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1. INTRODUCTION

Research and development (R&D) is concentrated in a small number of high-income countries
(Boroush, 2020). To what extent does this phenomenon undetlie global disparities in productivity?

One answer to this question presumes that the most transformative ideas are broadly applicable
and easily transmittable. Therefore, technology diffusion erodes disparities in the long run regard-
less of the global distribution of R&D and barriers to technology adoption are the main drivers
of global inequality (Parente and Prescott, 1994; Barro and Sala-i Martin, 1997). A second answer,
however, emphasizes that new technologies are attached to specific conditions and characteristics of
production (Atkinson and Stiglitz, 1969). According to this inappropriate technology hypothesis, R&D
leaders develop technologies that are suitable for local conditions but unproductive in others (Stew-
art, 1978; Basu and Weil, 1998; Acemoglu and Zilibotti, 2001). Low technology diffusion is a natural
consequence, even without frictions to technology adoption. Disparities in global technology use
and productivity are driven by the incentives faced by innovators rather than those faced by adopters.

The premises of the inappropriate technology hypothesis loom especially large in agriculture.
This may be best illustrated via an example. The Corn Rootworm is nicknamed the “Billion-Dollar
Bug” in the United States biotechnology industry for its impact on corn production (Nordhaus, 2017).
Developing technology that confers resistance against this foe is the focus of a significant R&D effort,
an important achievement of which is the development of genetically modified varieties that are
toxic to Corn Rootworms but not other fauna (Bessin, 2019). These tools are precisely engineered to
target a pest that is common in the US. But they are not intentionally designed to target the pests
that decimate corn production elsewhere in the world, like the Maize Stalk Borer that is endemic to
sub-Saharan Africa and estimated to cause corn losses in Kenya of 10-20% (De Groote, 2002).

Beyond a handful of case studies, however, little is known about the inappropriate technology
hypothesis in global agriculture or any other sector. In particular, is agricultural innovation sys-
tematically directed toward the environmental conditions of technology leaders? If so, does the
mismatch between frontier innovation and local ecological conditions in much of the world system-
atically reduce the global diffusion of agricultural technology? And to what extent does this force
explain the immense cross-country disparities in agricultural productivity?

This paper investigates each pillar of the inappropriate technology hypothesis in the context
of global agriculture. First, we show that agricultural innovation is strongly directed toward the
specific ecological characteristics of high-income, R&D-intensive countries. Second, using a new
measure of environmental mismatch that varies at the level of country pairs and crops, we show that
mismatch significantly reduces the global diffusion of agricultural technology, especially from more
to less innovative countries. Finally, we show that environmental mismatch with those innovative
countries reduces agricultural output. We interpret these results via a model that endogenizes
global agricultural productivity as the product of unevenly appropriate innovation, and we use the
model to study counterfactual changes to global research and the environment. Together, these
results provide strong evidence for the inappropriate technology hypothesis—linking its premises

to its predictions—as well as a framework to measure its incidence in a critical sector.



Model. We first introduce a model of inappropriate technology in global agriculture. We build on
a standard framework for agricultural technology use, crop choice, and demand (as in, e.g., Costinot
et al., 2016) by adding an innovative sector in a “Leader” country. The innovator invests in R&D to
improve technology along margins that are specific to certain environmental conditions. Because
of differences in profit opportunities and costs, innovation is endogenously directed to the environ-
mental conditions of the Leader. Thus, places that are more environmentally similar to the leader
receive more technology transfer and have higher productivity. The model motivates our empirical
strategy to measure environmental mismatch and its relationship with technology diffusion and
output. The model also provides a structural interpretation of our estimating equations, which we

later exploit to study counterfactuals.

Measurement. To study the inappropriate technology hypothesis, we need to measure: (i) the
environmental conditions to which technologies are adapted, (ii) the between-location mismatch in
these conditions, (iii) agricultural innovation and technology diffusion, and (iv) agricultural output.

We first introduce a novel method to measure environmental conditions and environmental mis-
match in agriculture using systematic data on crop pests and pathogens (CPPs). CPPs—including
viruses, bacteria, parasitic plants, insects, and fungi—are estimated to reduce global output by 50-
80% (Oerke and Dehne, 2004), and CPP resistance is a key focus of both traditional plant breeding
and modern transgenic crop development (Dong and Ronald, 2019). Using data from the Centre for
Agriculture and Bioscience International’s Crop Protection Compendium (CPC), which are based
on expert review of published literature in plant pathology and agronomy (Pasiecznik et al., 2005)
and widely used in ecological sciences (see, e.g., Savary et al., 2019), we record the global range and
agricultural host plants for all known, economically relevant CPPs. This approach picks up precise
variation in environmental conditions across both locations and crops.!

Combining the CPP data with techniques from population ecology (Jost et al., 2011), we construct
a measure of "CPP mismatch” that summarizes the difference in the species composition of CPPs
affecting a crop in different locations. This measure incorporates variation across country pairs,
which have different local CPPs, and across crops, which are hosts to different CPPs. We use
CPP mismatch as our main shifter of “potential inappropriateness” of agricultural technologies
transferred from one environment to another.

We next develop several measures of agricultural innovation and technology diffusion. First, we
build a novel data set on all international instances of intellectual property (IP) protection for plant
varieties using a proprietary dataset from the International Union for the Protection of New Varieties
of Plants (UPOV). UPOV’s unique variety identifiers allow us to track individual varieties from their
first introduction in one country to their subsequent transfer to others. Second, we compile all utility
patents related to agricultural technology and, using the title and abstract, link them to specific crops
and CPPs. We track cross-border transfers via both patent families and patent citations. Together,

these measures allow us to quantify both the “downstream” introduction of improved inputs that

1To account for the importance of other environmental differences, we also develop independent measures of agro-
climatic environmental differences (e.g., in temperature and soil characteristics).



embody productivity enhancements and the “upstream” flows of technical knowledge.

Finally, we compile global data at the crop-by-country level on crop-specific output from the Food
and Agriculture Organization Statistics (FAOSTAT) database. We also collect data on crop-specific
output for each state in Brazil and India using the latest agricultural census from both countries.

Empirical Findings. We first document that agricultural innovation is strongly directed toward the
environmental conditions of R&D leaders. The raw data reveal how central CPPs are to agricultural
technology: almost two-thirds of all patents mention at least one CPP by name. But not all CPPs get
equal focus. For example, a CPP that is present in the US is, on average, mentioned in more than five
times as many patents as one that is not. Using cross-sectional variation, we show that this finding
is explained by a general focus on larger markets—but only if they enforce intellectual property (IP)
protection for plant biotechnology—as well as a strong “home bias” toward locally present CPPs.

We next show that environmental mismatch substantially reduces the cross-border transfer of
technology. Our estimating equation, derived from the model, sweeps out possible confounds at
the origin-by-crop level (e.g., origin market size, technology, and income), destination-by-crop level
(e.g., destination market size, technology, and income), or the country-pair level (e.g., distance)
as fixed effects. Thus, our empirical strategy exploits fine-grained variation at the level of crops
and country-pairs. Mismatch reduces the transfer of novel agricultural inputs (measured via plant
variety transfer), the transfer of agricultural inventions (measured via patent families), and knowl-
edge flows (measured via patent citations). Our estimates imply that CPP dissimilarities reduce
the international diffusion of crop varieties by 30% for the median crop and country-pair. As a
placebo test, we show that there is no comparable effect of mismatch on the diffusion of mechanical
technologies (e.g., harvesters), whose productivity should be less affected by the local environment.
To demonstrate that our finding is not relevant for only markets with IP protection, we also show
that mismatch inhibits the introduction of new varieties in sub-Saharan Africa, as measured by the
CGIAR's Diffusion and Impact of Improved Varieties in Africa (DIIVA) Project, and the diffusion of
high-yield varieties from the Green Revolution, as measured by Evenson and Gollin (2003b).

A further prediction of our model is that the effect of mismatch scales with the intensity of
innovation in technological origin countries, but need not be related to characteristics of destination
countries. Three additional results are consistent with this prediction. First, mismatch with techno-
logical leaders, identified in our data as the countries (for each crop) that produce the most novel
varieties, has a 30 times larger effect on technology transfer than mismatch with other countries.
By contrast, in our preferred specification, mismatch with countries other than the leaders has no
statistical effect on technology transfer. Second, the effect of ecological mismatch is substantially
larger for crops that are more central to recent R&D efforts, like those with genetic modification tech-
nology. Finally, there is no economically or statistically meaningful heterogeneity of our estimates
across a range of proxies for the development stage of destinations. Mismatch inhibits technology
diffusion to countries rich or poor, abundant or scarce in human capital, and high or low in the use
of other chemical inputs.

Having established that mismatch inhibits the diffusion of agricultural technology, we next em-



pirically document that mismatch with R&D leaders reduces agricultural output. Our estimating
equation, derived from the model, exploits within-country and within-crop variation. Our baseline
estimate implies that a one-standard-deviation increase in CPP mismatch with the frontier reduces
crop-specific production by 0.42 standard deviations. The effect size is similar after flexibly control-
ling for innate suitability—the key residual variation in the model—using both external agroclimatic
models of potential yield (FAO GAEZ) as well as a machine-learning approach.

We pursue three complementary strategies to validate a causal interpretation of this result. First,
in a falsification exercise, we re-estimate our regression replacing our main independent variable
with CPP mismatch to each country in the world. The effect of CPP mismatch with non-leader
countries is centered around zero and the effect of mismatch with leaders is in the far tail of the
effect size distribution. Second, we find quantitatively similar effects of CPP mismatch on production
within countries using state-level data from India and Brazil. By including country-by-crop fixed
effects in this strategy, we fully absorb any characteristics that vary across crop-country pairs like
trade and agricultural policy, local R&D, or country-specific features of input demand.

Finally, we exploit two shifts in the direction of global agricultural innovation as natural exper-
iments. Exploiting changes in the direction of technology makes it possible to fully absorb static
differences across crop-country pairs and control for trends in initial productivity. We first study
the Green Revolution of the 1960s and 1970s, an effort to shift agricultural innovation toward cer-
tain tropical regions. We show that this change in the global focus of innovation led to a greater
expansion of production in places with lower mismatch with centers of Green Revolution breeding.
Second, we study the rise of US biotechnology in the past several decades, driven by advances
in genetic modification technology (Fernandez-Cornejo and Caswell, 2006). We show that this in-
duced growth in regions more ecologically similar to the US, especially for crops affected by GM
advancements. Thus, the impact of local ecology on productivity changes over time as the focus of

innovation shifts.

Quantification. We combine our empirical estimates with the model to quantify their aggregate
productivity consequences. We calibrate the model to match our estimates of the effect of CPP
mismatch on production and external estimates of the elasticities of supply and demand, which
discipline crop choice and general-equilibrium interactions.

To benchmark the importance of inappropriate technology, we first study an intentionally ex-
treme scenario of eliminating the gap between research on “leader” and “non-leader” environments.
Comparing the observed equilibrium to this counterfactual, we estimate that inappropriateness re-
duces average global agricultural productivity by 58% and explains 15% of global productivity
disparities measured by the inter-quartile range. This is because the countries most ecologically
different from the frontier, especially in Africa and Asia, are also the least productive today.

We then study three counterfactual experiments that speak to contemporary trends. First,
we identify the places where research investment could have the largest possible effect on global
productivity after taking into account the network of environmental mismatch. We find large gains

from focusing new research investments in India, China, and sub-Saharan Africa. Second, we



measure the effects of the shift in global R&D toward large emerging economies: in particular,
Brazil, Russia, India, and China (BRIC). The rise of BRIC is favorable for the world’s least productive
countries, due to their higher average environmental similarity to BRIC versus current technology
leaders, and could serve as a partial substitute for local R&D in low-income countries. Finally, we
study the consequences of a predicted poleward shift in the habitable range of CPPs due to climate
change (Bebber et al., 2013). By exposing rich countries to CPPs that are currently only present in
poor ones, climate change could coordinate international research on a more common set of threats
and therefore, perhaps paradoxically, make some technologies more globally “appropriate.”

Together, all three experiments convey that the global distribution of agricultural productivity—
and even the broader notion of which environments are economically “good” and “bad”—is not
an immutable object. Instead, this distribution is an endogenous outcome of innovation and its
response to a changing world.

Related Literature. This paper builds on prior work about how the appropriateness of technology
shapes productivity differences and technology diffusion (Griliches, 1957; Atkinson and Stiglitz,
1969; Stewart, 1978). Recent work in this area has modeled the productivity consequences of high-
income countries” developing capital- or skill-complementing technology that is less appropriate
elsewhere (Basu and Weil, 1998; Acemoglu and Zilibotti, 2001; Caselli and Wilson, 2004; Caselli and
Coleman II, 2006; Rossi, 2022). We focus instead on ecological differences, which cause perhaps
the most acute inappropriate technology problem since the underlying differences in endowments
are (essentially) immutable. We also link causal estimates of the effect of inappropriateness on
productivity to empirical analysis of the direction of innovation and technology diffusion.?

More broadly, this paper studies the causes and consequences of technology diffusion (Keller,
2004; Comin and Mestieri, 2014). Related work includes macro-level studies of technology transfer
in prior centuries (Comin and Hobijn, 2004, 2010; Comin and Mestieri, 2018; Giorcelli, 2019) and
micro-level studies of technology upgrading in modern times (e.g., Atkin et al., 2017; Verhoogen,
2021). A particularly related strand of this literature shows that constraints faced by farmers inhibit
the adoption of modern agricultural technologies (e.g., Bandiera and Rasul, 2006; Conley and Udry,
2010; Duflo et al., 2011; Suri and Udry, 2022). While most work on these topics focuses on the
characteristics of technology adopters, our results highlight how the direction of innovation shapes how
broadly technologies diffuse and whether technological progress leads to more or less inequality.
That is, our findings convey that the incentives faced by innovators—often living in a few high-
income countries—are critical determinants of the global distribution of agricultural productivity.®

We also contribute to a large literature studying the determinants of the vast cross-country
differences in agricultural productivity, which are larger even than those in manufacturing (Caselli,

2005). This work broadly concludes that differences in measurement, factor use, and geography

2Qur analysis parallels work by Kremer and Glennerster (2004) and Hotez et al. (2007) on “neglected tropical diseases”
for humans by studying “neglected ecological threats” for plants.

3Consistent with our hypothesis, Suri (2011) argues that differences in hybrid maize adoption in Kenya reflect variation
in returns—a feature of the technology itself—and not adoption frictions. Marenya and Barrett (2009) also find that
heterogeneous potential returns affect fertilizer demand in Kenya.



cannot fully account for these productivity gaps (e.g., Gollin et al., 2014; Adamopoulos and Restuccia,
2022; Boppart et al., 2023). Our work can be understood as showing how the uneven focus of
technology can endogenously contribute to global disparities in productivity.

Finally, we extend a large literature on the relationship between environmental conditions and
development (e.g., Kamarck, 1976; Bloom and Sachs, 1998; Gallup et al., 1999). Our focus on the
confluence of ecology and technology diffusion is one mechanism in the theory of Diamond (1997),
who argues that the easier diffusion of technology across “horizontal” landmasses explains the
pre-modern development of Eurasia. Departing from prior work, our analysis emphasizes that the
effect of geography is not fixed, but instead determined as an evolving outcome of endogenous

technology development and diffusion.

Outline. This paper is organized as follows. Section 2 describes the model. Section 3 describes
background, data, and measurement. Section 4 reports our results on the uneven focus of global
innovation. Section 5 reports our results on technology diffusion. Section 6 reports our results on

production. Section 7 presents our quantitative analysis. Section 8 concludes.

2. A MODEL OF INAPPROPRIATE TECHNOLOGY IN AGRICULTURE

We first present a model that introduces the key economic mechanisms of the inappropriate
technology hypothesis and our strategies for measurement and parameter identification.

2.1 Set-up

Production. This block of the model is intentionally standard (as in, e.g., Costinot et al., 2016).
There is a set of countries indexed by ¢ € {1,...,L} and a set of crops indexed by k € {1,...,K}. In
each country, there is a continuum of farms indexed by i € (0, 1). The output of farm i, if it produces
crop k, is (Xi,k,g)l_y (Ok ¢k e€i k), where X; i ¢ is the amount used of an agricultural input, O ¢
is the productivity of that input, wi ¢ is the natural suitability for crop k in country ¢, ¢; ;¢ is an
idiosyncratic shock with a Fréchet distribution with mean one and shape parameter 1 > 0, and
y € (0,1) measures the return to fixed factors. Each agricultural input, specialized to a crop k and
country ¢, is available at the price gx ».* Taking as given input prices, output prices, and productivity,
each farmer i decides what crop to grow and how much to invest in inputs.

Environmentally Adapted Technology. There is a set of possible environmental features, 7~ C
{0,1,2,...}. The environment of each location-crop pair has features 7; ; C 7, normalized to size
T > 0. For example, 7k, may encode the identities of locally present crop pests and pathogens
(CPPs). Direct effects of these features can be modeled as part of productivity wy .

Technologies have two characteristics that, together, determine their productivity in a given
environment. The first is a “general” characteristic Ay € Ry, which affects productivity in any
location. The second is a set of adaptations to specific ecological features, (B k¢)te7; ,, which affect

4In Appendix A.5, we show how a production technology with additional inputs (e.g., fertilizer or labor) can be
mapped to the baseline model after optimizing over the other choices.



productivity only when the relevant features are present. For example, if the input is an improved
seed variety, each B; ¢ could describe the extent of resistance to a locally present CPP indexed by .
These components determine productivity 0 ¢ as follows:

1-a
Ok,e = exp| alog Ax + T Z log By k¢ 1)
teﬁ,[

where a € (0, 1) parameterizes the relative importance of the general characteristic.

The distinction between general and environmentally specific characteristics of agricultural tech-
nology can be illustrated via Reynolds and Borlaug’s (2006) account of wheat development at the
Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) in Mexico. An important break-
through of CIMMYT scientists was to breed semi-dwarf wheat that grew shorter and were therefore
able to sustain higher yields. In principle, this improvement was beneficial in any environment
("A”). A major challenge in globally deploying new semi-dwarf wheat varieties was that disease
environments vastly differed: for example, the relatively dry, temperate environment of central
Mexico is predominately affected by wheat rust, whereas the wet, tropical environment of West
Africa is affected by a broader set of diseases including septorias, Fusarium blights, and barley yel-
low dwarf virus (“7”). A major further focus of CIMMYT research was breeding resistance to these
varied threats (“B”). Without these adaptations, there was no way to employ CIMMYT’s improved
varieties—and the embodied improvement of semi-dwarfism—in these environments.

Innovation. There is a representative innovator in country L, the technology “Leader.” They can
produce units of the technology at a constant marginal cost, normalized to 1. The innovator markets
the technology in each country ¢, but their market power is limited by a fringe of competitive
“copycat” inventors that can replicate the technology at marginal cost 1 < C; < ﬁ The innovator
also pays an iceberg cost p; € [0,1] on sales in country ¢, which stands in for other costs of trade,
licensing, and IP protection. Thus the innovator’s profit per unit of technology sold is:

pe:=1-p)Cr—1 )

The innovator can make costly R&D investments to adapt their technology to each ecological
characteristic. If the investment is made for crop k and characteristic t, then By ¢ = B > 1 for all
locations ¢; otherwise, B; ks = B = 1. This investment has a fixed cost c if the characteristic is “local”
to the Leader country, or t € 7;, and ¢ > c otherwise. The lower cost for directing research toward
local characteristics may capture both knowledge about local conditions and physical inputs like
local test fields and genetic material.

Equilibrium. To close the model, we assume that prices (pk)f:1 lie on a global demand curve
(pk)f:1 = d((Yk)le), where Y is total production of each crop. An equilibrium is a vector of
production (Y ), total input demands (X ¢), prices (px), and CPP technology development (B; k)

such that (i) farmers optimize given correct conjectures of prices, (ii) innovators optimize given



correct conjectures of prices, productivities, and local research, and (iii) markets clear for each crop.

Extended Model. Our model is intentionally simplified to ease exposition. In Appendix B, we
present a version of the model generalized along five margins: (i) multiple countries can innovate, so
leaders emerge endogenously; (ii) innovators can invest in both context-neutral (“A”) and context-
specific (“B”) components of technology; (iii) innovators can improve these attributes along an
intensive margin; (iv) innovators have imperfect expectations of technology demand; and (v) farmers

face input-adoption wedges. We show how all results derived below apply to this case.

2.2 Model Predictions and Mapping to Estimation

We now describe the model’s main predictions. The first three motivate our empirical strategies
Sections 4-6. The last motivates our strategy for aggregation and quantification in Section 7. The

proofs of all results are in Appendix A.

The Uneven Focus of Innovation. Three forces give the innovator incentives to direct research
toward the ecological characteristics of the Leader country. First, it may be significantly cheaper
to research local ecological characteristics versus non-local characteristics. As we further explain
in Section 3.1.1, this is especially natural given the mechanics of plant development via selective
breeding. Second, the Leader market could simply be a larger market: primitively, this could be
driven by wg 1 > wg ¢ for ¢ # L. Third, the leader market may have the largest profit margin, or
ur, > pe for all £’ # L. This could arise due to better enforcement of intellectual property (IP) law in
L. The case studied by Acemoglu and Zilibotti (2001), which attributes international disparities in
innovation to heterogeneous IP enforcement, is nested when iy > 0 if and only if £ = L. Henceforth,
we proceed under the simplifying assumption that, in equilibrium, technologies are developed only
for the leader country: B, k¢ = Bif and only if t € ¢ ;.

In Section 4, we present direct evidence that innovation is strongly focused on ecological char-
acteristics of technology leaders. We moreover find support for all three proposed mechanisms:
innovation targets markets that are rich (consistent with mechanism 2) and have effective IP pro-
tection (consistent with mechanism 3), but there is still a large residual “home bias” toward local
conditions (consistent with mechanism 1). The remainder of our analysis relies only on this uneven

focus of research and can be interpreted regardless of the mechanisms that drive it.

