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Abstract

This paper develops linear estimators for structural and causal parameters in nonparametric,
nonseparable models using panel data. These models incorporate unobserved, time-varying,
individual heterogeneity, which may be correlated with the regressors. Estimation is based on
an approximation of the nonseparable model by a linear sieve specification with individual-
specific parameters. Effects of interest are estimated by a bias corrected average of individual
ridge regressions. We demonstrate how this approach can be applied to estimate causal effects,
counterfactual consumer welfare, and averages of individual taxable income elasticities. We
show that the proposed estimator has an empirical Bayes interpretation and possesses a number
of other useful properties. We formulate Large-T asymptotics that can accomodate discrete
regressors and which bypass partial identification in this case. We employ the methods to
estimate average equivalent variation and deadweight loss for potential price increases using
data on grocery purchases.

1 Introduction

Panel data provide a valuable means of identifying and estimating economic effects when there is
dependence between variables of interest and unobservable heterogeneity. Specifically, in ”fixed ef-
fects” type models, time-invariance of heterogeneity like tastes or technology can be combined with
time variation in variables of interest to identify and estimate economic effects of those variables.
Similarly, in causal models panel data can be used to identify and estimate counterfactual effects of
interest when treatment varies over time and unobserved confounders do not. Ideally, these struc-
tural or causal parameters are identified in nonparametric outcome models that are not additively
separable in observables and unobservables. Such models provide very general specifications for
economic and causal models, with heterogeneity representing tastes and/or technology for economic
models or counterfactual outcomes in causal models.

This paper develops linear methods of identifying and estimating economic or treatment effects
for nonseparable models using panel data. The basic identifying assumption is a “fixed effects”
condition, referred to henceforth as time-stationarity, that the conditional distribution of hetero-
geneity in each time period given observed regressors does not depend on the time period, as in
Manski (1987). Time effects are also allowed via regressors whose magnitude varies with time. To
use linear methods we approximate a smooth nonseparable model by a linear model with coefficients
that depend only on the unobserved heterogeneity, and so inherit the time-stationarity property.

∗The present paper formed the basis of the Fisher–Schultz Lecture given by Whitney Newey at the 2023 European
Meeting of the Econometric Society in Barcelona. This research was supported by NSF Grants 1757140 and 224247.
Helpful comments were provided by I. Fernandez-Val, B. Graham, G. Imbens, R. Matzkin. Any inquiries email
wnewey@mit.edu or b.deaner@ucl.ac.uk.
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Least squares for each individual can then be used to estimate individual-specific coefficients. We
regularize using ridge regression to allow the individual coefficients to be weakly identified and bias
correct the average ridge estimator.

The effects of interest we consider are averages of individual-specific effects. Examples of these
effects given here are average policy or treatment effects, average equivalent variation and deadweight
loss for demand, and average tax effects for nonlinear budget sets. We estimate these as bias corrected
averages of individual-specific linear combinations of the individual ridge regression coefficients. The
bias correction makes the estimator of average effects be unbiased when true slope coefficients, i.e.
coefficients of nonconstant regressors, do not vary over individuals. We give an empirical Bayes
interpretation of the bias corrected average of individual ridge regression coefficients. We show
that as the ridge parameter goes to infinity the debiased average parameter approaches the fixed
effects estimator that imposes that slopes are constant across individuals. We also find that when
all individuals have a nonsingular second moment matrix of regressors, i.e., all individual-specific
coefficients are identified, the bias of the estimator of average effects goes to zero as the ridge
parameter does.

We provide means of quantifying the extent of identification across individuals of effects of
interest. We compare the pre-specified, true linear combination for each individual with regularized
linear combinations implied by debiased ridge. We measure the extent of identification using the
distribution across individuals of the discrepancy between true linear combinations and regularized
counterparts.

We apply our methods to estimate bounds on average equivalent variation and deadweight loss for
consumer demand. Here, panel data approximately controls for price endogeneity from imperfect
competition with many consumers when time varying individual heterogeneity is independent of
unobserved supply shocks, as discussed in Section 4. The methods are applied to scanner data with
outcome variable specified as expenditure share and regressors as powers of the log of prices and
total expenditure. Average equivalent variation and deadweight loss for price increases on soda or
milk are estimated.

We develop large sample theory where the number T of time periods grows with the number of
individuals. The number of regressors is allowed to grow with T so that the approximation error
for a general nonseparable model is small enough for accurate inference. We also allow for noniden-
tifiability of effects of interest for a fixed number of time periods T , but specify that the identified
set shrinks at some power of T that is sufficient for asymptotic inference using the regularized ridge
estimates. Conditions for such shrinkage rates for the identified set are known from Chernozhukov
et al. (2013).

Chamberlain (1982), Chamberlain (1992), Pesaran & Smith (1995), Wooldridge (2005), Arellano
& Bonhomme (2012), and Graham & Powell (2012) have previously considered estimation of panel
models with individual-specific slope coefficients. Manski (1987), Honore (1992), Abrevaya (2000),
Chernozhukov et al. (2013), Hoderlein & White (2012), Shi et al. (2018), and Pakes & Porter (2024)
have all considered estimation of nonseparable panel models under time-stationarity. Altonji &
Matzkin (2005) considers identification via control functions as does Semenova et al. (2023) while
also allowing for sparse, additive individual-specific effects. We innovate in approximating a general
nonseparable model by a linear one, in the use of bias corrected ridge regularization, in providing
methods for evaluating the extent of identification across individuals, and in providing asymptotic
theory for growing T under partial identification for fixed T .

In Section 2 we describe the model and effects we consider and give the linear approximation to
the conditional mean of a nonseparable outcome function. Section 3 gives the bias corrected average
ridge estimator of structural and causal effects and describes its properties. Section 4 describes how
the general model and methods can be applied to demand analysis. Section 5 gives an application
to scanner data. Section 6 gives large sample theory.
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2 Model and Parameters of Interest

We consider panel data made up of observations across n individuals, indexed by i, and T time
periods indexed by t. The individuals are drawn independently and identically from some population.
Each observation consists of a scalar outcome variable Sit and a vector of regressors Xit. Let
Xi = (X ′

i1, ..., X
′
iT )

′ be the full history of regressors. We assume that Sit satisfies a nonseparable
model:

E[Sit|Xi, ηit] = s(Xit, ηit), (t = 1, ..., T ; i = 1, ..., n), (2.1)

where ηit are individual and time specific unobserved variables representing preferences, technology,
or heterogeneity in potential outcomes. A leading case is that where ηit represents all unobserved
heterogeneity, so that Sit = s(Xit, ηit). The additional generality of (2.1) is important with discrete
outcomes because it allows for s(·, ηit) to be a smooth function, via integration over unobserved
heterogeneity additional to ηit.

We do not restrict the dimension of ηit and so allow for the possibility that it is infinite-
dimensional. The model is nonseparable in the sense that it allows for general interactions between
the observed variables Xit and the unobserved ηit. We take the model (2.1) to have a structural or
causal interpretation where s(xit, ηit) represents the mean potential outcome when xit differs from
the observed Xit.

We use conditional time-stationarity of ηit to identify and estimate objects of interest.

Assumption 1 (Time-Stationarity). The distribution of ηit conditional on Xi does not depend
on t.

This condition allows for endogeneity where the conditional distribution of (ηi1, ..., ηiT )
′ given Xi

may depend on Xi. Such endogeneity is present when Xit includes choice or equilibrium values that
are determined by the preferences or technology represented by ηit. Time-varying preferences and
technology are often allowed for in panel data applications and can be empirically important, as we
discuss further in the context of our objects of interest. Assumption 1 requires that the time-varying
components of ηit have the same distribution in each period conditional on the history of regressors
Xi. It is common to decompose ηit into time constant components αi and time varying components
vit. Such an αi trivially satisfies Assumption 1, so that Assumption 1 only restricts vit. Assumption
1 does allow for systematic variation over time in Sit via regressors. i.e. elements of Xit, with
magnitudes that vary with time, such as time trends or seasonal indicators.

Our objects of interest are differences in weighted means of counterfactual outcomes. Let X+
it

and X−
it be counterfactual regressors which can differ from the factual value of the regressors Xit.

Let H+
it and H−

it be weights specified by the researcher. While we refer to these as ‘weights’ they
may be both positive and negative and they need not sum to unity. We identify and estimate objects
of the form

θ0 = E
[ 1
T

T∑
t=1

(
H+

it s(X
+
it , ηit)−H−

it s(X
−
it , ηit)

)]
(2.2)

We assume throughout that X+
it , X

−
it , H

+
it , and H−

it are functions of Xi and possibly some ran-
dom noise whose distribution is known to the researcher. More precisely, we require the following
condition:

Assumption 2 (Counterfactuals). X+
it , X

−
it , H

+
it , and H

−
it are jointly independent of ηit condi-

tional on Xi.

A number of important policy-relevant quantities may be written in the form of θ0. Three
examples we consider are average causal effects of alternative treatment regimes, bounds on average
equivalent variation and on deadweight loss in demand analysis, and taxable income effects with
nonlinear budget sets.
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Example 1: Average Effects of Alternative Treatment Regimes

In order to define causal effects within the model we let s(xit, ηit) represent the potential outcome
from treatment xit, for individual i in period t, when Sit = s(Xit, ηit). The heterogeneity ηit then
captures the variation in potential outcomes, e.g. similarly to Imbens & Newey (2009).

When Sit is discrete we let s(xit, ηit) represent the average potential outcome assuming that ηit
captures all confounding, so that s(xit, ηit) is an average over time-stationary unobserved hetero-
geneity that is independent of Xi.

Consider two counterfactual treatment assignment processes. In the first, an individual i in
period t receives a random treatment X−

it and in the second they receive treatment X+
it . These

counterfactual treatments may depend on Xi. For example, we may wish to compare mean outcomes
under the counterfactual assignments X+

it with the factual treatments, in which case we can set
X−

it = Xit. The difference in expected time-average outcomes between the two regimes is

θ0 = E[
1

T

T∑
t=1

{s(X+
it , ηit)− s(X−

it , ηit)}].

The object above is of the form (2.2) with both the weights H+
it and H−

it set to unity. A major
challenge for inference in causal models is the possibility of unmeasured confounding. That is, there
may be latent factors that jointly determine the treatment assignment Xit and the variation in
potential outcomes ηit. Assumption 1 allows for the possibility of unobserved confounding under
suitable conditions on the time-dependence structure.

We can motivate Assumption 1 in this context using a nonparametric structural model for the
treatment assignments and the heterogeneity in potential outcomes. Let αi be a vector of time-
invariant confounding factors and consider the following model where the time-varying innovations
{uit}Tt=1 and {vit}Tt=1 are each jointly independent of αi:

ηit = e(αi, uit), Xit = x(αi, vit)

The first equation decomposes the heterogeneity in potential outcomes into variation between indi-
viduals, captured in αi, and variation over time uit. Let us suppose that the innovations {uit}Tt=1

are jointly independent of {vit}Tt=1. This implies uit is independent of the history of treatments
Xi. In addition, suppose the marginal distribution of uit (but not necessarily vit), is time-invariant.
Under these conditions Assumption 1 holds.

In this model the time-invariant factors αi are akin to fixed-effects. They are individual-specific
characteristics that explain the confounding between treatments and outcomes but which do not
vary over time. The condition that the temporal variation in potential outcomes uit is independent
of the history of treatment assignments is akin to strict exogeneity. Unlike in the classic fixed effects
model, αi may enter non-separably into the possibly non-linear model for the outcome Sit. Similar
panel data treatment effect models were explicitly formulated in Chernozhukov et al. (2013) and
Torgovitsky (2019).

