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ABSTRACT

Existing Real Business Cycle (RBC) models assume that the
key impulses to business cycles are stochastic technology shocks.
RBC analysts typically measure these technology shocks by the
Solow residual. This paper assesses the sensitivity of inference
based on Solow residual accounting to labor hoarding behavior.
Our main results can be summarized as follows. First, the
quantitative implications of RBC models are very sensitive to the
possibility of labor hoarding. Allowing for such behavior
reduces our estimate of the variance of technology shocks by 50%.
Depending on the sample period investigated, this reduces the
ability of technology shocks to account for aggregate output
fluctuations by 30% to 60%. Second, our labor hoarding model is
capable of quantitatively accounting for the observed correlation
between government ccnsumption and the Solow residual. Third,
unlike standard RBC models, our labor hoarding model is
consistent with three important gualitative features of the joint
behavior of average productivity and hours worked: (i) average
productivity and hours worked do not display any marked
contemporaneous correlation, (ii) average productivity is
positively correlated with future hours worked, and (iii) average

productivity is negatively correlated with lagged hours worked.
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1. INTRODUCTION

The phenomenon of procyclical productivity has traditionally been regarded as
inconsistent with neoclassical theories of the business cycle. This empirical regularity seems
to contradict the notion that changes in aggregate output correspond to movements along a
fixed neoclassical production function, i.e. one which exhibits diminishing marginal
productivity of labor.! Existing Real Business Cycle (RBC) models resolve this puzzle by
simply abandoning the assumption of a time invariant production function. According to
this class of theories, the key impulses to business cycles are stochastic technology shocks
which shift the aggregate production possibilities frontier. As a result, higher levels of
output represent movements along higher marginal product of labor schedules. In this way
the model can generate procyclical labor productivity.

This explanation relies heavily on the frequency and magnitude of aggregate
technology shocks. To provide evidence in favor of the importance of such shocks, authors
like Prescott (1986) have examined the univariate time series properties of the Solow
residual under the null hypotheses that they represent exogenous technology shocks.
However, various authors, ranging from Lucas (1989) to Summers (1986), have conjectured
that many of the movements in the Solow residual do not represent exogenous shocks to
technology, but instead are artifacts of labor hoarding type behavior. While labor hoarding
may arise for a variety of different reasons, the existence of such behavior always implies
that reported aggregate hours worked will not accurately reflect actual labor input.? This
introduces non—classical measurement error in those measures of labor input typically used

to calculate the Solow residual. Moreover, many labor hoarding models (see for example

!For example, Sargent (1987, page 468) cites the procyclical behavior of productivity as one of the key
empirical patterns commonly thought to cast doubt on classical models of the business cycle. For a
review of different approaches to modeling the cyclical behavior of average productivity, see Rotemberg
and Summers (1988).

2See Fay and Medoff (1985) for a discussion of different types of labor hoarding and of measures of their
quantitative importance based on survey data.



Hall (1989) and Rotemberg and Summers {1988)) suggest that this measurement error will
be procyclical, say because firms use their work force more intensively in periods of high
aggregate demand.3 To the extent that this is true, empirical work which identifies
technology shocks with the Solow residual will systematically overstate their importance to
the business cycle and their contribution to the procyclical behavior of labor productivity.

There is by now a substantial amount of evidence that casts doubts on the view that
Solow residuals represent only exogenous technological shocks. Hall (1988) has shown that
the growth rates of the Solow residual and military expenditures are correlated. Also,
Evans (1990) has demonstrated that the Solow residual is correlated with various measures
of the money supply. Hall (1988) has argued that such findings are inconsistent with the
way in which Solow residuals are interpreted by RBC analysts.

This paper has two primary goals. First, we attempt to assess the semsitivity of
inference based on Solow residual accounting to labor hoarding behavior. Second, we
investigate whether our model is capable of accounting for certain aspects of the data which
seem anomalous from the perspective of existing RBC theory. In order to simultaneously
accomplish these objectives we introduce labor hoarding in a way that represents a minimal
perturbation of standard RBC models. The advantage of this approach is that we can
isolate the quantitative impact of labor hoarding per se in a standard real business cycle
model. The disadvantage is that we are restricted to one particular type of labor hoarding.
Still, we feel that our labor hoarding model succeeds in capturing the essence of existing
critiques of Solow residual based measures of technology shocks.

Our model builds upon the standard indivisible labor model associated with
Rogerson (1988) and Hansen (1985). We modify this model by assuming that firms must
make their employment decisions before observing the current state of demand and

technology. Once these shocks are observed firms can adjust labor input by varying the

3In contrast, Horning (1990) and Prasaad (1990) present models in which labor hoarding can be either pro
or counter cyclical.



level of effort that they require from their workers. However, these adjustments are costly
to firms because workers care about effective hours of work, defined as the product of work
effort times hours worked. This extension of the Hansen—Rogerson model is intended to
capture the idea that it is not feasible for firms to vary the size of their work force in
response to every bit of new information regarding the state of demand and technology. In
addition, our extension can be thought of as capturing, in a rough manner, the type of
measurement error induced by the fact that, in many industries, reported hours worked do
not vary in a one to one manner with actual hours worked. 4

In the competitive equilibrium of our economy, workers’ labor effort increases in
response to a positive innovation in government purchases or technology, i.e. effort will be
procyclical. In this sense our model captures the notion that labor hoarding implies a
procyclical measurement error in hours worked. Consequently our model predicts that
naive Solow residual accounting systematically overstates the importance of technology
shocks as impulses to business cycles. Since the equilibrium law of motion for effort is a
function of variables like government purchases the model is also, in principle, capable of
rationalizing the fact that the Solow residual is correlated with different measures of fiscal
policy.

An important shortcoming of our model is that we do not allow for variations in the
degree to which capital is utilized. However it is clear that allowing for such effects would
only stregnthen our conclusions. While poorly measured, capital utilization rates are clearly
procyclical. Consequently, the measurement error involved in using the stock of capital for
the purpose of calculating Solow residuals would also be procyclical. The same sorts of
impulses which cause labor effort to increase presumbaly also induce increases in capital

utilization rates.> To the extent that this is true, our results understate the senstivity of

4To take an extreme example, the actual number of hours which professors and their secretaries work is
highly variable. This fact is not reflected in the official reported number of hours worked.

5Gordon (1990) provides some evidence that the biases in standard Selow residual accounting exercises
that arise from time varying effort and time varying capital utilization rates work in the same direction.



RBC models to more general types of "hoarding" behavior.

To investigate the quantitative implications of our theory, we estimate the model
using the variant of Hansen’s (1982) Generalized Method of Moments procedure discussed
in Christiano and Eichenbaum (1990). Given point estimates for the structural parameters,
we are able to disentangle movements in hours worked from movements in effort. This in
turn allows us to distinguish between movements in the Solow residual and exogenous
technology shocks. Our main results can be summarized as follows:

(1) We find that the quantitative implications of RBC models are very sensitive to the
possibility of labor hoarding. Allowing for such behavior reduces our estimate of the
variance of technology shocks by roughly 50%. Depending on the sample period
investigated, this reduces the ability of technology shocks to account for aggregate output
fluctuations by 30% to 60%.

(2) We find that our labor hoarding model, which embodies perfect competition and
complete markets, is capable of quantitatively accounting for the observed correlation
between government consumption and the Solow residual. This provides evidence against
Hall’s (1988, 1989) conjecture that imperfect competition and increasing returns are
essential ingredients of an empirically plausible explanation of these correlations.