Mismatch and Technology Diffusion. Demand for technology is determined by farmers’ profit
maximization. For a farm i producing crop k, input demand is

1 1
Xike =1 —=9)7Orp @iy €ikr qk,)(; (3)

Farms demand more inputs when those inputs are well adapted to the local ecology (high 0k ),
when the farms are more productive (high wy ¢ or ¢; k ¢), and when the inputs are inexpensive (low
gx,¢)- Conditional on the appropriateness of technology, input choices differ from those chosen by a
social planner only if the price of technology differs from the marginal social cost of producing it. In

this sense, the model features no demand-side “frictions” inhibiting technology adoption.
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Nonetheless, because farmers’” input demand responds to the potential productivity of those
inputs, technology use is systematically lower in markets for which technology is inappropriate.
We define ecological mismatch with the leader as the fraction of k-characteristics that are not shared
between location ¢ and L: 6,1 := 1 — %|7x¢ N 1. The following result describes how mismatch

affects the total quantity of technology diffusion for crop k to country ¢, Xy o = flfl X, di:

Proposition 1. Equilibrium technology diffusion from the Leader to country ¢ for crop k can be written as

log Xx,e = =B - Ok,e,L + Xk + Xk, L + XeL 4)

where the x are additive effects, whose formulas are given in the Appendix, and p > 0, with equality if (i)
technology is purely general-purpose (a = 1) or (ii) innovation is evenly focused (By ¢ = B for all t € Ty ).

In Section 5, we estimate an extended version of Equation 4 that includes multiple potential
origin countries rather than one leader. This strategy makes it possible to include of origin-by-
crop and destination-by-crop fixed effects, thus sweeping out possible threats to identification that
relate to origin-market and destination-market characteristics. We explicitly derive this augmented
estimating equation, as well as the interpretation of fixed effects and our identification strategy, in
the extended model of Appendix B.

The prediction that mismatch inhibits technology diffusion relies on two properties: that tech-
nology is ecologically adapted and that innovation is unevenly focused. To test this mechanism
in the data, we will check whether the effect of mismatch on technology diffusion is larger for
innovation-intensive origin countries and crops. We will also test whether the effect is smaller for
classes of technology that are less environmentally specific (e.g., harvesters versus improved seeds).
We will finally test the model’s prediction that the elasticity in Proposition 1 does not depend on
destination characteristics such as income, productivity, and human capital: in the model, these
characteristics affect the level of technology use but not its sensitivity to mismatch.

Mismatch and Agricultural Production. The model predicts that countries produce less of crops

for which their local conditions are mismatched with those of the Leader:

Proposition 2. Production of crop k in country £, Y ¢ > 0, can be written as
log Yo = =B - Oke,L + Xk + Xt + 1log wie (5)

where p > 0, with equality if (i) technology is purely general-purpose (a = 1) or (ii) innovation is evenly
focused (By ¢ = B forall t € T ¢).

In Section 6, we empirically estimate Equation 5. The crop and country fixed effects in the
estimating equation respectively absorb prices and average local productivity, variables determined
in equilibrium. The “residual,” net of technology and these fixed effects, is a re-scaling of local innate
productivity wy . We leverage the identification assumption that observed ecological mismatch with
the frontier is orthogonal to any unobserved components of local productivity, conditional on two-

way fixed effects and several strategies that proxy for observed dimensions of local productivity. We



also introduce a dynamic strategy that differences out the residual wy ¢ over time and identifies the
parameter § from plausibly exogenous changes in ecological mismatch.’

Inappropriate Technology and Productivity. We finally observe that, all else equal, countries that
are more ecologically mismatched with the frontier are less productive:

Proposition 3. Agricultural revenue per acre in country ¢ can be written as

K _

1 R |

log 2 =+ - log | ) py G, T AT (6)
k=1

where x is a constant that does not depend on k or ¢.

In Section 7, we will combine our empirical estimates with a calibration for external parameters
to map out the consequences of inappropriate technology for the global distribution of agricultural
productivity. In particular, to benchmark the effect of inappropriate technology, we study a case in
which agricultural innovation counterfactually has a fully “even” focus: that is, innovators improve
technology for all global ecological conditions. As we describe in more detail in Section 7.1, the
model structure allows us to account for the equilibrium forces that are swept out in the “missing

intercept” of our estimating equation.

3. BACKGROUND AND MEASUREMENT

In this section, we describe our measurement strategies. We begin with background information
about crop pest and pathogen (CPP) targeting in biotechnology. We then describe our strategies for
measuring CPP presence, ecological mismatch, agricultural technology development, technology
diffusion, and agricultural production. We give summary statistics for all main variables in Table 1.

3.1 Local Agricultural Ecology: Crop Pests and Pathogens (CPPs)

3.1.1 Background: Pathogen Threats and Plant Breeding

CPPs—including viruses, bacteria, fungi, insects, and parasitic plants—are a dominant threat to
agricultural productivity. Experts estimate that between 50-80% of global output is lost each year
to CPP damage (Oerke and Dehne, 2004). In Brazil, for example, it is estimated that 38% of annual
production is lost due only to insects, amounting to $2.2 billion in lost output per year (Bento,
1999). In the US, the Western Corn Rootworm alone caused $1 billion in annual losses prior to the
development of transgenic corn (Gray et al., 2009). A critical focus of crop breeding, as a result, is
developing resistance to damaging CPPs.

The oldest technique for breeding favorable plant traits such as CPP resistance is mass selection:
saving the seeds of the “best” plants from a given cycle, re-planting them, and repeating the process

5In Appendix A.3, we also derive the model’s predictions for physical yield and area. While boosting the productivity
of a given crop expands production possibilities, it does not necessarily increase average yields for that crop relative to
other crops due to the expansion of land onto less suitable land. We find evidence for these predictions in Section 6.
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(McMullen, 1987, p. 41). This process naturally selects crop lineages with sufficient resistance to the
local CPP environment. But resistance to non-present CPP threats is neither selected for nor likely to
arise by chance mutation. Historically, adapting mass-selected crop lines to new environments has
required substantial lineage-specific investment, like “shuttle breeding” alternative generations in
different locations (see, e.g., Reynolds and Borlaug, 2006, pp. 8-9).

A more modern addition to the crop development toolkit is genetic modification. A significant
portion of modern genetically modified (GM) technology focuses on conferring resistance to specific
pests and pathogens (Vanderplank, 2012; Van Esse et al., 2020). In principle, direct access to a plant’s
genetic code side-steps the slow, localized process of natural selection in the field. But, due to both
economic incentives and the continued necessity of field trials for both effectiveness and safety, GM
technology has been used primarily for addressing CPP threats in high-income countries (Herrera-
Estrella and Alvarez-Morales, 2001).

An illustrative case study of how modern plant varieties are locally targeted comes from Bt
varieties, a prominent class of genetically modified plants. Bt varieties are engineered to express
crystalline proteins, cry-toxins, that are naturally produced by Bacillus thuringiensis bacteria (“Bt”)
and destructive toward specific insect species. Cry toxins are insecticidal because they bind receptors
on the epithelial lining of the intestine and prevent ion channel regulation. Due to the specificity
of intestinal binding activity, cry toxins are highly insect-specific. This feature, while crucial for
limiting the Bt varieties” broader ecological impact, makes their development highly targeted to
specific pest threats. The main targets for early Bt corn varieties were the European Maize Borer
and Corn Rootworm (Munkvold and Hellmich, 1999), major threats in the US and Europe that are
not present elsewhere in the world. 6-endotoxins were originally identified as candidate toxins

specifically because of their effectiveness against these pests (Galitsky et al., 2001; Bessin, 2019).

3.1.2 Measuring Pests and Pathogens: The Crop Protection Compendium

Our main strategy for measurement and identification is based on systematically measuring global
differences in CPP environments. For this, we use data from the Centre for Agriculture and Bio-
science International’s (CABI) Crop Protection Compendium (CPC), self-described as the “world’s
most comprehensive site for information on crop pests.” Construction of the database began in
the 1990s as a collaboration between CABI, the UN Food and Agriculture Organization (FAO), and
the Technical Centre for Agricultural and Rural Cooperation, with the goal of assisting agricultural
research and CPP control and with a particular focus on being globally representative. The CPC was
compiled through extensive searches of existing research, including the 460,000 research abstracts
in the CABI database, as well as contributions from a range of governmental and international or-
ganizations, including the World Bank, the FAO, the United States Department of Agriculture, and
the Consultative Group on International Agricultural Research (Pasiecznik et al., 2005). In total, we
compile information on 4,951 plant pests and pathogens.

For each species, the CPC includes a datasheet from which we extract two key pieces of infor-
mation. First, the datasheet reports the CPP’s global geographic distribution. Figure 1 displays the
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Figure 1: Data on Example CPPs

African Maize Stalk Borer Western Corn Rootworm Rice Blast Disease
Busseola fusca Diabrotica virgifera virgifera Magnaporthe oryzae

- g %

=

Affected crops: Maize; Sorghum; Rice; Affected crops: Maize; Millet; Pumpkins; Affected crops: Barley; Rice; Wheat

Sugarcane Sunflower; Soybeans
Witches” Broom Disease Ringspot Virus Desert Locust
Moniliophthora perniciosa Schistocerca gregaria

Affected crops: Cocoa Affected crops: Cucumbers; Melons; Papayas; Affected crops: Barley; Cassava; Castor;
Peas; Pumpkins Cotton; Dates; Pigeon Peas;
Sesame; Sorghum; Wheat;
Maize; Sugarcane

Notes: These maps visualize our data on crop pest and pathogen (CPP) presence and affected crops from the CABI Crop
Protection Compendium (CPC). Blue shading denotes the countries in which a CPP is present. The list of affected crops
is constructed by intersecting the dataset’s master list of host plants with our list of major agricultural crops.

distribution map for six pests, including the Maize Stalk Borer and Western Corn Rootworm, which
were referenced in previous examples.

Second, the datasheet reports all the host species that each pest or pathogen affects. For example,
CABI reports that the African Maize Stalk Borer harms maize, sorghum, rice, and sugarcane, while
the Western Corn Rootworm harms maize, millet, pumpkins, sunflower, and soybeans (Figure 1,
top panel). Our data contain information on 132 hosts that we can link to our subsequent analyses
of technology development, technology transfer, and production.

3.1.3 Measuring Inappropriateness: Crop Pest and Pathogen Mismatch

We next describe our main measure of inappropriateness: CPP mismatch. Using our lists of locally
present CPPs affecting crop k in each location ¢ or ¢/, we compute the following measure of CPP
mismatch at the location-pair-by-crop level:

Number of Common CPPsy ¢ ¢/

CPP Mismatchy ¢ =1 — (7)

1/2
(Number of CPPsy ¢ X Number of CPPsk,g/)

The measure, which has the form of one minus a correlation or cosine similarity, equals zero when
¢ and ¢’ have all the same CPPs for crop k and equals one when ¢ and ¢’ have no CPPs in common
for crop k. As discussed by Jost et al. (2011), the measure defined by Equation 7 is one of several
standard divergence measures in ecological sciences that satisfy basic properties of density invariance,
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Figure 2: Illustrating the Variation in CPP Mismatch

A. Wheat Mismatch with US B. Wheat Mismatch with Kenya

C. Soybean Mismatch with US D. Soybean Mismatch with Kenya

g -~ '-. -
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Notes: Each map shows the distribution of CPP Mismatchy ¢ ;- across countries ¢’ fixing the indicated crop k and reference
country ¢ and demeaned at the country ¢’ and crop k levels. Darker shades of blue indicate higher values (i.e., more
different crop pest and pathogen environments), coded into five quantiles.

replication invariance, and monotonicity.®

CPP mismatch varies at both the country-pair level, fixing crops, and the crop level, fixing
country pairs. The country-level variation is illustrated Figure 1: different countries are endowed
with different CPPs. The crop-level variation is due to the fact that each CPP only affects a particular
set of plant species. Depending on the identity of each country’s locally present CPPs, a single pair
of countries will have different values of CPP mismatch for each crop. These two sources of variation
allow us to fully absorb any differences across countries or crops in our analysis.

To illustrate the key identifying variation, Figure 2 visualizes the distribution of mismatch with
the US and Kenya for wheat and soybeans. There are substantial differences across crops and
countries. For example, the US has much lower mismatch with parts of Western Europe for wheat
than for soybeans, but much higher mismatch with parts of Central and West Africa for wheat than
for soybeans. While much of South America has intermediate mismatch with the US for both crops,
mismatch with Kenya is very low for wheat but very high for soybeans. Throughout the analysis,

we only use this variation within both countries and crops.

3.1.4 Addressing Threats to Interpretation

In our main empirical analysis, we will use CPP mismatch as a plausibly exogenous shifter of the
appropriateness of technology for crop k developed for the ecology of country ¢’ and used in country

. As a result, a natural question is what forces drive the geographic distribution of CPPs, which

0One leading alternative commonly used by ecologists is the Jaccard distance, which equals the ratio of non-shared
species to total unique species across the two environments. Results for all subsequent analyses are essentially identical
under this alternative measure.
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ultimately underlies the identifying variation described above.

The determinants of the cross-sectional distribution of each CPP, according to ecologists, depend
on “numerous [and] sometimes idiosyncratic” factors (see Bebber et al., 2014; Shaw and Osborne,
2011, for greater detail). While features of the environment, most prominently temperature, affect
CPP presence, they often have limited predictive power and CPPs are often absent in ecologically
habitable areas. Moreover, by our own measurement, CPP mismatch is not strongly correlated with
measures of mismatch in a range of other geographic and ecological characteristics (see Table Al
and Section C). Bebber et al. (2014) also document that CPP distributions measured from the CABI
CPC appear unrelated to patterns of trade, travel, or tourism, suggesting that agricultural activity
plays a limited role in shaping broad patterns in the cross-sectional distribution of CPPs. Since most
CPPs have non-agricultural host plants, for most species there is not a clear link between changes in
human activity and changes in presence.

Nevertheless, we use two additional strategies to fully purge our measure of inappropriateness

of any potential consequences of human activity.

Removing Eradications and Invasive Species. We use additional data from CABI to study the
possible role of eradications and species invasions—two ways in which humans may affect the range
of individual CPPs—and develop a measure of CPP mismatch purged of both sources of variation.
First, CABI reports not only whether a CPP is currently present in a country, but also whether it has
ever been present. We therefore calculate a variant of CPP mismatch that includes eradicated CPPs.
It is worth noting that such eradication events are extremely rare. The number of CPP-country-crop
triads increases by under 3% when using the eradication-robust CPP presence classification. Second,
to investigate the potential role of invasive species, we use the CABI Invasive Species Compendium
(ISC) to identify all invasive and high-invasive-potential CPPs. We calculate a second variant of

mismatch that excludes all of these species.”

Predetermined Agro-Climatic Mismatch. We also investigate the importance of differences in
other environmental characteristics, like temperature, rainfall, and soil composition. Appendix C
introduces an independent strategy to measure agro-climatic mismatch and reports our main empirical
results using agro-climatic mismatch as an additional determinant of inappropriateness. Replicating
our main findings using the mismatch of pre-determined geographic characteristics builds confi-
dence that our main results are not driven by idiosyncrasies of CPPs or their measurement, including

any potential effect of human activity on CPP distributions.

3.2 Technology Development and Diffusion
3.21 The UPOV Plant Variety Database

Our first strategy to measure technology diffusion is based on a novel dataset of all global instances
of intellectual property for crop varieties. We obtained these data from The International Union for

"The ISC identifies 748 CPPs, or about 15% of our original list, as potentially invasive based on surveys of existing
literature. We view our approach of dropping potentially invasive CPPs altogether as conservative, because it does not
rely on information about exactly where a CPP is (recently) invasive rather than native.
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the Protection of New Varieties of Plants (UPOV), the inter-governmental organization that designs
and administers systems of intellectual property protection for plant varieties around the world.
These data cover all UPOV member states, including most of North and South America, Europe,
West Africa, and East Asia.?

The data are a comprehensive record of all plant variety certificates in UPOV member countries.
A plant variety certificate is an internationally standardized form of intellectual property protection
that is distinct from patent protection and exists in many countries that do not recognize patents for
seeds, plant parts, or other biological technologies. To be recognized by UPOV, a variety must be
“DUS”: Distinct from others, Uniform for plants within a generation, and Stable for plants across
generations.” Since these characteristics are relatively straightforward to document, legal barriers
to obtaining protection are limited. This helps ensure that the UPOV database captures almost
all commercially relevant plant varieties, including those that are developed by small-scale and/or
public-sector breeders instead of large, private-sector firms. Finally, a breeder must protect a variety
separately in each country where they want legal enforcement. Thus, observing that a variety is
protected in a particular country is a strong indication that the variety was marketed and sold there.

For each certificate, we observe the date of issuance, the country of issuance, the plant species,
and a unique “denomination” identifier associated with the variety. The UPOV Convention of
1991 stipulates that the denomination of a specific plant variety must be consistent across member
countries, allowing us to see the appearance of a single plant variety in multiple countries. The data,
when linked to a list of major crops, consists of 458,034 total variety certificates and 236,529 unique
denominations, spanning 62 countries and 109 crops.

We define technology development and technology transfer as follows. For every unique de-
nomination in the data, we define the country of its first appearance as the origin country, since this
is likely to be the market for which the variety was first developed.! This allows us to measure the
number of unique seed varieties developed for each crop and each country during the sample period
(“technology development”). We then count, in any given time period, the number of varieties of
each k, newly registered in country ¢, and originating from country ¢’ (“technology diffusion”). For
our main analysis, we focus on a static cross-section and sum over all final registrations after 2000.
About 30% of all denominations, and 46% of denominations that originate in crop-specific “leaders”
that register the most varieties, are transferred to at least one other country (Figure Al).

Plant varieties are an appealing measure of “technology” in our study for three reasons. First,
they have a clear role in the production process: plant varieties are the “final products” that embody
key ideas and productive traits, like the aforementioned examples of semi-dwarfism or (selectively

bred or genetically introduced) pest resistance. Second, the (un)availability of plant varieties is a

8For the full list of member countries, see https://www.upov.int/members/en/.

9To establish DUS, the applicant is required to conduct field trials to assess all three requirements, collecting data on
the variety’s characteristics, uniformity, and stability. In the US, for example, which follows UPOV guidelines exactly,
there must be data from at least two trials, which can be conducted in the same year in different locations or in different
years in the same location (see https://www.ams.usda.gov/services/plant-variety-protection/dus-guidelines).

10This avoids potential issues with using the country of the firm headquarters. For example, while Monsanto was

headquartered in the US during our sample period, it invested substantially in developing soybean technology tailored
to the Brazilian market.
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Table 1: Summary Statistics

Variable Name Mean Star.lda.rd
Deviation
Panel A: Ecological Mismatch (Country-Pair-Crop Sample)
CPP Mismatch 0.433 0.169
CPP Mismatch, Excluding Eradications 0422 0.168
CPP Mismatch, Excluding Invasive Species 0.460 0.185
Agro-Climatic Mismatch 0.915 0.437
Panel B: Technology Transfer (Country-Pair-Crop Sample)
Any Variety Transfer (0/1) 0.035 0.183
Total Variety Transfers (Top-Coded) 0.224 2473
log Total Variety Transfers 1.066 1.153
Any Patent Transfer (0/1) 0.014 0.119
Total Patent Transfers (Top-Coded) 0.133 2.208
log Total Patent Transfers 1.254 1.402
Any Patent Citations (0/1) 0.002 0.045
Total Patent Citations (Top-Coded) 0.009 0.369
log Total Patent Citations 0.887 1.161
Panel C: Ecological Mismatch (Country-Crop Sample)
CPP Mismatch with the Crop-Specific Leaders 0.428 0.185
CPP Mismatch "', Excluding Eradications 0414 0.179
CPP Mismatch ", Excluding Invasive Species 0.459 0.196
CPP Mismatch with the US 0.428 0.172
Agro-Climatic Mismatch with the Crop-Specific Leaders 0.428 0.172
Agro-Climatic Mismatch with the US 0.866 0.344
CPP Mismatch with Green Revolution Breeeding Centers 0.460 0.136
Panel C: Output (Country-Crop Sample)
log Output 9.859 3.050
Change in log Output, 1960-1980 (Green Revolution) 0477 0.990

Notes: This table reports summary statistics for the main variables used in our empirical analysis.
The variable name is reported in the leftmost column, followed by its mean and standard deviation.
In Panel A, we report statistics for our main measures of ecological mismatch used in our analysis
of technology transfer at the country-pair-crop level. In Panel B, we report statistics for our main
measures of technology transfer, also measured at the country-pair-crop level. In Panel C, we
report statistics for our main measures of ecological mismatch for our analysis of agricultural
output, measured at the country-crop level. Finally, in Panel D, we report statistics for our main
meaures of agricultural output and output change, measured at the country-crop level.

primary concern for policymakers (e.g., Walker and Alwang, 2015; Access to Seeds Foundation, 2019)
and an object of interest in many past studies of agricultural technology diffusion (e.g., Griliches,
1957; Evenson and Gollin, 2003a). Third, the ability to precisely link varieties with different plant
species (crops) and locations will aid in our identification strategy. Nonetheless, plant varieties
are only one part of the broader landscape of agricultural technology. Our second measurement
strategy helps fill this gap.

3.2.2 Global Patent Data

As a second measurement strategy, we compile data on all global patents and patent families related
to agricultural technology from the PatSnap database. We define the set of agricultural patents as
all patents falling into Cooperative Patent Classification (CPC) class A01.

We use each patent’s title, abstract, and CPC class to classify patents by topic. First, we link each
patent to zero, one, or multiple crops in our data by searching for each crop’s scientific and common
name in each patent title and abstract. Unlike plant varieties, the link between each technology and
individual crops is less straightforward and a single patent may apply to multiple crops or not be
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explicitly about any crop (e.g., if it is related to soil modification or general purpose mechanical
technology). Second, we link each patent to CPPs by searching for each CPP scientific name in each
title and abstract. Directly measuring technology development across CPPs was not possible in the
UPOV data and is a key advantage to the additional information in the patent data. Finally, we group
patents by type of technology using the CPC class information. In particular, we divide patents
between those that are biological or chemical technologies—for which we expect local ecology to
matter—and those that are mechanical technologies—for which we do not.

