. Finally, since h (0) = h (1) = 0 and Π > 0, we get
g (0) = g (1) = 1.

Proof. (Proposition 7). Using Bayes’ rule

Pr (A = 1 | Z = z)

Pr (A = 0 | Z = z)

Pr (A = 0)

Pr (A = 1)

=
Pr (Z = z | A = 1)

Pr (Z = z | A = 0)
=

Pr (Z1 = z)

Pr (Z0 = z)
= s (z)

Proof. (Proposition 8). We have that

Pr (A = 1 |W = w)

Pr (A = 0 |W = w)

Pr (A = 0)

Pr (A = 1)

=
Pr (W = w | A = 1)

Pr (W = w | A = 0)
=

Pr [h (Z1) = w]

Pr [h (Z0) = w]

=

∑
h(z)=w Pr [Z1 = z]∑
h(z)=w Pr [Z0 = z]

=

∑
h(z)=w s (z) Pr [Z0 = z]∑
h(z)=w Pr [Z0 = z]

Assume h (z) = h (z′)⇒s (z) = s (z′) and define sw as the common strength of evidence s (z) for all
z with h (z) = w. Then

Pr (A = 1 |W = w)

Pr (A = 0 |W = w)

Pr (A = 0)

Pr (A = 1)
= sw

Thus, the proposed punishment rule can be written as

π (w) =

l if sw ≥ k

0 if sw < k

This is clearly equivalent to the optimal non-discriminatory punishment rule.
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Proof. (Proposition 9). The optimal non-discriminatory punishment rule can be written as

π (f, z) =

l if s (z) ≥ k

0 if s (z) < k

Assume Π ⊥ F | G. For x = (f, z) we then have

s (z) =
Pr (A = 1 | X = x)

Pr (A = 0 | X = x)

Pr (A = 0 | F = f)

Pr (A = 1 | F = f)

Proof. (Proposition 10). Under a machine learning punishment rule the agent is punished iff

s (z) >
1− E [A | F = f ]

E [A | F = f ]

k

1− k
≡ αf

The type I error rate thus equals Pr [s (Z) > αf | A = 0] = Pr [s (Z0) > αf ]. The result follows
since αf is decreasing in E [A | F = f ]. Similarly, the type II error rate Pr [s (Z) ≤ αf | A = 1] =

Pr [s (Z1) ≤ αf ] is decreasing in E [A | F = f ].

A.1 Endogenous Filing of Cases

In our main analysis, we have implictly assumed that the algorithm has access to evidence and
whether the agent was guilty for a large number of randomly drawn agents (Assumption 1). In real
applications of ML in courts, algorithms can be trained only on cases that are brought to court, a
very selected sample of all potential “cases” (Priest1984Selection). In this section, we discuss how
our conclusions might change once we take into account that not all potential cases are brought to
trial. How our conclusions change depends on how we model the selection of cases into litigation.

In the most general case, let D indicate whether a court case is filed against the agent and in
place of Assumption 1, assume

Assumption 4. We can perfectly estimate E [A | X,D = 1] by machine learning.

Consider the following modified machine learning conviction rule

Definition 8. π is a selected sample machine learning conviction rule if

E [A | X,D = 1] > k ⇒ c (X) = 1

E [A | X,D = 1] < k ⇒ c (X) = 0

for a constant k ∈ [0, 1].

We still have that a machine learning conviction rule is optimal to reduce errors (REDEFINE
ERRORS ONLY WITHIN SAMPLE):
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Proposition 11. c optimally reduces errors ⇔ c is a selected sample machine learning conviction
rule.

For deterrence, assume

A =

1 if Π > E [D [π (F,Z1)− π (F,Z0)] | F ] or C = 1

0 if Π ≤ E [D [π (F,Z1)− π (F,Z0)] | F ] and C = 0

Definition 9 (Optimal punishment.). A punishment rule π is optimal if it deters all rational agents
at minimal punishment E [Dπ (X)].

(Discussing alternative of having fixed cost per court case + linearity in footnote). When all
rational agents are deterred from crime, minimizing E [Dπ (X)] amounts to minimizing the punish-
ment of innocents. Define the strength of evidence z ∈ Z by the likelihood ration s (z) ≡ Pr[Z1=z]

Pr[Z0=z]
,

the probability of producing evidence z if the agent is guilty divided by the probability of producing
z if the agent is innocent. As in Becker1968Crime, the optimal punishment rule is to punish at a
high level when the strength of evidence crosses a certain threshold:

Proposition 12. The unique optimal punishment rule can be written as

π (f, z) =

L (f) if s (z) ≥ B (f)

0 if s (z) < B (f)

for functions B and L.

The intuition for this result—similar to Becker’s argument—is that reserving punishment for the
strongest levels of evidence can reduce wrongful convictions while keeping incentives unchanged.

oes machine learning impact incentives to follow the law? To analyze this, we consider the
following punishment rule.

Definition 10. Define a machine learning punishment rule as

π (X) =

l if E [A | X] > k

0 if E [A | X] ≤ k

for constants k ∈ [0, 1] and l.

The structure of punishing a constant amount l when predicted guilt crosses a certain threshold is
chosen to mimick the optimal punishment rule. It turns out that such a machine learning punishment
rule shares several properties with the optimal rule. In particular, an agent is punished by a machine
learning punishment rule if the strength of evidence crosses a certain threshold:

Proposition 13. An agent with Z = z and F = f is punished by a machine learning punishment
rule iff

s (z) >
1− E [A | F = f ]

E [A | F = f ]

k

1− k
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Also, as in the optimal rule, the threshold depends on the type f . Unfortunately, however, the
machine learning punishment rule is not optimal. For now, we keep A fixed to look at the “short
term” effects of a machine learning punishment rule on incentives.

A court case is brought against an agent A = a and X = x with probability γ (a, x) and assume
the algorithm . One important special case is selection on observables—when γ only depends on the
observable information X and not on whether the agent in fact is guilty: γ (x) ≡ γ (1, x) = γ (0, x).
Informally, selection on observables assumes that potential plaintiffs who decide on whether to file
a lawsuit do not have access to more evidence than what the algorithm receives. This is a natural
benchmark, but could be violated if for some reason the evidence the plaintiff sits on can not be
reliably conveyed to the court.14 We then have the following results

Proposition 14. XXX

• Proposition X applies

• XXX Proposition X-X still holds under selection on observables and non-zero litigation prob-
ability.

As long as the
To build intuition, assume that there is a probability first consider the case
In this Section, we discuss complications that arise when (past) cases

14For instance, the evidence might be hearsay.
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