(3) We find that our model is consistent with three important qualitative features of the
joint behavior of average productivity and hours worked. First, average productivity and
hours worked do not display any marked contemporaneous correlation. Second, average
productivity leads the cycle in the sense that it is positively correlated with future hours
worked. Third, average productivity is negatively correlated with lagged hours.®

(4) While our model certainly cannot account for all features of the aggregate data, we

conclude that incorporating labor hoarding into the analysis, substantially enhances its

6Gordon (1979) presents evidence on this general phenomenon which he labels as the
YEnd—of—Expansion—Productivity—Slowdown". McCallum (1989) also documents a similar pattern for
the dynamic correlation between average productivity and output.



overall empirical performance.
The remainder of this paper is organized as follows. In section 2 we describe our
basic model. Section 3 describes our econometric methodology. In section 4 we present our

empirical results. Finally, section 5 contains some concluding remarks.
2. A Model of Time Varying Effort and The Business Cycle

In this section we present a varian’t of Hansen’s (1985) indivisible labor model. This
setup allows us to assess the semsitivity of existing RBC models to labor hoarding based
critiques of Solow residual accounting. As in Christiand and Eichenbaum (1990) we modify
the basic Hansen (1985) model to allow for aggregate demand shocks in the form of
stochastic movements in government consumption. Absent uncertainty regarding the level
of technology and government purchases, our model and the version of Hansen’s model

considered in Christiano and Eichenbaum (1990) are observationally equivalent.
2.1 The Model

Our model economy is populated by a finite number of infinitely lived individuals.
In order to go to work each individual must incur a fixed cost, ¢, denominated in terms of
hours of foregone leisure. Once at work, an individual stays there for a fixed shift length of

f hours. The momentary utility at time t of such a person is given by
(2.1) ln(C{’) + 0n{T —£ — Wtf)'
Here, T is a scalar denoting the individual’s time endowment, f is a positive scalar, Cg

denotes time t privately purchased consumption and Wt denotes the level of time t effort.

According to this specification, what individuals care about is total effective work, Wtf'



The time t utility of a person who does not go to work is simply given by
(2.2) In(CP) + AIn(T).

Output, Yt’ is produced via the Cobb Douglas production function
(23) Y, =2Z,K XNWH%

where 0 < @ < 1, N, denotes the total number of bodies going to work at time t, and K,
denotes the beginning of period t capital stock. The variable Zt represents the time t level
of technology which evolves according to

oy

(24) T, =74,

where 7 is a positive scalar which determines the unconditional growth rate of technology

and At is the stationary component of Zt.7 ‘We suppose that At evolves according to
(2.5) In(A}) = (1-p,)In(A) + p,In(A; ) + ¢,

The unconditional mean of ln(At) equals In(A), |p,| < 1 and ¢, is the innovation in In(At)
with standard deviation of g,

The aggregate resource constraint is given by

(26) CP+K

? te1 " (1—5)1(t + Xt < Yt'

"The assumption that the parameter @ enters into the law of motion for Zy is made only to simplify
algebraic computations, and involves no restrictions.



The parameter § represents the depreciation rate on capital and satisfies the condition 0 <
§ < 1. The random variable Xt denotes time t government consumption, which evolves
according to

t

(2.7) X,=71G

t)
where Gt is the stationary stochastic component of Xt' We suppose that Gt has the law of

motion
(2.8) In(Gy)= (l—pg)ln(G) + pgln(Gt_l) + by

Here In(G) is the mean of In(G,), |pg| < 1 and p is the innovation in In(G,) with
standard deviation U#'B

In the presence of complete markets the decentralized competitive equilibrium
corresponds to the solution of a social planning problem. Proceeding as in Rogerson (1988)
it is easy to show that, since agents’ criteria functions are separable across consumption
and leisure, the social planner will equate the consumption of employed and unemployed
individuals. Under these circumstances, the Pareto optimal competitive equilibrium

corresponds to the solution of the following planning problem:

Maximize

@

(2.9) >.‘ﬂ {1n(CP) + ON,In(T~ £ = W,f) + 6(1-N,)In(T)},

subject to (2.3) — (2.8), and K, by choice of contingency plans for {Cft’, Ky N, Wit2

BSee Aiyagari, Christiano and Eichenbaum (1990) and Baxter and King (1990) for discussions of the
effects of government purchases in the stochastic one sector growth model.



0}. In (2.9), we have normalized the number of agents in the economy to one. Also E, is
the time 0 conditional expectations operator, and £ is the subjective discount rate, 0 < § <
1.

To complete the specification of the model we must specify the planner’s time t
information set, Q:‘ If Zt and Xt are seen before Nt and Wt are chosen, then the model is
observationally equivalent to the standard indivisible labor model, modified to incorporate
government consumption into the aralysis (see Christiano and Eichenbaum [1990]).

One simple way to capture labor hoarding type behavior is to change the
information structure of the model. In particular, suppose that Nt must be chosen before,
rather than after, Xt and At are known. Let Qt denote agents’ common information set at
the beginning of time t. We assume that {; includes the lagged values of all variables in
the model. Let Q: consist of €}, plus (At’ Xt). Then the planner’s contingency plans for N,
will be a function of the elements of o while the contingency plans for W, K, +1 and Ct
will be functions of the elements of Q:. 9

This perturbation of the standard model intends to capture the notion that it is
costly for firms to vary the size of their work force. It is simply not feasible for a firm to
change employment in response to every bit of new information regarding the state of
demand or of technology. The previous formalization of the planner’s problem incorporates
the notion that firms must make employment decisions conditional on their views about
the future state of demand and technology. Once employment decisions are made firms
adjust to observed shocks along other dimensions. In our model this adjustment occurs
through variations in the labor effort that workers are asked to supply. Workers’
compensation will naturally depend on the effort supplied. But to compute the laws of

motion for the quantity varables we do not have to be precise about the exact

9If £ = 0 it is efficient for all individuals to go to work in every period (Nt=1)’ given that they can adjust

their labor effort, Wt, in response to shocks . For this reason we assume that £ >0.



compensation scheme adopted by firms.

It is convenient to represent the planning problem in terms of variables that

converge to a nonstochastic steady state. To this end we define

i 1
(210) Tp=CP/+', Y =Y /v K =K/7\ X=X/

Using this transformation, constraint (2.6) can be written as

1—a @
(2.11) 9K = Ath (Nthf) —C@ + (1—§)Kt -X

t+1 1

Also, using (2.10), the planner’s criterion function can be written as

@

o
(212) K+ B, 2 In(TP) + ONIn(T— ¢ — W,9) + (1-N,)in(T)}
0 4= t t t t

o
where x = L ﬁtlog('yt) is a constant which can be ignored in the maximization problem. It
=0

follows that the original planning problem is equivalent to the problem of maximizing
(2.12) subject to (2.5), (2.8), (2.11), and K; by choice of a contingency plan for N which is
a function of the elements of Q,, and contingency plans for W,, Kt+1 and Clt) which are
functions of the elements of Q:.

In general it is not possible to obtain an analytical solution for the problem just
discussed unless § = 1. Here we use King, Plosser and Rebelo’s (1988) log linear
modification of the procedure used by Kydland and Prescott (1982) to obtain an
approximate solution. To display the form of this solution, let (wt’ 5., kt’ ay, cg, gt) denote

the deviations of the logs of (Wt’ Nt’Kt’ At’ Clt), Gt) from their nonstochastic steady state



values, e.g. a, = In(A,/A). 1t follows from results in King, Plosser and Rebelo (1988) that

the log linear laws of motion for LR kt and cf will be of the form

(2.13a) wy = mk + mon, + maa, + g
(2.13b) n, = Tk, + Ted 4+ Mg, 4

(2.13¢) kt+l = Tgky + mon, + 73, + 118
(2.13d) c]s = Tk, + T + T 42t Tis8y

Here the coefficients T, i = 1,15 are scalar functions of the model’s underlying parameters.
2.2 Solow Residual Accounting and Time Varying Effort

It is useful to briefly consider the implications of our model for the standard RBC
practice of interpreting Solow residuals as exogenous technology shocks. Most RBC studies
(see for example Prescott [1986]) assume that output is produced via the Cobb—Douglas

production function:
_ 1—¢, a
(2.14) Yt = Zth (Ht) .

Here Ht denotes total hours worked. Under the maintained assumptions of the standard

indivisible labor model, Ht equals total bodies at work times the fixed shift length, f:

(215) H, =Nf

Implicit in this formulation is the assumption that effort is constant over time, say equal to

one.