We measure technology transfer in the patent data using two complementary strategies. Our
first strategy defines the first issued patent in each family as the focal patent and all subsequently
filed patents that are part of the same families as international transfers of the original technology.
This approach, familiar from the literature on cross-border patenting (e.g., Dechezleprétre et al.,
2011) and also conceptually consistent with our definition of variety transfer, measures when the
same invention diffuses across countries. Our second strategy counts the number of (crop-specific)
agricultural patents in a destination that cite agricultural patents from a given origin. This approach,
familiar in the literature on geographic spillovers of innovation (e.g., Jaffe et al., 1993; Liu and Ma,

2023), measures the diffusion of knowledge that underlies potential follow-on innovation.

3.3 Agricultural Outcomes

We take data on agricultural output, harvested areas, and yields across crops and countries from
the UN Food and Agriculture Organization (FAO) statistics database. These data are compiled from
national statistical agencies in each country as well as reports on agricultural production that all
FAO member states are required to submit. The data are then cross-referenced and supplemented
using information from international organizations (e.g., the World Bank, the International Food
Policy Research Institute) and commercial data providers.

We also compile data on the maximum potential yield of each crop in each country according
to agronomic models produced by the FAO Global Agro-Ecological Zones (GAEZ) database. FAO
GAEZ uses local geographic and climatic conditions to determine the suitability of each field of land
for growing each crop, and converts this into a measure of “potential output” in physical units. We
aggregate these field-level data to construct a country-by-crop level measure that captures output
differences that are explainable by variation in geography.

To study agricultural output across regions within countries, we compile sub-national agricultural
output data from the latest national agricultural census for both Brazil and India. These are the two
developing countries for which CABI reports sub-national CPP distribution information, making it
possible to study the impact of technology mismatch at the sub-national level. The Brazilian data are
from the 2017 round of the Censo Agropecudrio and cover 49 crops. The Indian data are from the
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Database, constructed
from the 2015 Agricultural census, and cover 20 states and 20 crops. We also construct a potential
yield control variable from the FAO GAEZ data at the level of crop-state pairs for this analysis.
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Figure 3: Global Patenting Related to CPPs

(a) Patents by Presence in US (b) Patents by Presence in Any Leader (c) Patents for Single-Country CPPs
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Notes: Panel (a) reports the average number of patented technologies developed about CPPs that are and are not present
in the United States. Panel (b) reports the average number of patented technologies developed about CPPs that are and
are not present in the most common leader countries in our dataset (the United States, France, the Netherlands, Japan,
Russia, Spain, and Argentina). Panel (c) reports the number of patented technologies developed about CPPs that are
present only in (i.e., endemic to) Indonesia (42 CPPs), Brazil (49 CPPs), India (69 CPPs), and the United States (73 CPPs).

4. Tue UNEVEN Focus OoF INNOVATION

In this section, we document that global agricultural research is strongly focused on the ecological
characteristics of a few R&D “leaders.” We first show this pattern in the raw agricultural patenting
data. We next use cross-sectional data to show how market size, the extent of intellectual property
protection, and local focus contribute to this phenomenon.

4.1 Innovation Disparities in the Raw Data

The patent data confirm that crop pests and pathogens command significant attention in agri-
cultural technology development. In particular, 60% of all patents related to agriculture mention at
least one CPP by its scientific name.

However, not every pest and pathogen gets equal attention in patented research. We illustrate
this point with a few simple comparisons in the raw data. Figure 3a shows that CPPs present in
the United States, like the corn rootworm in our introductory example, are on average mentioned in
more than five times as many patents as CPPs only present outside the United States, like the African
maize stalk borer in our introductory example. A comparable disparity emerges if we expand our
focus to a larger set of seven technological “leaders” that are most active in our data on variety
registrations (Figure 3b). Figure 3c illustrates this point more dramatically by restricting attention
to CPPs that are only present in each of four large agricultural economies: the United States, India,
Brazil, and Indonesia. A relatively large number of CPPs are present only in each of these countries:
73 in the US, 69 in India, 49 in Brazil, and 42 in Indonesia. While each of the CPPs present only in
the US has received an average of 42.1 patents, the average in the other countries are all below 2.
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Table 2: The Direction of Innovation Across CPPs

(€Y (2) (3) 4) ) (6) Q) (®)
Any Technology Development (0/1) log Technology Development
Local CPP presence (0/1) 0.0668 0.0575 0.0454 0.0479 0.2281 0.2329 0.0988 0.1807
(0.0134) (0.0114) (0.0096) (0.0105) (0.0819) (0.0714) (0.0620) (0.0664)
Global CPP presence (log area weighted) 0.0035 0.0004 0.0312 -0.0186
(0.0007) (0.0002) (0.0250) (0.0167)
Global CPP presence (IP weighted) 0.0014 0.0181
(0.0003) (0.0040)
Global CPP presence (log GDP weighted) 0.0003 -0.0214
(0.0003) (0.0230)
Country Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
CPP Fixed Effects No No No Yes No No No Yes
Observations 492,422 428,400 428,400 492,422 9,082 8,795 8,795 8,557
R-squared 0.136 0.149 0.154  0.202 0.239 0.243 0.252  0.557

Notes: The unit of observation is a country-CPP pair. In columns 1-4, the outcome variable is an indicator thatequals one if
there isany patentrelated to the CPP by an inventor in the country, and in columns 5-8 itis the log number of patents
related to the CPP by an inventor in the country. CPPs related to each patentwere determined by searching for each CPP
scientificname in the titles and abstracts of all patents related to agricultural technology. Country fixed effects are included
in all specifications and CPP fixed effects are included in columns 4 and 8. Standard errors are clustered by country.

4.2 Disparities are Driven by Local Focus, Market Size, and IP Protection

The focus of innovation on the CPP threats in R&D leaders could be driven by three primary
mechanisms, all of which were embedded in the model (Section 2.2): (i) the lower cost of doing
agricultural research on local characteristics, (ii) the greater revenue opportunity in larger markets,
and (iii) the greater revenue opportunity in markets with more effective intellectual property pro-
tection. We now use cross-sectional data on patents across countries and CPPs to test for each of
these mechanisms.

To do so, we estimate the following regression model across countries ¢ and CPPs p:
Yep = B - Localy, +y - RevenueOpportunity, + 6¢ + e¢,p (8)

where v , is a measure of patenting activity related to CPP p by inventors in country £. The inclusion
of country fixed effects (6¢) allows us to absorb any unobservables that may affect the simple
comparison of means in Figure 3, like different propensities to patent technologies conditional
on developing them. Localy, is an indicator that equals one if CPP p is present in country /.
RevenueOpportunity, includes several proxies for the potential effect of global CPP-level market
size, including the number of countries affected by each CPP as well as the income-weighted and
intellectual property protection-weighted number of countries affected by each CPP.

Our estimates in Table 2 suggest that all three proposed mechanisms play a role. In the first
four columns, the outcome variable is an indicator variable for any patenting activity. In column
1, we only include Localy,, as a regressor (along with the fixed effects) and find that § > 0. Thus,
innovation is disproportionately focused on CPP threats that are present in local markets. We next
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find that innovation is directed toward CPPs with larger global market size (columns 2-3), but this
is only true when those markets enforce IP protection (column 3). Finally, in column 4 we estimate
an augmented version of Equation 8 that also includes CPP fixed effects, thus fully absorbing any
unobservables at the CPP level including (but not limited to) revenue opportunities. We find a
quantitatively similar coefficient on local presence, suggesting it has a large effect even conditional
on all CPP-level characteristics. In columns 5-8, we study the intensive margin of innovation by
replicating the analysis with the log number of patents as the outcome. While the sample size
declines substantially due to the number of zeroes in the data, the broad findings are similar. In the
most conservative specification (column 8), the local presence of a CPP increases patenting related
to that CPP by nearly 20%.

In Table A2, we conduct a similar analysis using our global variety protection data to study
the uneven focus of innovation across crops that grow in different environments. As above, we
find evidence of a global focus on crops produced in IP-protecting countries and, on top of this, a
significant local focus on locally produced crops that remains positive, large, and significant after
the inclusion of crop and country fixed effects.

Taken together, these results validate that agricultural innovation focuses on the environmental
conditions of R&D leaders and suggest that market size, intellectual property protection, and local
focus all contribute toward this phenomenon. Having established this premise, we next study the
implications of this uneven focus on technology diffusion, specialization, and productivity.

5. MisMATCH AND TECHNOLOGY DIFFUSION

In this section, we study the relationship between ecological mismatch and technology diffusion.
We find that mismatch lowers cross-border technology diffusion, measured by variety introduction,
patenting, and patent citations. This effect is an order of magnitude stronger for diffusion from
R&D “leaders,” identified by their contribution to technology development in the data, and not
significantly mediated by the income, human capital, or agricultural-input-intensity of destination
countries. In additional analysis, we show that mismatch predicts lower technology access in
modern and historical contexts that lack IP protection. Together, these findings are consistent with
a model of inappropriate technology shaping international technology diffusion.

5.1 Empirical Strategy

We estimate the following model at the level of crops k, origin countries ¢/, and destination

countries ¢:
Technology Diffusion; ,, , = p - CPP Mismatchy,e e + X¢,00 + Xkt + Xk,0 + €kt )

The model includes two-way fixed effects at the origin-by-destination, crop-by-origin, and crop-by-
destination levels. Standard errors are double-clustered by origin and destination.
Our hypothesisisthat f < 0, or that ecological mismatch depresses technology diffusion. We may
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find no effect, however, if ecological adaptations are not an important determinant of technologies’
effectiveness or if demand for technology is relatively inelastic to its effectiveness.

The two-way fixed effects empirical design, equivalent to a “triple difference” across crops,
origins, and destinations, allows us to nonparametrically control for confounding factors that affect
the supply and demand of agricultural technologies. These factors are spelled out in our derivation
of the estimating equation in the model (Proposition 1). Crop-by-origin fixed effects control for
R&D intensity in the origin country. Crop-by-destination fixed effects control for current or future
market opportunities for innovators, abundance of complementary inputs, and potential barriers to
technology adoption. Origin-by-destination fixed effects absorb bilateral trade costs and distance,
which could affect the transfer of all products or ideas. The residual therefore captures measurement
error as well as unobserved, stochastic components of technology demand.

Any possible confounder that biases our estimates must therefore vary at the crop-by-origin-
by-destination level and be correlated with the (residual variation) in mismatch. To illustrate this,
consider the possibility that innovators anticipate high technology demand in market for crop k in
country ¢. If this is common across innovators in all origin markets, then this is fully absorbed by
the fixed effects in Equation 9. If it is idiosyncratic to innovators in a given origin market ¢’, then it
may threaten identification, but only insofar as it is spuriously correlated with CPP mismatch.

To guard against any remaining potential confounders, we pursue two additional strategies.
First, we estimate versions of Equation 9 that interact CPP Mismatch with proxies for the innovation
intensity of origin countries and crops. Our model predicts that mismatch inhibits diffusion to
a greater extent from technological leaders. Thus, to explain our main result, any confounding
factor would additionally need to be systematically more pronounced for observations in which
the origin is a crop-specific technology leader. Second, we exploit an additional difference across
types of technology. In particular, we estimate how mismatch separately affects the diffusion of
biological technologies, whose productivity we expect to depend on environmental conditions, and
mechanical technologies, whose productivity we expect to be less affected by the environment.

5.2 Ecological Mismatch Reduces Technology Diffusion

We find that CPP mismatch significantly inhibits the international flow of agricultural biotech-
nology. We first show this result using our novel data on variety transfers (Panel A of Table 3). In
column 1, the outcome is an indicator that equals one if any transfer has taken place (extensive mar-
gin), using the full sample of crops and country pairs. In column 2, the outcome is the total number
of variety transfers (top-coded to limit the influence of extreme observations) and in column 3, it is
the log of the number of technology transfers, isolating the intensive margin effect. The estimate
from column 3 implies that CPP mismatch inhibits 30% of international technology transfer for the
median in-sample level of CPP mismatch. These results suggest that mismatch lowers the availabil-
ity of improved agricultural inputs, the products through which farmers can access advancements in
agricultural technology. These findings also connect to our motivating anecdotes of plant varieties
whose usefulness is restricted to specific pest and pathogen environments.

Turning to the patent data, we find that ecological mismatch also reduces patent transfers (Panel
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Table 3: CPP Mismatch Inhibits International Technology Transfer

€Y} ) 3)
Any Total Jog Total
Transfer Transfer
Transfer

(0/1) (Top-coded)

Panel A: Crop Variety Transfers

CPP Mismatch (0-1) -0.0275 -0.3148 -1.2018
(0.0106) (0.1153) (0.3861)
Observations 204,287 5,791 5,687,379
R-squared 0.383 0.797 0.625
Panel B: Patented Technology Transfers
CPP Mismatch (0-1) -0.0072 -0.1122 -0.0828
(0.0017) (0.0424) (0.0362)
Observations 5,661,392 5,661,392 80,210
R-squared 0.6254 0.6775 0.9386
Panel C: Patented Technology Citations
CPP Mismatch (0-1) -0.0015 -0.0075 -0.0379
(0.0006) (0.0040) (0.1328)
Observations 5,661,392 5,661,392 10,156
R-squared 0.5167 0.5737 0.9332
Crop-by-Origin Fixed Effects Yes Yes Yes
Crop-by-Destination Fixed Effects Yes Yes Yes
Origin-by-Destination Fixed Effects Yes Yes Yes

Notes: The unit of observation is a crop-origin-destination triplet. All possible two-way fixed
effects are included in all specifications. In Panel A, the outcome variable is constructed using
variety transfer data from the UPOV database; in Panel B, itis constructed from patent tranfer data
using patent family information; and in Panel C, itis constructed from patent citation data using
the full citation network of all patented agricultural technologies. CPP mismatch is constructed at
the crop-country-pair level as one minus the number of common CPPs normalized by the square
root of the product of the number of CPPs in the origin and destination. In column 1, the outcome
is an indicator for any transfer; in column 2, itis the total number of transfers, top-coded at the
95th percentile; and in column 3, itis the log of the number of transfers. Standard errors are
double-clustered by origin and destination.

B). This verifies our core finding that mismatch inhibits technology transfer in a second, independent
dataset. Moreover, because patents “un-bundle” the separate innovations (e.g., specific genetic
improvements) that might underlie a seed variety brought to market, our second finding captures a
qualitatively different aspect of technology transfer than our first.

We finally find that ecological mismatch significantly reduces cross-country patent citations
(Panel C). These findings suggest that the underlying ideas embodied in agricultural patents are less
applicable in mismatched settings, consistent with our previous finding that the content of those
patents is highly specialized to local conditions (Section 4). Moreover, in contrast to our findings for
variety and patent transfer, our findings for patent citations directly show that mismatch affects the
conditions for local follow-on innovation: inventors in markets that are highly mismatched from the

rest of the world have less relevant international knowledge to build on.

Breaking Down Results by Type of Inventor. In principle, these baseline estimates could be
driven by private-sector innovation, public-sector innovation, or both. According to the model, it
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would depend on the extent to which each type of innovation is more focused on local ecological
conditions (increasing the absolute value of ) versus more spread out across global ecological
conditions (reducing the absolute value of ). To study this, we leverage the fact that our micro-data
on both varieties and patents record the name of the applicant. We classify all applicants as either
private firms or non-private entities (i.e., public sector institutions or universities) and estimate
Equation 9 separately for the transfer of private sector and non-private sector technologies.!!

The estimates are reported in Table A3. We find similar effects for both private and non-private
technologies. This suggests that both sets of innovators develop locally-tailored technologies, albeit
potentially for different reasons. One hypothesis is that the private sector may be more responsive
to profit incentives, while the public sector may have a specific national research mandate. A fuller
exploration of the intersection between the inappropriate technology hypothesis and the different

parts of the research ecosystem is an important area for additional work.

5.3 Testing the Inappropriate Technology Mechanism

So far, our estimates of Equation 9 capture the average effect of CPP mismatch across all origin
markets, destination markets, and crops. Our model, however, implies that ecological mismatch
with foreign markets matters only insofar as those markets are the focus of R&D investment. That
is, our baseline estimates should be driven by ecological mismatch with the most innovative origin
markets (the “technology leader” from the model) and by crops that are the focus of the most global
innovation. Ecological mismatch with markets that were are not the focus of R&D in the first place
should have little effect on technology diffusion. Moreover, our model also predicts that this should
hold regardless of the abundance or scarcity of other inputs like physical or human capital. While
these destination-level characteristics likely affect the level of technology transfer, they do not affect
the appropriateness of technology across markets, which is an outcome of innovation incentives in
technology-leader countries. We now test these predictions in the data.

Mismatch with the Frontier Matters Most. To study the effects of mismatch from the R&D leader,
we estimate versions of the following augmented version of (9) that parameterizes heterogeneity in
the effect of CPP mismatch:

Yk, = ‘BNL . CPPMismatChk,g/,g + ﬁL . Lk,(n . CPPMismatchk,p,g T X0+ Xk + Xk oo+ Ekp v (10)

where Ly ¢ is an indicator variable that equals one for the countries ¢’ that we identify as the leader
countries for crop k. We have two strategies for defining Ly . The first is to treat the US as the

frontier for all crops, or set Ly - = I[{” = US]. This is motivated by the United States” pre-eminence

'We made this classification by feeding all applicants through the GPT-40 model with a prompt that included examples
of each organization type. When merged to our data set for analysis at the country-pair-by-crop level, roughly three times
as many observations have at least one private compared to at least one non-private technology transfer (8,300 vs. 2,600
in the variety transfer data and 78,000 vs. 26,000 in the patent transfer data). Thus, non-private technology represents a
smaller but substantial share of the transfer variation.
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Table 4: CPP Mismatch with Leader Countries and Technology Transfer

® 2) 3 C))
Dependent Variable is Any Technology Transfer (0/1)

Top Variety Top 2 Variety Top 3 Variety

Leader defined as: United States
Developer Developers Developers

CPP Mismatch (0-1) -0.0241 -0.0229 -0.0181 -0.0136

(0.0096) (0.0099) (0.0092) (0.0088)
CPP Mismatch (0-1) x Leader (0/1) -0.2539 -0.3319 -0.3426 -0.3215

(0.0142) (0.0699) (0.0623) (0.0535)
Crop-by-Origin Fixed Effects Yes Yes Yes Yes
Crop-by-Destination Fixed Effects Yes Yes Yes Yes
Country Pair Fixed Effects Yes Yes Yes Yes
Observations 204,287 204,287 204,287 204,287
R-squared 0.3830 0.3840 0.3850 0.3854

Notes: The unit of observation is a crop-origin-destination triplet. All possible two-way fixed effects are included in all
specifications. The outcome variable is an indicator that equals one if any variety transfer has taken place. CPP mismatch is
constructed at the crop-country-pair level as one minus the number of common CPPs normalized by the square root of the
product of the number of CPPsin the origin and destination. Each regression also includes an interaction between CPP
mismatch and an indicator thatequals one if the origin is a leader country, for different definitions of the leader country
(noted atthe top of each column). Standard errors are double-clustered by origin and destination.

in modern agricultural research.'> The second is to identify a set of crop-specific “leaders” Ty (k)
in the UPOV data, based on being among the top N countries in variety registrations for k. This
data-driven approach sets Ly o = I[¢’ € Ty (k)]. In this specification, - captures the difference in the
marginal effect of inappropriateness on technology diffusion when the origin country is a leader in
biotechnology development.

We find that the negative effect of mismatch with the leader is consistently an order of magnitude
larger than the effect of mismatch with other markets. Table 4 presents our results with the extensive
margin of crop variety transfer as the outcome and for several definitions of the technology leader for
each crop. For example, when we define the leader using the top 2 or 3 variety developers (columns
3 and 4 of Table 4), the marginal effect of CPP mismatch on technology diffusion is roughly twenty
times larger for technology leader origin markets. The story is very similar focusing on the intensive
margin of variety transfer (Table A4) and measuring technology transfer in the patent data, using

either patent transfers or patent citations (Table A5).

Mismatch Has a Larger Effect for Innovation-Intensive Crops. We next test whether mismatch
has a larger effect on diffusion for more innovation-intensive crops, in parallel to the earlier test
for innovation-intensive origins. We define these crops using three strategies: identifying global
staple crops (corn, wheat, soybeans, and rice), identifying the crops that receive the most varieties
in our data, and identifying the crops for which genetically modified crops have been ever released.

12The US produces 30% of citation-weighted global agricultural science publications and three times as many patents
as the next highest country (Japan). 52% of agricultural research and development companies are incorporated in North
America and US inventors generate roughly 1.5 thousand patents for plant modification and 1 thousand patents for
cultivar development per year (Fuglie, 2016).
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Figure 4: Heterogeneous Effects of CPP Mismatch on Variety Transfer
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Notes: All sets of bars report coefficient estimates from single regression estimates, versions of Equation 9 that interact
crop pest and pathogen (CPP) mismatch with indicators that equal one if the country is above or below the global median
for a series of country-level characteristics. The outcome variable is log of variety transfer. The characteristics are GDP
per capita (2010 USD per person), total GDP (2010 USD), literacy among adults (percentage among people over 15 years
old), and fertilizer use (kg per hectare of arable land), all measured from the World Bank in a global cross-section from
2000. Standard errors are double-clustered by origin and destination, and 95% confidence intervals are reported.

We estimate regression models that parallel Equation 10, but interacting CPP Mismatch with these
crop-level characteristics. We find that the negative effect of CPP mismatch on technology transfer
is strongest for innovation-intensive crops measured in all three ways (Table A6).

Mismatch Matters Even for Poor, Input-Scarce Destinations. In principle, other barriers to tech-
nology adoption could mediate the effects of mismatch on technology diffusion. In fact, a range of
studies argue that the main if not only obstacle to modern technology use in low-income countries
are wedges or deliberately constructed barriers to technology access (e.g., Parente and Prescott,
2002). These barriers would not bias our estimates of Equation 9, but might imply that the effect
size is different for different markets. Our specific model in Section 2 advanced a stronger claim
that any such local barriers to technology diffusion, which may certainly exist, have zero impact on
the elasticity of technology transfer to mismatch. In particular, our model predicts that technology
transfer is equally elastic to mismatch even in locations where wedges or constructed barriers to
technology may be highest.

