
Automated Legal Information Retrieval and Summarization
Kannan Venkataramanan

DIME Analytics
 World Bank

 Washington DC, USA
 kannanv93@gmail.com

Sandeep Bhupatiraju
DIME Analytics

 World Bank
 Washington DC, USA

sandeepbhupatiraju@gmail.com

Daniel Li Chen†
 Department Name

 World Bank
 Washington DC, USA

 daniel.li.chen@gmail.com

ABSTRACT
In this project, we conduct a comparison of various approaches to
the extraction of legal entities from the judgment text. We apply
various State-of-the-art (SOTA) models to extract (i) legal
summary (ii) Primary Holding (iii) Facts of the case (iv)
Important Question being answered (v) Conclusion of the case
from the case. The analyses were carried out on the US Supreme
Court judgments. We applied various natural language processing
(NLP) techniques such as abstractive summarization
methodologies combined with a custom pipeline for finetuning the
models. We use ROUGE metrics and qualitative assessments to
evaluate the performance of the model. We have successfully
created a pipeline that uses SOTA models (i.e. BART) that shows
a score of 0.3 for the baseline and 0.47 for the fine-tuned model.
Overall, our experiments have shown that using larger models and
text extraction methods did not improve the performance of the
model but rather fine-tuning existing architectures with custom-
pipeline can yield better results. This research facilitates the
creation of websites like Justia and Oyez to extract important
details of district and circuit cases without much human effort.

CCS CONCEPTS
• Computing methodologies → Information extraction
• Computing methodologies → Natual Language Processing

KEYWORDS
Case Holding, Deep Learning, Natural Language Processing,
Summarization, Entity and Information Extraction

1 Introduction

Legal summarization refers to the process of condensing complex
legal documents into concise and understandable summaries,
making it easier for lawyers, legal experts, and the general public
to understand and navigate the law. Building a website like Oyez
[1] and Justia [2] involves creating a platform that provides access
to legal information and resources, such as court cases, legal
codes, and articles, in a user-friendly manner. These types of
websites serve as a valuable tool for anyone looking to research
and understand the law, and they also provide a comprehensive
resource for legal professionals looking to stay up-to-date on the
latest legal developments. With the increasing importance of
technology in the legal industry, a website that provides

comprehensive and easy-to-use legal information and resources is
a valuable resource for anyone involved in the legal field.
However, extracting key legal entities such as primary holding,
key questions etc. from case judgment can be a complex and
challenging task. It requires a deep understanding of the legal
system, laws, and regulations and finally the ability to collect,
categorize, and present information in a clear and accessible
manner.

Over the past few decades, there has been growing interest in
developing automated methods for information retrieval and legal
summarization to aid lawyers, legal researchers, and other
professionals in the field. The advent of Deep Learning and
technological capabilities has facilitated extensive research for its
potential applications in legal summarization in recent years.
Galgani et al. (2012) [3] developed a rule-based approach to
summarization that uses a knowledge base, statistical information,
and other handcrafted features like POS tags, specific legal terms,
and citations. Case Summarizer (Polsley et al., 2016) [4], an
automated text summarization tool, uses word frequency
augmented with additional domain-specific knowledge to score
the sentences in the case document. Recently Abhisek et.
al.(2022)[5] proposed a multi-task learning framework for
extractive summarization that combines sentence classification
and information extraction. In the growing body of literature, this
study focuses on identifying the optimal model architecture for
summarization and information extraction from US Legal
judgment text.

2 Dataset

The primary source of the data was from Justia and Oyez. Justia
is a platform that provides access to legal information and
resources, including U.S. Supreme Court decisions, federal and
state laws, and legal articles written by lawyers and legal
professionals. The website offers a wide range of information,
including summaries of court cases, legal opinions, and laws, as
well as links to legal organizations, lawyers, and other relevant
resources. Similarly, Oyez is a free, non-profit, multimedia law
library. It aims to be a complete and authoritative source of
information about the Supreme Court of the United States. Oyez
offers a vast collection of information about the Court, including
audio recordings of oral arguments and opinions, biographies of

the Justices, a timeline of the Court's history, and summaries of
major cases.

Justia contains the legal experts annotated “Primary Holding” and
“Summary” and Oyez contains “Facts, Question and Conclusion”
of U.S. Supreme Court Cases. We scrape the data from these
websites. Overall, our dataset contains 8,236 case opinion texts.
The cases in concern date back from 1966 to 2021 where each
row of the dataset has information about each of the cases
including the name, the docket number, the term (or year), and a
short description of the case.