The standard method used to calculate the Solow residual in RBC studies is to solve

10



(2.14) for Z, given some value for a. Suppose that we maintain the assumption that Z, is a

trend stationary process with unconditional growth rate, ,yat ie.

)

(216) 2z, =",
Here St represents the time t realization of a stationary stochastic process, and is
interpreted by existing RBC studies as the time t technology shock.10

This interpretation implies certain testable restrictions, a subset of which have been
investigated in the literature. Hall {1989) in particular argues (Proposition 1) that under
the maintained assumptions of these models, St ought to be orthogonal to all variables
known to neither cause productivity shifts nor to be caused by productivity shifts. This

leads to the restriction,
(2.17) ESq, . =0 forallr,

for variables g, satisfying the conditions of Hall’s proposition. Hall (1988) tests and rejects
a version of (2.17) for 7 = 0, using different candidate variables for Qy including per capita
military expenditures. Evans (1990) also tests and rejects variants of (2.17) using different
measures of the money supply.

There exist a variety of potential explanations of why restriction (2.17) appears to
be at variance with the data. Hall (1988, 1989) argues that the most probable explanation
is the prevalence of imperfect competition and increasing returns to scale. In the remainder
of this section we show why our model can also account for the failure of (2.17). In section
4 we present quantitative evidence on this issue and respond to Hall’s argument that time

varying effort is implausible as an explanation of the correlations in question.

10Tf Z; is modeled as a difference stationary process, as in Christiano and Eichenbaum (1990), then AlnZt
is taken to measure the stationary stochastic component of technology.

11



Let s, denote the deviation of the log of St from its nonstochastic steady state value.

According to our model Sis 8y and W, are related via the relationship,

(2.18) s, =a +aw

v
It follows that objects which are correlated with LA will also be correlated with 5,, even
though they are not correlated with ay- Since our model predicts that w, depends on g,
restriction (2.17) will not be satisfied. Put differently, according to our model, 5
constitutes an error ridden signal regarding the level of the technology shock. However, the

measurement =rror is not of the classical type, since Eatw is not equal to zero. As Hall

t—1
(1989) points out, classical measurement error in s, cannot rationalize the observations in
question. For that, the measurement error must be systematically related to either K, or
N, which is the case according to our model.

Not surprisingly, given our estimates of the model’s structural parameters, both g
and 7, are positive. This implies that, other things equal, it is optimal to work harder
when faced with a positive .nnovation in either government consumption or technology, i.e.
effort will be procyclical. By assumption neither the stock of capital nor aggregate hours
worked can change at period t in response to an innovation in government consumption.
Consequently, the Solow residual will rise as a result of the increase in government
consumption. This is true despite the absence of any technology shock whatsoever.
Similarly, the observed Solow residual will rise by more than a technology shock, i.e. the
innovation to s, will be larger than the corresponding innovation in a,.

It follows that our model formalizes conjectures in Summers (1986) and Lucas
(1989) that naive Solow residual accounting systematically overestimates the level of
technology in booms, systematically underestimates the level of technology in recessions

and systematically overestimates the variance of the true technology shock. From this

perspective, existing RBC models systematically overstate the role of technology shocks in

12



explaining the time series behavior of average productivity. Whether these sources of bias
are quantitatively important is an empirical issue. In the next section we discuss our

econometric methodology for empirically examining these issues.
3.  Econometric Methodology

In this section we accomplish three tasks. First, we describe our strategy for
estimating the structural parameters of the model as well as various second moments of the
data. Second, we discuss our methodology for assessing the model’s empirical performance.

Finally, we describe the data used in our empirical analysis.
3.1 Estimation

The parameters of interest can be divided into two groups. The first group, which we
denote by \Ill, consists of the structural parameters of the model:

2
(3'1) \I’l = {6: 0, o, paj 0-6’ Py 0 Y G 1 Y, th}'

g g
Here In(Y) and In(G) denote the unconditional means of linearly detrended In(Y,) and
In(Gt), respectively. The parameter g denotes the unconditional growth rate of
government purchases, Gt' In describing our theoretical model 'yg was assumed to equal
the unconditional growth rate of technology, 7. In order to assess the plausibility of this
assumption, we did not impose it restriction in our empirical work.
Since our estimation strategy allows for classical measurement error in hours
worked, the vector \Ill includes the parameter 0\2/h' This parameter equals the variance of
the measurement error, whose other properties are discussed below. The parameters, T,

and ¢ were not estimated. Instead we fixed T at 1369 hours per quarter. The parameter 3
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was set 50 as to imply a 3% annual subjective discount rate, i.e. 8 = (1.03)'_25. We
experimented with a variety of values of ¢ and found that our results were very insensitive
to choices of £ between 20 and 120. The results reported in section 4 correspond to a value
of £ equal to 60.

The second set of parameters, \1;2, correspond to various second moments of the

data which are used to diagnose the empirical performance of our model.
(3.2) P, = {og/oy, Udk/"y’ ag/ay, T Op/ TAPLy p_T[APL,h]}

for 7= 0, «1, +2, «3, 24. Here APL denotes the average productivity of labor, o, denotes
the standard deviation of the variable x, x = {cp, y, APLdk, h} and p_T[APL,h] denotes
the correlation between average productivity at time t—r and hours worked at time t.

Since the data display marked time trends, some stationary inducing transformation
must be adopted to ensure that the moments in (3.2) exist. In this paper, for diagnostic
purposes, we detrend both model output and actual data with the Hodrick—Prescott (1980)
filter. Consequently, the population moments in ¥, pertain to Hodrick—Prescott (HP)
filtered versions of the data.

We choose to work with this filter for two reasons. First, many authors in the RBC
literature report results based on the HP filter.!! By using this filter we are able to
minimize the differences between their procedures and ours. This in turn helps us to isolate
the effects of time varying effort. Second, the HP filter is, in fact, a stationary inducing

transformation for trend stationary processes (See King and Rebelo (1988)).

The Unconditional Moments Underlying Our Estimator of ‘Ill

USee for example Kydland and Prescott (1982), Hansen (1985), Prescott (1986), Kydland and Prescott
(1988), Backus, Kehoe and Kydland (1989), Christiano and Eichenbaum (1990), and Benhabib, Rogerson,
and Wright (1990).

14



In order to estimate ¥, we use a variant of Hansen’s (1982) GMM procedure. As in
Christiano and Eichenbaum (1990) we consider an exactly identified version of GMM in
which the number of unconditional moment restrictions used to estimate the structural
parameters of the model coincides with the dimension of \Ill. The moment restrictions
which we use to estimate \Ill result in parameter values that have two appealing features.
First, these parameter values arec very similar to those used in most RBC studies. This
allows us to isolate the effects of labor hoarding per se in those models. Second, at these
parameter values, the model succeeds in r.eproducing the first sample moments of the data.
We recognize that there is no a priori reason to use a small subset of the model’s
implications for the purpose of estimating \Ifl. However ignoring these other moment
implications certainly affects the asymptotic efficiency of our estimator but not its
consistency.

According to our model, § = 1 + DKt/Kt - Kt+1/Kt’ where DK, represents gross
investment. Let 5 denote the unconditional mean of the time series 1+ DKt/Kt -

Ky /K ie
(33) E[f —(1-DK,/K, ~X,, /K,)] = 0.

We identify 6 with a consistent estimate of the parameter 5*.

The social planner’s first order condition for capital accumulation requires that the
time t expected value of the marginal rate of substitution of goods in consumption equals
the time t expected value of the marginal return to physical investment in capital. It

follows that

1
(34) E{f - [(l_a)Yt+1/Kt+1 + (1—5)]0{’/0{’_{_1} =0.
This is the moment condition that underlies our estimate of c.

15



The first order condition for effort requires that, for all t, the marginal productivity
of an extra unit of effort equals the marginal disutility of effort of those engaged in

working. It follows that

(35) B{AT—&-W,D" —alY,/(CPW N D]} = 0.

Since Ht =N tf this implies the condition

(35) E{{T—¢-W,0) — oY, /(CPW,H )} = 0.