Example 2: Average Equivalent Variation and Deadweight Loss Bounds

The average equivalent variaton and deadweight loss of a price change are important objects of
interest in empirical demand analysis. Obtaining bounds on these quantities is a crucial step in
assessing the welfare impact of a policy that may alter consumer prices, such as a sales tax. Suppose
Sit = s(Xit, ηit) is the expenditure share of some commodity where Xit = (Pit, Zit), Pit is the
product price, and Zit is a vector of covariates that includes total expenditure Yit and the prices of
other goods.

In order to define the welfare effects of a price change we must choose an initial price for good i
at time t, which we denote by P−

it . This starting price may depend on Xi. For example, P−
it could
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simply be Pit, the price paid in period t by individual i for the good. Let ∆it denote the change in
the price of the good for individual i in period t that also may depend on Xi. Let ωt(Xi) be some
weighting that may depend upon Xi. Using Hausman & Newey (2016), we obtain bounds on the
weighted average equivalent variation from a price change from P−

it to P−
it +∆it. Let π be an upper

or lower bound on the income effect for every individual and let Ui = (Ui1, ..., UiT )
′ be a vector of

T random variables that are uniformly distributed on (0, 1) and independent of the data, i.e. that
are simulation draws from the standard uniform distribution. Taking Sit = s(pit, Zit, ηit) to be the
counterfactual demand at price pit, a bound on the weighted average equivalent variation is

θEV =E[
1

T

T∑
t=1

H+
it s(P

−
it +∆itUit, Zit, ηit)] (2.3)

H+
it =ωt(Xi) exp

(
− π(P−

it +∆itUit)
)
∆it

Yit

P−
it +∆itUit

, (2.4)

If π is a lower (upper) bound on the income effect for every individual then, by Hausman & Newey
(2016), θEV is an upper (lower) bound on average over time and individuals of the equivalent
variation for a change from P−

it to P−
it +∆it, weighted by ωt(Xi). The weights ωt(Xi) allow us to

assess the welfare impact on particular sub-populations, such as those in a low income bracket or
with a certain family size.

A corresponding deadweight loss bound can be obtained by subtracting the weighted average
change in final demand as below.

θDWL =θEV − E
[ 1
T

T∑
t=1

H−
it s(P

−
it +∆it, Zit, ηit)

]
(2.5)

H−
it =ωt(Xi)∆it

Yit

P−
it +∆it

(2.6)

If π is a lower (upper) bound on the income effect then θ0 will be an upper (lower) bound for
weighted dead weight loss averaged over all time periods and individuals.

Both θEV and θDWL are of the form in (2.2). In particular, θEV corresponds to the case with
H+

it defined by (2.4), H−
it = 0, and X+

it = (P−
it + ∆itUit, Z

′
it)

′. The deadweight loss shares these
choices of H+

it and X+
it , but in this case H−

it is set as in (2.6) and X−
it = (P−

it + ∆it, Z
′
it)

′. This
example is discussed further in Section 5, where an application to scanner data is given.

Example 3: Average Heterogeneous Taxable Income Elasticities

In some structural economic models the nonseparable model may be a random coefficients model
where the expectation of one or more of the coefficients is of interest. An example is a parametric
version of the panel budget set regression of Blomquist et al. (2024). An isoelastic utility function
with individual specific elasticity and productivity together with scale heterogeneity varying identi-
cally over time and independently of the elasticity, growth rate, and budget set gives a budget set
regression of the form

s(Xit, ηit) = β1i +

4∑
j=2

Xjitβji. (2.7)

Here β2i is the taxable income elasticity for individual i, X2it is the log of the slope of the last
budget segment for individual i in period t, X3it is the difference of logs of the slope of the first and
last segment, and X4it = t. This is a panel version of the budget set regression of Blomquist et al.
(2024) that gives taxable income as a function of the budget set and unobserved heterogeneity. In
this model the dependence of each βji on i allows for individual heterogeneity of preferences and for
heterogeneous productivity growth.
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The panel data setting of this model allows for endogeneity of budget sets where the slopes and
intercepts of segments may be correlated with preferences and productivity growth. A parameter of
interest in this model is

θ0 = E[β2i] = E[
1

T

T∑
t=1

{s(Xit + e2, ηit)− s(Xit, ηit)}],

where e2 is a unit vector with 1 in the second position and zeros elsewhere. This parameter is
again of the form in (2.2). In this case H+

it and H−
it are both set to unity, X+

it = Xit + e2, and
X−

it = Xit. There are a wide variety of estimates of a taxable income elasticity that is common
across individuals; see Blomquist et al. (2024) for references. This model allows for heterogeneous
taxable income elasticities where the parameter of interest is the average of those across individuals.

3 Linear Approximation and Estimation

3.1 Approximation

Our estimation methods are based upon a series approximation for the unknown, non-separable
conditional function s(xt, ηt). For each fixed value of ηt, we consider an approximation that is linear
in a J × 1 vector of known basis functions b(xt) = (b1(xt), ..., bJ(xt))

′. We assume throughout that
b1(xt) = 1 so that the approximation includes an intercept. The coefficients in the approximation
depend on the value of ηt. We denote them by β(ηt) = (β1(ηt), ..., βJ(ηt))

′. The approximation for
the function s(xt, ηt) is

s(xt, ηt) ≈ b(xt)
′β(ηt). (3.1)

In effect, we approximate s(·, ηt) separately for each value of ηt by b(·)′β(ηt). To ensure a small
approximation error uniformly in (xt, ηt) it suffices that xt be bounded and that s(xt, ηt) have
derivatives with respect to xt of high enough order that are bounded uniformly (xt, ηt). For example
there are Jackson theorems that give such approximations for polynomial b(xt). Other choices of
b(xt) also give such approximations. We provide a more formal analysis of the approximation error
in Section 6. Analogous approximations for demand functions were given in Hausman & Newey
(2016) for ηit independent of prices and total expenditure.

We have specified that s(xt, ηt) is a conditional mean so that this approximation can be valid
when Sit is discrete. To help explain consider a binary choice model where

Sit = 1(∆U(Xit, αi) + ṽit > 0),

∆U(xit, αi) is a utility difference that is smooth in xit, and −ṽit is independent of Xi and αi with
unknown marginal CDF G(v). Then specifying that ηit = αi we have

E[Sit|Xi, ηit] = s(Xit, ηit) = G(∆U(xit, αi)),

so that Assumption 1 is satisfied. Here s(xit, ηit) = G(∆U(xit, αi)), is a binary choice probability
that will be smooth in xit as long as G(ṽ) is smooth in ṽ and ∆U(xit, αi) is smooth in xit. Similarly,
for Sit that are discrete but not binary, we can formulate models so that equation (2.1) and As-
sumption 1 are satisfied for a conditional expectation s(xit, ηit) that is smooth in xit by integrating
over time-stationary unobservables that are independent of Xi and αi.

Under time-stationarity as in Assumption 1 and the approximation in equation (3.1), for any xi
that is conformable with Xi,

E[s(xit, ηit)|Xi] ≈ E[b(xit)
′β(ηit)|Xi] = b(xit)

′E[β(ηit)|Xi] = b(xit)
′βi, (3.2)

where βi is defined as
βi := E[β(ηit)|Xi]. (3.3)
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This approximation implies that the conditional expectation of the outcome Sit has approximately
a correlated random coefficients form. From (3.2), (3.3), and iterated expectations we get

E[Sit|Xi] = E[s(Xit, ηit)|Xi] ≈ b(Xit)
′βi (3.4)

The above demonstrates the crucial role that time-stationarity plays in our analysis. The assumption
ensures that the coefficients in the approximate random-coefficients model are time-invariant. Thus
they can be estimated using variation in the regressors over time for each individual.

The approximate model (3.4) has a structural/causal interpretation, with

b(xit)
′βi = E[b(xit)

′β(ηit)|Xi] ≈ E[s(xit, ηit)|Xi] (3.5)

being an approximate average potential outcome at xit conditional on Xi. Consequently our objects
of interest are approximately averages of counterfactual linear combinations of βi. For exposition
consider Example 1. Suppose Assumption 1 holds and that X+

it and X−
it are functions of Xi, then

applying the approximation in equation (3.2) we obtain

θ0 = E[
1

T

T∑
t=1

{s(X+
it , ηit)− s(X−

it , ηit)}] ≈ E[a′iβi], ai =
1

T

T∑
t=1

{b(X+
it )− b(X−

it )}

Thus in Example 1, the parameter of interest is approximately the expected inner product of the
known vector ai with the random coefficients βi. More generally, we can approximate parameters
of the form θ0 given in equation (2.2) using the formula

θ0 ≈ E[a′iβi], ai =
1

T

T∑
t=1

{H+
it b(X

+
it )−H−

it b(X
−
it )}. (3.6)

Therefore, the parameter of interest θ0 is approximately an expectation of the inner product of a
known vector ai with βi.

3.2 Estimation

The approximation of θ0 above motivates an estimator. The expectation could be replaced with
a sample average, and the unknown random coefficients replaced with estimates. The correlated
random coefficients approximation (3.4) suggests that the unknown coefficients βi could estimated

from a linear regression of Si = (Si1, ..., SiT )
′ on Bi =

(
b(Xi1), ..., b(XiT )

)′
.

In practice, there could be high multicollinearity in this regression, particularly if T is not much
larger than the number of basis functions. Here we address this problem using individual specific
ridge regression. Let Qi = B′

iBi/T, Di be a diagonal matrix with 0 as its upper left entry and all
other diagonal entries strictly positive, and λ a positive constant. A ridge regression estimator of βi
is defined as

β̂i = (Qi + λDi)
−1B′

iSi/T. (3.7)

The zero in the top left entry of Di ensures that we do not penalize the intercept in the ridge
regression. By allowing Di to be individual-specific we can accommodate individual-level re-scaling
of the regressors.

These individual ridge estimators are biased, as usual for ridge regression. In particular, ridge
regression tends to shrink estimate towards zero. It is possible to mitigate this ridge bias in the
estimation of θ0 = E[a′iβi]. Let Ai denote a square T -dimensional matrix with a′i as its first row
and its other rows being distinct rows of an identity matrix of dimension J with the missing row
not being orthogonal to ai. Also, let

Wi = (Qi + λDi)
−1Qi (3.8)
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A debiased average ridge estimator of θ0 is then as follows.

θ̂ = ā′(AW )−1Aβ, ā =
1

n

n∑
i=1

ai, AW =
1

n

n∑
i=1

AiWi, Aβ =
1

n

n∑
i=1

Aiβ̂i (3.9)

As we discuss in detail in Section 6, the estimator above tends to have smaller bias than the plug-in
estimator 1

n

∑n
i=1 a

′
iβ̂i and is less sensitive to the choice of penalty parameter λ.

An estimator V̂ for the asymptotic variance of
√
n(θ̂− θ0) can be obtained via the delta method

as

V̂ =
1

n

n∑
i=1

ψ̂2
i , ψ̂i = (ai − ā)′(AW )−1Aβ + ā′(AW )−1Ai[β̂i −Wi(AW )−1Aβ]

Example 3 illustrates that parameters of interest may include elements of the vector E[βi]. Each
component of this vector has the form E[a′iβi] where ai is a unit vector. When ai is constant, the

formula for the debiased estimator simplifies so that Ai cancels out. Thus we obtain an estimator θ̂
of E[βi] and a corresponding estimator V̂ of the asymptotic variance, for W :=

∑n
i=1Wi/n,

θ̂ =W
−1 1

n

n∑
i=1

β̂i, V̂ =
1

n

n∑
i=1

ψ̂iψ̂
′
i, ψ̂i =W

−1
(β̂i −Wiθ̂) (3.10)

This estimator has a straight-forward interpretation. The term
∑n

i=1 β̂i/n is the sample average of

individual ridge estimates that suffers from ridge bias. Multiplying by W
−1

effectively undoes the
ridge bias on average.