As a part of data processing, we inspect our dataset for any
anomalies. We first remove HTML tags from the documents to
extract clean tokens. Then, we look at the length of the input
documents and the length of each task. We generate a distribution
of the length of tokens for each task to identify any outliers, such
as unusually short or long tokens. For example, we find two cases
with token length 2 that contained the phrases “Currently
available" and “Currently unknown". These rows are interpreted
as having no useful information, so we drop them from the
dataset. Additionally, we remove any rows that are null from the
training set prior to fine-tuning our model for each task.

For each task, there are varying proportions of null values in our
training set and the rows containing nulls are all dropped from our
dataset prior to fine-tuning our model for each task. After removal
of null or insufficient cases, we are left with the following
numbers of document-summary pairs.

Task
Number of
Data Points

Justia Summary 1278
Justia Holding 781

Facts of the
Case 3357

Questions 3356
Conclusion 3356

 Table 1: Description of Data

The input document of our model has token length 95 to 158,087
and the average token length is 14,594. The main challenge of our
project is to design a model that can handle the varying input
document lengths and generate a unique output for each task by
identifying relevant information. A table showing the mean,
minimum, and maximum length of the outputs is shown in Table
2.

3 Literature Survey

In general, text summarizations can be divided into two main
types: extractive summarization and abstractive summarization.
Extractive summarization is a method of creating a summary by
selecting a few key sentences or phrases from the original text and
using them to form the summary. As a result, the sentences or
phrases in an extractive summary are all taken directly from the
original text. One well-known algorithm for extractive
summarization is TextRank (Mihalcea and Tarau [6]). TextRank

is a technique for summarizing documents by modifying Google’s
PageRank algorithm.

 Table 2: Summary of the Data

PageRank represents documents as a graph structure and
continuously updates the importance of the nodes to generate
rankings. However, a disadvantage of this approach is that the
model’s language generation ability is limited because it can only
use existing sentences and phrases.

To improve on this, abstractive summarization is a method of
summarizing the original text by generating new sentences or
phrases that reflect the main context of the original text, even if
they were not present in the original text. Abstractive
summarization is like a human summarizing a text, where they
can use their own words and sentences to convey the main points
of the original text. Abstractive summarization algorithms often
rely on seq2seq models, and different algorithms can be used in
combination to produce the most accurate summaries. For
example, Seq2seq models with attention mechanisms (Chopra et
al. [7]) and pointer-generator methods (See et al. [8]) allow the
model to focus on specific parts of the input text, enabling it to
generate summaries that accurately reflect the content of the
original text.

Extractive summarization and abstractive summarization can be
performed in more advanced ways using transformer based
architectures like BERT (Devlin et al. [9]), GPT-2(Radford et al.
[10]), BART (Lewis et al. [11]), or T5 (Raffel et al. [12]),
respectively. BERT can be used for extractive summarization by
identifying important sentences in the original document, and
GPT-2, BART, or T5 can be used for abstractive summarization
by generating a summary of the document in a new, coherent
form. Models like Longformer (Beltagy et al., 2020) [13]
introduce transformer architectures with more efficient attention
mechanisms that enables them to summarize long documents (up
to 16 × 1024 input tokens). Bajaj et al. (2021)[14] developed a
two-step extractive-abstractive approach for long document
summarization – they use a pre-trained BART model over
compressed documents generated by identifying salient sentences.

Although these methods have shown good performance on
summarization datasets that contain small documents, they may

not be as effective on longer documents or in low-resource
environments (Bajaj et al. [14]).

Several domain-specific models and approaches have been
specifically designed for summarizing legal case documents.
Khan et.al. (2017) [15] proposed a method for extractive
summarization of legal decisions based on multi-task learning and
maximal marginal relevance. Galgani et al.(2015) [16] presented
a summarization method that leverages bi-directional citation
analysis to identify the most relevant documents for a given
summary task. The proposed method combines information from
both backward and forward citations to evaluate the importance of
individual documents in a corpus. Anand and Wagh (2019) [17]
used recurrent neural networks (RNNs) and long-short-term
memory (LSTM) networks for the summarization of legal texts.