To study this, we test for heterogeneity of our main coefficient on the basis of several proxies for
national and agricultural development. Figure 4 reports the effect of CPP mismatch separately for
countries that are above versus below median per-capita GDP, total GDP, literacy, and fertilizer use
(a common proxy of agricultural technology penetration; see e.g., Duflo et al. (2011)). Across the
board, we estimate similar effects for both groups of countries. If anything, the coefficient estimate

is always slightly larger for “less developed” markets — all point estimates imply an economically
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Figure 5: Effect of CPP Mismatch on Transfer: Mechanical Technologies

(a) Mechanical Technology (Average Effect) (b) Mechanical Technology (Leader Effect)
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Notes: Each sub-figure reports a binned partial correlation plot in which all possible two-way fixed effects are absorbed.
The outcome is log of the total number of mechanical patent transfers. Panel (a) reports the average effect of CPP mismatch
(B in Equation 9) and panel (b) reports the effect of CPP mismatch with the leader (ﬁL in Equation 10).

large and statistically significant negative effect of mismatch on variety transfer even in relatively
poor and input-scarce countries. This set of estimates further shows that the effect of CPP mismatch
is driven by innovation decisions in leader countries and is not strongly mediated by proxies for
potential technology demand in technology adopting countries.

5.4 Ruling Out Alternative Explanations

A Placebo Test with Mechanical Technologies. If estimates of Equation 9 capture the causal
effect of CPP mismatch, we would expect a weaker effect when focusing on types of technology
that cannot be meaningfully adapted to specific environments. A primary example is the class of
mechanical technologies including harvesters and mowers: while these may have complementarities
with biological technologies that are designed for particular environments, there are few ways to
directly adopt these machines to local ecology. In the language of the model (Section 2), these
technologies may feature high «, and therefore we predict a small (if any) effect of mismatch on their
transfer (Proposition 1). On the other hand, confounding stories like a spurious correlation between
environmental mismatch and expected future productivity might equally apply to mechanical and
biological technologies. Therefore, to test our interpretation, we re-estimate our empirical models
with the diffusion of mechanical technologies, as measured in the patent data, as the outcome.'?
We find that CPP mismatch has limited effects, if any, on the transfer of mechanical technologies
(Figure 5a). The effect is very close to zero even when focusing on CPP mismatch with the techno-

logical leader (Figure 5b). For comparison, Figures A2a and A2b report the same specifications as

13We identify mechanical patents as those that are assigned Cooperative Patent Classification (CPC) classes A01B,
A01C, or A01D. This follows prior work on agricultural technology, including Moscona and Sastry (2023). For detailed
CPC class definitions, see here: https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html.
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Figure 5, but instead focus on biological and chemical technologies—the effect is large, negative, and
significant. This heterogeneity across types of technology is consistent with our interpretation of
the main results, but would not be expected under a story of spurious correlation with un-modeled

characteristics.

Human Activity and Reverse Causality. A different threat to our interpretation is a form of reverse
causality, to the extent that human activity affects the distribution of CPPs and hence our measure of
CPP mismatch. However, we find no evidence that this is the case. First, we fully purge our measure
of CPP mismatch by any variation due to eradications or invasive species, the two ways that human
activity could affect CPP presence (or lack thereof) across markets. Our results are quantitatively
almost identical when we remove variation due to eradications or due to species that have ever been
invasive or have high invasive potential anywhere in the world (Table A7, columns 2-3; column
1 reports our baseline estimate for reference). Second, we find a large, negative effect of agro-
climatic mismatch on variety transfer (Table A8). This mismatch measure is based on characteristics
of temperature, precipitation, and topography that we might reasonably treat as predetermined
over our studied sample. In Appendix C, we elaborate more on our measurement approach, the
independent effects of different components of agro-climatic mismatch, and the interpretation of
this second channel through which environmental differences affect technology transfer.

Other Omitted Variables. In principle, omitted variables at the country-pair-by-crop level could
drive a spurious correlation between ecological mismatch and variety transfer. One candidate is
trade. In column 4 of Table A7, we show that our main estimate is quantitatively similar if we
control for an indicator that equals one if countries ¢ and ¢’ engage in bilateral final good trade for
crop k. Another possibility is that the impact of distance (and hence economic ties) differs across
crops in a way that is correlated with CPP mismatch. In column 5, we show that our results are
unaffected by controlling for (log of) the geographic distance between all country pairs interacted
with a full set of crop fixed effects. Finally, in columns 6 and 7 we entirely exclude from the sample
any country pairs that are less than 1000 or 2000 kilometers apart, respectively. The estimate is again
very similar, suggesting that the findings are not driven by geographically close countries. These
findings suggest that the results are not driven by an omitted factor related to crop-specific links
between country pairs.

5.5 Technology Transfer Without Intellectual Property

Before proceeding, we describe two additional analyses that show that the inappropriate tech-
nology hypothesis has bite in markets without intellectual property protection. Such markets are
usually beyond the scope of empirical studies of innovation and technology transfer, but they are of

especially great interest to studies of technology use and productivity differences in agriculture.

Variety Introduction in sub-Saharan Africa. We first study how mismatch with frontier technol-
ogy producers affects variety introduction in sub-Saharan Africa, a region poorly covered by UPOV

and by patent offices. We use data from the Consultative Group on International Agricultural Re-
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search (CGIAR) Diffusion and Impact of Improved Varieties in Africa (DIIVA) project, which, for 19
crops and 28 countries in sub-Saharan Africa, records all unique crop varieties made available since
1960. These data do not rely on information from intellectual property protection protection and
were instead collected by hand. A glance at the data suggests that the reality of crop breeding in
sub-Saharan Africa reflects a significant role for the public sector and a diminished role, if any, for
familiar Western agro-chemical companies. For example, of the 214 novel maize varieties recorded
in Kenya, 64 are associated with the Kenyan Agricultural Research Institute (KARI), a state-run
research organization, and 45 with the Kenya Seed Corporation (KSC), a state-run corporation that
markets improved varieties; Monsanto and Pioneer Hi Bred contribute 9 and 8, respectively.

Unlike our international variety registration or patent data, the DIIVA data do not systematically
record the origin country for each variety. Nonetheless, we can test how mismatch affects the overall
availability of improved technology. We find that country-crop combinations more mismatched
with the frontier have fewer overall variety introductions, conditional on crop and country fixed
effects (Figure A3). This is consistent with the hypothesis that ecological differences inhibit both
the direct availability of foreign technology and the scientific and technological base for follow-
on innovation (e.g., even by state-supported breeders). Our findings in the DIIVA data suggest
that both mechanisms, which we previously measured through variety introductions, patents, and
patent citations, also have an effect in setting without IP protection.

The Diffusion of the Green Revolution. We next study how environmental mismatch mediated
the effects of the Green Revolution, a period of major investment in agricultural technology devel-
opment that was coordinated by research centers in a few specific tropical countries and targeted
toward parts of the world with under-developed agricultural technology markets. Questions about
the reach and efficacy of the Green Revolution are central to many debates about 20th century
agricultural development (Moseman, 1970; Ruttan and Hayami, 1973; Pingali, 2012). We use our
data on crop-by-country-pair CPP mismatch to construct a measure of CPP mismatch with the
crop-specific centers of breeding during the Green Revolution (see Section 6.5 for greater detail).
We link these measures with data on the adoption of improved Green Revolution crop varieties
across country-crop pairs, compiled by Evenson and Gollin (2003a). We find that CPP mismatch
with the crop-specific locations of Green Revolution breeding (e.g., the CIMMYT in Mexico for corn
or the IRRI in the Philippines for rice) significantly reduced the extent of adoption of high-yield
varieties in the 1960s and 1970s (Figure A4). These results demonstrate the applicability of our
findings to an earlier era of agricultural technology development and to innovations championed

by non-profit-seeking actors in the public and philanthropic sectors.

6. MISMATCH AND AGRICULTURAL PRODUCTION

We now study how mismatch with R&D leaders affects agricultural production. We find that
mismatch with leaders substantially reduces output at the country-by-crop level: that is, countries
specialize in the crops for which global technology happens to be most environmentally appropriate.

Exploiting finer-grained variation that sweeps out country-level differences, we find quantitatively
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similar effects in a sub-national analysis of Brazil and India. We finally exploit two events, the Green
Revolution and the recent rise of US biotechnology, that isolate dynamic variation in inappropri-
ateness. Using these strategies, we show that the changing geography of agricultural innovation
realigns global agricultural production by differentially affecting environments for which the new
technology is more or less appropriate.

6.1 Empirical Strategy

Our estimating equation at the level of crops k and countries ¢ is derived in Proposition 2:
log Production; ¢ = g - CPPMismatchFrontiery ¢ + x¢ + xi + T+ €k (11)

The outcome is (log) average production from 2000 to 2018 and Q) ¢ is a vector of potential controls.
All specifications include country and crop fixed effects (x¢, x«)-

CPPMismatchFrontiery  measures the extent to which technology developed by R&D leaders is
environmentally inappropriate for growing crop k in country ¢. Motivated by our earlier empirical
findings (Section 5.2), we define the technological frontier for each crop based on the frequency of
variety releases in the UPOV data. Given a set Ty (k) of the N top countries for k-variety releases,

we calculate:

CPPMismatchFrontiery o = Z (Share Varietiesglg,ov) X (CPP Mismatchk,g/,g) (12)
veTn(k)

where Share Varietiesy ¢ is calculated among the set Ty(K) (i.e., these weights add to one). For our
baseline results, we use N = 2; however, the results are very similar for alternative values for N 14
As a secondary strategy that does not rely on additional data inputs, we assume that the United
States is the leader for all crops: CPPMismatchFrontiery ; = CPPMismatchy uys . While this method
ignores many details about the geography of agricultural innovation, our results in Section 4 and 5
suggest that it is a reasonable approximation.

The model in Section 2 provides a precise interpretation for our estimating equation. The
crop fixed effect i absorbs global crop prices and the general-purpose component of crop-specific
technology. The location fixed effect x¢ absorbs the productivity of other crops in a given location as
well as components of productivity or additional factors of production (e.g., human capital) that are
common to a location. The composite term Q;{ Lt €k corresponds to the variable wy ¢ in the model,
which summarizes other crop-by-location spe,ciﬁc determinants of productivity. These may include
geographic suitability or the extent of other crop-specific agricultural inputs. We will treat (] I'as a
component that can be spanned by observable controls and ¢ ¢ as an unobservable component.

Our hypothesis is that < 0, or that countries produce less of crops for which their local
environment differs from that of technological leaders. In spite of our earlier findings that mismatch
inhibits technology transfer (Section 5), we might nonetheless find p = 0 if the availability of new

14The full set of crop-specific technology leaders for N = 2, as well as the number of crops for which each country is
identified as a leader, is presented in Table A9.
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agricultural varieties or presence of patented technologies does not translate into substantially more
technology use by farmers, or if shifting technology use independently from other economy-wide
characteristics has little effect on output.

Identification. The parameter f3 is identified via ordinary least squares if CPP mismatch with the
frontier is uncorrelated with the unobservable component of productivity in ¢ ¢, conditional on fixed
effects. We first argue that this is ex ante plausible: that is, environments that are similar to those of
R&D leaders are not inherently “good,” when one ignores the effects of (endogenously appropriate)
technology. Early efforts to develop technology for agricultural expansion in the United States were
stymied by an unfamiliar and hostile pest and pathogen environment (Olmstead and Rhode, 2008).
Much of this effort focused on the “Great American Desert,” which was then “considered incapable of
supporting agriculture” (Olmstead and Rhode, 2011, p. 482)—and is now known as the Great Plains,
producing much of the world’s wheat, corn, and soybeans. Contemporary empirical studies also
suggest that variation in local land suitability plays a limited role in explaining global productivity
differences (Adamopoulos and Restuccia, 2022). This suggests that ecological similarity to today’s
technology leaders may not correlate with having ex ante favorable environmental conditions.

Nevertheless, to make this point empirically, we propose several approaches for accounting for
the effect of ex ante differences in local characteristics. As a first strategy, we control for potential
output in the FAO Global Agro-Ecological Zones (GAEZ) agronomic model. As a second, more
data-intensive strategy, we compile a larger set of covariates and then use post-double LASSO
(see Belloni et al., 2014) to discipline their selection. These include fixed effects for the 200 most
geographically prevalent CPPs in our data (i.e., those that appear in the most countries) and the
200 most agriculturally prevalent (i.e., those that affect the most crops) and ten measures of agro-
climatic conditions that describe temperature, precipitation, soil characteristics, and topography
(see Appendix C), interacted with crop fixed effects to allow for crop-specific effects. Third, to gauge
whether our regressor simply picks up ecologically “strange” places that are dissimilar from any
other location, we conduct a placebo test that randomizes the identity of R&D leaders.

We finally use two additional empirical strategies that exploit additional variation across (finer-
grained) space and time. We first study the effects of mismatch sub-nationally within Brazil and
India, allowing us to sweep out country-by-crop level variables like trade or food policy (Section
6.4). We also study two dynamic natural experiments, the Green Revolution and the rise of US
biotechnology, which allow us to completely absorb any static observables or unobservables, as well

as trends in ex ante local productivity (Section 6.5).

6.2 Inappropriateness Reduces Agricultural Output

Our main estimates of Equation 11 are reported in Table 5. We find that countries have lower
agricultural output for crops for which their environment is mismatched with technological leaders.
Our baseline estimate with no additional controls (column 1) implies that a one standard deviation
increase in CPP mismatch lowers output by 0.42 standard deviations. The negative effect of CPP

mismatch on crop-specific output is robust to controls for FAO-GAEZ predicted output (column 2),
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Table 5: CPP Mismatch Reduces Agricultural Output

(1) (2) (3)

(4)

(5)

(6)

Dependent Variable islog Output

(7)

(8)

CPP Mismatch with Estimated

Frontier

CPP Mismatch with the US

CPP Mismatch (0-1)

-7.136 -5.721

-7.202

-6.288
(0.959) (0.663) (0.461) (0.501)

-9.285

-10.600

-9.325

-8.454
(1.199) (3.024) (0.617) (0.652)

log(FAO-GAEZ-Predicted Output) 0.353 0.298
(0.0499) (0.0814)

Included in LASSO Pool:

Top CPP Fixed Effects - - Yes Yes - - Yes Yes

Ecological Features x Crop Fixed Effects - - No Yes - - No Yes
Controlsin LASSO Pool 335 3935 - - 335 3935
Crop Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,704 2,353 6,707 5,903 6,926 2,353 6,931 6,069
R-squared 0.600 0.609 0.599 0.617

Notes: The unitof observation is a country-crop pair. Columns 1-4 use CPP mismatch with the estimated set of
technological leader countries and columns 5-8 use CPP mismatch with the US. Columns 1-2 and 5-6 report OLS estimates
and columns 3-4 and 7-8 report post double LASSO estimates. Country and crop fixed effects are included in all
specifications, and included in the amelioration setin the post-double LASSO specifications. The Top CPPs are defined as
the top 200 CPPs defined by (i) the number of countries in which they are presentand (ii) the number of host crops that
they infect. Since the two sets overlap, the total numberis 335. The set of ecological featuresincludes: temperature,
precipitation, elevation, ruggedness, growing season days, soil acidity, soil clay content, soil silt content, soil coarse
fragment volume, and soil water capacity. Standard errors are double-clustered by crop and country.

and controls for a wide array of CPP environment and agro-climatic conditions selected by LASSO
(columns 3 and 4). Thus, the baseline estimate does not seem to be driven by differences in the
direct effect of local ecological conditions or ex ante suitability. The results are also all similar if we
define the US as the technological leader country for all crops (columns 5-8).1> Consistent with the
prediction of the model, we find quantitatively very similar effects focusing on area as the outcome
instead of production (Table A10).

Figure 6 displays the negative cross-country relationship between CPP mismatch and output for
four large crops: corn, wheat, rice, and soybeans. These findings convey the stark implications of our
results for the world’s most cultivated staple crops. The scatter plots also convey that the findings do
not seem driven by any outliers or extreme parts of the distribution. There is a systematic, negative

relationship between CPP mismatch and output across countries.'®

Sensitivity and Robustness. We conduct a range of sensitivity checks that are analogous to those

from the previous section, so we only mention them briefly here. First, we show that our results are

150ne benefit of this specification is that the country fixed effects in (11) become tantamount to country pair fixed effects
and therefore fully absorb all features of each country’s relationship with the US.

16Gince the single-crop results do not include country fixed effects, an additional prediction is that there should be
a negative relationship between CPP mismatch with the frontier and output per area (i.e., crop yields). In Figure A5,
we present an analogous set of partial correlation plots with yield as the dependent variable, and estimate negative and
significant coefficients in for all crops. For comparison, we also include partial correlation plots with log of yield as the
dependent variable for the full sample of crops, both with and without country fixed effects.
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Figure 6: CPP Mismatch and Agricultural Output: Large Crops
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Notes: Each sub-figure reports a partial correlation plot of an estimate of (11) in which we restrict the sample to a single
crop: corn, wheat, rice, and soybeans in 6a - 6d respectively. CPP mismatch is measured using the version in which we
allow technological leadership to vary across crops. The coefficient estimates and standard errors are noted at the bottom
of each sub-figure.

very similar if we purge any variation in CPP mismatch that could be driven by human activity, by
re-incorporating all eradicated CPPs and removing all invasive or potential invasive CPPs (Figures
Aba and A6b). Second, we show qualitatively very similar results using agro-climatic mismatch,
a fixed shifter of ecological mismatch that is not subject to human manipulation (Figure A6c and
Appendix Section C for additional detail). Third, we show that the results are quantitatively very
similar if we absorb continent-by-crop fixed effects, thus only focusing on comparisons across crops
and between countries on the same continent (Table A11). Fourth, in Table A12, we show that the
results are also robust to controlling for the interaction of crop fixed effects with additional country-
level characteristics (income, openness to trade, measures of inequality, specialization in agriculture,
overall agricultural productivity, and R&D investment). Thus, our finding does not seem to be biased

by spurious correlation between ecological mismatch and other determinants of productivity, even
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Figure 7: Falsification Test: CPP Mismatch with All Countries and Output (2000s)

(a) Unconditional (b) Conditional on CPP Mismatch with the Frontier
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Notes: This figure displays histograms of the coefficient estimates of the relationship between CPP mismatch with each
country separately and the log of crop-level output. In 7a, CPP mismatch with each country is included on the right hand
side of the regression alone (along with crop and country fixed effects) and 7b, CPP mismatch with the frontier is also
included in the regression.

when these determinants of productivity are allowed to vary by crop.

Finally, we account directly for the possibility that innovation could respond to potential future
market size and that, if spuriously correlated with CPP mismatch, this could bias our estimates.
Following Bustos et al. (2016), we construct a variable that measures the potential market expansion
from improved varieties by taking the the difference between (log of) FAO-GAEZ predicted potential
output under high input levels and (log of) FAO-GAEZ predicted potential output under low input
levels. Our estimates are quantitatively unaffected by controlling for this variable (Figure A7).

6.3 Testing the Inappropriate Technology Mechanism (Redux)

Mirroring our analysis in Section 5.3, we now test additional predictions of our hypothesis: that
mismatch matters more when it is relative to technological leaders and for innovation-intensive
crops, and that the effects hold at various levels of income, physical capital, and human capital.

Mismatch with the Frontier Matters Most (Falsification Test). If our main estimates capture the
effect of directed innovation on agricultural productivity, then we would expect to find a limited
effect of CPP mismatch with countries that are not centers of biotechnology development. To
test this, we re-estimate Equation 11, replacing CPPMismatchFrontiery , with CPP mismatch with
each country in the world. Figure 7 reports histograms of these coefficient estimates, both from
specifications that do not include CPP mismatch with the frontier as a control (7a) as well as from
specifications that do (7b). In both cases, the coefficient on CPP mismatch with the frontier, marked
with a dotted line, is in the left tail of the coefficient distribution.These estimates are consistent with
a causal effect of inappropriate technology underlying our main estimates, and help rule out the
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Figure 8: Heterogeneous Effects of CPP Mismatch on Output
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Notes: All sets of bars report coefficient estimates from single regression estimates, versions of Equation 11 that interact
CPP mismatch with indicators that equal one if the country is above or below the global median for a series of country-
level characteristics, or whether or not the country has IP protection for plant varieties (i.e., is UPOV compliant). The
outcome variable is log of production. The characteristics are GDP per capita (2010 USD per person), total GDP (2010
USD), literacy among adults (percentage among people over 15 years old), and fertilizer use (kg per hectare of arable
land), all measured from the World Bank in a global cross-section from 2000. Standard errors are double-clustered by
crop and country, and 95% confidence intervals are reported.

possibility that omitted ecological characteristics (e.g., ecological uniqueness) bias our results.

Mismatch Has a Larger Effect for Innovation-Intensive Crops. We next study heterogeneity in
the effect of mismatch on agricultural production by the innovation intensity of different crops
by estimating versions of Equation 11 that interact CPP Mismatch with crop-level variables. The
effects of CPP mismatch on output are larger for staple crops, the crops with the most global variety
releases, and the crops for which a genetically modified variety was brought to market (Table A13).
These are the same crops for which we earlier found an exaggerated effect of CPP mismatch on
technology transfer (Table A6).

Mismatch Matters Even for Poor, Input-Scarce Destinations. An additional prediction of our
model, borne out also in our results on technology transfer (Figure 4), is that the inappropriate
technology hypothesis has bite even in low-income and input-scarce destinations. We find similar
results when studying the heterogeneous effects on production, as summarized in the first four pairs
of bars in Figure 8. That is, inappropriateness reduces crop-specific output even in countries with
low income, low human capital, and low agricultural input use.

Mismatch Matters With and Without IP Enforcement. An additional test that was not possible
in our analysis of variety transfers was whether mismatch has differential effects in parts of the
world with and without intellectual property protection for plant varieties. The last panel of Figure
8 suggests that CPP mismatch has negative and significant effects in both cases. This is consistent of

34



our findings that CPP mismatch inhibits technology diffusion even in markets with limited or absent
IP enforcement (Section 5.5). The similar effect on the sample without IP enforcement, moreover,
makes it unlikely that the main result is driven by a spurious correlation between innovators’
anticipated future demand for their products and CPP mismatch since inventor profit margins in
regions without IP enforcement would likely be low everywhere. Moreover, this finding further
highlights the fact that the potential impact of technology mismatch on production in a given country

is independent from characteristics of local output or input markets.