This is the moment condition used to estimate the parameter 4.

A key problem with implementing (3.5) is that it involves the unobserved value of

time t effort, Wt‘ However by exploiting the structure of our model we can express Wt in

terms of the elements of ¥, and the variables which we do observe. Recall that 5,
Zt/')rat = (Yt/'yt)/[(Kt/'yt)l_aHﬁ. Since s, = In[S, /S], we can construct a time series of
observations on s,. Equations (2.13a) and (2.18) can be solved to express w, and a, as
functions of ¥, and of observations on Kt’ Ht’ Gt’ and Y,

The scale parameter f also appears in these solutions because n, is calculated using

t
the fact that N, = Ht/f. To choose a value for f we exploit the planner’s first order

condition for Nt. This condition equates the utility cost of employing an additional worker
to the expected marginal productivity of employment:

(3.6) Et{ﬂn(T —¢ —Wtf) — n(T) — O‘Yt/[CtNt]} =0.

Relations (3.5)” and (3.6) imply that in the nonstochastic steady state:

(3.7) 1In[T/(T — ¢ — W) = WI/(T - ¢ — WI).

16



Conditional on our assumed values of T and &, (3.7) can be solved for W{. The parameter {
was chosen to equate the average value of Ntf to the sample average value of our empirical
measure of per capita hours worked, H,. Given this value of f and the value of Wf which
emerges from (3.7), we deduce W, the nonstochastic steady state value of W,. Finally, by
exploiting the fact that w, = ln(Wt/W), we can construct a time series on W,, which can
be used in implementing (3.5).

The law of motion for A; summarized by (2.5) and our definition of a, = ln(At/A)

imply the unconditional moment restrictions

(3.8a) Efa, — paat—llat—l =0,
2 2
(3.8b) E{la;—p3, 4" =} =0

Absent measurement error in hours worked relations (3.8) could be used as unconditional
moment restrictions for estimating pyand o, Below we discuss how (3.8) must be modified
to take into account our assumptions regarding measurement error.

The laws of motion for X, and G, summarized by (2.7)—(2.8) as well as our
definition that g, = ln(Gt/G) implies that

(3.9a) Efin(X,) ~In(G) ~In(7,)t] = 0
(3.9b) E{ln(X,) —In(G) —ln('yg)t]t/T =0
(3.9¢) Elg, —rg8; 11811 =0

(3.94) E{lg, - pggt_1]2 - Oi} =0

where T denotes the number of observations in our sample.!? Relation (3.9) summarizes the

unconditional moment restrictions that underlie our estimates of pg, Ty G and 7g'

12The second equation in (3.9) is scaled by the constant T so that the asymptotic distribution results
discussed in Eichenbaum and Hansen (19%0) apply.
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Our model implies that the log of output is a trend stationary stochastic process

with unconditional growth rate 7. It follows that

(3.10a) E[ln(Y,) —In(Y) - tin(y)] = 0
(3.10b) Eln(Y,) = In(Y) — tin(7)}t/T = 0.

These are the unconditional moment restrictions underlying our estimates of Y and +.
Classical Measurement Error In Hours Worked

A variety of authors have implemented RBC models allowing for classical
measurement error in average hours worked. Prescott (1986) has argued that (a) the
magnitude of this error is large, and (b) failure to account for it leads to large positive
biases in standard estimates of the variance of the innovation to technology shocks. 13

In order to minimize the differences between our procedure and those adopted in the
existing literature we incorporate Prescott’s (1986) model of measurement error into our
analysis. This is accomplished by exploiting the two different measures of hours worked
that we have at our disposal. The first is Hansen (1984)’s measure which was constructed
using the results of the household survey conducted by the Bureau of the Census. The
second is based on the establishment survey conducted by the Bureaun of Labor Statistics.
For convenience we refer to these two measures as household hours, Hltl, and establishment
hours worked, Hs, respectively.

Suppose that H: denotes true hours worked at time t. Proceeding as in Prescott

1986) we assume that the measurement errors in In Hh and In(H®) are iid. and
t t

13Qther authors have implicitly used Prescott's (1986) model of measurement since they use his
measurement error corrected estimates of the variance of the innovation to the technology shock. See for
example, Hansen (1988), Kydland and Prescott (1989), and Chari, Christiano, and Kehoe (1990).
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*
orthogonal to each other as well as to Iog(Ht):

e * e

(3.11) ln(Ht) = ln(Ht) + vy
h * h

In(H;) = In(H,) + vy

Equation (3.11) implies that
(312)  EB{ody - s[alm(EN + sAI(ES)Aln(ED) = 0.

This unconditional moment restriction allows us to estimate the variance of Hltl, szrh'
Not surprisingly, the presence of the measurement error associated with hours
worked affects unconditional moment restrictions (3.8a) and (3.8b) which involve the

parameters p_ and g, In Appendix A we show that these must be replaced by

22
(3.13) E{la, —p,2,_jla,_; + a0 0 n} =0,
2 2 2 2y 2
(3.14) B{la,—p a, ]" — o — ¢°(1+p})o5n} = 0,

where ¢ = w{14m,)/(1+ams). The only other moment condition which involves H, is the
one which defines our estimator of o, equation (3.5). In Appendix A we show that this
restriction remains valid, up to a first order approximation.

To summarize then, we have displayed 12 unconditional moment restrictions,
(3.3)~(3.5), (3.9), {3.10), (3.12)—{3.14), which involve the twelve dimensional parameter

vector \Ill and the data. These can be summarized as:

(3.15) B[M, (¥)]=0forallty0,
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where \Il? is the true value of ¥ and Mlt(-) is the 12 x 1 vector valued function whose
elements are the left hand sides of (3.3)—(3.5), (3.9)—(3.10), (3.12)—3.14) before

expectations are taken.
The Unconditional Moments Underlying Our Estimator of ‘Il2

Data which are transformed via the HP filter have zero mean by construction. It
follows that we can estimate the parameters of \Il2 by exploiting the unconditional moment

restrictions

(3.16) E{yf(ax/ay)2_xf }=0 x, =cbdk, g, o= 0% 0g, 0
b - ol] =0
E{APLY(0\ [0, p )P ~ 10} =0
B{o%/[oy/oppylo_(APLN) = APL,_ h}=0, r=0, 21,223, .

g

Equation {3.16) consists of 14 unconditional moment restrictions involving the 12 elements

of v, and the HP filtered data. These can be summarized as
(3.17) E[My,(¥)] =0 foralit>0,
where \Ilg is the true value of ¥, and H2t(-) is the 14 x 1 vector valued function whose
elements are the left hand sides of (3.16) before expectations are taken.
Using the notation ¥ = [¥; ¥,] and M, = My M2t] we can write the

unconditional moment restrictions (3.15) and (3.17) as

(318) EM,(2%)=0 V2o,
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where 00 is the true value of U. Let g denote the 26 x 1 vector valued function

T
(319) gy(¥)=(1/T) 3 M,(¥).

According to our model, gT(-) is a stationary and ergodic stochastic process. Since gT(-) is
of the same dimension as ¥ it follows from Hansen (1982) that the estimator @1 defined by
the condition g(¥) = 0 is a consistent estimator of ¢, Hansen (1982) also shows that a
consistent estimator of the variance—covariance matrix of Y. is given by

(3:20) Var(¥p) = [Dp(Sp)™

D YT
Here ST is a consistent estimate of the spectral density matrix of Ht(\I/O) at frequency zero

and Dy = dgp(¥p)/ 0% 14
3.2  Testing

In order to assess the model’s empirical performance we examine its ability to
account for various second moments of the data, say the qx1 vector of moments A. Given
a set of values for \I/l our model implies particular values for A. We represent this

5
relationship via the function II that maps R'? into RY:

®

4 et So =% EH ‘yo)]Mt(‘I/O)’] denote the true spectral density matrix of Mt(‘I/O) at frequency zero.
k=—o

t+k'
Proceeding as in Hansen (1982) we can estimate So by replacing population moments in the previous
expression by their sample counterparts evaluated at ‘I/T. In order to guarantee that our estimate of So

is positive definite we used the damped autocovariance estimator discussed in Eichenbaum and Hansen
(1990). The reported results were calculated by truncating after 4 lags.
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(321) I(¥,)=A.
To compute II(-) we used the log-linear approximation discussed in King, Plosser and

Rebelo (1988).