4 Methodology

In this project, our primary task was to build a model that
automates the case summarization process and extracts relevant
information from extremely long legal documents. Using the
Supreme Court’s public case opinion texts as input, our model is
expected to identify Holdings, Facts, Questions, and Conclusions
as a part of information extraction and produce the summary of
the case text. The below table shows a sample case from the
actual case opinions

1) Summary: Summarization of the entire case opinion.
2) Holding: Court’s decision of the case.
3) Facts of the case: Detail information of the event that are
legally relevant to the court’s decision including history of the
dispute, legal claims, and defenses.
4) Question: Statement of the question of law that the court must
answer to make a decision.
5) Conclusion: Decision made by a judge regarding a question of
law.

We experiment with two different approaches.

Approach 1 - Building a pipeline that uses current SOTA
transformer model, BART.

We first create a pipeline that takes case opinion text as input and
outputs a distinctive outcome for each of the five tasks. We use

several SOTA transformer models that are well-known for their
performance on summarization tasks. Specifically, we experiment
with BART, T5, and PEGASUS. For evaluating the performance
of our models, we use the Rouge-L score as a metric for
comparison. Rouge-L is based on the longest common
subsequence (LCS) shared between the model output and the
reference. A longer shared sequence indicates a higher level of
similarity between the two sequences. We use an 80-20 split on
our dataset and experiment with 10 different random seeds for
each model to assess the robustness of the model by checking for
consistency in the Rouge-L score.

Baseline Rouge-L scores of our models are used as our starting
point and we apply different methods found in other related works
in order to track any improvements made to our models. In other
words, using Rouge-L as our metric, we experiment with various
methods to see if they help us achieve higher scores for any of our
tasks.

Approach 2 - Using a transformer model (LED) that handles
longer documents

The main summarization task models that we mentioned under
Step 1 have a limitation on maximum input token lengths. For
example, Bart can only take in as its input maximum of 1,024
tokens and truncates the rest of the documents. This means that
our model only looks at only 1/10 of the entire document length
and generate a summary from only the beginning of the
document. Therefore, we applied an LED (Longformer-Encoder-
Decoder, Beltagy et al. [3]), which is designed for longer
documents, with the capacity to handle at most 16,384 tokens.

Experimental Setup

The below diagram shows the pictorial representation of the
experimentation design.

 Figure 1: Experimental Design

First, we split the train and test set with an 8:2 ratio using a
random seed of 0. Then, we define the maximum input token
length based on the maximum input length of the model.
However, for the LED model, we change the input token length
from 1,024 to 16,384 to compare the performance of LED with
the other models when the input token length is set to the same
value. The output length is fixed to 512, as the longest token
length in the output is less than 512. We use a batch size of 8, a
learning rate of 5e-05, a weight decay of 0.02, and 10 epochs as
our default hyperparameters setting. We also set an early stopping
point based on the Rouge-L score. We encode the input and
output, train the model, and generate predictions for the summary
on the test set. We decode the prediction and evaluate the result

based on the Rouge-L score. We expand this architecture to 5
different tasks.

Models/architectures

We apply various encoder-decoder transformer architectures. As a
baseline approach, we use T5, BART, and PEGASUS pre-trained
models, as those are widely used for summarization tasks.
Additionally, we apply the LED model as it is capable of handling
at most 16,384 input tokens. We use LED model by changing its
maximum input tokens from 1,024 to 16,384 and comparing the
performance of the models.

5 Model Results and interpretation

The table below shows the Rouge-L scores from different
experiments

 We trained each task by using T5 (small, base, large), BART
(base, large, large-CNN), and PEGASUS (xsum, large) models.
The performance of each model varied depending on the task. No
single model was able to excel at all tasks, and for each task, the
model that performed best was different. For “Summary",
PEGASUS-large performed the best showing Rouge-L of 0.4753.
For “Holding", BART-base performed the best showing Rouge-L
of 0.2972. For “Facts", BART-large-CNN performed the best
showing Rouge-L of 0.3054. For “Question", PEGASUS-xsum
performed the best showing Rouge-L of 0.3061. For “Conclusion",
BART-large performed the best showing Rouge-L of 0.2895.
Overall, our experiment shows that the general performance of
these models in all tasks is approximately Rogue-L of 0.3.

We extended our experiments to larger models that can have more
maximum token length than the baseline models. LED is capable
of at most 16,384 input tokens, and we experimented with
different sizes of inputs from 1,024 tokens to 16,384 tokens.
Unfortunately, LED models showed similar or lower Rouge-L
scores compared to the baseline results.