6.4 Inappropriateness Reduces Agricultural Output Within Countries

We can exploit state-level data for Brazil and India to estimate the effects of mismatch at a

sub-national level. Our estimating equation is:
Yk,s = p - CPPMismatchFrontiery s + xs + Xk ¢(s) + Q;,SF + €ks (13)

where now s indexes states and {(s) € {Brazil, India}. In all specifications, we include crop-by-
country fixed effects (xx.¢(s)). By estimating the effect of inappropriateness on sub-national regions,
we hold fixed all country-by-crop characteristics, including crop-specific R&D, trade, policy, market
size, demand, and pest composition. Absorbing these determinants of productivity further sharpens
our identification strategy. Compared to our main results, estimates of Equation 13 exploit finer
differences in ecological conditions, making comparisons within both crops and states, and home
in on ex ante similar markets that nevertheless differ in their environmental similarity to technology
leaders (e.g., corn vs. cotton in Mato Grosso or soy in Mato Grosso vs. soy in Rio Grande do Sul).
We find negative and significant estimates of § (Table 6). The estimates are stable to different
control strategies, similar for the data-driven leader strategy and the US-as-leader strategy, and
comparable in magnitude to our country-by-crop results up to statistical precision. These findings
suggest that unobserved differences across country-crop pairs do not drive our findings. Moreover,
they imply that technology mismatch explains productivity differences not only across international
markets but also differences across regional markets within countries, which represent a growing
share of global inequality. This is consistent with existing conjectures that variation in technology

use can explain a large share of sub-national productivity differences (Acemoglu and Dell, 2010).

6.5 Dynamic Estimates: The Green Revolution and Rise of the US

So far we have studied the static effect of inappropriateness on production. We now investigate
how changes in technological leadership over time influence production, by shifting global patterns
of inappropriateness. To study this topic, we exploit two natural experiments that significantly
shifted the geography of agricultural innovation: the Green Revolution of the 1960s and 1970s and
the rise of US biotechnology since the 1990s. Methodologically, these strategies allow us to fully
absorb any unobservable crop-by-country level effects when estimating the dynamic impact of CPP
mismatch on production. Conceptually, these results highlight that the impact of local ecology on

productivity is not fixed but an outcome of the shifting direction of innovation.
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Table 6: CPP Mismatch Reduces Agricultural Output: Within-Country Estimates

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent Variable is log Output
CPP Mismatch w1th the Estimated CPP Mismatch with the US
Frontier
CPP Mismatch (0-1) -11.890 -10.100 11.850 -10.370 -8.925 -10.200 -8.695 -9.355
(1.937) (2.475) (1.538) (2.247) (2.386) (3.327) (1.752) (2.096)
log(FAO-GAEZ-Predicted Output) 0.659 0.654
(0.133) (0.138)
Included in LASSO Pool:
Top CPP Fixed Effects - - Yes Yes - - Yes Yes
Ecological Features x Crop Fixed Effects - - No Yes - - No Yes
Crop x Country Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
State Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,370 696 1,371 1,036 1,436 696 1,437 1,093
R-squared 0.658 0.683 0.641 0.680

Notes: The unitof observation is a state-country pair. Columns 1-4 use CPP mismatch with the estimated set of
technological leader countries and columns 5-8 use CPP mismatch with the US. Columns 1-2 and 5-6 report OLS estimates
and columns 3-4 and 7-8 report post double LASSO estimates. State and crop-by-country fixed effects are included in all
specifications, and included in the amelioration setin the post-double LASSO specifications. The Top CPPs are defined as
the top 200 CPPs defined by (i) the number of countries in which they are presentand (ii) the number of host crops that
they infect. Since the two sets overlap, the total number is 335. The set of ecological features includes: temperature,
precipitation, elevation, ruggedness, growing season days, soil acidity, soil clay content, soil silt content, soil coarse
fragment volume, and soil water capacity. Standard errors are double-clustered by crop and state.

The Green Revolution. The Green Revolution was a coordinated international effort, backed by
philanthropic organizations, to develop high-yielding varieties (HYVs) of staple crops for countries
with high risk of famine. The engine at the heart of the Green Revolution was a set of international
agricultural research centers (IARCs), including the International Rice Research Institute (IRRI) in
the Philippines and the International Maize and Wheat Improvement Center (CIMMYT) in Mexico.
We identify from Evenson and Gollin (2003b) the IARC and hence country in which the primary
breeding center for each crop was located (Table A14). While HYV breeding involved international
collaboration, the focus of activity in certain hubs anecdotally led to technology most appropriate
for primary breeding locations.

We exploit the shift of innovation toward the IARCs to identify how changes in the focus of
innovation affect global production. To measure the induced changes in crop-by-country inap-
propriateness, we compute CPP mismatch with centers of Green Revolution breeding at the crop-
by-country level as CPPMismatchGRy ¢ = CPP Mismatchy ; jor (), where (5R(k) is the index of the
country in which Green Revolution breeding of crop k was located. In Section 5.5, we showed that
this measure of mismatch with Green Revolution breeding strongly predicts the extent of adoption
of high-yield varieties as measured by Evenson and Gollin (2003a,b), validating it as a shifter of the
appropriateness Green Revolution technology.

Our measure of mismatch suggests that potential appropriateness of Green Revolution tech-
nologies varies substantially across places and crops. In Figure A8, we illustrate the variation in
CPPMismatchGR for three examples: wheat at the CIMMYT in Mexico, rice at the IRRI in the
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Figure 9: Inappropriateness and the Impact of the Green Revolution

(a) Green Revolution Period (1960s-1980s) (b) After the Green Revolution (1980s-2010s)
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Notes: This figure displays binned partial correlation plots, after absorbing country and crop-by-continent fixed effects, in
which the independent variable is CPPMismatchGRy y and the dependent variable is the log of agricultural output. In
(a), the outcome is differenced over the 1960s-1980s and in (b), it is differenced over the 1980s-2010s. Standard errors are
clustered by country and continent-crop.

Philippines, and sorghum at ICRISAT in India. We also show the difference between mismatch with
these centers and mismatch with the United States, a simple proxy for the technological frontier. In
all cases, Green Revolution technology is systematically more appropriate for tropical biomes than
US technology. But this masks substantial heterogeneity within and across crops. For example, our
measure suggests that the environment in which ICRISAT researched sorghum varieties in India was
more similar to much of sub-Saharan Africa than the environment in which the CIMMYT research
wheat varieties in Mexico.

We estimate how CPP mismatch with Green Revolution centers affected output growth from the
1960s to the 1980s via the following regression model:

Alog yi?e_w = B - CPPMismatchGRy ¢ + 7 - 1og Yk ¢,1960s + X¢ + Xk,c(0) T €k e (14)
where the dependent variable is the change in (log of) crop-level output between the 1960s and
the 1980s, and the sample includes all crop-country pairs from the HYV adoption model. This
estimating equation differences out a country-by-crop fixed effect in levels of production, or the
time-invariant effects of local suitability. To even more strongly account for differences in innate
productivity, we control directly for output in the 1960s (log yx ¢,1960s), Which captures differential
trends in initial output.

We estimate § < 0 between the 1960s and the 1980s: all else equal, production grew less in
environments for which Green Revolution technology was less appropriate (Figure 9a). We find no
effect of Green Revolution Mismatch after the new adoption of Green Revolution technology began
to decline after the 1980s (Figure 9b), indicating that our main result is not spuriously capturing
long-run trends in productivity across country-crop pairs.
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Our findings are consistent with existing case-study evidence about how pest dissimilarities
shaped the efficacy of Green-Revolution technology (e.g., Lansing, 2009). The finding also illustrates
how the Green Revolution’s focus on developing a small set of HYVs and distributing them widely
may have limited the movement’s global reach, since new varieties were less productive in, and less

likely to be adopted in, environments ecologically different from HYV breeding centers.

The Rise of US Biotech. Since the 1990s, the US biotechnology sector has grown rapidly while the
European biotechnology sector has, in relative terms, declined. Industry analysis observe that these
trends coincide with the advent of genetic modification technology and the very different regulatory
approach to this technology in the US versus Europe, spurring a large increase in private capital
investment in the US (Fernandez-Cornejo and Caswell, 2006, p. 2). Figure A9 shows the footprint
of these trends in our own patent data: while there were more agricultural patents in Europe than
in the US during the 1990s, the US far outpaced Europe by the 2010s.

We exploit this disproportionate growth of the US as a second identification strategy to measure
the effects of mismatch on production. For each country-crop pair, we estimate:

Alog yi%‘go = p1-CPP Mismatch]g/? + B2 - CPP Mismatchfk,[ +7vy -log y,?f O+ xe+xe+exe (15)

Like our Green Revolution strategy, this specification allows us to fully absorb country and crop

1990
k¢

has reallocated toward places ecologically similar to the US (81 < 0) and away from Europe (5, > 0)

specific trends, as well as trends in baseline production (log y,”,"). We hypothesize that production
due to the underlying shift in the geography of innovation. We find evidence of both hypotheses
(Table A15). The effect of the US, 1, is negative and statistically significant in all specifications. The
effect of the EU, f», is positive, although imprecisely estimated. When we conduct a permutation
analysis and compare the impact of CPP mismatch with the US on output changes with the effect
of CPP mismatch with all other countries on the globe, the effect of CPP mismatch with the US is in
the far left tail of the distribution (see Figure A10; p-value = 0.004), consistent with the fact that the
growth of US innovation was much more dramatic than that of any other country during this period.
Additionally, the effect is substantially larger for major US field crops (corn, wheat, soybeans, and
cotton), for which US seed market growth was “particularly rapid” during the sample period and
ultimately constituted over two-thirds of US market size (Fernandez-Cornejo and Caswell, 2006)
(see Panel B of Table A15). These results, taken together, are consistent with a causal interpretation
that R&D growth and environmental mismatch affect global agricultural specialization.

7. INAPPROPRIATE TECHNOLOGY AND AGRICULTURAL PRODUCTIVITY

We finally combine our empirical estimates with the model to study how the inappropriateness
of technology shapes the distribution of global agricultural productivity. We then use our framework
to study a series of counterfactual scenarios that model how inappropriateness affects the optimal
targeting of new research, the consequences of a global shift in R&D toward emerging markets, and
the global movement of crop pests and pathogens due to climate change.
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7.1 Methods

Set-up. We make three modifications to the model of Section 2. First, the “Leader” producer
of biotechnology may differ for each crop, to match the data and our empirical specification. We
let Ly denote the leader for each crop k. Second, each country has endowment (; of agricultural
land. Third, we explicitly specify a demand system. There is a representative global consumer with
payoffs u(M, C) defined over the numeraire good (“money”) and a constant elasticity of substitution
bundle of the agricultural goods:!'”

e

c- (Z Kic;‘%) 7 (16

k=1

for some constants (Kk)lzle and elasticity of substitution ¢ > 0.8 The representative consumer can
purchase each crop k at a global price pi, in terms of the numeraire. The role of the demand system
is to help us account for equilibrium responses of crop prices.footnoteWe furthermore assume that

y, landowners’ profit share, is ~ 1, so the elasticity of choices to prices is /y = 7.

From Regression Estimates to Quantification. Revisiting Proposition 2 with these additional

assumptions, we can write crop-by-country output as
log Yie = =B k1,0 + (1= D logpx — (n = 1) log E¢ + log C¢ + 1 (aAx + (1 = @)B)) + nlogwie (17)

where 0 ¢, is CPP mismatch with the crop-specific frontier, log px = logpi — logp is the price

deviation from the agricultural price index logp, and logZ; = log &y — logp is location-specific
productivity deflated by the same index.!” Agricultural productivity, as derived in Proposition 3, is

K 1-y
log & = x + - log > iplwl €T AT e (18)
k=1

Before describing the calibration, we highlight the two key contributions of the model that make
it possible to map our regression estimates to aggregate productivity effects.

The first concerns the interpretation of our empirically estimated semi-elasticity of production
to CPP mismatch from Section 6. Inspecting Equation 18, we observe that a one-unit reduction
in mismatch 0 increases productivity by f/n units. This adjustment factor of 1/n translates our
regression coefficient from units of “production” to units of “productivity,” by dividing out the
elasticity of farmers’ choice to changes in productivity. When 7 is smaller, farmers’ crop choice is
less sensitive to productivity differences, so the same effect of mismatch on production implies a
larger effect on productivity. Moreover, the functional form of Equation 18 incorporates curvature

17Formally, the consumer’s payoffs are represented by some concave u : R x Ry — R. They have an initial endowment
of M, and are allowed to consume negative amounts.

18We normalize the constants x k so that, in the observed equilibrium, py =1 for all k.

9Deflating by the price p is natural because it keeps constant the representative consumer’s overall demand for
agricultural products.

39



that would be ignored by simple linear extrapolation.

The second concerns equilibrium price effects. If all countries become more productive at
producing a certain crop, then the equilibrium price goes down, muting farmers” incentives to plant
that crop. The model allows us to recover this “missing intercept” of equilbrium interactions, which
was controlled for in the crop fixed effect of the regression. The elasticity of demand ¢ controls the
strength of this channel: if demand is more inelastic, then price effects are larger.

Calibration. We calibrate the Fréchet parameter as n = 2.46 from Costinot et al. (2016), who
estimate this parameter to match the modern cross-section of global agricultural production. Com-
bining this estimate with our baseline estimate of § = —7.14 (Table 5, column 1) yields an estimate
of —f/n = 2.90, in units of percent productivity loss per basis point of CPP mismatch.

Conditional on 1, the crop-by-location productivity wy ¢ is identified up to scale from data on
relative area by crop. We measure these areas using the crop-by-country planting data from the
FAOSTAT database, averaged from 2000-2018. We use estimates of total agricultural revenue from
Fuglie (2012), again averaged from 2000 to the present, to calibrate all countries” initial revenue
productivity and extent of agricultural land. This pins down the scale of local innate productivity.
Finally, to calibrate the crop-level demand curves, we use the elasticity of supply between crops
estimated by Costinot et al. (2016), ¢ = 2.82.

7.2 The Productivity Effects of Inappropriateness

We first study a counterfactual in which global agricultural innovation becomes evenly focused.
In the language of the model, innovators invest in R&D for all ecological conditions and B;  ; = B.
In the language of the Introduction’s motivating example, frontier research related to the Maize
Stalk Borer catches up to frontier research related to the “Billion Dollar Bug,” the Corn Rootworm.
Without taking a stand on the costs of research and the origins of unevenly focused innovation, we
cannot make a normative claim that this scenario is preferred to the status quo. Nonetheless, it is a
natural benchmark for gauging the extent to which inappropriate technology can account for the
vast differences in global agricultural productivity.

Based on comparing the observed equilibrium with this counterfactual, we find that inappropri-
ateness reduces global productivity by 57.7% (SE: 4.85%) and explains 15.1% (SE: 0.42%) of global
disparities, as measured by the inter-quartile range of the log productivity distribution. The left
panel of Figure 10 displays the distribution of productivity losses across continents. The largest
losses from inappropriateness are concentrated in Africa and Asia, while the smallest are in Europe.
The right panel plots observed log revenue productivity against the model’s losses from inappropri-
ateness. The negative correlation (f = —6.22) conveys that the countries with the highest predicted
loss from inappropriateness are the least productive today. That is, neglected agricultural ecosys-
tems are disproportionately located in unproductive parts of the world, which are kept unproductive

due to an absence of appropriate technology.?’

20Figure A11 summarizes sensitivity analysis of our main findings to alternative calibrations of i and ¢. The findings
are similar for the full range of plausible values that are consistent with estimates from the literature.
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Figure 10: The Effects of Inappropriateness on Global Agricultural Productivity
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Notes: This figure presents results from the counterfactual experiment of equalizing research on all ecological characteris-
tics (see Section 7.2). We present results by calculating the loss in agricultural productivity moving from the counterfactual
world of equalized research to the observed world of unequal research. The left graph is a histogram of productivity
losses from inappropriateness across countries. The right graph is a scatterplot of productivity losses against observed
productivity. The line is a best-fit linear regression across countries (slope = —0.024, robust SE = 0.004). In each plot,
colors indicate continents.

Inappropriateness Due to Other Ecological Differences. As highlighted in Section 3.1.3, CPP
mismatch is not the only determinant of inappropriateness; other features of ecological and geo-
graphic mismatch with the frontier could contribute to the inappropriateness of modern technology
and aggregate effect of inappropriateness on global productivity. Incorporating these additional
dimensions of mismatch increases our estimate of the losses due to inappropriateness to 68.2%, and
increases the effect on disparities in productivity to 16.3% (see also Appendix C and Figure A12).

7.3 Targeting Research for Maximum Global Impact

In the face of persistent global hunger and looming threats including climate change, there are
renewed calls for a “Second Green Revolution” that benefits a broader set of low-income countries
(Gates, 2009). Our measurement strategy and model can be used to ask which locations for potential
research investments would maximize potential productivity benefits. For each of the eight staple
crops which were the focus of the historical Green Revolution, we calculate the counterfactual
general-equilibrium productivity benefit of moving the “Leader” to each country in the world. We
then identify which new Leader choices would have the largest effect on global productivity and on
productivity in currently less productive countries.

Our findings, reported in Table 7, are consistent with the hypothesis that a lack of breeding in
Africa holds back global productivity growth (Pingali, 2012), especially in currently unproductive
locations. Nigeria, Ghana, Zimbabwe, Tanzania, and the Democratic Republic of Congo all emerge
as countries where breeding research could potentially have large effects on global output. Our
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Table 7: Inappropriateness-Minimizing Centers for Modern Agricultural Innovation

® 2 3 C)) ) (6 Q) ® €]
Sites Chosen to Minimize Inappropriateness in Countries

Sites Chosen to Minimize Global Inappropriateness with Below Median Productivity

Cro
P . % Changein  Second Best % Change in . % Changein  Second Best % Change in
BestSite Productivity Site Productivity BestSite Productivity Site Productivity
Wheat China 4.87 India 2.75 India 11.17 Pakistan 6.76
Maize China 13.40 USA 10.24 India 9.08 Tanzania 7.61
Sorghum India 1.26 Nigeria 1.11 Nigeria 3.39 India 3.08
Millet Nigeria 1.37 India 1.04 Nigeria 3.43 Zimbabwe 2.02
Beans India 1.99 Brazil 1.73 India 3.93 China 1.82
Potatoes China 1.48 India 0.73 India 1.20 China 0.65
Cassava Nigeria 0.64 Ghana 0.47 Nigeria 1.81 DRC 1.45
Rice China 10.74 India 9.59 India 16.65 Thailand 10.98

Notes: Column 1 reports the cropsincluded in our analysis of the Green Revolution. Columns 2-5 report the results of our analysis to select
the two countries where breeding investment would have the largest positive effect on global output for each crop. Columns 6-9 reportthe
results of our analysis to select the two countries where breeding investmentwould have the largest positive effect on outputin countries

with below median overall agricultural productivity. All estimates rely on the full model with non-linear adjustments and price responses.

results also suggest potentially large opportunities for emerging economies, like India and China.
In the next section, we directly explore the rise of large, emerging markets and how their growing
role in global R&D could shape global productivity.

7.4 The Rise of New Technology Leaders

One of the biggest changes to global R&D in the coming decades could be the rise of large
emerging economies such as the “BRIC” countries—Brazil, Russia, India, and China. Our data
reveal that agricultural patenting in BRIC countries, while still substantially behind that of the US,
has grown at a faster rate since 1990s. This trend will likely accelerate in the future.

How might this shift in the geography of global research affect global agricultural productivity?
To study this in our model, we set mismatch with the leader equal to a (area-weighted average) of
mismatch with the BRIC countries:*!

Area[/’k .
(Sk,f,Lk = Z X CPPMlsmatchk,”, (19)
v &hc Lereric Areag i

We then compare a world in which BRIC has emerged as new technology leaders to the observed
equilibrium, in which technology development is concentrated disproportionately in the US and a
handful of European countries.

We find that the “rise of BRIC” in global biotechnology increases average global productivity by
29.2% (Figure 11(a)), due to the fact that the BRIC countries span more ecological diversity than the
existing technological leaders. Africa and parts of Asia stand particularly to gain, on average, from
this realignment. However, there are also clear losers in Europe and Asia. From the perspective
of the developing world, a shift of innovation investment to the BRIC nations may be a partial, if

2lpor crops that are not cultivated in any BRIC country, we use the estimated leader countries from the main analysis.

42



Figure 11: Counterfactuals: Rise of BRIC and Climate-Induced CPP Migration

(a) BRIC as Biotech Leaders (b) Climate-Induced CPP Migration
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Notes: Each graph is a cross-country histogram of productivity changes across countries in the indicated counterfactual
scenarios. The left scenario corresponds to a shift of biotechnological leadership to Brazil, Russia, India, and China
(Section 7.4) and the right scenario corresponds to a poleward migration of crop pests and pathogens induced by climate
change (Section 7.5).

incomplete, substitute for local technological investment, since BRIC countries would endogenously
develop technology that is more appropriate for low and middle-income countries.

7.5 Climate Change and CPP Mass Migration

So far, we have treated ecology as immutable and allowed the location and focus of innovators
to shift over time. Climate change, however, may begin to rapidly alter ecological systems over
the coming decades (Parmesan and Yohe, 2003). In the context of CPPs, increases in temperature
are predicted to generate systematic movement toward the poles (Bebber et al., 2013). While such
movement has been limited to date, temperature change is projected to dramatically accelerate in
the near future.”? This could change the relevant “geography of innovation” by shifting the set of
CPP threats and hence the focus of technological progress in each country, even if the distribution
of R&D across countries remains fixed.

To study this, we use the estimates in Bebber et al. (2013) of poleward CPP movement to project
CPP habitats in the year 2100.2> We then use these data to construct mismatch with (current)
technology leaders after taking into account this change in ecology.