Let B be the q x 26 matrix composed of zeros and ones with the property
(3.22) BY=A
and let
(3.28) F(¥)=I(¥,)-BY.
Under the null hypothesis that the model is true
(3.24) F(¥%) =0.
Christiano and Eichenbaum (1990} show that
(3:25) Var[F(¥p)] = [F"(¥p))[Var(@)F (L))
Also the test statistic
(3.26) I = F(¥p) Var[F(¥,p)] " F(¥)

is asymptotically distributed as a chi—square random variable with q degrees of freedom.

This fact can be used to test null hypotheses of the form (3.24).
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3.3 Data

In this section we describe the data used in our empirical analysis. Private
consumption, cIt’, was measured as quarterly real expenditures on nondurable goods plus
services, plus the imputed service flow from the stock of durable goods. The first two
measures were obtained from the Survey of Current Business. The third measure was
obtained from the data base documented in Brayton and Mauskopf (1985). Government
consumption, 8> Was measured by real government purchases of goods and services minus
real government (federal, state and local) investment. A measure of government
investment was provided to us by John Musgrave of the Bureau of Economic Analysis.
This measure is a revised and updated version of the measure discussed in Musgrave
(1980). Gross investment, dkt’ was measured as private sector fixed investment plus real
expenditures on durable goods plus government fixed investment. The capital stock series,
kt’ was chosen to match the investment series. Accordingly, k, was measured as the stock
of consumer durables, producer structures and equipment, plus government and private
residential capital plus government nonresidential capital. Gross output, Yy was measured
as c? plus g4 plus dkt plus time t inventory investment. Our basic measure of hours
worked, described in Section 3.1, is the one constructed by Hansen (1984), which we refer
to as household hours. The second measure of hours worked, establishment hours, which we
use to help estimate the measurement error in household hours, is also described in Section
3.1. All data were converted to per capita terms using an efficiency weighted measure of

the population. 15

4. Empirical Resulis

5For further details on our data set, see Christiano (1987a).
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In this section we report empirical results both for the model of section 2 and for the
standard indivisible labor model. In the version of the latter model that we consider the
planner’s criterion function is of the form E, E‘:;’:O[ln(C{)) - th] Here 0 is some positive
scalar. It is straightforward to show that all of the unconditional moment restrictions used
to estimate the parameters of the labor hoarding model continue to hold for the standard
indivisible labor model, with the exception of (3.5). In this model the planner’s first order
condition for choosing H, implies that § = aYt/[C{)Ht] = 0. Let 6 denote the
unconditional expected value of the time series on the right hand side of the previous

expression, i.e.
bt
(41) E{6 - aY,/[C}H,)} =0.

We identify § with a consistent estimate of the parameter -0*. The only difference between
our estimator of the parameters of this model and the time varying effort model, is that
(4.1) replaces (3.5) and W, = W, ie. work effort is constant over time. Subject to these
changes, the discussion of our econometric methodology in section 3 applies to the standard
indivisible labor model.

The first columns of Tables 1 and 2 report our estimates of \Ill for the two models,
obtained using data over the whole sample period. There is reason to believe that,
conditional on the variables being trend stationary stochastic processes, there is a break in
the data. It is well known that the growth rate of average productivity slowed down
substantially in the late 1960°s. This can be seen visually from Figure 1 where we graph the
log of the Solow residuals.!® To document the likelihood of a "break" in the process
governing the Solow residual, we performed a series of iterative Chow tests. The

probability values for the test statistics are graphed as a function of calendar time in

16These were calculated using the point estimate of & reported in column one of Table 2 but not correcting
for classical measurement error in hours worked.
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Figure 2. From this figure we see that the null hypothesis of no break is rejected at very
high significance levels at all dates during the interval of time spanning 1966 to mid 1974.
The break point underlying the results reported in this section coincides with 1969:4. As it
turns out our results are quite insensitive to the precise break point chosen.

In Tables 1 and 2 we report the parameter estimates of the two models for the two

" subsamples. Comparing these to the estimates obtained using the whole sample period we

see four important differences. First, our estimates of the unconditional growth rate of the
Solow residual, in the first and second sample periods, .0069 and .0015, respectively, are
quite different. Second, our estimates of p, are very sensitive to the sample period used to
carry out the estimation. For example, using the standard indivisible labor model, over the
whole sample, our point estimate of this parameter is .986, whereas it equals .86 and .88 in
the first and second sample periods, respectively. The fact the estimate of Py, is
substantially larger when the whole sample is used is exactly what we would expect to find
if there actually were a break in the Solow residual process (see Perron (1988)). Third, the
estimated value of o, is also very sensitive to allowing for a break in the sample as it
equals .0060 and .0101 in the first and second sample periods, respectively in the standard
indivisible labor model (the corresponding point estimate of g, for the whole sample is
.0089). Fourth, the estimates of 7g’ pg and a, are affected in the same qualitative ways as
the analog parameters governing the evolution of the Solow residual. However the
quantitative differences are even larger.

To understand the quantitative properties of ocur model it is useful to consider a
subset of the impulse response functions of the system, evaluated at the parameter values
reported in the first column of Table 1. Figure 3 presents the response of the system to a
1% innovation in government consumption. By assumption employment cannot
immediately respond to this shock. However effort rises by over 15% in the first period and
then reverts to its steady state level. Panel (a) shows the implied movement in the Solow

residual. Since effort has gone up in the first period but total hours of work have not
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changed, the Solow residual increases (by about .25%). This is true even though there has
been no technology shock whatsoever. Naive Solow residual accounting falsely interprets
the increase in average productivity as a shift in technology rather than an exogenous
increase in government consumption. Consistent with this observation panel (d) shows that
labor productivity, measured as Y /N,, also rises in the first period (by .1%). Like the
mechanisms in Lucas (1970) or Hansen and Sargent (1988), time varying effort provides an
alternative to techmology shocks as the sole explanation for the procyclical behavior of
average productivity.

Figure 4 depicts the models’s response to a 1% innovation in technology. Given
agents’ willingness to intertemporally substitute effective leisure over time, they respond to
the shock in the first period by increasing effort by about .5%. As a result, the Solow
residual rises by 1.3%. Again naive Solow residual accounting exaggerates the true
magnitude of the technology shock.

Consistent with the previous discussion, the first columns of Tables 1 and 2 indicate
that the main difference between the estimates of ¥, emerging from the two models
concerns . While allowing for time varyiné effort reduces somewhat our estimate of Py
the main effect is a large reduction in o, Based on the whole sample period the variance of
the innovation to technology shocks drops by roughly 35 per cent. In the first and second
samples this variance drops by 48 and 56 percent, respectively. Breaking the sample
magnifies the sensitivity of estimates of o, to time varying effort. A different way to assess
this sensitivity is to consider the unconditional variance of the stationary component of the
technology shock, cri, which equals [02/(1—;}2)]. Allowing for time varying effort reduces
the volatility of technology shocks by over 58 per cent in whole sample period, 49% in the
first sample period and 57% over the second sample period.

In summary, incorporating time varying effort in the standard model substantially
reduces point estimates of both 026 and aﬁ. For this reason our results provide substantial

support for the view that a large percentage of the movements in the observed Solow
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residual are artifacts of labor hoarding type behavior.

A key question that remains to be answered is how these changes translate into the
models’ implications for observable variables. To answer this question we begin by
analyzing the impact of these changes on the percentage of the variability of output which
the model can account for, defined as A = ogm(\IJT)/og. Here the numerator denotes the
variance of HP filtered model output, evaluated at \I/T, and the denominator denotes the
variance of HP filtered US output. Kydland and Prescott (1989), have emphasized the
importance of this statistic. Their claim that technology shocks account for most of the
fluctuations in postwar US output corresponds to the claim that X is a large number, with
the current estimate being between .75 and 1.0, depending on exactly which RBC model is
used (see for example Hansen (1988)).