3.3 Summary of Properties

The debiased panel ridge estimator has several interesting characteristics that help explain its form
and how it may be used and interpreted. Here we provide a brief summary of these properties, with
a more general discussion deferred to Section 6 along with our asymptotic analysis.

Firstly, the average coefficient estimator θ̂ of equation (3.10) can be interpreted as an empirical
Bayes estimator. Suppose that Sit is Gaussian and that each βi has a Gaussian prior with common
nonzero mean. It turns out that θ̂ is the average of Maximum a Posterior estimators of βi when θ̂ is
the common prior mean. In this way θ̂ has a self consistency property as a prior mean determined
by the data and the average of Bayesian estimators. In Section 6 we derive this interpretation and a
corresponding empirical Bayes interpretation of the debiased ridge estimator of E[a′iβi] in equation
(3.9).

The relatively simple example of the average coefficient of a single regressor helps describe other
properties of the debiased ridge estimator. Suppose that Xit is a scalar, J = 2, and that the
approximation in equation (3.1) is exact. Let Zit := b2(Xit), Z̃it := Zit −

∑T
s=1 Zis/T , and Q̃i :=∑T

s=1 Z̃
2
is/T . Then the debiased average panel ridge estimator of equation (3.10) is

θ̂ =

∑n
i=1(Q̃i + λ)−1

∑T
s=1 Z̃isSis/T∑n

i=1(Q̃i + λ)−1Q̃i

.

Multiplying numerator and denominator by λ it follows that as λ goes to infinity θ̂ converges to
the fixed effects estimator [

∑n
i=1 Q̃i]

−1
∑n

i=1 Z̃Si. Conversely, as λ shrinks to zero θ̂ converges to

the average of individual OLS estimators if Q̃i > 0 for all individuals. Thus the choice of penalty
parameter λ allows a smooth transition between these two extremes. Also, by taking the conditional
expectation we have

E[θ̂|X1, ..., Xn] =

n∑
i=1

wiβ2i/

n∑
i=1

wi, wi =
Q̃i

Q̃i + λ
.
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Here we see that the debiased ridge estimator is unbiased when β2i does not vary with i. This
property holds regardless of the choice of λ and applies in cases in which Q̃i = 0 for some individuals
so that βi is not identified.

All of the properties described in the previous paragraph are shared by the general debiased
ridge estimator of equation (3.9), with the condition Q̃i > 0 replaced by Qi nonsingular and Q̃i = 0
replaced by Qi singular, as shown in Section 6. One interesting property that is special to the
example of one nonconstant regressor is that E[θ̂|X1, ..., Xn] is a weighted average of individual
specific βi, with larger weight wi given to observations where βi is more strongly identified, i.e. Q̃i

is larger. In general the conditional expectation of the debiased ridge estimator is a matrix weighted
average with weights discussed more fully in Section 6.

The debiased average ridge estimator belongs to a general class of regularized panel estimators
based on a regularized version Q−−

i of Q−1
i that is well defined even when Qi is singular. This general

class consists of estimators obtained from equations (3.7)-(3.9) with Q−−
i replacing (Qi + λDi)

−1.
The average coefficient estimator of Graham & Powell (2012) is a member of this general class where
Q−−

i = 1(det(Qi) > k)Q−1
i , understood to be zero when det(Qi) ≤ k and ai is constant. When there

is more than one non-constant regressor the debiased average ridge estimator has the advantage that
informative observations may be used when they are not by the Graham & Powell (2012) estimator.
For example suppose Qi is singular because a regressor other than the first one is constant over
time. The ith observation may still be informative for the coefficients of other regressors and would
be used by ridge estimator, but not by the Graham & Powell (2012) estimator.

When ai varies with i the θ̂ of equation (3.9) is an innovation of our paper. The presence of ā in

our estimator is essential to unbiasedness of θ̂ when the slope coefficients in βi do not vary with i.

3.4 Evaluating the Extent of Identification

Identification of the average effect θ0 = E[a′iβi] depends on how informative each observation i is for
a′iβi. One way to measure this informativeness is to compare ai with a regularized version âi that
determines the conditional mean of the debiased ridge estimator. Taking the conditional expectation
we have

E[θ̂|X1, ..., Xn] =
1

n

n∑
i=1

â′iβi, âi = ā′( ¯AW )−1AiWi.

This âi will tend to differ from ai depending on whether Qi is singular. The vector ā
′( ¯AW )−1 is close

to the first unit vector, and hence âi is close to a
′
iWi, when the great majority of Qi are nonsingular

and λ is small. Also, as λ shrinks to zero a′iWi converges to ai if Qi is nonsingular but need not
otherwise. Thus we can compare âi and ai to evaluate identification. We focus on this comparison
because âi is closely related the contribution of the ith observation to θ̂.

One way to measure the difference between ai and âi to use

ζi =
∥âi − ai∥√

2∥âi∥2 + 2∥ai∥2
.

This ζi is constrained to be in the unit interval. We can use a quantile plot of this object to evaluate
the extent of identification, with departures from zero indicating a lack of identification.

4 Nonparametric, Nonseperable Demand Models for Panel
Data

The nonseparable, nonparametric model E[Sit|Xi, ηit] = s(Xit, ηit) (of equation (2.1)) provides a
very general specification of individual demand. In the application we take the outcome variable
Sit to be expenditure share of a good, which has long been a useful specification, as in Deaton
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& Muellbauer (1980b), Chaudhuri et al. (2006), and Hsiao (2021), but other choices of outcome
variable will also do. Discrete choice is included as a special case where Sit is the number of units of
a particular good purchased by an individual in time period 1t and the outcome model is specified
analogous to that in Section 3.1.

The model allows unobserved heterogeneity ηit to affect demand in very general ways. The ηit is
allowed to be infinite dimensional corresponding to stochastic revealed preference as in McFadden &
Richter (1990), McFadden (2005), and Kitamura & Stoye (2018) with demand restricted to be single
valued. Such choice specifications have been considered by Lewbel (2001), Blomquist et al. (2014),
Blundell et al. (2014), Hoderlein & Stoye (2014), Bhattacharya (2015), Dette et al. (2016), and
Hausman & Newey (2016). In addition ηit may include product specific unobserved characteristics
as in Berry (1994) and Berry et al. (1995). The presence of such could create correlation across
individuals in ηit. Alternatively, if ηit is tastes by an individual for unobserved product characteristics
and preferences are independent across individuals then correlation across individuals need not be
present.

To help this model relate to existing demand models it is helpful to decompose the heterogene-
ity ηit into a component αi that does not vary with t and a time varying component vit. This
decomposition is common in panel demand models, including discrete choice, as in Chamberlain
(1984). Here αi represents preference features that are stable over time for a given individual while
vit allows some time variation in demand. For example, vit could represent a taste for variety that
is not observable to the econometrician. Tastes for variety could also be incorporated by including
functions of t in b(Xit). Generally it is quite common to incorporate time varying heterogeneity as
represented by vit in nonlinear panel data models.

An important feature of panel demand data is that prices are common across consumers and are
determined in market equilibrium. As a result prices will generally be endogenous in being related
to individual preferences. Restrictions on vit mitigate potential price endogeneity. If vit is i.i.d.
over time and independent of unobserved supply (or markup) shocks and there are many consumers
in the market then bias from price endogeneity will be small, as shown by Moon & Newey (2024).
Intuitively, price effects will be (nearly) identified from movement of prices over time because supply
shocks are independent of time variation in preferences. This independence seems plausible when vit
is a stochastic taste for variety of an individual and variation in supply is due to cost shocks. Also,
Hausman (1997) found that the use of prices from other markets as instruments did not change
demand estimates for scanner data, providing evidence that relying on time variation in prices for
identification of price effects is consistent with scanner data.

The interpretation of vit as preference heterogeneity means that preferences are allowed to change
over time, even being correlated over time in order to represent a taste for variety. Demand spec-
ifications with time varying, unobserved preference effects vit are common in panel data, discrete
choice demand being a prime example. The presence of vit helps demand and other models fit the
data better. It allows for departures from the weak axiom of revealed preference in the choice of an
individual over time, as has been found in empirical work, for example Crawford (2019).

Time varying preferences have little effect on the interpretation of welfare calculations. The
average equivalent variation and deadweight loss calculations just average over time. As such they
estimate the expected value of welfare integrated over as vit, similar to welfare estimates for discrete
choice panel data. Such time average welfare meausres are consistent with utility maximization over
time if there are no dynamic linkages in goods. Of course such preferences are not consistent with
stockpiling models like that of Hendel & Nevo (2006). In the application we take one month as the
time unit and focus on goods with little potential for stockpiling to avoid this concern.

Allowing for zero demand is important in demand modeling. For example, consumer data which
considers alcohol or tobacco consumption will have many individuals with zero consumption. Includ-
ing zero demand observations in the data correctly accounts for zero consumption in calculations of
average equivalent variation and deadweight loss, as shown in Hausman & Newey (2016), Theorem
3. Intuitively, there is no effect of a price change on the welfare of a consumer who never purchases
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a product and the average is also correct when the product in only purchased sometimes. The
nonseparable, nonparametric specification gives the demand equations flexibility to allow for zeros
while being consistent with utility maximization.

An observation arising from economic theory is that often, but not always, the policy question
of interest depends on only one, or a very few, price effects. For example, estimation of individual
welfare effects typically depends only on the own price effect when all other prices are held constant,
Hausman (1981). Also, small cross-price effects will mitigate market equilibrium effects of changing
one price. Price changes for one good will shift demand for other goods by small amounts so that
equilibrium welfare effect from changing only one price can be well approximated by the effect of
just that price on average demand.

Computational simplicity is an important virtue of demand analysis in panel data based on linear
in coefficients approximation to nonseparable, nonparametric demand. Average equivalent variation
and deadweight loss are estimated by a debiased average of individual specific linear combinations of
ridge regressions. Simulation is used to approximate the integrals in the welfare estimates. Simple
inference is based on independence of estimates across individuals. All of these features make this
approach to demand estimation simple to implement, even in very large data sets.

5 Application to Scanner Data

We apply our methods to estimate price elasticities for groceries and to analyze the impact of
counterfactual tax changes on consumer welfare. In this context, the outcome variable Sit is share
of expenditure on a particular class of goods, and the regressors Xit include the natural log of prices
and total expenditure. Our specification generalizes the popular AIDs demand system of Deaton
& Muellbauer (1980a) to approximate a nonparametric, fully nonseparable demand model as we
describe in Section 4.

Given this specification, our debiasing method has important implications for our elasticity esti-
mates and consequently, our estimates of counterfactual welfare. In the absence of debiasing, ridge
regression tends to shrink parameters to zero. Therefore, in an AIDs-type specification, ridge would
shrink the own price elasticity towards −1, the cross-price elasticities toward 0, and the expenditure
elasticity towards 1. The debiasing mitigates the effects of shrinkage and results in estimates that are
less sensitive to the choice of penalty parameter. However, we note that shrinkage of the cross-price
elasticities may be appropriate in consumer demand panel datasets, where small cross-price effects
often found in the literature Burda et al. (2008) and Burda et al. (2012). Indeed, cross-sectional
OLS regressions in our empirical setting recover small cross-price elasticities, as we report in Table
IV in Appendix A.