Our model predicts that this change in ecology has an overall positive effect on global productivity
via the inappropriate technology mechanism (Figure 11(b)). The reason is that projected CPP

22CPPs have moved poleward over the past 50 years by about 135 kilometers (Bebber et al., 2013).

23The consensus worst case scenario implies a 4.3°C increase in temperature by 2100, and hence a 700km poleward
movement of CPPs on average (or approximately the distance from Tunis to Rome). We simulate poleward range spread
of each pest by identifying all countries that intersect a 700km translation of all countries that presently contain the CPP,
and appending these matches to the observed presence data to construct a dataset of predicted CPP presence in 2100.
Finally, we include manual corrections for countries with non-contiguous territory.
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range shifts tend to make the CPP composition of currently rich and poor countries more similar,
coordinating global research on a shared set of threats. Our analysis obviously does not account for
the other presumably detrimental effects of temperature change and invasive species. However, it
highlights how endogenous technological change may partially offset future ecological disruption,
even in developing countries. Understanding the interactions between climate change, ecosystem

shifts, and agricultural research remains an important topic for future research.

8. CoNCLUSION

This paper investigates a long-standing hypothesis that global patterns of technology diffusion
and productivity are shaped by the uneven focus of innovation. New technology—which is often
designed to match the characteristics, conditions, and demands of high-income markets—may be
“inappropriate” in large parts of the world, potentially explaining part of the vast global disparities
in technology transfer and productivity.

We study this hypothesis in the context of global agriculture. To do so, we develop a novel mea-
sure of the potential inappropriateness of crop-specific technology based on mismatch in crop pest
and pathogen environments. We find that agricultural innovation is concentrated on the ecologi-
cal conditions of technology leaders and that ecological mismatch with these leaders substantially
reduces both technology transfer and physical output. Combining these estimates with a model,
we estimate that inappropriateness as captured by ecological mismatch reduces global agricultural
productivity by 58%, and increases global disparities in productivity by 15%. Together, these results
highlight that the direction of innovation—much of which takes place in a small set of high-income
countries—helps sustain large disparities in global agricultural productivity.

While our findings suggest that there may be benefits to “spreading innovation out” across the
world, our estimates do not take into account the heterogeneous costs of conducting R&D in different
parts of the world and on different applications. Measuring both private costs and social costs, which
may be substantially different in the presence of large research externalities, would be important
for designing efficient policy interventions. Moreover, ongoing changes in global development and
the environment may partially offset the need for local innovation in each market. As we show,
the growth of R&D investment in large emerging markets, which are more ecologically similar to
the poorest countries than the current set of technology leaders, may endogenously generate more
appropriate technologies for the world’s poorest farmers. That said, the dependencies generated by
these technology linkages—both in the existing equilibrium and in the future—could have major
implications for geopolitics and soft power, especially with mounting threats to food production

due to climate change. These all strike us as important areas for future work.
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A. PROOFS
A1 Supplementary Lemmas
We first provide two results that assist in proving Propositions 1, 2, and 3.

Lemma 1. Consider a farmer with production function f(X) = (X)'™” (Qwe)", who can purchase the input
X at price q, and sell their output at price p. Their profit is

1-vy 5 1
I[T=vy T prOwe (20)

Proof. Farmers choose the input quantity to solve:
I1= max {p(X)l_V(Gws)V - qX} (21)

This is a strictly concave problem. The first-order condition is 0 = (1 — y)p(Bwe)’ (X)) - q.
Rearranging and substituting into Equation 21 yields Equation 20. m|

Lemma 2. The measure of farmers planting crop k in country € is

n
Y g
Piie Oe@i
Tthe = TR (22)
Yy gl
i Profre Op @i
Moreover, the expected profit of farmers conditional on any choice is
1-y K n _nﬁ ﬁ
Be=y(1-p)7 Z Piaie Ofwp (23)
k=1

Proof. Letk:, € {1,...,K} denote the crop-technology choice of farmer i in country ¢ and define

1y 1l

vke =y(1- V)Tp,fq,:f Wk, 0Ok ¢ (24)

Let F(z) denote the cumulative distribution function of a Fréchet random variable with scale one
and shape parameter 1 > 1, or F(z) = exp (—x7"). Since ¢; k¢ is Fréchet with mean one and shape
1 > 1, its scale parameteris s = ([(1-1/n))"; thus the normalized shock &; x ¢ = 1¢; x ¢ is distributed
by F(z). Due to a law of large numbers across draws of the shock, 7y ¢ = P[k] , = k].

If a farmer draws &; i ¢ = z, then that farmer chooses k if this results in the maximum productivity
among all options, or vi ¢z > vi &k ¢ for all other k’. These events are independent across all
k’. Thus the probability of choosing k is given by the probability of the event described above,



conditional on each realization z, integrated over the distribution of z:
Tk = / I_I F ( Ykt z) dF(z)
0 Vit
= / l_l exp (— (—z) ) nz= Texp(-zT)dz = / nexp |-z 1—[z7dz
0 Vi e 0 v

k¢

(25)

where in the second equality we substituted the expression for F(z) in the third equality we defined

1n
the productivity index &, = (Zlk(:l VZ l}) . After a change in variables in the integrand to Z = zVEk; ,

the original integral can be re-written and simplified as

iy n n

k0,0 ® oo ] Vi © Vi
M= =l [ pexp(-z Mz Mz = XL [ 4R = 0 (26)
Zk’,f” Vk//f///[ 0 Zk’,f” vk’,f”,f 0 Zk',e” Vkr/eu/[

Re-writing the last equality with the definition of v, ; completes the derivation of Equation 22.
We next derive profitability of production conditional on a given crop choice. Let
Vi’i(, = rr}:,ax {Vk/,g Ei,k/,g} (27)

denote the profitability of farmer i in country ¢ evaluated at the optimal choice. The probability

that V, is less than some value v, conditional on the optimal crop choice being k, can be obtained

0
SVk ¢ 4

by integrating the right-hand-side of Equation 25 up to the realization

and normalizing by the
probability of choosing k’:

PIViy<vlki,=kl= m/{) . rl F (MZ) dF(z) = ./o " dr ) (28)

Vi
k'#k k.t

where the second equality changes variables in the integrand to Z = zv"é{éf’“. This implies that V/,
conditional on k; ¢ = k can be written as the product of Z; and a unit-mean Fréchet random variable,
regardless of the k. Thus, E[Vi* el k;f 0= k] = By, Vk. This implies the desired claim, after substituting
in the expression for E. C

O

A.2 Proof of Proposition 1
Under the maintained assumption that By ¢ = Bift e 7k, and B otherwise, we have that

104 -
log Ok = alog Ax + Z (log B - Tteg;, +1og B - Ligr; ;)

teTk,e (29)
= alog Ay + (1 — a)B - 6y,01(1 — a)(log B — log B)

where the last line uses the definition of ecological mismatch, 6x 1 =1 — %|ﬁ,(1 N Tkl



Using constant expenditure and profit shares (under Cobb-Douglas production), we derive the
1y =
qkey
in for &y and 7ty ¢ using the result of Lemma 2 and substituting for gx , = C; using the limit-pricing

quantity of inputs demanded for farmers of crop k in location ¢ as Xj; = E¢mtk,¢. Substituting

assumption gives

_ 1y gk g ¥
Xee =1 - )G, 7 g ¢ PLwl 0], (30)

Finally, taking logs and substituting in Equation 29, we write

log X0 = =B - Ok,e,L + Xko + XL + XoL (31)

where g = 17(1 — a)(log B — log B) > 0 and one representation of the fixed effects is

Xk =nlogwie + (1 —n)logE,
5. 1
=alogAr+(1-a)logB + —1
XkL = alogAg + (1 - a)log >, 108 Pk (32)
1- 1-—
xor = —n—L1ogCr + (n = 1)log y + (1 + 7)) —L log(1 - 7)
A.3 Proof of Proposition 2
As derived in Lemma 1, physical production on farm i conditional on planting (k, £’) is
=t 1
1=y\7 31 I ke
Yike= L Ok i ek, = —= 33
Y ( T ) P Oka@iteni = 2 (33)

where IT; i ¢ is the profit earned by the farmer. Applying a law of large numbers over the realization

of shocks ¢; i ¢, total production is the sum of expected production:

V
Yi,e = [)/ 0= k] uiy; (34)

As shown in Lemma 2, E [Vi*,[ | k;l = k] = &y for any (k, ¢’). Thus,

1 _ 1 _ S
Y = VPkdmk’[z Vpkm (62,13‘”2 PeE v - 7’)7 (qk 0 V5
_ Ly -5k 1 35
=ya-y"v e, T pl g, "wZ,ﬂZ,e )
1-y 1
=91~ 1(1 7/)’1; _UJ_’} Iz :;_' T A g(=a) ,—n(1-a)or,,(log B-log B)

where the second equality in the first substitutes the expression for 7y ¢ y derived in Lemma 2, the
second line collects terms and simplifies g ¢y = C¢, and the third line substitutes in the expression

for O ¢ from Equation 29.



Taking a log, we obtain the desired expression
log Yi¢ = —plog bke,1 + Xk + X¢ +1log wi e (36)

where g = 17(1 — a)(log B — log B) > 0 and one representation of the fixed effects is

Xk = (E — 1) log px + nalog A
Y

- (37)

og(1 = y) - log €y

xe=(0-n)logZ;+n(l-a)logB+(n-1)logy +n

We can also derive analogous expressions for planted area and physical yield. First, by inspection
of Equation 35, we observe that

log 1ty ¢ = log Yi ¢ — log E¢ + log pi + log y (38)

and hence can be written in the same fixed-effects-regression form. Finally, observe that physical
yield zx y equals production per unit area. Thus

log zk,¢ = log Yi,¢ — log tx,¢ = log E¢ — log px — log y (39)

A4 Proof of Proposition 3

This follows immediately from combining the expression for 0 ¢ given in Equation 29 with the
definition of & in Equation 23 (Lemma 2), observing that gi ¢ = C; by the limit-pricing assumption,
and defining
1-y

X =logy + log(1-7)+(1-a)logB (40)

A.5 Mapping to Multiple-Input Model

Here, we show how a variant model with multiple inputs maps to our main model. Departing
from the baseline, the farm has a new production function that uses N + 1 inputs. The production

function, suppressing dependence on the index i and crop k for convenience, is

N
[

n=1

Y = X1r-Zil o (0de) (41)

where y € (0,1) continues to measure the return to fixed factors versus technology; @ € Ry is
average natural suitability; ¢ € Ry is an idiosyncratic perturbation with a Fréchet distribution with
mean one and shape parameter 1 > 0; the a, are the returns to scale for each additional input;
X is usage of the biotechnological input; and the X, are the usage of other inputs. We assume
that 0 < y + XN @, < 1, so there are decreasing returns to scale in the variable factors. The

farm faces price j for the biotechnological input and 7§, for the other inputs. Its input-choice profit



maximization problem is

N
[

n=1

N
max  { pX1 7V Zn=1 ¥
X, (XN,

N
(O@e) —GX = ). qx} (42)
n=1

We now show a one-to-one mapping between this variant model and our baseline model:

Lemma 3. The multiple-input model implies the same farm-level profits as the one-input model where

1y-5N ay
g=q
LN (43)
w = oK(a,y)r (1_[ q;a”)
n=1

and K(a,y) = (1—y - 3N, an)l‘V‘Zyzl an [IN_ a". Given this mapping, the multiple-input and one-
input models therefore have the same implications for aggregate technology development, technology transfer,

production, and productivity.

Proof. The first-order condition for the inputs can be re-arranged to

-y =30 anpY
G bW L) X, = 2Py, (44)

q In

X

Substituting these choices into the production function and solving for Y, we find

K(a, )} 0wep ™
! =
y = K@ y)ybwep

(45)

1-y-3N | an

q 7 H;Iq\l=1 an"

where K(a,y)=(1-y - ZnN:1 an)l_V_ZIrLl Gn HI,:]:1 ay". The profits of the farmer are share y of total

revenues, or
i P

N
H=VPY:V‘(P7‘1_ ; (]_[q;“"
n=1

Comparing this expression to Equation 20 in Lemma 2, which derived farmer profits in the main

K(a,y)%ea)e) (46)

model, we see that the models are isomorphic under the transformation described by Equation 43.
The transformed productivity incorporates the (inverse) price of the other inputs into our measure
of crop-by-location level productivity.

The last claim follows from recognizing that all of this paper’s results characterizing technology
development, technology transfer, production, and productivity depend on farmers” behavior only
through profit function and input demand derived in Lemma 1. m|



B. EXTENDED MODEL

In this Appendix, we describe a model that generalizes our baseline model (Section 2) along
five dimensions: (i) multiple countries can innovate; (ii) innovators can determine both context-
neutral (“A”) and context-specific (“B”) components of technology; (iii) innovators can improve
these attributes along an intensive margin; (iv) innovators can have noisy expectations of seed
demand; and (v) farmers face input-adoption wedges. In this model, we derive analogs to our main

theoretical results, which motivate our empirical strategies.

B.1 Set-up

Production. As in the main model, there is a set of countries ¢ € {1,...,L} and a set of crops
indexed by k € {1, ..., K}. In each country, there is a continuum of farms indexed by i € [0, 1]. Each
farm can produce any of the K crops. Differently from the main model, for each crop there are L
distinct technologies which come from different origin countries. A farm i in country ¢, planting
crop k, and using technology from country ¢’ produces output

Xi ko) 7 O pr g i) (47)

where X denotes the quantity of technology used, 6 denotes the origin-by-destination-by-crop specific
quality, w denotes local suitability, and ¢ denotes a origin-by-destination-by-crop specific Fréchet-
distributed shock with mean one and shape parameter n. Farmers in country ¢ choose what crop
to grow, from where to source their technology, and how much of the input to buy, taking as given
output prices px and input prices gk ¢ ¢. Finally, in technology input markets, farmers in country ¢
face wedges that distort their technology choice. That is, when making choices, farmers behave as if
the price of technology is g ¢ ¢Ck,¢, where Cx ¢ > 1 encodes the possibility that technology is (as-if)
taxed in a particular country. The existence of such wedges is consistent with the “barriers to riches”
hypothesis of Parente and Prescott (1994).

Environmentally Adapted Technology. Environmental characteristics are modeled exactly as in
the baseline model. That is, 7x ¢ C N denotes the characteristics of the (k, f) ecosystem. The quality
of crop-k technology from ¢, employed in country ¢, is

1-a
Qk,gf,(g = exp (XlOgAk,gr + T t; log Bt,k,g/,g (48)
(¥4

where we observe that environmental adaptations are now specific to origins and destinations.

Endogenous Innovation. A representative innovator in each country ¢’ can develop technology

for each country ¢ and crop k. To develop characteristic By k¢, innovators face convex research



costs with an uninternalized knowledge spillover from local research on the same CPP:

) (BO,(”B)Hqj

T(1+ ) (49)

Crpr4(B) = ¢ Busr
where ¢ > 0 is an inverse elasticity of research supply, Bg, > 0 is a country-specific constant,
and the function 7 : Ry — R, which is increasing and satisfies 7(0) = 0, controls the knowledge
spillover.?* The spillover may capture nonrival inputs like knowledge about local conditions or
genetic sequences. This aspect of agricultural technology development is well-documented in the
context of private-sector, public-sector, and philanthropically supported research. For example,
Kantor and Whalley (2019) document local productivity spillovers of US-government research sta-
tions and discuss the role of knowledge and input diffusion, Reynolds and Borlaug (2006) discuss
the importance of local germplasm and test fields at the non-profit CIMMYT, and Duvick et al. (2004)
highlights the importance of similar inputs for maize breeding at Pioneer Hi-Bred.

To develop the general characteristic A ¢/, the innovator faces a convex R&D cost Kj ¢/(A), where
K is a potentially crop-and-origin-specific function. We finally, as in the main analysis, study the
case in which the price of technology is pinned down as Cy in destination ¢ by a competitive fringe
of copycat producers.

Innovators in each country ¢’ choose, for each (k, ) destination market, the vector of R&D
spending to maximize revenues net of costs, given the pricing policy described above and conjectures
for crop prices, the destination’s productivity, and local research on each CPP. That is, for each crop,
the country ¢’ innovator solves the problem

o DR .2 (B Bo,¢'Bi k,e,0)' ¢
max e PAR(By s Pr, Ee, qrer) - Z e T(Bt,k,(/,(/)( 0Bt 0) (50)

Ak,(’/Bk/f//l te‘]},[ T(]‘ + ¢)

where R(-) gives the innovator’s conjecture for net revenue from technology sales, py. is the conjecture
of prices, &y is the conjecture of productivity, and By x ¢ ¢ is, for each t, the conjecture of local CPP-
specific research.

We finally allow for the possibility that innovators in location ¢ have idiosyncratic expectations
of seed demand by leaving the expectations of crop prices and agricultural productivity as free pa-
rameters. The case of full-information rational expectations is nested when Z = Z for all equilibrium
variables Z.

B.2 Toward the Model’s Predictions: Production, Technology Demand, and Research

Toward deriving analogs to our main model predictions (cf. Section 2.2), we first describe

farmers’ behavior conditional on technology availability. From Lemma 1, the profit of a farmer 7 in

24We assume that ¢ > (1 — a)n — 1, which is sufficient for the innovator’s problem for choosing research levels has an
interior solution.



country ¢ conditional on choosing technology-crop pair ¢’, k is

1-y

1-y) 7 4
ikee=7y (Qk o Py Ok ek 0€i k0 (51)

While in the main analysis the farmer’s choice problem was only over crops k (see Lemma 2), here
the choice is over pairs (k, {’). Nonetheless, the exact same arguments suffice to show that the
measure of farmers planting crop k and using technology from ¢’ in country / is

n 1-y

y N5 -5t ay
Pr it Ck ekH k0,0
T, 00 = 7 e J, (52)
> ¥ -t y C "
w0 Pl k’ O Vg
And, moreover, the expected profit of farmers conditional on any choice is
1
1-y ﬂ _77 n 1
B, = -7 7 ’
Ee=y1-y)7 P i Cké’ 00, Vis (53)

ke’

We next study the innovator’s choice of environmentally-specific R&D investment. Total invest-
ment by crop k farmers in country ¢ on technology from country ¢’ is

(1- 7/) £tk e (54)
where the first term is the expenditure share on technology (owing to Cobb-Douglas technology
with output elasticity 1 —y), the second is total revenue for each farmer (owing to the fact that profits
are share y of revenues), and the last term is the measure of farmers who choose the pair (k, ¢’).
The innovator’s profit margin is (C; — 1) per unit sold; and, because of the multiplicative wedge,
fraction 1/Ck ¢ of expenditure goes to the innovator. Thus, the innovator associated with market
(k, ¢’) conjectures that they will receive the following revenue from the (k, ) market:

o Cr—1 IL; o k
Ri,erp = (1-y) Uk, 01,0
Ck,e
1y A a1 (55)
— -1 1+n—- =y ’,:'177AJ’ o AY
=y A=) (Co=Dg py Gy =g Ay B, e

teTi 0

where the second line substitutes in the expressions for productivity and choice probabilities and
the hats denote conjectures by the (k, {’) innovator.
We next study the incentives for environmentally specific innovations, from the perspective of an

innovator for crop k in country ¢’. For a non-present pest t ¢ Tj s, the marginal benefit of innovation



is zero. Hence B; k¢ ¢ = 0. For a present pest t € T 4, the first-order condition is

=0

nd - a) _nl_v —pee - '7” ol A% 1 —T(B ke ) gt g?
TBiro e Koy, MKi(COCy, " e™P1By Tpp wp Ay p l—[ B e ] ™ OB 0 By g
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ﬁ
157 is a constant depending on farmers’ profit share and supply
1 1y

elasticity, and K1(Cy) = (C - 1)C 7 summarizes the effect of the markup for increasing profit

where Ko(y,n) = "1 - y)

margins (first term) and decreasing demand (second term). We next take logs and impose the

equilibrium condition that the conjectures are correct. The first-order condition re-arranges to

log (Ko(y, Mn(1 - a)) pre 1= n
log Bt ke 0 = T+ 0 —log By ¢ — T ‘P T+ o log (1 <) log P
1 n n 1 A
’ —_— ’ ’ 56
+ T+ log K1(Cy) + ¥ o log wk,¢ + T+ log Ok ¢ + T ¢T(Bt,k’( ) (56)
1 ~
—1+¢108Ck,l’+1 (Plogékw

where we define log Cx ¢ = (7(1 — 7)y~! — 1)log (k¢ as a (monotone) transformation of the wedge
and & ¢ ¢ as an expectational error for technology demand:

log &k = (1 — n)(log & — log ) + gaogﬁk —log px) (57)

In particular, when log &k ¢ ¢ > 0 (< 0), the (k, {’) innovator overestimates (underestimates) demand
for technology in the relevant market and therefore over- (under-)invests in R&D.
We next substitute Equation 56 into the definition of log 0y - ¢ (Equation 48) and re-arrange terms

to write

1
1+¢p-n(1+a)

+(1-a)(1-n)logZE, + a

log Ok ¢ ¢ = (a log Axpy + (1 —a)log (Ko(y, nmn(l - a)) —(1-a)logBoey —(1—a)pe,

—a)n

logpr + (1 — a)nlog wi e + (1 — a)log K1(Cy)

— ~
Z (Bt ke er)

Téﬁ/g

= 1
—(1-a)log Cke + (1 —a)log &y e e+

(58)

We now simplify the last term on the right-hand-side. Let By > > 0 be a solution to Equation 56
forany t € 7% ¢ or a “locally present pest.” For any t ¢ 7 ¢, or “non-locally present pest,” B; x ¢ ¢+ = 0
as argued earlier. Thus, if we define 1 — 0y ¢y = %|77(,g N Tk, ¢| as the fraction of overlapping CPPs,

we can write

1-«a

Z B ) = (1= )1 = Ok,e0)T(Brer) +0- S0 = (1= a)(1 = Sk ) T(Bx ) (59)

Teﬁ,[
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B.3 Model Predictions
We now review the predictions of this extended model, mirroring the analysis of Section 2.2.