Table 3 presents the values of A implied by the two models over the different sample
periods that we consider. For the whole sample period introducing time varying effort
causes ) to decline by over 28%, from .81 to .58. The sensitivity of A to labor hoarding is
even more dramatic once we allow for a break in the sample. Labor hoarding reduces A by
58% in the first sample period and by 63% in the second period. Evidently the finding that
technology shocks account for most of the variability in aggregate output is very sensitive
to the presence of labor hoarding.

The previous evidence is of interest only to the extent that introducing labor
hoarding does not lead to a substantial deterioration in the model’s empirical performance
along other dimensions of the data. To address this issue we begin by considering the
models’ implications for a different set of moments which have been emphasized in the
RBC literature: the volatility of hours worked, T the relative volatility of consumption,
investment, and government purchases to output, G'C/U'y, Udk/oy’ and og/oy, respectively,
as well as the volatility of hours worked relative to average productivity, Un/oAPL' Table
4A reports the models’ predictions for these moments as well our estimates of the

corresponding data moments. Table 4B reports the analogous results obtained using the
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two subsample periods. For each moment in the two tables there are three numbers entered
in the columns labelled "Time Varying Effort Model" and "Constant Effort Model”. The
top number equals the probability limit of the moment implied by the relevant model.
These were calculated using the relevant estimate of \Ifl. The middle number is the
estimated standard error of the first number, and reflects sampling uncertainty in our
estimates of \I/l. For each moment we tested the null hypothesis that the model moment
equals the data population moment. This was done using the J statistic discussed in section
3. The bottom number equals the probability value of the relevant J statistic.!?

According to the results summarized in Table 4A it is very difficult to distinguish
between the two models on the basis of their implications for the moments in question.
Indeed, according to the J statistics, there is very little evidence against the individual
hypotheses that the value of o, oc/cry, adk/gy’ or ag/ay that emerges from either model
is different from the corresponding data population moments. However, the performance of
both models deteriorates significantly when we allow for a break in the sample. This
deterioration is quite pronounced with respect to the relative volatility of consumption and
investment. As Table 4B indicates, using either sample period, we can reject at any
conventional significance level, the hypotheses that these model moments equal the
corresponding data population moments. Interestingly these rejections do not arise so much
because the data moment estimates change substantially. Rather they arise because the
models’ implications for the two moments appear to be quite sensitive to allowing for a
break in the sample. For example over the whole sample period, both models imply that
consumption is roughly half as volatile as output. However, when estimated on the separate
sample periods, both models predict that consumption is only a fourth as volatile as
output.

The intuition behind this last result is straightforward. According to the permanent

17Since we are considering only one moment at a time, the J statistic is asymptotically distributed as a
chi—square random variable with one degree of freedom.
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income hypothesis, an innovation to labor income causes households to revise their
consumption plan by the annuity value of that innovation. If income were an AR(1)
process about a deterministic trend, then the annuity value of the innovation would be a
strictly inéreasing function of the size of the AR(1) coefficient. Using a model very similar
to our version of the standard indivisible labor model, Christiano (1987b) shows that the
income effect of an innovation to the technology shock is also increasing in P, the
parameter which governs the serial correlation of the technology shock. Since the point
estimate of P, falls in both subsamples, we would expect that, holding interest rates
constant, the response of consumption to an innovation in the technology shock should also
fall. Given that Christiano (1987b) also shows that the impact of technology shocks on the
interest rate in standard RBC models is quite small, it is not surprising the model predicts
lower values for ac/ay in the subsample periods. Since output equals consumption plus
investment plus government consumption, and the latter does not respond to technology
shocks, it follows that, other things equal, with consumption less volatile, investment will
be more volatile.

All in all, it is difficult to distinguish between the different models on the basis of
the previous moments emphasized in existing RBC studies. Fortunately, there exist other
dimensions of the data along which the models have quite different implications. One of
these dimensions is suggested by Hall’s (1988) observation that the growth rate of the
Solow residual is positively correlated with his measure of government consumption.
Existing RBC models imply that this correlation coefficient ought to equal zero. To
understand the quantitative implications of our model for this correlation we proceeded as
in Hall (1988) and estimated the regression coefficient by, of the growth rate of the Solow
residual on the growth rate of our measure of government consumption. Using the whole
sample period the estimated value of b, equals .187 with standard error equal to .07. The
probability limit of bg implied by our model equals .104 with standard error of .024.

Testing the hypothesis that the two regression coefficients are the same in population, we
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obtain a value for our J statistic which has a probability value of .29. Consequently, one
cannot reject, at conventional significance levels, the view that our model fully succeeds in
accounting for the correlation in question. However, there is somewhat more evidence
against the null hypothesis once we allow for a break in the sample. The probability value
of the J statistic is .9999 in the first part of the sample but it is only .008 in the second
part.18

Hall (1988) interprets his positive estimate for bg as evidence in favor of the notion
that imperfect competition and increasing returns to scale are important determinants of
the time series properties of average productivity. While he does not construct and test a
model incorporating these features, he does review and reject alternative explanations of
regression results. To argue that unobserved variation in labor effort is not a plausible
explanation he first calculates the growth rate of effective labor input required to explain
all of the observed movements in total factor productivity. From this measure he subtracts
the growth rate of actual hours of work to generate a time series on the growth rate in
work effort. Based on these calculations Hall argues that the implied movements in work
effort are implausibly large. However, this calculation is not germane to our analysis
because it presumes that there are mo technology shocks whatsoever. In our context the
relevant issue is what must the time series properties of effort be to explain the regression
coefficient in question, not whether time varying effort can explain all movements in total
factor productivity. Our analysis indicates that time varying effort seems quite plausiblie as
an explanation for the phenomenon in question. Hall’s conjectures notwithstanding, the
contemporaneous correlation between government consumption and the Solow residual can
be accounted for within a model embodying the twin assumptions of perfect competition

and a constant returns to scale production technology. In any event it is clear that the time

18n the first sample the point estimate of bg is .0798 with standard error .0795. The probability limit of
bg that emerges from our model equals .0797 with a standard error of .0259. For the second sample the
point estimate of bg is .280 with a standard error of .099, while the probability limit of bg implied by the
model is .0225 with standard error .004.
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varying effort model does substantially better than standard RBC models on this
dimension of the data.

We now investigate the models’ implications for the dynamic correlations between
hours worked and average productivity. The first column of Table 5 reports our estimates
of the correlation between Ht—i and APLt, i = —4-3, ..., 3,4, over the whole sample
period. The second and third columns report the corresponding model predictions about
what the econometrician would see in the data if hours worked were not corrupted by
measurement error. To be more precise, these probability limits refer to the correlations
between Ia(APL,), and ln(H:_i), i = 43,34 Here APL; equals In(Y,) ~ In(H;) and
H: denotes the true unobserved level of hours worked at time t. The last two columns of
Table 5 report the models’ predictions for the probability limits of the dynamic correlations
between observed average productivity and hours worked.

We wish to emphasize four interesting features of the estimated correlations in the
data. First, contemporaneous average productivity and hours display a weak negative
correlation (—.19). One cannot reject the null hypothesis that this correlation actually
equals zero. This is consistent with findings by numerous authors that different measures of
the returns to working do not display a pronounced correlation with hours worked (see
Christiano and Eichenbaum (1990)). Second, average productivity is positively correlated
with hours worked at all leads. However, with one exception, average productivity is
negatively correlated with hours worked at all lags. In the exceptional case, this correlation
is insignificantly different from zero. Third, the maximal correlation occurs between
average productivity at time t and hours worked at time t+2. In this sense average
productivity leads the cycle. Fourth, the maximal negative correlation occurs between
average productivity at time t and hours worked at time t—4. The is consistent with
Gordon’s (1979) finding that average productivity tends to fall at the end of expansions.