Rather than estimate demand for particular products, we instead focus on the demand for classes
of goods. In effect, we model demand at an intermediate level of multi-stage budgeting to estimate
welfare effects of price changes for good types. Here, the consumer decides how much to spend on a
class of goods based on individual- and type-specific second-order flexible price indices, and on the
total expenditure on all included classes of goods.

Modeling demand for good types can be justified by certain conditions on the separability of
preferences, as in for example, Gorman (1959), Gorman (1981), Deaton & Muellbauer (1980a), and
Blundell & Robin (2000). An alternative motivation relies on statistical aggregation for the many
prices into a price index which is independent of consumer preferences, as in Hoderlein & Lewbel
(2012). For the intermediate level of commodities we consider (e.g., soda) it may be important to
allow for more general substitution patterns across the dissimilar kinds of goods. The flexibility in
allowing for general cross-price effects provided by AIDs demand system of Deaton & Muellbauer
(1980a), may be useful here as it is in Chaudhuri et al. (2006) and Hsiao (2021).

We use NielsenIQ retail scanner data to construct price indices, and the NielsenIQ Homescan
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Panel to track purchases and household characteristics.1

The data include 2585 households with Houston-area ZIP codes in the years 2010-2014. The
number of monthly observations for each household ranges from 1 to 60, and we restrict our analysis
to the households included for at least 12 months.2

We construct the price indices for each consumer from data on the monthly total expenditures
per good category, and on the quantity purchased per month. The original data had time-stamps for
purchases. The price indices span 15 aggregated groups of goods: soda, milk, soup, water, butter,
cookies, eggs, orange juice, ice cream, bread, chips, salad, yogurt, coffee, and cereal. As in Burda
et al. (2008) and Burda et al. (2012) we chose these groups because they made up a relatively large
proportion of total grocery expenditure. The data also includes demographics such as race, marital
status, household size and composition, and employment status.

The price index for each group of goods is computed as a weighted geometric average of the
actual purchase prices (expenditure divided by quantity) over all purchases made by the household
in the month, with weights equal to the proportion of expenditure on a specific item associated with
a unique item code. The price index Pg,it for household i at time t, for the gth group of goods is
specified by

ln(Pg,it) =

Jg∑
j=1

wgj,it ln(Pgj,it),

where j denotes a particular item code, Jg is the number of codes for the gth commodity, wgj,it is
the proportion of expenditure on commodity g that is spent on code j, and Pgj,it is expenditure by
household i on code j divided by quantity of code j in month t. This is a Törnqvist price index which
was shown by Diewert (1976) to be exact for a quadratic utility specification and a second order
approximation to the exact price index for any utility. Deaton & Muellbauer (1980b) (pp. 132-133)
showed that with weak separability this price index appears in share equations for a Rotterdam
demand specification (i.e., log quantity as a linear function of log prices and log expenditure) and
suggest that it could lead to a good approximation when prices within a group tend to move together.

The price indices may be endogenous because the amount spent on a particular item in a group
of goods is a choice of the consumer. Price endogeneity could be particularly important when a
group of goods contains commodities of varying quality, such as organic and non-organic milk, or
fresh and frozen orange juice. As we discuss in the previous section, our approach can accommodate
such endogeneity, provided that the unobserved heterogeneity satisfies the time-invariance condition
formalized in Assumption 1.

As stated above, we construct price indices using prices actually paid by each household. Includ-
ing zero expenditures makes it necessary to impute price indices for time periods where an individual
purchased none of a particular good. If a household had purchased the good before, then price in-
dices are imputed as the most recent price faced by the household in a past purchase. Rarely, a good
is never purchased prior to a given month, in which case its imputed price is the average price of the
same good within a subset of stores similar to those at which the household shops.3 The frequency
of household-month observations with zero total expenditures varies by good: for some goods, most
households record purchases each month, while other goods, such as orange juice and ice cream, are

1The empirical work is researchers’ own analyses calculated (or derived) based in part on data from Nielsen
Consumer LLC and marketing databases provided through the NielsenIQ Datasets at the Kilts Center for Marketing
Data Center at The University of Chicago Booth School of Business. The conclusions drawn from the NielsenIQ data
are those of the researcher(s) and do not reflect the views of NielsenIQ. NielsenIQ is not responsible for, had no role
in, and was not involved in analyzing and preparing the results reported herein.

2We checked for differences in results between using all households and the 2197 that were present for at least a
year and found no statistically significant differences. The insensitivity to panel length suggests that attrition bias
does not play a large role in this data.

3Specifically, we group retailers in the Houston area into 4 categories, and assign households to their most-visited
retailer category each year. Then we construct monthly price indices for each retailer category and each good, which
are used to fill in missing prices.
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purchased more infrequently. Our analysis focuses on estimating demand for the goods for which
we have the most reliable data, namely, soda and milk.

The inclusion of prices for all 15 categories of goods allows estimation of cross-price demand
effects. This gives us 16 price and expenditure regressors. This is too large a number of regressors for
standard nonparametric estimation, such as kernel regression, where it is thought to be impractical to
use more than five or six regressors. For panel estimation, 16 regressors may also be excessively large.
The large number of regressors with small coefficients for the many cross-price effects motivates our
use of ridge regularization.

In total, our analysis uses 86, 122 observations across the households. As a baseline, we consider
the log-linear AIDs-type specification below.

Sit = αi + γi log Expit +
∑
g

βg,i logPg,it + uit (5.1)

where Sit is the share of expenditue by household i in month t on a particular class of goods.
Expit is that household’s total monthly expenditure over the 15 categories of goods, and Pg,it is the
household’s price index for good g in that month. αi, γi, and βg,i are individual-specific coefficients
and uit a time-varying residual. We estimate separate models for soda and milk, with no restrictions
that the coefficients in each case are the same.

In order to more precisely approximate a possibly non-linear and non-separable underlying de-
mand model, in some of our analyses we enrich the specification (5.1) by including some powers and
interactions of log prices and total expenditure.

Table I contains elasticity estimates for both soda and milk. We employ the model (5.1) and com-
pare three methods for estimation. These are cross-sectional OLS, fixed-effects estimates, individual-
specific ridge without debiasing, and estimates that employ our debiased individual-specific ridge
method.

In order to perform individual-ridge, we must select the matrix Di in the formula (3.7). We let
Di be the identity matrix with its first diagonal entry set to zero. We carry out ridge using two
alternative choices for the penalty parameter λ. As a robustness check, we carry out the analysis with
and without the inclusion of seasonal dummy variables. Seasonal variation in both price and tastes
could be problematic for our analysis as it suggests that heterogeneity in preferences is time-varying
given prices, which would contradict Assumption 1.

Table 1: Estimates of own-price elasticity, with (top) and without (bottom) season dummies.

OLS FE Ridge 0.05 Ridge 0.0005 DBR 0.05 DBR 0.0005
soda -0.795 -0.815 -0.829 -0.790 -0.775 -0.777

(0.003) (0.004) (0.007) (0.016) (0.009) (0.016)
milk -1.206 -0.607 -0.843 -0.480 -0.445 -0.349

(0.012) (0.016) (0.011) (0.038) (0.046) (0.037)
soda -0.795 -0.815 -0.823 -0.768 -0.770 -0.756

(0.003) (0.003) (0.007) (0.017) (0.009) (0.017)
milk -1.206 -0.608 -0.838 -0.454 -0.454 -0.347

(0.012) (0.016) (0.008) (0.041) (0.041) (0.041)

The columns in Table I respectively contain estimates from cross-sectionl OLS, fixed-effects,
individual-ridge without debiasing and penalty parameters 0.05 and 0.0005, and our debiased ridge
estimates (abbreviated to ‘DBR’) with those same penalties. These methods are used to estimate
the average of the coefficient on log own-price in specification (5.1). We then obtain elasticities
by dividing the estimates by the average (over all individuals and time periods) of the expenditure
share of the relevant good and subtracting unity. In order to account for dependence between the
coefficient estimates and the mean expenditure share, standard errors are calculated by bootstrap.
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In all cases, the estimates are insensitive to the inclusion of seasonal dummies. The ridge esti-
mates without debiasing are sensitive to the choice of penalty parameter, particular in the case of
milk. As we discuss above, in our specification, the shrinkage associated with ridge will tend to bias
elasticity estimates towards −1. Indeed, when we do not debias, the elasticity estimates from ridge
are closer to −1 when we employ a higher penalty than with a smaller penalty. this is particularly
striking for milk. By contrast, when we debias, which mitigates the shrinkage associated with ridge,
we obtain elasticity estimates that are much less sensitive to the choice of penalty.

The elasticity estimates from our debiased ridge method roughly align with those found in the
previous literature (see for example, the meta-analysis of Andreyeva et al. (2010)).

We apply our methods to estimate bounds on the average equivalent variation consumer surplus
and deadweight loss from a 10% increase in price for both soda and milk. This increase is relative
to the actual price faced by each household in a particular period. The bounds follow the formulas
in Hausman & Newey (2016) as detailed in Example 2 in Section 2. The formulas require we impose
lower and upper bounds on the income effect. We take our lower bound to be 0 which corresponds
to the assumption that soda and milk are normal goods. This lower bound on the income effects
corresponds to an upper bound on the welfare loss. In order to obtain a lower bound on the welfare
we require an upper bound on the income effect. For our upper bound, we use two times the fixed
effects estimates of the derivative of quantity with respect to total expenditure (over the 15 classes
of goods) at the mean quantity and total expenditure. Thus we obtain conservative upper bounds
for the income effect of ≈ 3.082 for soda and ≈ 6.241 for milk.

In order to provide some distributional analysis, we estimate the welfare bounds separately
for households in three different income groups. In particular, for those whose household income
(averaged over all periods for which there is data on that household) is in the bottom quartile, top
quartile, and for all households.

Tables II and III contain our estimation results for the welfare upper bounds. We report lower
bounds in the appendix. We applied our analysis for both the log-linear specification (5.1) and
a cubic specification which supplements the regressors in the linear model with all powers and
interactions of the log own-price and total expenditure up to order three. We provide results for
various choices of the penalty parameter λ. The welfare estimates have been annualized, that is, the
numbers represent the welfare change over the course of a year.