The Uneven Focus of Innovation. The extended model features a richer set of mechanisms by
which innovation is endogenously directed to the environmental characteristics of large markets. To
see this, we first describe the profit incentives that shape the decisions of innovators based in any
given origin market {’. From the first-order condition (Equation 56), we observe that the marginal
benefit from research investment is higher under the following circumstances: high baseline agri-
cultural productivity (wg,¢), high markups (qk,¢¢ = Ce), low licensing or IP costs (p¢), and low
input-use wedges (Cy ¢) all increase the marginal return to R&D investment. Moreover, because of
knowledge spillovers from research on local ecological characteristics—and endogenous mechanism
that generates increasing returns to scale for research—agricultural R&D in a given country ¢’ is
further directed toward destination markets with similar ecologies. Finally, because of the inten-
sive margin of research investment, there is a further “multiplier” force captured by the coefficient
m in Equation 58: when input demand is more elastic to the environmental adaptations of
technology (lower a or higher 1), the innovator internalizes the fact that producing higher qual-
ity technology will raise agricultural productivity (and their market share), further increasing the
demand for agricultural technology.

Next, fixing the destination market (k, £), we observe that the productivity boost for technology
¢’ arising from knowledge spillovers scales with the extent of R&D specific to domestic ecological
threats in those markets (Equation 59). The extent of this research is, in turn, affected by all the forces
described above related to market size. Thus, research “leaders” endogenously emerge in the multi-
country model. Fixing a crop k, the highest-quality technology comes from the market {” which
endogenously generates the most technology, due to its low R&D costs, high baseline productivity,
and/or favorable IP environment. These are also the markets for which lower ecological mismatch

has the highest marginal benefit.

Mismatch and Technology Diffusion. We next study the implications for technology diffusion.
As in the proof of Proposition 1, we substitute the expression for the endogenous productivity of
technology (Equation 58) into aggregate demand for agricultural technology and then collect terms.
We obtain an expression of the form

log X o0 = —=Bi,uOk,er 0 + Xko + Xk,or + Xer o + €kt (60)

This is a multi-way fixed effects equation that exactly matches our empirical strategy described in
Section 5.1.

The coefficient on ecological mismatch is

_ (1 —a)t(Bkp) S
T 1l+d-nl-a)”

B e (61)

This coefficient depends on the crop and origin market through the extent of knowledge spillover.
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In particular, the model predicts that mismatch has a larger marginal effect (in absolute value) on
technology transfer when the origin market is more research-intensive. This prediction is consistent
with our findings in Section 5.3.

We next describe interpretations of the fixed effect variables x.* The “crop-by-destination”
fixed effect partials out the effects of destination market size and destination-specific input-market
wedges, forces that have a uniform effect on technology transfer from any origin country:

_ (1-a)y 1-a _
Xkt = 1+cf)—r}(1—0z)+17 log wi e+ (1-1n) 1+qb—r)(1—0z)+1 log Z¢
n(l-a) n(1 - a) 5
- - 62
+-n 10gC¢z+1+¢_n(1+a)logK1(Cg) 1+qb—17(1+a)logcu (62)

N 1-a N 1-a
1+p-nl-a) 1+¢p-nl-a

) log(Ko(y, mn(1 — a)) +log Ko(y, 1)

The “crop-by-origin” fixed effect partials out the research productivity of the origin country, which

has a uniform effect on all destination countries:

na(l+¢)”! N1l -a)t(Bre) (1-a)l+¢)”!

Yl =T =) B T T g i) 1+ g-n-a)

log Bo/(g/ (63)

The “origin-by-destination” fixed effect partials out the direct effect of bilateral trade and licensing

costs:
nl-a)

Trg-nd-aftt (64)

Xeo =

Finally, the structural residual captures idiosyncratic factors in the country ¢’ innovator’s expecta-

tions of demand in market (k, {):

nl-a
1+¢-n(1-a)

ek = log &k e (65)
In principle, when estimating Equation 61, a threat to identifying the coefficient of interest  is
spurious correlation between ecological mismatch and this residual shock to expectations. In

Section 5.1, we describe empirical strategies that allay this concern in practice.

Mismatch and Agricultural Production. We next study the extended model’s predictions for
mismatch and agricultural production. Because of the structure of the choice problem with Fréchet
valued shocks, there is a simple mapping to the model studied in Section 2. We define the crop-

specific productivity index

1
n
Ok,e = (Z 92,5,15) (66)
él

25 As in the proof of Proposition 1, we observe that the fixed effect decomposition is not unique.
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This index summarizes farmers’” choice over technology ¢’. In particular, we can write the total

fraction of farmers planting crop k in country ¢ by combining this definition with Equation 52:26

e
Pk C Lo
Tt e = Z Tt er,0 = - (67)

_'7 ) Ul
Zk’ Pk/ Wyer k0

Using this observation, we can write production of crop k in country ¢ (cf. Proposition 2) as
log Yy ¢ =1 -10og Ok ¢ + xx + Xe + Vi (68)

Our estimating equation can be understood as an approximation of this model when a small number
of leaders have most of the market share for inputs. The fixed effects are defined as in Proposition 2:

Xk = (E - 1) log pi
v (69)

— Y (log(1 - y) ~ log Cy)

1
Xe=0-n)logZ;+n

The structural residual now takes into account both local productivity and local input-use wedges:

1 —
Vi,e = nlog wy,e — w log Ck ¢ (70)

Note that only country-by-crop specific components of the wedge are relevant for identification; any
country-specific or crop-specific components would be flexibly controlled for by the relevant fixed
effects. In practice, we find that our estimates of the effect of mismatch on production are stable when
controlling for observable proxies of innate productivity as well as proxies for wedges constructed
by interacting crop fixed effects with measures of overall development and human capital.

Inappropriate Technology and Productivity. We finally observe that revenue productivity is de-
fined above in Equation 53. Revenue productivity is lower when agricultural technology is less
productive, and its exact form in the model encodes farmers’ ability to substitute across crops and
technology types. In the extended model, innate productivity also accounts for market-specific
wedges. Since our structural analysis recovers innate productivity as a residual to account for
observed production (see Section 7.1), our method can be understood as holding these wedges

constant.

26We also use the fact that input prices are constant at the country level, and therefore irrelevant for choice across crops
or technologies within country.
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C. INAPPROPRIATENESS DRIVEN BY AGRO-CLIMATIC CONDITIONS

This appendix investigates the possible importance of non-CPP agro-climatic conditions as
shifters of ecological inappropriateness. We estimate ecological differences across crop-specific
growing areas in different countries, and incorporate these additional measures of mismatch into

both our baseline empirical estimates and counterfactual results.

C.1 Constructing Agro-climatic Mismatch

We include ten key agro-climatic characteristics that shape the usefulness of biotechnology for
production in a region: temperature, precipitation, elevation, ruggedness, the length of the growing
season, soil acidity, soil clay content, soil silt content, soil coarse fragment content, and soil water
capacity.”’” We combine geographically coded raster files of each characteristic with grid-cell level
information from the EarthStat database on the global planting pattern of 175 important crops in
2000 (Monfreda et al., 2008).22 We then compute the value of each characteristic for each crop-
by-country pair by estimating the average value of each characteristic in each country on the land
devoted to the crop in question; we denote these as x; ;. We then normalize each characteristic to
comparable, z-score units by re-centering by the global mean value of each attribute and normalizing
by the global dispersion (standard deviation); we refer to these normalized values as % ¢. Then, for

each agro-climatic characteristic x, crop, and location pair, we define the absolute distances
ARk e = Xk, — kel (71)

In words, A%k ¢ is the normalized mismatch (“inappropriateness”) in agro-climatic feature x for
crop k between countries ¢ and ¢’. For simplicity, we also aggregate the individual agroclimatic
characteristics into a single index at the crop-by-country-pair level, summing over all characteristics
X%
AgroClimMismatch ! Z AX (72)
v %
k¢t |X]|

C.2 Empirical Estimates

We next investigate whether mismatch in agro-climatic features shapes the transfer of technology
and global patterns of production. In column 1 of Table A8 reports estimates of Equation 9 in which,
instead of CPP mismatch, we include all ten agro-climatic mismatch measures Axy ¢ on the right
hand side of the regression. We find that most are negative and several statistically significant.
Mismatch in temperature, precipitation, and soil pH are associated with the largest reductions in
technology transfer. In column 2, we include the one-dimensional AgroClimMismatch, , ,, instead

27The temperature and precipitation data from National Center for Atmospheric Research Staff (Eds) (2020); elevation
from the GTOP30 Digital Elevation model; ruggedness from Riley et al. (1999) via Nunn and Puga (2012); growing season
length from FAO GAEZ; and soil statistics from WoSIS (Batjes et al., 2020, https://www.isric.org/explore/wosis).

28The data set was created by combining national, state, and county level census data with crop-specific maximum
potential yield data, to construct a 5-by-5-minute grid of the area devoted to each crop circa 2000.

2The index is similar to the agro-climatic similarity index used by Bazzi et al. (2016).
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of the individual Axy . The coefficient on agro-climatic mismatch is negative and significant.
Columns 3 and 4 repeat the estimates from columns 1 and 2, except we also include CPP mismatch
on the right hand side of the regression. The effect of CPP mismatch is negative, significant, and
similar to our baseline estimate, suggesting that ecological mismatch due to CPPs and due to other
agro-climatic features operate largely independently.

In Figure A6c, we present our results for production. The dependent variable is log of agricultural
output and the regression specification is (11). Again, we find a large, negative effect of agro-climatic
mismatch on production, suggesting that this independently measured form of ecological mismatch
affects agricultural output. Again, this operates largely independently from CPP mismatch, which
remains negative and significant (f = —5.92 t = 4.98) once agro-climatic mismatch is included in the
regression.

Taken together, these results show that our main findings are not specific to CPP differences
across crops and places (or, more perniciously, not driven by some specific feature of our CPP data
and measurement strategy); other agro-climatic shifters of inappropriateness also affect technology
transfer and productivity gaps. At the same time, non-CPP agro-climatic differences seem to operate
independently from our baseline measure of CPP mismatch, suggesting that the baseline estimates
are not simply picking up standard features of climate and geography. These findings are all
consistent with the fact that the pairwise correlations between CPP mismatch with the frontier,
and mismatch with the frontier in each other ecological characteristic, is relatively low. Table Al
reports a correlation matrix, including CPP distance to the frontier along with all agro-climatic
characteristics discussed above. The first column shows the correlation between CPP distance and
all other distance measures; the correlation coefficients tend to be small, and only one is above 0.2.

C.3 Counterfactual Analysis

Finally, we estimate our baseline counterfactuals scenario incorporating both CPP mismatch and
acro-climatic mismatch. Our modeling strategy is identical to the one outlined in Section 7.1 of the
main text. We find that inappropriateness, as captured by both CPP mismatch and agro-climatic
mismatch, reduces global productivity by 68.2% and increases disparities in global productivity
across countries, measured by the interquartile range, by 16.3%. These results are summarized
graphically in Figure A12, which is structured in the same way as Figure 10. Incorporating agro-
climatic mismatch as an additional shifter of inappropriateness increases our estimate of the overall
effect of inappropriateness on productivity. However, the effect of CPP mismatch on global outputis
about four times as large as the effect of agro-climatic mismatch, suggesting that inappropriateness

in the form of CPP mismatch is a more important determinant of agricultural productivity.
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D. SUPPLEMENTARY FIGURES AND TABLES

Figure A1: The Diffusion of Crop Varieties in the UPOV Data
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Notes: Each plot is a histogram of the number of appearances per unique variety in our data on new variety introduction
from the International Union for the Protection of New Varieties of Plants (UPOV). Our method for defining technology
transfer is described in Section 3.2.1. Panel (a) is for the whole sample. Panel (b) is for varieties from crop-specific
“leaders,” defined as the two countries that are associated with the most variety registrations for that crop (Section 5.3).

Figure A2: The Effect of CPP Mismatch on the Transfer of Biological and Chemical Technologies
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(b) Non-Mechanical Technology (Leader Effect)
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Notes: Each sub-figure reports a binned partial correlation plot (in which all possible two-way fixed effects are absorbed)
corresponding to the effect of crop pest and pathogen (CPP) mismatch on the transfer of biological and chemical tech-
nologies. The outcome variable is defined by the international transfer of agricultural patents (those in CPC class A01;
see Section 3.2.2) outside of classes A01B, A01C, or A01D. Panel (a) reports the average effect of CPP mismatch (estimated
from Equation 9) and (b) reports the effect of CPP mismatch with the leader (estimated from Equation 10).
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Figure A3: The Effect of CPP Mismatch on Variety Transfer to sub-Saharan Africa
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Notes: This figure displays binned partial correlation plots, after absorbing country and crop fixed effects, of the following
regression equation at the level of crops k and countries ¢:

Yk,¢ = p - CPPMismatchFrontier p + xp + Xk + €k ¢

Our outcome data come from the CGIAR DIIVA project (see Section 5.5), covering 19 crops and 28 countries in sub-Saharan
Africa. In the left panel, we measure CPPMismatchFrontier using mismatch with the United States. In the right panel,
we use CPP mismatch with (two) crop-specific leaders identified in the UPOV data, as described in Section 6.1. In (a) and
(b), the outcome is an indicator that equals one if any adoption has taken place; in (c) and (d), it is the total number of
varieties adopted (top-coded at the 95th percentile); and in (e) and (f), it is the log of the total number of varieties adopted.
We report t-statistics based on robust standard errors.



Figure A4: The Effect of CPP Mismatch on the Diffusion of High-Yield Varieties of the Green
Revolution

(a) Baseline Specification (b) Crop-by-Continent Fixed Effects
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coef = -26.62, t = 2.91

coef = -27.69, t = 2.93

Notes: Each sub-figure reports a binned partial correlation plot of the relationship between Green Revolution variety
adoption and CPP mismatch with the Green Revolution, both measured at the crop-by-country level. We estimate the
regression equation,

HYVAdoptiony 1955 = p - CPPMismatchGRy ¢ + X¢ + Xk c(e) + €k ¢

The outcome is measured from Evenson and Gollin’s (2003) data on high-yield variety adoption. CPPMismatchGR is
calculated as the crop-specific mismatch with the relevant international agricultural research center (IARCs) identified
in Table Al4. In (a), both crop and country fixed effects are included in the regression and in (b), crop fixed effects are
replaced with crop-by-continent fixed effects. Standard errors are double-clustered by country and crop-continent pair.
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Figure A5: The Effect of CPP Mismatch on Agricultural Yields

(a) Corn
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coef = -2.2459929, (robust) se = .32567086, t = -6.9

(e) All Crops
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CPP Mismatch with the Frontier | X
coef = -.29374413, (robust) se = .13263003, t = -2.21

log(Soybeans Output/Area) | X log(Wheat Output/Area) | X

log(Output/Area) | X

(b) Wheat
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Wheat CPP Mismatch with the Frontier | X

coef = -1.6131979, (robust) se = .2764011, t = -5.84

(d) Soybeans
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Soybeans CPP Mismatch with the Frontier | X
coef = -1.4837841, (robust) se = .37464258, t = -3.96

(f) All Crops (No Country FE)
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CPP Mismatch with the Frontier | X

coef = -1.3832601, (robust) se = .13911753, t = -9.94

Notes: Each sub-figure reports a partial correlation plot of a different estimation of Equation 11. In A5a - A5d, we restrict
the sample to corn, wheat, rice, and soybeans respectively. In A5e and A5f, the sample includes all crops and in A5f
country fixed effects are removed from the regression equation. The dependent variable is log of output per acre. The
coefficient estimates and standard errors are noted at the bottom of each sub-figure.
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Figure A6: The Effect of CPP Mismatch on Output: Measurement Sensitivity

(a) Including Eradicated CPPs (b) Excluding Invasive CPPs (c) Agro-Climatic Mismatch
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coef =-6.01,t=-7.81 coef =-1.95, t = -5.96

Notes: Each sub-figure reports a binned partial correlation plot of the relationship between log of crop-specific output and
ecological mismatch with the crop-specific leader country. In (a), we measure CPP mismatch after including all CPPs that
have ever been eradicated according to the CABI CPC data. In (b), we measure CPP mismatch after excluding all CPPs
that have ever been invasive or that have high invasive potential according to the CABI Invasive Species Compendium.
In (c), we measure agro-climatic mismatch using features of geography and the climate, as described in Appendix C.

Crop and country fixed effects are included in all specifications. Standard errors are double-clustered by country and
crop-continent pair.

Figure A7: The Effect of CPP Mismatch and Output After Controlling for Potential Market Expansion

(a) Rain-Fed Model (b) Irrigated Model
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CPP Mismatch | X CPP Mismatch | X
coef =-7.535, t = 3.94 coef =-7.098, t =3.75

Notes: Each sub-figure reports a binned partial correlation plot of the relationship between log of crop-specific output
and CPP mismatch with the crop-specific leader country, controlling for crop and country fixed effects as well as a proxy
for potential market expansion from improved agricultural technology. Following Bustos et al. (2016), we construct
proxies for potential expansion using the difference between the (log of) potential output predicted by the high-input and
low-input versions of the FAO-GAEZ agro-ecological model. In panel (a), we construct the control using the variant of
the FAO-GAEZ model that assumes rain-fed agriculture in both high-input and low-input settings. In panel (b), we use

the variant of the model that assumes the use of irrigation in high-input settings. Standard errors are double-clustered
by country and crop-continent pair.
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Figure A8: Illustrating the Variation in CPP Mismatch for the Green Revolution

A(i). Wheat Mismatch with Mexico (CIMMYT) A(ii). Relative Similarity to Mexico vs. US

Notes: These maps illustrate the variation in CPP (crop pest and pathogen) mismatch with centers of Green Revolution
breeding. The three rows correspond to wheat, based in the Centro Internacional de Mejoramiento de Maiz y Trigo
(CIMMYT) in Mexico; rice, based in the International Rice Research Institute (IRRI) in the Phillipines; and sorghum,
based in International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in India. Each map in the left column
shows the distribution of CPP MismatchGRy ¢ ¢ across countries ¢’ fixing the indicated crop k and demeaned at the
destination ¢’ and crop k levels. Darker shades of blue indicate higher values (i.e., more different crop pest and pathogen
environments), coded into five quantiles. Each map in the right column shows the difference betweeen CPP Mismatch
with the United States and CPP Mismatch with the relevant Green Revolution breeding center, demeaned in the same
way. Darker shades of green denotes higher relative mismatch with the US or higher relative similarity with the Green
Revolution center, coded into five quintiles.
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Figure A9: Growth in Patented Agricultural Technologies, Europe vs. the United States
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Notes: This graph shows the total number of patented agricultural technologies (i.e., in CPC class A01) in each five year
period, comparing patents with assignees in the US to patents with assignees in the modern EU (as of 2018). Bars are the
number of patents issued in the five year bin noted on the horizontal axis.

Figure A10: Falsification Test: CPP Mismatch with All Countries and Output Growth (1990s-2010s)
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Coefficient Estmates, Change in log Output (1990s-2010s) vs. CPP Mismatch with All Countries

Notes: This figure displays histograms of the coefficient estimates of the relationship between CPP mismatch with each
country separately and log of crop-level output change between the 1990s and the 2010s, as a randomization tset of our
estimates of Equation 15. The effect of CPP mismatch with the US is marked with a dotted line. The implied p-values
from this permutation test is p = 0.004.
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Figure A11: Sensitivity Analysis of Counterfactual Experiment

(a) Losses by Country
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Notes: This figure reproduces the main findings of our counterfactual exercise of removing inappropriateness under
alternative values of the inverse elasticity of supply 1 and elasticity of demand ¢. For the maximum and minimum
plausible values for €, we use ¢ = 2 and ¢ = 3.5. For the minimum plausible value for 1, we use n = 2.06 from Sotelo
(2020), to our knowledge the lowest estimate of the relevant parameter in existing literature. For the maximum plausible
value, we add the difference between the Sotelo (2020) estimate and our baseline estimate of 7.
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Figure A12: The Effects of Inappropriateness on Global Agricultural Productivity, Incorporating

Both CPP and Agro-Climatic Mismatch
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Notes: This figure recreates Figure 10 under an experiment that removes inappropriateness due to both CPP mismatch
and Agro-Climatic mismatch. Agro-climatic mismatch is a measure of the dissimilarity of ten features of climate, soil,
and topography at the country-by-crop level, as described in Appendix C. The left graph is a histogram of productivity
losses from inappropriateness across countries. The right graph is a scatterplot of productivity losses against observed
productivity. The line is a best-fit linear regression across countries (slope = —0.031, robust SE = 0.005). In each plot,
colors indicate continents.
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Table A1: Correlations Between All Ecological Mismatch Measures

. O e Coarse Growing Available
. i X i Soil Clay  Soil Silt X
Difference in: CPPs Temp.  Precip. Elevation Rugged. Content Content Frag. SoilpH  Season Wate-r
Content Length  Capacity
CPPs 1.0000
Temp. 0.2356  1.0000
Precip. 0.1061 0.2121 1.0000
Elevation 0.1578 0.0104 -0.0405 1.0000
Rugged. 0.1726 -0.0382  0.05 0.5052 1.0000
Soil Clay Content 0.0374 0.1602 0.146 -0.0074 -0.0096 1.0000
Soil Silt Content 0.1807 0.3564 0.0236 0.0402 -0.1209 0.0966 1.0000
Soil Coarse Fragement Content 0.1045 0.0697 0.0188 0.3407 0.5595 -0.0999 -0.1013 1.0000
Soil pH 0.0793 0.0829 0.4994 -0.0082 0.0128 0.1087 0.0326 -0.0001 1.0000
Growing Season Length 0.084 0.1186 0.5092 -0.0121 0.009 0.0216 0.0275 0.0001 0.4116 1.0000
Available Water Capacity 0.1375 0.1829 0.099 0.0126 -0.0466 0.3531 0.3893 -0.0966 0.0906 0.0665 1.0000

Notes: This table presents a correlation matrix among all individual measures of ecological distance to the frontier including CPP distance to the
frontier. The additional characteristics are: temperature, precipitation, elevation, ruggedness, soil clay content, soil silt content, soil coarse
fragement content, soil pH, growing season length, and available water capacity. Each cell reports a pairwise correlation coefficient.