Consider the models’ predictions for the dynamic correlations between true average

productivity and hours worked. Columns 2 and 3 of Table 5 reveal that the predictions of
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the two models for these correlations differ in three important ways. First, while the
contemporaneous correlation between average productivity and hours worked is large and
positive in the indivisible labor model, it is insignificantly different from zero in our model.
Second, the maximal correlation between true hours worked and average productivity in
the standard indivisible labor model occurs contemporaneously. In our model the maximum
value of this correlation occurs at lead 1. Third, according to the standard indivisible labor
model true average productivity displays a strong positive correlation with lagged hours
worked, and these correlations are systematically larger than those between average
productivity and future hours worked. In contrast our model predicts that average
productivity ought to display a larger correlation with future hours worked than with
lagged hours worked. These observations suggest that the basic structure of our model
seems more consistent with the data than the constant effort model. However these results
cannot be used to test the two models. For that we must consider the models’ implications
for the dynamic correlations between observed average productivity and hours worked.

These are reported in the fourth and fifth columns of Table 5, each element of which
contains three numbers. The top number corresponds to the probability limit of the model
for the moment in question. The middle number corresponds to the estimated standard
error of the probability limit. The bottom number equals the probability value of the J
statistic associated with testing the null hypothesis that the model moment and the data
moment are the same in population.

Both models do quite well in accounting for the correlation between average
productivity and hours worked at time t+i, i = +1,0,~1. However the models do less well
at longer leads and lags. Table 6 reports estimates of the dynamic correlations and the
£node1 predictions allowing for a break in the sample. Comparing Tables 5 and 6 we can see
that model predictions are not substantially affected by the sample split. However, the
estimated correlations in the data appear to be quite semsitive. It is still the case that in

both samples average productivity leads the cycle. But, relative to the whole data set, this
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feature is muted in the first sample and more salient in the second sample.

In order to assess the models’ ability to simultaneously account for these
correlations, we tested the joint hypothesis that the values of p(APLt, Ht+i)’ i=-L,..+L
in the model and the data are the same in population. The results of testfor L =1 and L =
2 are reported in Table 7. For L = 1 (2) our J statistic is asymptotically distributed as a
chi-square statistic with 3 (5) degrees of freedom. Consider first the results obtained using
the whole sample. With L = 1 the probability values of the J statistics for the time varying
effort and standard indivisible labor models are .675 and .017, respectively. With L = 2,
the J statistics for the time varying effort and constant effort models have probability
values of .001 and .037. So with L=1 there is less evidence against our model. But with
L=2 there is less evidence against the standard indivisible labor model. However, this
inference depends sensitively on allowing for a break in the sample.

In the first sample, with L = 1, the J statistics for the time varying and constant
effort models have probability values of .526 and .381. For the second sample, the
corresponding J statistics have probability values of .278 and .003. So this test yields very
little evidence against the time varying effort model in either subsample. On the other
hand this test yields strong evidence against the standard indivisible labor model in the
second sample. In the first sample, when L = 2, the J statistics for the time varying effort
and indivisible labor models have probability values equal to .172 and .085. For the second
sample, the corresponding J statistics have probability values of .001 and .000. Evidently,
once we allow for a split in the sample the time varying effort model out—performs the
constant effort model both when L = 1 and when L = 2, irrespective of which subsample is
used. Indeed, the only evidence against the time varying effort model occurs for the L = 2
test in the second subsample. In contrast, there is a great deal of evidence against the
constant effort model in the second sample irrespective of whether L equals one or two.

Overall we conclude that neither of the two models that we consider explains all

aspects of the data. Still, our evidence indicates that our model is at least as successful as
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the indivisible labor model in accounting for those aspects of the data investigated in this
paper. Indeed we have argued that along a variety of dimensions the time varying effort
model out—performs the constant effort model. From this perspective, we conclude that (a)
existing estimates of the importance of technology shocks are very sensitive to allowing for
labor hoarding type behavior, and (b) there is reason to believe that labor hoarding type
behavior is plausible in the sense that incorporating it into the analysis moves the model

into closer conformity with the aggregate data.

5. CONCLUSION

This paper has investigated the sensitivity of Solow residual based measures of
technology shocks. Our evidence provides support for the view that a significant proportion
of movements in the Solow residual reflect labor hoarding behavior. Our findings cast
doubt on existing claims in the RBC literature that technology shocks account for a large
proportion of the variance in post—war US aggregate output.

Our model embodies a number of strong assumptions which ought to be relaxed in
future research. First, we supposed that workers’ shift length is constant. This means that
firms can only respond to unanticipated demand and technology shocks by inducing labor
to work more intensively. It would be desirable to extend the model to allow firms to vary
the shift length itself, say by allowing for overtime. In principle, such an extension would
allow us to study the movements in labor, both along the extensive and intensive margins.
Second, we assumed that employment is chosen on a quarterly basis. While this
corresponds to the standard practice of identifying agents’ decision intervals with the data
frequency, the quantitative implications of our theory may be sensitive to this assumption.
We suspect that allowing for temporal aggregation effects will reduce the impact of labor
hoarding on our estimates of the variance of techrology shocks. On the other hand, we

assumed that there are no costs to changing employment over different periods.
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Introducing adjustment costs would probably magnify the effects of labor hoarding over
time and increase the impact of such behavior on estimates of the variance of technology

shocks.
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APPENDIX

In this appendix we show how the unconditional moment restrictions implied by the
labor hoarding model must be modified to take account of measurement error in hours
worked.

Equation (3.11) shows that, for either measure of hours worked, we are assuming
that

*
ln(Ht) = ln(Ht) + v,

*
where Ht is observed hours worked, Ht is true hours worked, and vy is some i.i.d.

measurement error. Accordingly we denote all true measures of variables with asterisks.
Recall that with labor hoarding we have the two equations
* *

*
(2.13a) vit =mk, + mon, + maa, + T,
* *
(2.18) ;= ay +aw,.
*
It can be shown that s, is given by
* *
(A1) 8, =y, — (1-a)k, — ah,.

P=4

* * *
Our model implies that n, = h,, so that (2.13a), (2.18) and (A.1) can be solved for a, as a
*
function of y, ky, h; and g,. This solution is given by
* *
(A.2) a; = [y, — (1-ator )k, — o{l+m))h, — amgl/(1+ary).
*
Unfortunately, ht is not observable. Therefore, in practice we can only generate the series
a, = [y, — (1—otam )k, — o(l+7y)h, — amg]/(1+amy).

*
Since ht = h: + vy follows from our definition of the measurement error, 3y and a, are
related according to: .
(A.3) a =a, ~ [a{1+my)/(1+amg)] v,.
*
Letting ¢ = a(1+7r2)/(1+a7rs) we obtain a, = a, — ¢v,.
*
The moment conditions (3.8a) and (3.8b) hold for the true technology shock a,.
* * *
(3.8a) Efa, — p,ay_ylag_ =0
* * 2 2 _
(3.8b) E{fa, - paat_l] - 0’6}*— 0
* *
Now, Elay—p,a,_yJa,_) = Ela; — vy —p,(ay_y=vy 2y~ ¢vy )
* * *
= Ellay —ppay ) — 00y — o7y )2y —dvi )
2 2
=-E[¢ pavt—l]
2 2
=—¢"p, 0.
2 2 * * 2 2
AISO, E{[a't - paat—l] - Ue} = E{[(at - ¢vt) - pa(at—l - ¢Vt_1)] -a }

€
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= Bl =gyt 1) = 40— ) =)

* * * 2 2 2
= E{(a ~ PaBy 1) = 28(ay ~pyay vy ) T (A ) - 0
= 0 + ¢ (1+pa)03— 03

=¢ (1+p) 2

These results justify the forms of the moment restrictions given in (3.13) and (3.14).
Equation (3.53 holds for the true variables.