Table 2: Soda Welfare Upper Bounds

Deadweight Loss (Linear) Deadweight Loss (Cubic)
Income Quartiles Income Quartiles

λ Upper Lower All Upper Lower All
0.05 0.367 0.407 0.399 0.365 0.408 0.398

(0.028) (0.033) (0.013) (0.030) (0.035) (0.014)
0.0005 0.359 0.407 0.394 0.404 0.409 0.400

(0.029) (0.041) (0.015) (0.042) (0.041) (0.020)

Consumer Surplus (Linear) Consumer Surplus (Cubic)
Income Quartiles Income Quartiles

λ Upper Lower All Upper Lower All
0.05 10.13 10.54 10.64 10.12 10.58 10.66

(0.682) (0.707) (0.281) (0.680) (0.707) (0.280)
0.0005 10.15 10.57 10.66 10.09 10.59 10.66

(0.683) (0.707) (0.281) (0.679) (0.709) (0.282)

The estimates of average deadweight loss and consumer surplus for the full set of households are
remarkably stable, both between the linear and cubic specifications, and for different values of the
penalty parameter. In part, this may reflect the tendency of debiasing to mitigate the shrinkage
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Table 3: Milk Welfare Upper Bounds

Deadweight Loss (Linear) Deadweight Loss (Cubic)
Income Quartiles Income Quartiles

λ Upper Lower All Upper Lower All
0.05 0.178 0.148 0.158 0.142 0.140 0.121

(0.017) (0.014) (0.009) (0.026) (0.023) (0.017)
0.0005 0.120 0.108 0.120 0.190 0.172 0.136

(0.024) (0.021) (0.013) (0.043) (0.046) (0.031)

Consumer Surplus (Linear) Consumer Surplus (Cubic)
Income Quartiles Income Quartiles

λ Upper Lower All Upper Lower All
0.05 8.09 6.73 7.41 8.15 6.71 7.43

(0.490) (0.390) (0.170) (0.495) (0.394) (0.171)
0.0005 8.15 6.76 7.44 8.12 6.70 7.43

(0.495) (0.394) (0.171) (0.494) (0.396) (0.173)

induced by regularization, and thus to reduce sensitivity to the choice of penalty parameter λ.
We estimate that the deadweight loss from a price increase for soda is markedly higher than for

milk. This is not surprising given that milk, unlike soda, is a staple food and so demand for this
product may be relatively inelastic. Indeed, this aligns with our elasticity estimates in Table I.

Harding & Lovenheim (2017) analyze the role of prices in determining food purchases and nu-
trition and estimate the impact of taxes on nutrition and individual welfare. Allcott et al. (2019)
and Dubois et al. (2020) have also considered the welfare effects of taxing soda. Like Dubois et al.
(2020) our panel approach estimates individual-specific demands. Our approach is simpler in that
it is based on continuous demand modeling and individual ridge regression with total expenditure
included in the demand function. Also, our application averages over on-the-go and individual that
purchase soda and those that don’t. We obtain substantially larger estimates of average equivalent
variation than their compensating varation which is to be expected because we model household
demand and they model individual demand.

Figure 1 plots the quantiles of the scaled distance between the implied and true ai for our
deadweight loss and consumer surplus upper bound estimates. In particular, we plot quantiles of ζi
which has formula given in Section 3.4.

We see from the figures that for a large proportion of individuals the discrepency between the
true and implied ais is relatively small. This is particularly clear in the case of our consumer surplus
estimates, for which the quantiles are almost identically zero.

6 Theoretical Results

We now turn to a formal analysis of the properties of our estimation procedure. For this purpose,
we will be explicit about allowing the number of periods for which we have observations to vary
between individuals. In particular, we let Ti denote the number of periods for which we observe data
on individual i. In addition, we explicitly define the approximation error that results from the use
of a linear sieve space. Recall that we employ an approximation s(x, η) ≈ b(x)′β(η). To explicitly

define β(η), we suppose that 1
Ti

∑Ti

t=1E[b(Xit)b(Xit)
′] is non-singular. For each fixed value η in the

support of ηit, define the function β(η) as follows.

β(η) =
(
E[

1

Ti

Ti∑
t=1

b(Xit)b(Xit)
′]
)−1

E[
1

Ti

Ti∑
t=1

b(Xit)s(Xit, η)]
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Figure 5.1: Scaled Distance Between Implied and True ai

That is, β(η) is the vector of coefficients from a best approximation of s(·, η) by a linear combination
of the basis functions b(·). We define the approximation error r(x, η) as below:

r(x, η) = s(x, η)− b(x)′β(η)

We then let rit = r(Xit, ηit). Under Assumption 1, E[β(ηit)|Xi] does not depend on t, so we write
βi = E[β(ηit)|Xi]. We also define a residual uit as follows:

uit = Sit − E[Sit|Xit, ηit] + b(Xit)
′[β(ηit)− βi]

Let ri and ui be the length-Ti column vectors whose t-th entries are rit and uit respectively.
Thus we obtain the following model:

Si = Biβi + ui + ri, E[ui|Xi] = 0 (6.1)

Thus we obtain an approximate random correlated coefficients model for the outcome Sit with
the approximation error captured in ri and the individual-specific parameters closely related to our
objects of interest.

It is helpful to introduce some notation. Let D1,i be equal to Di but with the first row and
column removed (recall that by definition, the first row and column of Di contain only zeros). J
is the length of the vector b(Xit), and let B1,it denote b(Xit) with its first entry (the constant)

removed. Finally, define S̄i =
1
Ti

∑T
t=1 Sit, B̄i =

1
Ti

∑T
t=1B1,it, and Q̃i =

1
Ti

∑T
t=1B1,itB

′
1,it − B̄iB̄

′
i.

Recall that Section 3 defines Di to be diagonal with first diagonal entry zero and the others
non-zero. In this section we allow for more general choices of Di: we retain the condition that the
first row and column of Di contain only zeroes, but unless we state otherwise D1,i can be any strictly
positive-definite matrix. We implicitly assume throughout that the estimator (3.9) is well defined,
that is, AW is non-singular.
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6.1 Properties of the Estimator

Before we turn to the asymptotic behavior of our estimation procedures, we elaborate on a number
of notable properties of the estimator outlined in Section 3. In particular, we consider the sense in
which the estimator eliminates regularization bias, its limiting behavior under large and small values
of the penalty parameter, and its motivation as an empirical Bayes estimator.

Property A: No Regularization Bias Under Exogenous Effects

Our estimator is based on individual-level ridge regressions. Ridge estimates typically suffer from
‘regularization’ bias. The form of our estimator (3.9) is designed to mitigate, and in some cases
entirely eliminate, regularization bias. In particular, in the case in which βi is constant, apart from
the intercept and there is no approximation error.

For some insight into the bias properties of the estimator, it is helpful to compare our method
with a plug-in estimator based on individual-specific OLS. An individual OLS estimate of βi is given
below where Q†

i is the pseudo-inverse of Qi and is well-defined even if Qi is singular:

β̃i = Q†
iB

′
iSi/Ti

A plug-in OLS estimator of θ0 is then 1
n

∑n
i=1 a

′
iβ̃i. Suppose Assumptions 1 and 2 hold. If Qi

is non-singular for all i, and the mean of a′iβ̃i is finite, then the plug-in OLS estimator is unbiased
(up to approximation error) for θ0. This is because, in the absence of approximation error, β̃i is a
conditionally (on Xi) unbiased estimate of βi. Moreover, by Assumption 2, β̃i is independent of ai
conditional on Xi. Thus if E[|a′iβ̃i|] <∞ then we can apply the law of iterated expectations and we
see that

E[a′iβ̃i] = E
[
a′iE[β̃i|Xi, ai]

]
= E

[
a′iE[β̃i|Xi]

]
= E[a′iβi].

If individuals are drawn independently and identically from the population, then consistency of
the plug-in OLS estimator follows by the law of large numbers. However, if Qi is singular with
positive probability, this argument fails because an β̃i is (in general) biased when Qi is singular.
Moreover, the assumption that E[|a′iβ̃i|] is finite is crucial. If this moment is infinite, then one
cannot apply the law of iterated expectations, nor the law of large numbers. The first moment may
be infinite even if Qi is non-singular almost surely. Graham & Powell (2012) acknowledge that the
finite mean condition may fail, particularly if the number of regressors is close to the number of time
periods. In the case of ai constant, this situation coincides with the case in which the information
bound derived in Chamberlain (1992) is infinite, and thus regular estimation is impossible with the
number of time periods fixed.

In contrast to OLS, individual-specific ridge estimates have finite expectation under weak condi-
tions. Proposition 1, which provides conditions under which the expectation of a′iβ̂i is finite, applies
even if Qi is singular with positive probability.

Proposition 1. Suppose λ > 0, Di,1 has eigenvalues bounded below by c > 0, ∥Bi∥ and ∥ai∥ are

uniformly bounded, and E[|Sit|] is finite. Then E[|a′iβ̂i|] <∞.

As we discuss in Section 3, individual ridge estimates are conditionally biased, even in the
absence of approximation error. This in turn suggests that the sample average 1

n

∑n
i=1 a

′
iβ̂i is biased

for E[a′iβit]. This motivates our debiasing strategy. Proposition 2 shows if effects are exogenous,
then the debiased estimator is exactly unbiased up to approximation error. Note that the theorem
holds for any λ > 0 and also applies when Qi is singular with positive probability. This contrasts
with the average of plug-in OLS, which is in general conditionally biased when Qi is singular with
positive probability. By ‘effects are exogenous’, we mean that β2(ηit) is mean independent of Xi,
where β2(η) is the subvector of β(η) formed by removing its first component.
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Proposition 2. Suppose Assumptions 1 and 2 hold, rit = 0 almost surely, and β2(ηit) is mean
independent of Xi. In addition, suppose Di is a function of Xi. If 1

n

∑n
i=1AiWi is non-singular

then

E[θ̂|X1, X2, ..., Xn] =
1

n

n∑
i=1

E[a′iβi|X1, X2, ..., Xn].

If the above holds and E[|θ̂|] <∞ then E[θ̂] = E[a′iβi].

Proposition 2 requires that β2(ηit) is mean independent of Xi. The first component of β(ηit) is
unrestricted. We do not need to restrict this component because we do not penalize the intercept in
our individual-ridge regressions (this is why the first row and column of Di are composed of zeros).

In fact, if we strengthen the condition that effects are exogenous so that the entire vector β(ηit)
is mean independent of Xi, then Proposition 2 applies for a general class of estimators. Consider
that we can rewrite the estimator (3.9) as follows:

θ̂ = ā′(AW )−1AWβ, ā =
1

n

n∑
i=1

ai, AW =
1

n

n∑
i=1

AiWi, AWβ =
1

n

n∑
i=1

AiWiβ̃i (6.2)

If we replace Wi := (Qi + λDi)
−1Qi with some other conformable matrix that depends only

on the regressors, then we obtain an alternative estimate of θ0. Consider the special case in which
ai is constant and let Wi be an indicator that the determinant of Qi exceeds a cut-off h, then the
formula yields the estimator of Graham and Powell (absent adjustment for time-effects). If β(ηit)
is mean independent of Xi, Proposition 2 applies for any estimator of the form above so long as
WiQ

†
iQi =Wi, which holds both for our choice of Wi as well as that of Graham and Powell.

Property B: Convergence to Fixed Effects with Large Penalty

As the penalty parameter grows to infinity, our estimator converges to a plug-in fixed effects or
generalized fixed effects estimator. To state this formally, let us first note that the standard fixed
effects estimate β̂FE,i may be expressed as follows. The first component of this vector is an individual

intercept given by S̄i − B̄′
iβ̂FE,1, where β̂FE,1 is a vector of shared slope parameters and constitute

the remaining components of β̂FE,i. The slopes are given by

β̂FE,1 = (
1

n

n∑
i=1

Q̃i)
−1 1

n

n∑
i=1

1

Ti

Ti∑
t=1

(B1,i,t − B̄i)Si,t.

β̂FE,i is a special case of a generalized fixed-effects estimator β̂GFE,i. Again, the first component

of β̂GFE,i is an individual intercept, in this case S̄i − B̄′
iβ̂GFE,1, where β̂GFE,1 is a vector of shared

slopes. Let Gi be a non-singular weighting matrix, then the corresponding vector of slope parameters
β̂GFE,1 is defined as follows

β̂GFE,1 = (
1

n

n∑
i=1

GiQ̃i)
−1 1

n

n∑
i=1

1

Ti

Ti∑
t=1

Gi(B1,i,t − B̄i)Si,t.