Table A2: The Direction of Innovation Across Crops

1) ) 3) (4) (5) (6) ™ (®)
Any Technology Development (0/1) log Technology Development
log domestic crop production value 0.0581 0.0485 0.0449 0.0581 0.402 0.308 0.281 0.402
(0.00584) (0.00742) (0.00697) (0.00584)  (0.0321) (0.0339) (0.0307) (0.0321)
log global crop production value 0.0234 -0.00569 0.218  -0.00987
(0.00811) (0.0140) (0.0277) (0.0694)
log IP weighted global crop production value 0.0401 0.202
(0.0258) (0.0987)
log GDP weighted global crop production value -0.00667 0.0612
(0.0273) (0.112)
Country Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Crop Fixed Effects No No No Yes No No No Yes
Observations 2,245 2,245 2,243 2,245 1,420 1,420 1,419 1,420
R-squared 0.430 0.434 0.438 0.430 0.462 0.489 0.502 0.462

Notes: The unit of observation is a country-crop pair. In columns 1-4, the outcome variable is an indicator thatequals one if there is variety
developmentrelated to the crop in the country, and in columns 5-8, itis the log number of varieties released related to the crop in the country.
Variety development is measured using the UPOV PLUTO data. Country fixed effects are included in all specifications and crop fixed effects
are included in columns 4 and 8. Standard errors are clustered by country.
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Table A3: CPP Mismatch and Technology Transfer: Private vs. Non-Private Innovation

(1) (2) (3)
DependentVariable is Any Transfer (0/1)
All Private Sector PUbh,c Sect.or
or University

Panel A: Crop Variety Transfers

CPP Mismatch (0-1) -0.0275 -0.0229 -0.0101
(0.0106) (0.0097) (0.0032)
Dependent Variable Mean 0.0429 0.0384 0.0123
Observations 204,287 204,287 204,287
R-squared 0.3829 0.3800 0.1753
Panel B: Patented Technology Transfers
CPP Mismatch (0-1) -0.0072 -0.0066 -0.0030
(0.0017) (0.0017) (0.0009)
Dependent Variable Mean 0.0142 0.0133 0.0037
Observations 5,661,392 5,661,392 5,661,392
R-squared 0.6254 0.6251 0.4680
Panel C: Patented Technology Citations
CPP Mismatch (0-1) -0.0015 -0.0014 -0.0005
(0.0006) (0.0005) (0.0003)
Dependent Variable Mean 0.0020 0.0019 0.0006
Observations 5,661,392 5,661,392 5,661,392
R-squared 0.5167 0.5170 0.3892
Crop-by-Origin Fixed Effects Yes Yes Yes
Crop-by-Destination Fixed Effects Yes Yes Yes
Origin-by-Destination Fixed Effects Yes Yes Yes

Notes: The unitof observation is a crop-origin-destination triplet. All possible two-way fixed
effectsare included in all specifications. In Panel A, the outcome variable is constructed
using variety transfer data from the UPOV database; in Panel B, itis constructed from patent
tranfer data using patent family information; and in Panel C, itis constructed from patent
citation data using the full citation network of all patented agricultural technologies. CPP
mismatch is constructed at the crop-country-pair level as one minus the number of common
CPPsnormalized by the square root of the product of the number of CPPs in the origin and
destination. The outcome variable is an indicator that equals one if any technology transfer
has taken place. Columns 2 and 3 restrict the outcome to technologies developed by the
privatea sector or by the public sector/university researchers, respectively. Standard errors
are double-clustered by origin and destination.
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Table A4: CPP Mismatch with Leader Countries and Technology Transfer: Intensive Margin

Leader defined as:

(1) (2) (3) (4)
Top Variety Top 2 Variety Top 3 Variety

United States
Developer Developers  Developers

Panel A: Dependent Variable is Total Transfers (Top-Coded)

CPP Mismatch (0-1) -0.3023 -0.1806 -0.1016 -0.0235
(0.1109) (0.1058) (0.0981) (0.1070)
CPP Mismatch (0-1) x Leader (0/1) -0.9285 -9.7274 -7.8068 -6.7234
(0.1769) (2.8657) (2.2666) (1.9940)
Observations 204,287 204,287 204,287 204,287
R-squared 0.3400 0.3448 0.3457 0.3460

Panel B: Dependent Variaablee is log Transfers

CPP Mismatch (0-1) -1.1607 -1.0844 -1.1542 -0.8521
(0.3643) (0.3500) (0.3223) (0.3811)
CPP Mismatch (0-1) x Leader (0/1) -0.6976 -0.6938 -0.1727 -0.8920
(1.2475) (0.4234) (0.5030) (0.4366)
Observations 5,791 5,791 5,791 5,791
R-squared 0.7967 0.7968 0.7967 0.7972
Crop-by-Origin Fixed Effects Yes Yes Yes Yes
Crop-by-Destination Fixed Effects Yes Yes Yes Yes
Country Pair Fixed Effects Yes Yes Yes Yes

Notes: The unit of observation is a crop-origin-destination triplet. All possible two-way fixed effects
are included in all specifications. The outcome variable is the total number of variety transfers, top-
coded atthe 95th percentile (Panel A) or the log of the total number of variety transfers (Panel B).
CPP mismatch is constructed at the crop-country-pair level as one minus the number of common
CPPsnormalized by the square root of the product of the number of CPPs in the origin and
destination. Each regression also includes an interaction between CPP mismatch and an indicator
thatequals one if the origin is a leader country, for different definitions of the leader country
(noted atthe top of each column). Standard errors are double-clustered by origin and destination.
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Table A5: CPP Mismatch with Leader Countries and Technology Transfer: Patent Transfer and
Citations

1) (2) (3) (4)
Dependent Variable is Any Technology Transfer (0/1)

Top Variety Top 2 Variety Top 3 Variety

Leader defined as: United States
Developer  Developers Developers

Panel A: Patented Technology Transfers

CPP Mismatch (0-1) -0.0069 -0.0068 -0.0066 -0.0064
(0.0017) (0.0017) (0.0016) (0.0016)
CPP Mismatch (0-1) x Leader (0/1) -0.0697 -0.1376 -0.1153 -0.1059
(0.0029) (0.0275) (0.0202) (0.0231)
Observations 5,661,392 5,661,392 5,661,392 5,661,392
R-squared 0.6254 0.6256 0.6257 0.6258
Panel B: Patented Technology Citations
CPP Mismatch (0-1) -0.0015 -0.0014 -0.0013 -0.0013
(0.0006) (0.0005) (0.0005) (0.0005)
CPP Mismatch (0-1) x Leader (0/1) -0.0121 -0.0387 -0.0303 -0.0321
(0.0010) (0.0111) (0.0097) (0.0099)
Observations 5,661,392 5,661,392 5,661,392 5,661,392
R-squared 0.5167 0.5168 0.5168 0.5169
Crop-by-Origin Fixed Effects Yes Yes Yes Yes
Crop-by-Destination Fixed Effects Yes Yes Yes Yes
Country Pair Fixed Effects Yes Yes Yes Yes

Notes: The unit of observation is a crop-origin-destination triplet. All possible two-way fixed effects are included in all
specifications. The outcome variable is an indicator that equals one if any patent transfer has taken place (Panel A) or any
patentcitation has taken place (Panel B). CPP mismatch is constructed atthe crop-country-pair level as one minus the
number of common CPPs normalized by the square root of the product of the number of CPPsin the origin and destination.
Each regression also includes an interaction between CPP mismatch and an indicator that equals one if the origin isa
leader country, for different definitions of the leader country (noted at the top of each column). Standard errors are double-
clustered by origin and destination.
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Table A6: CPP Mismatch Inhibits International Technology Transfer: Crop Heterogeneity

(1) (2) (3)
Staple Crop GMO ngh,
. . Innovation
Indicator Indicator .
Indicator

Crop characteristic:

Panel A: Crop Variety Indicator

CPP Mismatch (0-1) x Crop Characteristic -0.4347 -0.2804 -0.3927
(0.0694) (0.0489) (0.0605)
Observations 204,287 204,287 204,287
R-squared 0.3855 0.3842 0.3858
Panel B: Total Variety Transfers (Top-Coded)
CPP Mismatch (0-1) -5.9619 -4.5984 -6.0030
(1.4104) (1.1968) (1.4146)
Observations 204,287 204,287 204,287
R-squared 0.3426 0.3418 0.3436
Panel C: Log Variety Transfers
CPP Mismatch (0-1) -3.8514 -2.7842 -2.9533
(0.7159) (0.6502) (0.6551)
Observations 5,791 5,791 5,791
R-squared 0.7993 0.7982 0.7986
Crop-by-Origin Fixed Effects Yes Yes Yes
Crop-by-Destination Fixed Effects Yes Yes Yes
Origin-by-Destination Fixed Effects Yes Yes Yes

Notes: The unitof observation is a crop-origin-destination triplet. All possible two-way fixed
effects are included in all specifications. In Panel A, the outcome is an indicator for any
variety transfer; in Panel B, itis the total number of variety transfers, top-coded atthe 95th
percentile; and in Panel C, itis the log of total variety transfers. CPP mismatch is constructed
atthe crop-country-pair level as the number of common CPPs normalized by the square root
of the product of the number of CPPsin the origin and destination. Each panel reports the
coefficient on an interaction between CPP mismatch and the crop-level indicator listed at the
top of the column. "High Innovation" means that the crop isin the top 10% of total global
variety releases. Standard errors are double-clustered by origin and destination.
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Table A7: CPP Mismatch Inhibits International Technology Transfer: Sensitivity Analysis

€Y} 2 3) (C)) ) (6) (7
Dependent Variable is Any Variety Transfer

CPP Mismatch (0-1) -0.0275 -0.0373 -0.0311 -0.0226 -0.0289 -0.0204 -0.0239

(0.0106) (0.0119) (0.0098) (0.0100) (0.0113) (0.0085) (0.0082)
CPP Mismatch Including Eradications v
CPP Mismatch Excluding Invasive Species v
Control for bilateral crop-level trade v
Control for log bilaterial distance x Crop FE v
Exclude country pairs <1000km apart v
Exclude country pairs <2000km apart v
Crop-by-Origin Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Crop-by-Destination Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Country Pair Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Observations 204,287 204,345 202,258 204,287 189,302 185,344 156,007
R-squared 0.3829 0.3830 0.3834 0.3861 0.3979 0.3558 0.3260

Notes: The unit of observation is a crop-origin-destination triplet. All possible two-way fixed effects are included in all specifications.
CPP mismatch is constructed atthe crop-country-pair level as one minus the number of common CPPs normalized by the square root
of the product of the number of CPPs in the origin and destination. The sample restriction, measurement change, or included
control in each specification is noted by a check mark below the corresponding coefficient. The outcome is an indicator that equals
one if any variety transfer has taken place. Standard errors are double-clustered by origin and destination.
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Table A8: Agro-climatic Mismatch and Technology Transfer

(1) (2) (3) (4)

Dependent Variable is Any Technology Transfer (0/1)

CPP Mismatch (0-1) -0.0306 -0.0314
(0.0137) (0.0139)
Agro-Climatic Mismatch -0.0173 -0.0169
(0.0045) (0.0045)
Mismatch in:
Soil pH -0.0031 -0.0030
(0.0015) (0.0015)
Soil Silt Content 0.0016 0.0017
(0.0025) (0.0025)
Soil Clay Content 0.0003 0.0003
(0.0022) (0.0022)
Soil Coarse Fragment Content 0.0001 0.0001
(0.0015) (0.0015)
Available Water Capacity -0.0022 -0.0022
(0.0021) (0.0021)
Elevation -0.0027 -0.0027
(0.0014) (0.0014)
Ruggedness -0.0007 -0.0006
(0.0011) (0.0011)
Growing Season Length -0.0003 -0.0002
(0.0021) (0.0021)
Temperature -0.0072 -0.0071
(0.0028) (0.0028)
Precipitation -0.0089 -0.0089
(0.0035) (0.0035)
Crop-by-Origin Fixed Effects Yes Yes Yes Yes
Crop-by-Destination Fixed Effects Yes Yes Yes Yes
Country Pair Fixed Effects Yes Yes Yes Yes
Observations 153,878 153,890 153,026 153,038
R-squared 0.4066 0.4064 0.4069 0.4068

Notes: The unit of observation is a crop-origin-destination. Mismatch in agro-climatic
features are estimated by first calcualting the value of each characteristicin the land area
devoted to each crop in each country, as recorded by the EarthStat database, and then taking
the normalized difference betweeen each pair of countries for each crop. Total agro-climatic
mismatch is sum of the normalized components (those listed on the left). CPP mismatch is
constructed atthe crop-country-pair level as one minus the number of common CPPs
normalized by the square root of the product of the number of CPPsin the origin and
destination. The dependent variable is an indicator that equals one if any variety transfer
has taken place. Standard errors are double-clustered by origin and destination.
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Table A9: List of Crop-Specific Technology Leaders

Number of
Crops
United States of America 30
France 28
The Netherlands 25
Japan 18
Russia 16
Spain 12
Germany
Australia
Brazil
Italy
Mexico
Czechia
United Kingdom
South Korea
Poland
Argentina
Turkey
Slovenia
Ecuador
Denmark
Colombia
New Zealand
Belarus
Hungary
Bulgaria
Morocco
South Africa
China
Kenya
Canada 1
Notes: The left column lists all the countries that
are ever identified as a crop-specific leader country
in our main analysis (i.e., as one of the top two
variety developers for that crop). The right column
notes the number of crops for which that country is
idetified as one of the technology leaders.

Leader Name
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Table A10: CPP Mismatch Reduces Area Harvested

(1) (2) (3) (4) (5) (6) (7 (8

Dependent Variable is log Area Harvested

PP Mi h with the Esti
C ismatch with the Estimated CPP Mismatch with the US

Frontier
CPP Mismatch (0-1) -7.139 -7.020 -7.200 -5.837 -9.517 -12.080 -9.541 -7.855
(0.941) (0.725) (0.437) (0.496) (1.212) (2.892) (0.595) (0.635)
log(FAO-GAEZ-Predicted Output) 0.363 0.303
(0.0487) (0.0768)

Included in LASSO Pool:

Top CPP Fixed Effects - - Yes Yes - - Yes Yes

Ecological Features x Crop Fixed Effects - - No Yes - - No Yes
Controls in LASSO Pool - - 335 3935 - - 335 3935
Crop Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,469 2,268 6,474 5,748 6,675 2,268 6,683 5,908
R-squared 0.609  0.603 0.612 0.612

Notes: The unitof observation is a country-crop pair. Columns 1-4 use CPP mismatch with the estimated set of technological leader
countries and columns 5-8 use CPP mismatch with the US. Columns 1-2 and 5-6 report OLS estimates and columns 3-4 and 7-8 report post
double LASSO estimates. Country and crop fixed effects are included in all specifications, and included in the amelioration setin the post-
double LASSO specifications. The Top CPPs are defined as the top 200 CPPs defined by (i) the number of countries in which they are
presentand (ii) the number of host crops that they infect. Since the two sets overlap, the total number is 335. The set of ecological features
includes: temperature, precipitation, elevation, ruggedness, growing season days, soil acidity, soil clay content, soil silt content, soil coarse
fragment volume, and soil water capacity. Standard errors are double-clustered by crop and country.

Table A11: CPP Mismatch Reduces Agricultural Output: Crop x Continent Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent Variable islog Output

CPP Mismatch with the Estimated . .
CPP Mismatch with the US

Frontier
CPP Mismatch (0-1) -8.780 -8.198 -6.999 -6.385 -8.809 -9.831 -8.780 -8.198
(0.769) (0.742) (0.595) (0.614) (1.124) (2.608) (0.769) (0.742)
log(FAO-GAEZ-Predicted Output) 0.273 0.239
(0.0770) (0.0704)

Included in LASSO Pool:

Top CPP Fixed Effects - - Yes Yes - - Yes Yes

Ecological Features x Crop Fixed Effects - - No Yes - - No Yes
Crop x Continent Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,631 2,334 6,696 5,903 6,844 2,334 6,920 6,069
R-squared 0.679 0.689 0.680 0.694

Notes: The unit of observation is a country-crop pair. Columns 1-4 use CPP mismatch with the estimated set of technological
leader countries and columns 5-8 use CPP mismatch with the US. Columns 1-2 and 5-6 report OLS estimates and columns 3-4
and 7-8 report post double LASSO estimates. Country and crop-by-continent fixed effects are included in all specifications, and
included in the amelioration setin the post-double LASSO specifications. The Top CPPs are defined as the top 200 CPPs defined
by (i) the number of countries in which they are presentand (ii) the number of host crops that they infect. Since the two sets
overlap, the total number is 335. The set of ecological features includes: temperature, precipitation, elevation, ruggedness,
growing season days, soil acidity, soil clay content, soil silt content, soil coarse fragment volume, and soil water capacity. Standard
errors are double-clustered by crop and country.
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Table A12: CPP Mismatch and Agricultural Output: Country-Level Controls

(€Y) ) (3) 4) () (6) ™) (®)
Dependent Variable is log Output

Panel B: CPP Mismatch with the Estimated Leader Set
CPP Mismatch (0-1) -6.963 -6.838 -7.351 -7.206 -6.895 -7.172 -7.337 -7.250
(0.934) (0.879) (1.029) (1.065) (0.980) (1.011) (1.058) (1.743)

Observations 6,693 6,458 6,227 4,765 6,499 5,838 3,631 2,864
R-squared 0.600 0.632 0.611 0.633 0.613 0.623 0.669 0.781

Panel A: CPP Mismatch with the US
CPP Mismatch (0-1) -9.122 -8.849 -9.573 -9.323 -9.186 -9.661 -10.100 -10.830
(1.152) (1.105) (1.217) (1.345) (1.221) (1.316) (1.295) (2.115)

Observations 6,915 6,678 6,433 4,949 6,719 6,032 3,729 2,946
R-squared 0.600 0.632 0.612 0.634 0.614 0.626 0.671 0.786
Crop Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
log Per Capita GDP x Crop FE No Yes No No No No No Yes
Trade Share (% GDP) x Crop FE No No Yes No No No No Yes
Gini Coefficientx Crop FE No No No Yes No No No Yes
Share Arable Land x Crop FE No No No No Yes No No Yes
log Agricultural Value Added x Crop FE No No No No No Yes No Yes
R&D Share (% GDP) x Crop FE No No No No No No Yes Yes

Notes: The unitof observation is a crop-country pair. Panel A uses CPP mismatch with the estimated set of technological leader countries
and Panel B uses CPP mismatch with the US. Crop and country fixed effects are included in each specification. The additional controls
included in each specification are noted at the bottom of the column and all take the form of a country-level characteristicinteracted with a
full set of crop fixed effects. Standard errors are double-clustered by crop and country.

Table A13: CPP Mismatch Reduces Output: Crop Heterogeneity

(1) (2) (3)
. Staple Crop GMO ngh_
Crop characteristic: . . Innovation
Indicator Indicator .
Indicator
CPP Mismatch (0-1) x Crop Characteristic -4.8595 -3.3648 -2.2156
(1.4716) (0.9374) (1.1095)
Country Fixed Effects Yes Yes Yes
Crop Fixed Effects Yes Yes Yes
Observations 6,704 6,704 6,704
R-squared 0.604 0.602 0.603

Notes: The unit of observation is a crop-country pair. Both country and crop fixed effects
are included in all specifications and the outcome variable is log of crop-country output.
CPP mismatch is constructed at the crop-country-pair level as one minus the number of
common CPPsnormalized by the square root of the product of the number of CPPsin the
origin and destination. Each panel reports the coefficient on an interaction between
CPP mismatch and the crop-level indicator listed at the top of the column. "High
Innovation" means thatthe crop isin thee top 10% of total global variety releases.
Standard errors are double-clustered by country and crop.
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Table A14: Historical Green Revolution Breeding Sites

(1) (2)

Green Revolution Breeding Sites

Crop Site Location
Wheat Mexico (CIMMYT)
Maize Mexico (CIMMYT)
Sorghum India (ICRISAT)
Millet India (ICRISAT)
Beans Colombia (CIAT)
Potatoes Peru (CIP)
Cassava Colombia (CIAT)
Rice Philippines (IRRI)

Notes: Column 1 reports the crops included in our analysis of the Green
Revolution and column 2 reports the main breeding site during the Green
Revolution for each crop, along with the corresponding IARC.
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Table A15: Growth of US Biotechnology and Changes in Global Production

1 (2) 3 4

Alog Output Alog Area Harvested

CPP Mismatch with the US

CPP Mismatch with the EU

Panel A: Direct Effects

0999  -0.974 1.004  -1.044
(0.520) (0.572) (0.502)  (0.533)
0.644 0251 0352 0222

(0512) (0.531) (0.529)  (0.534)

Crop Fixed Effects Yes - Yes -
Country Fixed Effects Yes Yes Yes Yes
Crop x Continent Fixed Effects - Yes - Yes
p-value, DistUS - Dist EU 0.097 0.249 0.172 0.216
Observations 6,414 6,338 6,183 6,107
R-squared 0.281 0.366 0.262 0.353
Panel B: Crop Heterogeneity
CPP Mismatch with the US -0.634 -0.798 -0.819 -0.839
(0.299) (0.316) (0.272) (0.305)
CPP Mismatch with the US x Major US Field Crop -1.161 -2.374 -2.208 -3.877

Crop Fixed Effects

Country Fixed Effects x Major US Field Crop Indicator

Crop x Continent Fixed Effects
Observations
R-squared

(0.898)  (1.091) (0.986) (1.394)

Yes - Yes -

Yes Yes Yes Yes

No Yes No Yes
6,380 6,304 6,137 6,061
0.312 0.393 0.292 0.379

Notes: The unit of observation is a country-crop pair. In columns 1-2, the dependentvariable is the
change in log output from the 1990sto 2010s and in columns 3-4 itis the change in log area
harvested from the 1990sto 2010s. All columns include crop and country fixed effects, as well as the
pre-period value of the dependentvariable, and columns 2 and 4 also include crop by continent fixed
effects. The major US field crops are corn, wheat, soybeans, and cotton. Standard errors are double-

clustered by country and crop.
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