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ABSTRACT 
In this project, we conduct a comparison of various approaches to 
the extraction of legal entities from the judgment text. We apply 
various State-of-the-art (SOTA) models to extract (i) legal 
summary (ii) Primary Holding (iii) Facts of the case (iv) 
Important Question being answered (v) Conclusion of the case 
from the case. The analyses were carried out on the US Supreme 
Court judgments. We applied various natural language processing 
(NLP) techniques such as abstractive summarization 
methodologies combined with a custom pipeline for finetuning the 
models. We use ROUGE metrics and qualitative assessments to 
evaluate the performance of the model. We have successfully 
created a pipeline that uses SOTA models (i.e. BART) that shows 
a score of 0.3 for the baseline and 0.47 for the fine-tuned model. 
Overall, our experiments have shown that using larger models and 
text extraction methods did not improve the performance of the 
model but rather fine-tuning existing architectures with custom-
pipeline can yield better results. This research facilitates the 
creation of websites like Justia and Oyez to extract important 
details of district and circuit cases without much human effort. 

CCS CONCEPTS 
• Computing methodologies → Information extraction 
• Computing methodologies → Natual Language Processing 

KEYWORDS 
Case Holding, Deep Learning, Natural Language Processing, 
Summarization, Entity and Information Extraction 

1 Introduction 

Legal summarization refers to the process of condensing complex 
legal documents into concise and understandable summaries, 
making it easier for lawyers, legal experts, and the general public 
to understand and navigate the law. Building a website like Oyez 
[1] and Justia [2] involves creating a platform that provides access 
to legal information and resources, such as court cases, legal 
codes, and articles, in a user-friendly manner. These types of 
websites serve as a valuable tool for anyone looking to research 
and understand the law, and they also provide a comprehensive 
resource for legal professionals looking to stay up-to-date on the 
latest legal developments. With the increasing importance of 
technology in the legal industry, a website that provides 

comprehensive and easy-to-use legal information and resources is 
a valuable resource for anyone involved in the legal field. 
However, extracting key legal entities such as primary holding, 
key questions etc. from case judgment can be a complex and 
challenging task. It requires a deep understanding of the legal 
system, laws, and regulations and finally the ability to collect, 
categorize, and present information in a clear and accessible 
manner. 
 
Over the past few decades, there has been growing interest in 
developing automated methods for information retrieval and legal 
summarization to aid lawyers, legal researchers, and other 
professionals in the field. The advent of Deep Learning and 
technological capabilities has facilitated extensive research for its 
potential applications in legal summarization in recent years. 
Galgani et al. (2012) [3] developed a rule-based approach to 
summarization that uses a knowledge base, statistical information, 
and other handcrafted features like POS tags, specific legal terms, 
and citations. Case Summarizer (Polsley et al., 2016) [4], an 
automated text summarization tool, uses word frequency 
augmented with additional domain-specific knowledge to score 
the sentences in the case document. Recently Abhisek et. 
al.(2022)[5] proposed a multi-task learning framework for 
extractive summarization that combines sentence classification 
and information extraction.  In the growing body of literature, this 
study focuses on identifying the optimal model architecture for 
summarization and information extraction from US Legal 
judgment text.  
 

2    Dataset 

The primary source of the data was from Justia and Oyez.  Justia 
is a platform that provides access to legal information and 
resources, including U.S. Supreme Court decisions, federal and 
state laws, and legal articles written by lawyers and legal 
professionals. The website offers a wide range of information, 
including summaries of court cases, legal opinions, and laws, as 
well as links to legal organizations, lawyers, and other relevant 
resources. Similarly, Oyez is a free, non-profit, multimedia law 
library. It aims to be a complete and authoritative source of 
information about the Supreme Court of the United States. Oyez 
offers a vast collection of information about the Court, including 
audio recordings of oral arguments and opinions, biographies of 



 

the Justices, a timeline of the Court's history, and summaries of 
major cases. 
 
Justia contains the legal experts annotated “Primary Holding” and 
“Summary” and Oyez contains “Facts, Question and Conclusion” 
of U.S. Supreme Court Cases.  We scrape the data from these 
websites. Overall, our dataset contains 8,236 case opinion texts. 
The cases in concern date back from 1966 to 2021 where each 
row of the dataset has information about each of the cases 
including the name, the docket number, the term (or year), and a 
short description of the case.  
 
As a part of data processing, we inspect our dataset for any 
anomalies. We first remove HTML tags from the documents to 
extract clean tokens. Then, we look at the length of the input 
documents and the length of each task. We generate a distribution 
of the length of tokens for each task to identify any outliers, such 
as unusually short or long tokens. For example, we find two cases 
with token length 2 that contained the phrases “Currently 
available" and “Currently unknown". These rows are interpreted 
as having no useful information, so we drop them from the 
dataset. Additionally, we remove any rows that are null from the 
training set prior to fine-tuning our model for each task. 
 