A plug-in fixed-effects estimate of θ0 is given by 1
n

∑n
i=1 a

′
iβ̂FE,i and plug-in generalized fixed-

effects estimator by 1
n

∑n
i=1 a

′
iβ̂GFE,i.

Proposition 3. limλ→∞ θ̂ = 1
n

∑n
i=1 a

′
iβ̂GFE,i where Gi = D1,i. If Di does not vary with i, then

limλ→∞ θ̂ = 1
n

∑n
i=1 a

′
iβ̂FE,i.

The proposition states that as the penalty parameter grows towards infinity, the debiased panel
ridge estimator converges to the plug-in generalized fixed-effects estimator with Gi equal to D1,i.
In the special case in which Di does not depend on i, this is identical to the standard plug-in fixed
effects estimator.
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Property C: Convergence Under Small Penalty

Suppose that for each i, the matrix Qi is non-singular. Then as λ goes to zero, the matrix (Qi +
λDi)

−1 converges to Q−1
i , for every i. As such, our estimate converges to the plug-in average

of individual OLS estimates 1
n

∑n
i=1 a

′
iβ̃i. Note the contrast with Property B. As λ → ∞ our

estimator converges to a plug-in average of (generalized) fixed effects estimates, with individual-
specific intercepts and shared slope parameters. If Qi is non-singular for all i, then as λ → 0, the
estimator converges instead to the plug-in average of OLS estimates, which have both individual-
specific intercepts and slopes. The choice of λ thus allows us to smoothly transition between these
two estimators.

When Qi is singular for some individuals, our estimator generally does not converge to plug-in
individual OLS, but nonetheless it has an interpretable limit. Proposition 4 considers the special
case in which one of the regressors, denoted by Zit, is discretely distributed. Because Zi is discrete,
it may be constant over time for some individual i, in which case Qi is singular.

Proposition 4. Suppose b(Xit) = (1, Zit, B
′
2,it)

′, where Zit is a discrete scalar and the vector B2,it

is continuously distributed. Let Ci be equal to 1 if Zi1 = Zi2 = ... = ZiTi
and zero otherwise and let

p̂ = 1
n

∑n
i=1 Ci.

Suppose i. Di is diagonal, ii. if Ci ̸= 0 then Qi is non-singular, and iii. the submatrix of Q̃i

formed by removing its first row and column is non-singular. Define estimates

β̃∗
i,1 = S̄i − Z̄iβ̃

∗
i,2 − B̄′

2,iβ̃i,3

β̃∗
i,2 = (1− Ci)β̃i,2 + Ci

1

p̂n

n∑
i=1

(1− Ci)β̃i,2,

where β̃i,2 and β̃i,3 are respectively the individual OLS coefficients on Zit and B2,it. Let β̃∗
i =

(β̃∗
i,1, β̃

∗
i,2, β̃

′
i,3)

′. Then limλ→0 θ̂ =
1
n

∑n
i=1 a

′
iβ̃

∗
i .

The limit in Proposition 4 differs from plug-in individual OLS in that the OLS coefficient on Zit

is replaced with the alternative estimate β̃∗
i,2 and the intercept is adjusted accordingly. If Zit varies

for individual i , then β̃∗
i,2 is equal to the individual OLS estimate β̃i,2. However, if Zit does not

vary, then β̃∗
i,2 is equal to 1

p̂n

∑n
i=1(1 − Ci)β̃i,2 which is the average of the OLS coefficients among

the individuals for whom Zit does vary. In other words, for individuals without variation in Zit we
impute the value of this coefficient as the average among individuals for whom Zit varies.

Proposition 5. Define B̃it = D
−1/2
1,i (B1,it − B̄i) and let B̃i = (B̃i1, B̃i2, ..., B̃iTi

)′. Define the

projection matrix Pi = D
−1/2
1,i B̃†

i B̃iD
1/2
1,i and the following vectors of coefficients

β̃◦
i,2 = D

−1/2
1,i B̃†

iSi/Ti

β̃∗
i,2 = β̃◦

i,2 + (I − Pi)(
1

n

n∑
i=1

Pi)
−1 1

n

n∑
i=1

β̃◦
i,2.

In addition, let β̃∗
i,1 = (S̄i − B̄′

1,iβ̃
∗
i,2) and define β̃∗

i = (β̃∗
i,1, β̃

∗
i,2

′)′, then limλ→0 θ̂ =
1
n

∑n
i=1 a

′
iβ̃

∗
i .

Proposition 5 considers the small λ limit of our estimator in the general case. If Qi has full rank
then β̃∗

i = β̃i, the individual OLS estimate. To interpret β̃∗
i when Qi is singular, first note that

Pi is the orthogonal (with respect to the inner-product ⟨a, b⟩ := a′Dib) projection onto the range
of B̃′

i. Thus I − Pi is the orthogonal projection onto the null space of B̃i. If Qi is singular, this
null space is non-trivial. This is problematic because, by construction, (I − Pi)β̃

◦
i,2 = 0. That is,

the projection of the coefficients β̃◦
i,2 onto this subspace is zero and so, loosely speaking, this part

19



of β̃◦
i,2 is missing. The second term in the definition of β̃∗

i,2 adjusts for this by, in effect, replacing

the missing part of β̃◦
i,2 with the projection of ( 1n

∑n
i=1 Pi)

−1 1
n

∑n
i=1 β̃

◦
i,2 onto this subspace. In the

special case in Proposition 4, when Qi is singular the null space consists simply the vectors of the
form (0, 1, 0, 0, ..., 0)′, which correspond to the coefficients on Zit.

Property D: Empirical Bayes Interpretation

The estimator θ̂ can be expressed as an empirical Bayes estimator. The empirical Bayes strategy
imposes a priori that the individual coefficient vectors {βi}ni=1 are concentrated around a prior mean
which we estimate jointly with the individual-level coefficients.

To be more precise, our debiased ridge estimator is a Bayesian maximum a posteriori (MAP)
estimate under a conditional Gaussian model for the outcome Sit and a Gaussian prior for the
individual regression coefficients βi. It is well-known that standard ridge regression estimates can
be expressed as MAP estimates in which the prior is Gaussian with mean zero. What distinguishes
our approach is the manner in which the prior mean for βi is determined by the data. In particular,
the prior mean β̄, is pinned down by the restriction

1

n

n∑
i=1

Aiβ
Post
i =

1

n

n∑
i=1

Aiβ̄, (6.3)

where {βPost
i }ni=1 is the posterior mode for {βi}ni=1. Thus the prior mean for the individual coefficients

is fixed by imposing that the prior mode and posterior modes of 1
n

∑n
i=1Aiβi are identical. Loosely

speaking, it ensures that observing the data does not lead us to update (i.e., improve) upon our
prior for 1

n

∑n
i=1Aiβi.

To be yet more precise, consider a Gaussian conditional likelihood for the outcomes Sit|Xi
iid∼

N(b(Xit)
′βi, σ) and prior for the individual slope parameters βi

iid∼ N(β̄,Σ), where β̄ is the prior
mean and Σ the prior variance-covariance matrix. Given this likelihood and prior, the posterior
density g satisfies the expression below:

ln
(
g(β1, β2, ..., βn)

)
∝ −

n∑
i=1

[
1

Ti
∥Si −Biβi∥2 + σ(βi − β̄)′Σ−1(βi − β̄)] (6.4)

The parameters {βi}ni=1 that maximize the above (given a fixed β̄) is the MAP estimate. In order
to obtain an empirical Bayes estimate, we estimate the prior mean β̄ from the data by imposing
equation (6.3).

Proposition 6. The estimator θ̂ in (3.9) can be written as θ̂ = 1
n

∑n
i=1 a

′
iβ

Post
i where {βPost

i }ni=1

and β̄ jointly solve the equations (6.3) and (6.5) below

{βPost
i }ni=1 =arg max

{βi}n
i=1

−
n∑

i=1

[
1

Ti
∥Si −Biβi∥2 + λ(βi − β̄)′Di(βi − β̄)]. (6.5)

The objective (6.5) is a monotone transformation of a Bayesian posterior (6.4) when Di =
σ
λΣ

−1.
Thus {βPost

i }ni=1 are MAP estimates of the individual slopes. The prior is fixed by the second
equation.4 In the special case of Ai the identity, solving the two equations above is equivalent to
maximizing the objective in (6.5) jointly over both βi and β̄.

4Note that we take Di to have first row and columns composed of zeroes, and so Di is singular. As such, strictly
speaking we use flat ‘improper’ prior for the individual intercepts.
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6.2 Consistency and Asymptotic Normality

Let us now consider the statistical properties of our estimator. We impose some additional con-
ditions. In the assumptions below, inequalities involving random variables are understood to hold
almost surely. Throughout we define δn := E[∥(Qi + λDi)

−1∥].

Assumption 3 (Consistency). For some scalar 0 < c <∞, i. ∥Ai∥, ∥ai∥, ∥Bi∥ ≤ c, ii. ∥( 1n
∑n

i=1Ai)
−1∥ ≤

c, iii. ∥βi∥ ≤ c, iv. ∥E[uiu
′
i|Xi]∥ ≤ c, v. H−

t (·) andH+
t (·) are uniformly bounded, vi. supx,η|r(x, η)| ≤

ℓn with ℓn → 0, vii. Ti ≥ T , viii. The first row and column of Di contains only zeros and the eigen-
values of D1,i are bounded above by c and below by 1/c

Assumption 4 (Asymptotic Normality). For some finite constants c, ξ, v, q > 0 such that

(v − 2)(q − 2) > 4, i. 1
T

∑T
t=1E[uvit] ≤ c, ii. 1/c ≤ V ar(a′iβi), and iii. we have

n
1
v+

1
q−

1
2E[∥(Qi + λDi)

−1∥q/2]1/q(δn/T )ξ = o(1).

Assumption 5 (Remainders). λδn, ℓn
√
δn, ℓn = o(

»
1
n ),

δn
T = O(1), and

Jλ2δ3n
T = o(1).

Assumption 3 i. and ii. impose conditions on ai, Ai, and Bi which are chosen directly by
the researcher. 3.iii imposes that the individual-specific mean parameter βi is bounded in norm.
iv. concerns the conditional second moments of ui, uit may be dependent across time, but the
dependence is restricted so that the norm of E[uiu

′
i|Xi] does not grow with T . 3.v restricts H−

t (·)
and H+

t (·). 3.vi is a condition on the sieve approximation error. Conditions of this form hold for
many choices of sieve space used in practice under smoothness conditions on s(·, η), see e.g., DeVore
& Lorentz (1993) for examples. 3.vii imposes that the number of time periods Ti, which can vary
between individuals, is bounded below by some T . 3.viii is a weak condition on Di which is chosen
by the researcher.

Assumption 4 ensures a normal limiting distribution via a Lyapunov condition. The assumption
restricts the v-th moment of a random and the q-th moment of another. q and v must satisfy be
strictly positive and (v − 2)(q − 2) > 4, which implies that v, q > 2. The conditions trade-off in
the sense that, if v is large, then q need not be much larger than 2 and vice versa. 4.i bounds the
average v-th moment of uit. 4.ii states that the variance of the individual-specific approximation
a′iβi is bounded below. 4.iii requires that a particular sequence is o(1). Each entry in the sequence is

a product of three terms. The first is n
1
v+

1
q−

1
2 . The conditions on v and q imply that this term goes

to zero with n. The second term is the q/2-th moment of ∥(Qi + λDi)
−1∥ raised to the power 1/q,

the third is δn/T raised to the power ξ. Note that ξ can be any strictly positive constant. As such,
in the case of δn/T → ∞, 4.iii holds for a sufficiently large choice of ξ so long as the q-th moment
of ∥(Qi + λDi)

−1∥ grows polynomially with T .
Assumption 5 restricts the rates at which various sequences converge to zero. It ensures some

terms in the asymptotic expansion of the estimation error are second order.