(3.5) E{{T—y-W, 1)} — oY, /(YW H))]} = 0

If (2.13a) is used to solve for the level of work effort but measures of hours worked, and
therefore values of the technology shock, are corrupted with error, we will obtain a time
series:

W

L = Tk +7r2h +7r3at+"rg
—7rk Tohy + 3t+7r1’,L4 —+—(7r2—¢7r3)vt
= wt + (7r2 - ¢Tg)v,
This implies tliat

W= W, exp[(7r2 - ¢7r3)vt]‘

*
We will construct the left hand side of (3.5) when W, is substituted for W,, and H, is
*

substituted for H,.

AT —$— W0 — ofY,/(CPW 1) =

* _ * %

HT—p=W expl(my=0mg)v J} ™ = oY, /[COW Hyexp((1+my—gmy)v 1)
Taking a first—order Taylor series expansion of the right hand side around vy = 0 we
obtain

KT~ =Wl —alY, /(CRW )]
(T, 6) L = 0.5(T—pW )72 W, f(mp=gmy)v, | -
a{[Yt/(th’w:H:)] - 0.5[Yt/(CIt)W:H:)](1+7r2—¢7r3)vt}.
Taking expectations of both sides of the equation we find that .
E{O(T—w—Wtf)_l—a[Y J(CYWHT} 2 B{AT—-W, “h” —a[Yt/(Clt)Wth)]}.

As a result, we do not modify equatlon (3.5) to account for measurement error. Similarly,
it can be shown that the same modifications must be made for the standard indivisible
labor model with « substituted for ¢ wherever it appears.
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Table 1
Model Parameters (Standard Errors)
Time Varying Effort Model

Parameter Whole Sample Sample Period 1 Sample Period 2
é ,0209 .0196 0221
(.0003) (.0001) (.0002)
a 6553 6593 6504
(.0057) (.0062) (.0095)
f 3.6779 3.7810 3.5826
(.0334) (.0324) (.0537)
Py L9772 .8691 .8815
"(.0289) (.0430) {.0611)
7, ,0072 .0042 .0067
(.0012) (.0006) (.0006)
In(Y) 8.5722 8.4914 8.8733
(.0181) (.0138) (.0107)
In(7,) ,0041 .0069 .0015
y (.0003) (.0004) (.0003)
In(G) 6.9488 6.8090 7.1618
(.0278) (.0167) (.0111)
In(7 ) ,0021 .0073 -.0013
§ (.0004) {.0007) {.0003)
) ,9791 ,9380 6618
g (.0212) (.0467) (.0769)
o .0145 0143 0115
H (.0011) {.0013) {.0012)
7, .0087 .0084 .0091
(.0016) (.0020) (.0022)



Table 2
Model Parameters (Standard Errors)
Constant Effort Model

Parameter Whole Sample Sample Period 1 Sample Period 2
6 .0209 .0196 .0221
(.0003) (.0001) (.0002)
@ .6553 6593 6504
(.0057) (.0062) (.0537)
9 3.6977 3.8014 3.5059
(.0401) (.0364) (.0610)
Py .9857 8624 8842
(.0259) (.0706) (.0647)
o, .0089 .0060 .0101
(.0013) (.0022) (.0015)
In(Y) 8.5722 8.4914 8.8733
(.0181) (.0138) (.0107)
In(7) .0041 ,0069 .0015
(.0003) (.0004) (.0003)
In(@) 6.9488 6.8090 7.1618
(.0278) (.0167) (.0111)
In(7,) .0021 .0073 -.0013
§ (.0004) (.0007) (.0003)
) .9791 .9380 .6618
8 (.0212) (.0467) (.0769)
o .0145 .0143 .0115
K (.0011) (.0013) (.0012)
7, .0087 .0084 .0091
(.0016) (.0020) (.0022)



Table 3
Variability of Output Accounted by Models

Time Varying Constant Effort US Data
Effort Model Model
HP Fil A
ter ay Uy A ay
Whole Sample .015 .58 .017 .81 .019
(.001) (.14) (.006)  (.56) (.002)
Sample Period 1 .011 .71 .017 1.69 .013
(.001) (.20) (.007)  (1.51) (.002)
Sample Period 2 017 .52 .028 1.42 .024
(.001) (.12) (.005)  (.65) (.003)



Table 4A
Selected Second Moments

Whole Sample
2nd Moment US Data Time Varying Constant Effort
Effort Model Model
afa .44 .48 .53
y (.03) .19 .24
.80 .69
onlo 2.22 2.77 2.65
dk’ "y (.07 45 59
.23 47
o_[dy 1.15 1.29 1.090
g (.20) 15 35
.50 .89
o 0 1.22 1.017 1.053
n/"APL (12) 41 46
.39 T2
% 017 .013 .013
(.002) .003) .005)
.76] .94]
Table 4B
Selected Second Moments: Subsamples
Parameter US Data  Time Constant US Data  Time Constant
Varying Effort Varying Effort
Effort Effort
U’C/U 49 .27 .24 42 .23 22
y (.08) .03) .05 (.03) .05 .05)
.009) .02 0.0 .001]
Udk/a 2.085 3.32 3.38 2.27 3.41 3.42
y (.17) 11 .16 (.08) 17 .18
0.0 0.0 0.0 0.0
o_/dy 2.20 1.70 1.10 55 .16 .46
g (.42) 29 43 (.08) .10 .08
.24 .10 .04 .51
o 10y 1.009 1.17 1.85 1.35 1.21 2.33
n/ APL (.16) 05 70 (15) 05 64
.38 27 40 .14
% 017 .012 017 .02 016 .025
(.002) .002) .005) (.002) .001) .005)
.75] 37] .24] .02)



Table 5

Data and Model Predictions For Dynamic Correlations Between Average Productivity

and Hours Worked
p(APLt’Ht+i) US Data  Time Constant Time Constant
Varying  Effort Varying Effort
Effort Effort
Measurement Error Free Error Ridden
4 .27 .04 -.19 -01 -.08
(.12) (.02) (.07) 01 07
.02 .01
3 .38 .20 -.07 .05 -01
(.12) (.04) (.03) .01) .04)
.001] 002]
2 .43 .39 .09 .14 .08
(.11) (.08) (.06) .03 .03)
01 .008]
1 .27 .64 .31 .25 .21
(.10) (.12) (.13) .05 10
.92 .70
0 -19 18 60 .08 ~.09
(13) (.15) (.24) 18 37
.58 79
-1 .08 .16 .52 14 .33
(.08) (.11) (.21) .08 17
.60 .19
-2 -01 .14 .44 .12 .28
(.08) (.08) (.17) .06 14
.16 .08
-3 -.20 11 .37 1 .24
(.10) (.05) (.14) .04) 12)
.003] .004]
-4 -31 .09 .29 .09 .19
(.10) (.03) (.11) .03 .08
0.0 0.0



Table 6

Correlations (n,, APLt—i)
Data and Model Predictions Incorporating Measurement Error

i US Data Time Varying Constant US Data  Time Varying Constant
Effort Effort Effort Effort
Model Modell Model Model
Sample Period 1 Sample Period 2
4 -.024 -.005 -.14 .41 -.02 -.21
(14) .02 12 {.16) .02 .07
.89 48 .01 0.0
3 .14 .04 -.10 .48 .05 -.13
(.13) .008) .10 (.17) .02) .07
.47] 11 .008] 0.0
2 .23 .11 -.03 .53 .16 -.02
(.12) .02 07 {.16) .02 .08
.31 .04 .01 0.0
1 .03 21 .07 .38 .30 .14
(.10) .06 .05 (.14) .05 .09
.15 .13 .54 .09
0 -.47 -23 -.25 -.05 .09 .06
(.10) 23 35 (.18) .20 .20
.33 .56 .51 .62
-1 -.05 .02 .22 .14 .07 .37
(.12) .05 11 (.10) .04 .09
.60 .14 .45 .07
—2 -.04 .04 .22 .007 .07 .34
(11) .04 (.11 (.11) .04 .08)
.50 o7 .50 .004]
-3 =11 .04 21 -.23 .07 .31
(.15) .03 (.10 (.13) .03 07
.31 t.04 .02 0.0
—4 =31 .05 .19 -30 .06 .27
(17 .02 .08) (13) .02) .06
.03 .003] .005] 0.0
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