Example Outputs

Example 1 : Roe v. Wade (1973)

Roe v. Wade is a landmark case in the United States, decided by
the Supreme Court on January 22, 1973. The case involved a
Texas law that made it a crime to perform an abortion except on
medical advice to save the life of the mother. Below is the
outcome from the best models.

Example 2: Moose Lodge No. 107 v. Irvis (1972)

Moose Lodge No. 107 v. Irvis was a United States Supreme Court
case that was decided in 1972. The case involved a black man
named Thomas Irvis who was denied access to a private club,
Moose Lodge No. 107, in Pennsylvania because of his race.

Summaries were not shown due to its length. In the above
examples we can clearly see how well the model is able to
predict/retrieve the relevant information from the case text.

6 Conclusion

In conclusion, the research on legal summarization and
information retrieval has demonstrated the effectiveness of deep
learning models, specifically the BART and Pegasus model, in
generating quality output for different tasks from legal texts. The
results highlight the potential of deep learning models in
improving the efficiency and accuracy of legal research and
information retrieval. The findings of this research can be
leveraged to improve the functionality and usability of websites
like Justia for district and circuit courts, providing a more
accessible and efficient platform for legal information retrieval.

The development of such websites is crucial for the general public,
legal practitioners, and researchers to stay updated on the latest
legal developments and decisions.

ACKNOWLEDGMENTS

We would like to thank Yoobin Cheong, Yoon Tae Park and
Yeong Koh from New York University for their contribution in
this research.

REFERENCES
[1]. Oyez - https://www.oyez.org/
[2]. Justia - https://www.justia.com/
[3]. Galgani, Filippo, Paul Compton, and Achim Hoffmann. "Combining different

summarization techniques for legal text." Proceedings of the workshop on
innovative hybrid approaches to the processing of textual data. 2012.

[4]. Polsley, Seth, Pooja Jhunjhunwala, and Ruihong Huang. "Casesummarizer: A
system for automated summarization of legal texts." Proceedings of COLING
2016, the 26th international conference on Computational Linguistics: System
Demonstrations. 2016.

[5]. Agarwal, Abhishek, Shanshan Xu, and Matthias Grabmair. "Extractive
Summarization of Legal Decisions using Multi-task Learning and Maximal
Marginal Relevance." arXiv preprint arXiv:2210.12437 (2022).

[6]. Rada Mihalcea and Paul Tarau. TextRank: Bringing order into text. In
Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, pages 404– 411, Barcelona, Spain, July 2004.
Association for Computational Linguistics. URL https:
//aclanthology.org/W04-3252.

[7]. Sumit Chopra, Michael Auli, and Alexander M. Rush. Abstractive sentence
summarization with attentive recurrent neural networks. In Proceedings of the
2016 Conference of the North Ameri- can Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 93–98, San
Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1012. URL https://aclanthology.org/N16-1012.

[8]. Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point:
Summarization with pointer-generator networks, 2017. URL
https://arxiv.org/abs/1704.04368.

[9]. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding,
2018. URL https://arxiv.org/ abs/1810.04805.

[10]. Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[11]. Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension, 2019. URL https://arxiv.org/abs/1910.13461.

[12]. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer, 2019. URL
https://arxiv.org/abs/1910.10683.

[13]. Beltagy, Iz, Matthew E. Peters, and Arman Cohan. "Longformer: The long-
document transformer." arXiv preprint arXiv:2004.05150 (2020).

[14]. Ahsaas Bajaj, Pavitra Dangati, Kalpesh Krishna, Pradhiksha Ashok Kumar,
Rheeya Uppaal, Bradford Windsor, Eliot Brenner, Dominic Dotterrer, Rajarshi
Das, and Andrew McCallum. Long document summarization in a low resource
setting using pretrained language models, 2021. URL
https://arxiv.org/abs/2103.00751.

[15]. Agarwal, Abhishek, Shanshan Xu, and Matthias Grabmair. "Extractive
Summarization of Legal Decisions using Multi-task Learning and Maximal
Marginal Relevance." arXiv preprint arXiv:2210.12437 (2022).

[16]. Filippo Galgani, Paul Compton, and Achim Hoffmann. 2015. Summarization
based on bi-directional citation analysis. Information processing &
management, 51(1):1–24.

[17]. Deepa Anand and Rupali Wagh. 2019. Effective deep learning approaches for
summarization of legal texts. Journal of King Saud University-Computer and
Information Sciences.