Theorem 1 provides general asymptotic theory for our estimator (3.9). It applies for both con-
tinuous and discrete regressors. The result follows from the more general result in Lemma 1 in the
appendix which applies to any estimator of the form (6.2) such that WiQ

†
iQi =Wi.

Theorem 1 ( Asymptotics). Suppose Assumptions 1, 2, and 3 hold and λδn → 0.
a. (Consistency)

θ̂ − θ0 = Op

Å…
1

n
+

…
δn
nT

+ λδn + λδn

…
Jδn
nT

+ ℓn(1 +
√
δn)

ã
21



b. (Asymptotic Normality)

In addition, if Assumptions 4 and 5 hold, then θ̂−θ0 = Op(n
−1/2) and

√
nσ−1

n (θ̂−θ0) ∼a N(0, 1),
where σ2

n is given by:

σ2
n = E[| 1

Ti
a′iWiQ

†
iB

′
iui|2] + V ar(a′iβi) (6.6)

Theorem 1 shows the crucial role of δn in the asymptotic behavior of the estimator. To understand
what δn represents, suppose for simplicity that Di is the identity matrix. Then ∥(Qi + λDi)

−1∥ is
equal to (µmin(Qi)+λ)

−1, where µmin(Qi) is the smallest eigenvalue of Qi. As such, if Qi is close to
singular, then ∥(Qi+λDi)

−1∥ is close to 1/λ. In the extreme case, if Qi is singular with probability
p, then p/λ ≤ δn. Thus the condition λδn → 0 is only possible if p shrinks to zero with the sample
size, which generally requires that T grows with n. On the other hand, if E[1/µmin(Qi)] is bounded
by a finite constant, then δn ≤ E[1/µmin(Qi)], uniformly over λ. Thus λδn = o(n−1/2) so long as λ
shrinks sufficiently quickly to zero.

To examine this in more detail, we consider two extreme cases below. In the first case, captured
in Corollary 1, we suppose that E[µmin(Q̃i)

−1] is bounded above, where µmin(Q̃i) is the smallest
eigenvalue of Q̃i. This is only possible if all regressors are continuously distributed and T > J .
In the absence of approximation error (so that ℓn = 0 with J < T fixed), root-n consistency and
asymptotic normality do not require that T grows with the sample size. Indeed, if E[µmin(Q̃i)

−1]
is finite then the efficiency bound in Chamberlain (1992) is finite and root-n regular estimation is
possible.

Corollary 1 (Continuous Case). Let ∥Qi∥ ≤ c. Suppose Assumptions 1, 2, and 3 hold. If
E[µmin(Q̃i)

−1] is bounded above and λ→ 0, then:

θ̂ − θ0 = Op

Å…
1

n
+ λ+ λ

…
J

nT
+ ℓn

ã
If in addition Assumption 4 holds, ℓn, λ = o(

»
1
n ) and

Jλ2

T = o(1), then θ̂− θ0 = Op(n
−1/2) and

√
nσ−1

n (θ̂ − θ0) ∼a N(0, 1), where σ2
n is given by (6.6).

At the other extreme, Corollary 2 applies for the case of a single binary regressor. We assume
that for a given individual i, the probability Xit = 1 is given by πi ∈ (0, 1) and that, conditional on
πi, the regressor is independent over time. In this case Q̃i must be singular with positive probability
because for an individual i, the regressors is constant with positive probability. However, as Ti
grows, this probability shrinks to zero at a rate that depends on the distribution of πi.

Corollary 2 (Binary Case). Suppose Assumptions 1, 2, and 3 hold, and b(Xit) = (1, Xit)
′ where

Xit is binary. Suppose P (Xit = 1|πi) = πi and the entries of the sequence {Xit}Tt=1 are jointly
independent conditional on πi. Let πi admit a probability density fπ so that fπ(π) ≤ C(1 − π)ωπω

where ω > 0. Then if λ→ 0 and T → ∞ we have:

θ̂ − θ0 = Op

Å
λ+ T−(1+ω) +

…
1

n
+

…
1

nT
+

 
T−(2+ω)

λn

ã
In addition, if T−(1+ω)

λ = O(1), T−(1+ω), λ = o(
√
1/n), and Assumptions 4.i and 4.ii hold with

q/2 < ω, then θ̂ − θ0 = Op(n
−1/2) and

√
nσ−1

n (θ̂ − θ0) ∼a N(0, 1), where σ2
n is given by (6.6).

Corollary 2 establishes root-n consistency only under the condition that T−(1+ω) = o(
√

1/n).
Thus the rate at which T must grow with n depends on the rate at which fπ(π) goes to zero as π
goes to zero or one. If fπ(π) goes quickly to zero, then the probability Xit is constant over time
goes to zero quickly as T grows, and so T need not increase rapidly with n. This phenomenon is
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considered in Chernozhukov et al. (2013) and tied to the rate at which the identified set shrinks
with T .

Results for other cases, for example with both discrete and continuous regressors, may also be
obtained from Theorem 1. As in the proofs of Corollaries 1 and 2, it would suffice to derive a
convergence rate for δn under suitable assumptions.
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A Additional Empirical Results

Table IV contains cross-sectional OLS expenditure, own-price, and cross-price elasticity estimates
for both soda and milk. The figures are estimated using the baseline model in Section 5 without
seasonal dummies. Standard errors are to the right of the coefficient and elasticity estimates. For
soda the cross-price elasticity with greatest magnitude is for butter, at −0.2380 and most of the
estimates have magnitude below 0.1. For milk, all cross-price elasticities have magnitude less than
0.2 and many have magnitude below 0.01. Tables V and VI contain lower bounds on counterfactual

Table 4: OLS cross-price elasticities for soda and milk, 2010-2014

Soda Milk
Coeff s.e Elast s.e. Coeff s.e. Elast s.e.

exp 0.0208 0.0010 1.1452 0.0067 -0.0044 0.0008 0.9608 0.0073
soda 0.0295 0.0005 -0.7945 0.0033 -0.0024 0.0004 -0.0216 0.0034
soup -0.0030 0.0012 -0.0212 0.0084 -0.0008 0.0009 -0.0071 0.0078
water 0.0007 0.0005 0.0051 0.0034 0.0002 0.0003 0.0022 0.0030
butter -0.0340 0.0011 -0.2370 0.0079 0.0003 0.0008 0.0024 0.0069
cookies -0.0031 0.0007 -0.0215 0.0051 -0.0042 0.0005 -0.0373 0.0046

eggs -0.0123 0.0019 -0.0858 0.0130 0.0003 0.0013 0.0030 0.0120
oj 0.0113 0.0012 0.0789 0.0083 -0.0006 0.0008 -0.0054 0.0071

ice cream 0.0113 0.0015 0.0788 0.0104 -0.0184 0.0011 -0.1630 0.0093
bread -0.0274 0.0013 -0.1911 0.0093 -0.0104 0.0009 -0.0927 0.0081
chips 0.0050 0.0014 0.0350 0.0100 -0.0047 0.0011 -0.0417 0.0095
milk 0.0136 0.0017 0.0947 0.0119 -0.0232 0.0013 -1.2058 0.0117
salad -0.0151 0.0010 -0.1049 0.0069 0.0062 0.0007 0.0553 0.0063

yogurt -0.0051 0.0007 -0.0354 0.0046 0.0018 0.0005 0.0160 0.0043
coffee -0.0004 0.0009 -0.0031 0.0060 0.0013 0.0006 0.0112 0.0053
cereal 0.0067 0.0015 0.0466 0.0108 -0.0107 0.0011 -0.0953 0.0097

welfare for both soda and milk. These lower are calculated in the same fashion as the upper bounds
in Tables II and III albeit using a conservative upper bound on the income effect.

Table 5: Soda Welfare Lower Bounds

Deadweight Loss (Linear) Deadweight Loss (Cubic)
Income Quartiles Income Quartiles

λ Upper Lower All Upper Lower All
0.05 -0.021 0.0945 0.0347 -0.0245 0.0939 0.0317

(0.0187) (0.0221) (0.0102) (0.0222) (0.024) (0.0121)
0.0005 -0.0320 0.0917 0.0281 0.0164 0.0948 0.0330

(0.0236) (0.0321) (0.0126) (0.0357) (0.0343) (0.0192)

Consumer Surplus (Linear) Consumer Surplus (Cubic)
Income Quartiles Income Quartiles

λ Upper Lower All Upper Lower All
0.05 9.746 10.23 10.27 9.729 10.26 10.29

(0.655) (0.686) (0.271) (0.653) (0.686) (0.27)
0.0005 9.755 10.26 10.29 9.698 10.27 10.29

(0.656) (0.686) (0.271) (0.652) (0.688) (0.272)
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Table 6: Milk Welfare Lower Bounds

Deadweight Loss (Linear) Deadweight Loss (Cubic)
Income Quartiles Income Quartiles

λ Upper Lower All Upper Lower All
0.05 0.0918 0.0864 0.0852 0.0559 0.0781 0.0479

(0.0127) (0.0117) (0.0080) (0.0243) (0.0229) (0.0171)
0.0005 0.0335 0.0457 0.0465 0.1046 0.1107 0.0626

(0.0228) (0.0205) (0.0133) (0.0427) (0.0457) (0.0313)

Consumer Surplus (Linear) Consumer Surplus (Cubic)
Income Quartiles Income Quartiles

λ Upper Lower All Upper Lower All
0.05 8.00 6.67 7.33 8.07 6.65 7.36

(0.485) (0.387) (0.169) (0.489) (0.390) (0.170)
0.0005 8.07 6.70 7.37 8.03 6.63 7.35

(0.490) (0.391) (0.170) (0.489) (0.393) (0.171)

B Proofs and Supporting Lemmas

Proof of Proposition 1. Recall the formula for β̂i is β̂i = (Qi + λDi)
−1B′

iSi/Ti. By the properties
of the matrix norm and Holder’s inquality:

|a′iβ̂i| ≤ ∥ai∥∥(Qi + λDi)
−1∥∥Bi∥∥Si∥/Ti

We can decompose (Qi + λDi)
−1 into the product of block matrices as follows:

(Qi + λDi)
−1 =

Å
1 −B̄′

i

0 I

ãÅ
1 0

0 (Q̃i + λD1,i)
−1

ãÅ
1 0

−B̄i I

ã
By the properties of the Euclidean matrix norm we then have:

∥(Qi + λDi)
−1∥ ≤ (1 + ∥B̄i∥)2(1 + ∥(Q̃i + λD1,i)

−1∥)
≤ (1 + ∥Bi∥)2(1 + ∥(Q̃i + λD1,i)

−1∥)

. Now, note that by the properties of the matrix norm

∥(Q̃i + λD1,i)
−1∥ = ∥D−1/2

1,i (D
−1/2
1,i Q̃iD

−1/2
1,i + λI)−1D

−1/2
1,i ∥

≤ ∥D−1/2
1,i ∥2∥(D−1/2

1,i Q̃iD
−1/2
1,i + λI)−1∥

≤ 1

λ
∥D−1/2

1,i ∥2.