For each task, there are varying proportions of null values in our 
training set and the rows containing nulls are all dropped from our 
dataset prior to fine-tuning our model for each task. After removal 
of null or insufficient cases, we are left with the following 
numbers of document-summary pairs. 
 

Task 
Number of  
Data Points 

Justia Summary 1278 
Justia Holding 781 

Facts of the 
Case 3357 

Questions 3356 
Conclusion 3356 

        Table 1: Description of Data 
 
The input document of our model has token length 95 to 158,087 
and the average token length is 14,594. The main challenge of our 
project is to design a model that can handle the varying input 
document lengths and generate a unique output for each task by 
identifying relevant information. A table showing the mean, 
minimum, and maximum length of the outputs is shown in Table 
2. 
 

3    Literature Survey 

In general, text summarizations can be divided into two main 
types: extractive summarization and abstractive summarization. 
Extractive summarization is a method of creating a summary by 
selecting a few key sentences or phrases from the original text and 
using them to form the summary. As a result, the sentences or 
phrases in an extractive summary are all taken directly from the 
original text. One well-known algorithm for extractive 
summarization is TextRank (Mihalcea and Tarau [6]). TextRank 

is a technique for summarizing documents by modifying Google’s 
PageRank algorithm. 

 
                Table 2: Summary of the Data 

PageRank represents documents as a graph structure and 
continuously updates the importance of the nodes to generate 
rankings. However, a disadvantage of this approach is that the 
model’s language generation ability is limited because it can only 
use existing sentences and phrases. 

To improve on this, abstractive summarization is a method of 
summarizing the original text by generating new sentences or 
phrases that reflect the main context of the original text, even if 
they were not present in the original text. Abstractive 
summarization is like a human summarizing a text, where they 
can use their own words and sentences to convey the main points 
of the original text. Abstractive summarization algorithms often 
rely on seq2seq models, and different algorithms can be used in 
combination to produce the most accurate summaries. For 
example, Seq2seq models with attention mechanisms (Chopra et 
al. [7]) and pointer-generator methods (See et al. [8]) allow the 
model to focus on specific parts of the input text, enabling it to 
generate summaries that accurately reflect the content of the 
original text. 

Extractive summarization and abstractive summarization can be 
performed in more advanced ways using transformer based 
architectures like BERT (Devlin et al. [9]), GPT-2(Radford et al. 
[10]), BART (Lewis et al. [11]), or T5 (Raffel et al. [12]), 
respectively. BERT can be used for extractive summarization by 
identifying important sentences in the original document, and 
GPT-2, BART, or T5 can be used for abstractive summarization 
by generating a summary of the document in a new, coherent 
form. Models like Longformer (Beltagy et al., 2020) [13] 
introduce transformer architectures with more efficient attention 
mechanisms that enables them to summarize long documents (up 
to 16 × 1024 input tokens). Bajaj et al. (2021)[14] developed a 
two-step extractive-abstractive approach for long document 
summarization – they use a pre-trained BART model over 
compressed documents generated by identifying salient sentences.  

Although these methods have shown good performance on 
summarization datasets that contain small documents, they may 



 

not be as effective on longer documents or in low-resource 
environments (Bajaj et al. [14]). 

Several domain-specific models and approaches have been 
specifically designed for summarizing legal case documents. 
Khan et.al. (2017) [15] proposed a method for extractive 
summarization of legal decisions based on multi-task learning and 
maximal marginal relevance. Galgani et al.(2015) [16]  presented 
a summarization method that leverages bi-directional citation 
analysis to identify the most relevant documents for a given 
summary task. The proposed method combines information from 
both backward and forward citations to evaluate the importance of 
individual documents in a corpus. Anand and Wagh (2019) [17] 
used recurrent neural networks (RNNs) and long-short-term 
memory (LSTM) networks for the summarization of legal texts. 

4     Methodology 
 
In this project, our primary task was to build a model that 
automates the case summarization process and extracts relevant 
information from extremely long legal documents. Using the 
Supreme Court’s public case opinion texts as input, our model is 
expected to identify Holdings, Facts, Questions, and Conclusions 
as a part of information extraction and produce the summary of 
the case text. The below table shows a sample case from the 
actual case opinions  
 

 
1) Summary: Summarization of the entire case opinion. 
2) Holding: Court’s decision of the case. 
3) Facts of the case: Detail information of the event that are 
legally relevant to the court’s decision including history of the 
dispute, legal claims, and defenses. 
4) Question: Statement of the question of law that the court must 
answer to make a decision. 
5) Conclusion: Decision made by a judge regarding a question of 
law.  
 
We experiment with two different approaches. 
 
Approach 1 - Building a pipeline that uses current SOTA 
transformer model, BART.  
 
We first create a pipeline that takes case opinion text as input and 
outputs a distinctive outcome for each of the five tasks. We use 

several SOTA transformer models that are well-known for their 
performance on summarization tasks. Specifically, we experiment 
with BART, T5, and PEGASUS. For evaluating the performance 
of our models, we use the Rouge-L score as a metric for 
comparison. Rouge-L is based on the longest common 
subsequence (LCS) shared between the model output and the 
reference. A longer shared sequence indicates a higher level of 
similarity between the two sequences. We use an 80-20 split on 
our dataset and experiment with 10 different random seeds for 
each model to assess the robustness of the model by checking for 
consistency in the Rouge-L score. 
 
Baseline Rouge-L scores of our models are used as our starting 
point and we apply different methods found in other related works 
in order to track any improvements made to our models. In other 
words, using Rouge-L as our metric, we experiment with various 
methods to see if they help us achieve higher scores for any of our 
tasks.  
 
Approach 2 - Using a transformer model (LED) that handles 
longer documents 
 
The main summarization task models that we mentioned under 
Step 1 have a limitation on maximum input token lengths. For 
example, Bart can only take in as its input maximum of 1,024 
tokens and truncates the rest of the documents. This means that 
our model only looks at only 1/10 of the entire document length 
and generate a summary from only the beginning of the 
document. Therefore, we applied an LED (Longformer-Encoder-
Decoder, Beltagy et al. [3]), which is designed for longer 
documents, with the capacity to handle at most 16,384 tokens.  

Experimental Setup  
 
The below diagram shows the pictorial representation of the 
experimentation design. 

 
  Figure 1: Experimental Design 
 
First, we split the train and test set with an 8:2 ratio using a 
random seed of 0. Then, we define the maximum input token 
length based on the maximum input length of the model. 
However, for the LED model, we change the input token length 
from 1,024 to 16,384 to compare the performance of LED with 
the other models when the input token length is set to the same 
value. The output length is fixed to 512, as the longest token 
length in the output is less than 512. We use a batch size of 8, a 
learning rate of 5e-05, a weight decay of 0.02, and 10 epochs as 
our default hyperparameters setting. We also set an early stopping 
point based on the Rouge-L score. We encode the input and 
output, train the model, and generate predictions for the summary 
on the test set. We decode the prediction and evaluate the result 



 

based on the Rouge-L score. We expand this architecture to 5 
different tasks.  
 
Models/architectures  
 
We apply various encoder-decoder transformer architectures. As a 
baseline approach, we use T5, BART, and PEGASUS pre-trained 
models, as those are widely used for summarization tasks. 
Additionally, we apply the LED model as it is capable of handling 
at most 16,384 input tokens. We use LED model by changing its 
maximum input tokens from 1,024 to 16,384 and comparing the 
performance of the models.  
 

5 Model Results and interpretation 

The table below shows the Rouge-L scores from different 
experiments  

 

 We trained each task by using T5 (small, base, large), BART 
(base, large, large-CNN), and PEGASUS (xsum, large) models. 
The performance of each model varied depending on the task. No 
single model was able to excel at all tasks, and for each task, the 
model that performed best was different. For “Summary", 
PEGASUS-large performed the best showing Rouge-L of 0.4753. 
For “Holding", BART-base performed the best showing Rouge-L 
of 0.2972. For “Facts", BART-large-CNN performed the best 
showing Rouge-L of 0.3054. For “Question", PEGASUS-xsum 
performed the best showing Rouge-L of 0.3061. For “Conclusion", 
BART-large performed the best showing Rouge-L of 0.2895. 
Overall, our experiment shows that the general performance of 
these models in all tasks is approximately Rogue-L of 0.3. 

We extended our experiments to larger models that can have more 
maximum token length than the baseline models. LED is capable 
of at most 16,384 input tokens, and we experimented with 
different sizes of inputs from 1,024 tokens to 16,384 tokens. 
Unfortunately, LED models showed similar or lower Rouge-L 
scores compared to the baseline results. 

Example Outputs  

Example 1 : Roe v. Wade  (1973) 

Roe v. Wade is a landmark case in the United States, decided by 
the Supreme Court on January 22, 1973. The case involved a 
Texas law that made it a crime to perform an abortion except on 
medical advice to save the life of the mother. Below is the 
outcome from the best models.  

 

Example 2: Moose Lodge No. 107 v. Irvis (1972) 

Moose Lodge No. 107 v. Irvis was a United States Supreme Court 
case that was decided in 1972. The case involved a black man 
named Thomas Irvis who was denied access to a private club, 
Moose Lodge No. 107, in Pennsylvania because of his race. 

 

Summaries were not shown due to its length. In the above 
examples we can clearly see how well the model is able to 
predict/retrieve the relevant information from the case text.  

6    Conclusion 

In conclusion, the research on legal summarization and 
information retrieval has demonstrated the effectiveness of deep 
learning models, specifically the BART and Pegasus model, in 
generating quality output for different tasks from legal texts. The 
results highlight the potential of deep learning models in 
improving the efficiency and accuracy of legal research and 
information retrieval. The findings of this research can be 
leveraged to improve the functionality and usability of websites 
like Justia for district and circuit courts, providing a more 
accessible and efficient platform for legal information retrieval. 



 

The development of such websites is crucial for the general public, 
legal practitioners, and researchers to stay updated on the latest 
legal developments and decisions. 
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