Combining everything so far, we get:

|a′iβ̂i| ≤ ∥ai∥(1 + ∥Bi∥)3(1 +
1

λ
∥D−1/2

1,i ∥2)∥Si∥/Ti,

and so, since ∥ai∥, ∥Bi∥, and ∥D−1/2
1,i ∥ are bounded almost surely and λ > 0, there is a constant C

so that |a′iβ̂i| ≤ C∥Si∥/Ti ≤ C 1
Ti

∑Ti

t=1 |Sit|. It follows that E[|a′iβ̂i|] ≤ C 1
Ti

∑Ti

t=1E[|Sit|], which is
finite because E[|Sit|] is finite by supposition.

Proof of Proposition 2. Recall that under Assumption 1, defining βi := E[β(ηit)|Xi] we have

Si = Biβi + ui + ri, E[ui|Xi] = 0. (B.1)
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Write βi = (β1,i, β
′
2,i)

′, where β1,i is the scalar first component of the vector βi. If β2(ηit) is mean
independent of Xi then β2,i does not vary with i, and so we can write β2,i = β2.

Now, using the general formula for θ̂, and (B.1) with ri = 0, we have:
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For the first term on the RHS of the final equality, note that Wi = WiQiQ

†
i and so this term

simplifies:
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(B.2)

Now, we will show that for our particular choice of Wi, if β2,i is constant, then

1

n

n∑
i=1

a′i
( 1
n

n∑
i=1

AiWi

)−1 1

n

n∑
i=1

AiWiβi =
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n
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i=1

a′iβi.

For more general choices of Wi the above clearly continues to hold if the entire βi is constant.
To see this, let a0,i denote the first component of ai and a1,i the vector that contains the remaining

components. Note that Wi =

Ç
1 B̄′

i
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I − (Q̃i + λD1,i)
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)
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and so writing things in terms of

block matices and multiplying out the product we see that
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Using β2,i = β2 we then have
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Now, substituting into (B.2), we see that
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For the second term, note that by Assumption 2 and independence of the observations, ui is jointly
independent of ai (and thus Ai) conditional on X1, X2, ..., Xn, and so:
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where we have also used that Wi is a function of Xi. So in all

E[θ̂|X1, ..., Xn] =
1

n

n∑
i=1

E[a′iβi|X1, ..., Xn].

If E[|θ̂|] <∞ then the law of iterated expectations holds E[θ̂] = E
[
E[θ̂|X1, ..., Xn]

]
. Taking expec-

tations of both sides of the above we get E[θ̂] = E[a′iβi].

Proof of Proposition 3. Let a0,i denote the first component of ai and a1,i the vector that contains
the remaining components.

Define the block matrices W̃i :=

Ç
1 B̄′
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Now, using thatD1,i is non-singular, it is easy to see that limλ→∞ W̃i =
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ã
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. Passing the limits we get that limλ→∞ θ̂ is equal to the

expression below.
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Multiplying out, we have:
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Applying the formula for the inverse of a block matrix and simplifying:
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Substituting into (B.4) and multiplying, we get:
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Proof of Proposition 4. If Ci = 1 then Zi does not vary, and so Q̃i =

Å
0 0

0 Q̂1,i

ã
. By supposition

Q̂1,i is non-singular and Di is diagonal. Let d1,i be the second element of the leading diagonal of
Di. From the above we see that in this case
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. On the other hand, if Ci = 0 and so Qi is non-singular, then it is easy to see that

limλ→0Wi is the identity.
Now, let us consider the limit of the individual ridge estimates. Note we can write these estimates

as β̂i =
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If Zit is constant, then this becomes

β̂i,1 =

Ç
1

λd1,i
0

0 (Q̂1,i + λD̃1,i)
−1

åÇ
0

1
Ti

∑Ti

t=1(B2,it − B̄2,i)Si

å
=

Ç
0

(Q̂1,i + λD̃1,i)
−1 1

Ti

∑Ti

t=1(B2,it − B̄2,i)Si

å
.

Because Q̂1,i is non-singular we have

lim
λ→0

(Q̂1,i + λD̃1,i)
−1 1

Ti

Ti∑
t=1

(B2,it − B̄2,i)Si = Q̂−1
1,i

1

Ti

Ti∑
t=1

(B2,it − B̄2,i)Si = β̃i,3,

and so, we see that limλ→0 β̂i = (S̄i−B̄′
2,iβ̃i,3, 0, β̃

′
i,3)

′. However, if i /∈ A then, letting β̃i,2 and β̃i,3 be

the coefficients from individual OLS regression, limλ→0 β̂i is equal to (S̄i−Z̄iβ̃i,2−B̄′
2,iβ̃i,3, β̃i,2, β̃

′
i,3)

′.
Let a0,i and a1,i be the first and second components of ai, and a2,i the vector of remaining

components. Substituting everything, we see

lim
λ→0

θ̂ =
1

n

n∑
i=1

a′i

Ñ
1
n

∑n
i=1 a0,i

1
n

∑
i∈A a0,iZ̄i +

1
n

∑
i ̸/∈A a1,i

1
n

∑n
i=1 a

′
2,i

0 p̂ 0
0 0 I

é−1

×

Ñ
x

1
n

∑n
i=1(1− Ci)β̃i,2
1
n

∑n
i=1 β̃i,3

é
,

where x is given below:

x =
1

n

n∑
i=1

Ci

Å
a0,i(S̄i − B̄′

2,iβ̃i,3) + a′2,iβ̃i,3

ã
+
1

n

n∑
i=1

(1− Ci)

Å
a0,i(S̄i − Z̄iβ̃i,2 − B̄′

2,iβ̃i,3) + a1,iβ̃i,2 + a′2,iβ̃i,3

ã
.

Using the formula for the inverse of a block matrix and multiplying out, the above becomes

lim
λ→0

θ̂ = x− 1

p̂n

n∑
i=1

Ci(a0,iZ̄i + a1,i)
1

n

n∑
i=1

(1− Ci)β̃i,2.

Substituting for x and simplifying:

lim
λ→0

θ̂ =
1

n

n∑
i=1

Cia0,i(S̄i − B̄′
2,iβ̃i,3)−

1

n

n∑
i=1

Ci(a0,iZ̄i + a1,2,i)
1

np̂

n∑
i=1

(1− Ci)β̃i,2

+
1

n

n∑
i=1

(1− Ci)a0,i(S̄i − Z̄iβ̃i,2 − B̄′
2,iβ̃i,3) +

1

n

n∑
i=1

(1− Ci)a1,iβ̃i,2

+
1

n

n∑
i=1

(1− Ci)a
′
2,iβ̃i,3 +

1

n

n∑
i=1

Cia
′
2,iβ̃i,3.

Using the variables defined in the theorem, we can rewrite the limit of θ̂ more succinctly as limλ→0 θ̂ =
1
n

∑n
i=1 a

′
iβ̃

∗
i .
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Proof of Proposition 5. First note that

(Q̃i + λD1,i)
−1Q̃i = D

−1/2
1,i (B̃′

iB̃i + λI)−1B̃′
iB̃iD

1/2
1,i .

By the properties of the Moore-Penrose pseudo-inverse limλ→0(B̃
′
iB̃i + λI)−1B̃′

i = B̃†
i . And so

limλ→0(Q̃i + λD1,i)
−1Q̃i = Pi. By definition of Wi we then get

lim
λ→0

Wi = lim
λ→0

Ç
1 B̄′

i

(
I − (Q̃i + λD1,i)

−1Q̃i

)
0 (Q̃i + λD1,i)

−1Q̃i

å
=

Å
1 B̄′

i(I − Pi)
0 Pi

ã
.

In addition, using the definition of β̂i,1, we have

lim
λ→0

β̂i,1 = lim
λ→0

D
−1/2
1,i

(
B̃′

iB̃i + λI
)−1

B̃′
iSi/Ti = D

−1/2
1,i B̃†

iSi/Ti = β̃◦
i,1.

And so, since β̂i = (S̄i − B̄′
1,iβ̂i,1, β̂

′
i,1)

′, we see that limλ→0 β̂i = (S̄i − B̄′
1,iβ̃

◦
i,1, β̃

◦
i,1

′)′.
Combining and using the definition of Ai, after some work simplifying we obtain

lim
λ→0

θ̂ =
1

n

n∑
i=1

a′it

Å
1

n

n∑
i=1

Ai

Å
1 B̄′

i(I − Pi)
0 Pi

ãã−1
1

n

n∑
i=1

Ai

Ç
S̄i − B̄′

1,iβ̃
◦
i,1

β̃◦
i,1

å
=

1

n

n∑
i=1

a′iβ̃
∗
i .

Proof of Proposition 6. From the FOCs for the optimization problem in the proposition we get

βPost
i = (Qi + λDi)

−1 1

Ti
B′

iSi + (Qi + λDi)
−1λDiβ̄.

Substituting for βPost
i into 1

n

∑n
i=1Aiβ

Post
i = 1

n

∑n
i=1Aiβ̄, we see

1

n

n∑
i=1

Ai(Qi + λDi)
−1 1

Ti
B′

iSi +
1

n

n∑
i=1

Ai(Qi + λDi)
−1λDiβ̄=

1

n

n∑
i=1

Aiβ̄.

Solving for β̄ and simplifying yields

( 1
n

n∑
i=1

Ai(Qi + λDi)
−1Qi

)−1 1

n

n∑
i=1

Ai(Qi + λDi)
−1 1

Ti
B′

iSi=β̄.

Substituting back into 1
n

∑n
i=1Aiβ

Post
i = 1

n

∑n
i=1Aiβ̄ we have

1

n

n∑
i=1

Aiβ
Post
i =

( 1
n

n∑
i=1

Ai

)( 1
n

n∑
i=1

Ai(Qi + λDi)
−1Qi

)−1 1

n

n∑
i=1

Ai(Qi + λDi)
−1 1

Ti
B′

iSi

=
1

n

n∑
i=1

Ai(AW )−1Aβ.

Multiplying both sides by a row vector whose first entry is one and with remaining entries zero gives
the result.
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Lemma 1 (General Asymptotics). Suppose that Assumptions 1, 2, and 3.i-vii hold andWiQ
†
iQi =

Wi. Define κn = E[∥Wi − I∥] and γn = E[∥Wi(Q
†
i )

1/2∥2] and suppose κn = o(1), then

θ̂ − θ0 =Op

Å
n−1/2 + κn +

…
γn
nT

+

…
γnJκ2n
nT

+ (1 +
√
γn)ℓn

ã
.

If in addition κn, ℓn, ℓn
√
γn = o(

»
1
n ),

γnJκ
2
n

T = o(1), and Assumptions 4.i and 4.ii hold for δ, v, q > 0

with (v − 2)(q − 2) > 4 and:

n(
1
v+

1
q−

1
2 )E[∥Wi(Q

†
i )

1/2∥q]1/q(γn/T )δ → 0,

then θ̂− θ0 = Op(n
−1/2) and we have

√
nσ−1

n (θ̂− θ0) ∼a N(0, 1). Where the variance σ2
n is equal to

E[| 1
Ti
a′iWiQ

†
iB

′
iui|2] + V ar(a′iβi).

Proof. Note that under the time-stationary condition in Assumption 1, we have that for all t =
1, ..., T we can define βi = E[β(ηit)|Xi], and by Assumption 2 ai and ui are independent conditional
on Xi, So expanding and using the definitions of r(·, ·) and ai, it follows that

E
[ 1
T

T∑
t=1

(
H+

it s(X
+
it , ηit)−H−

it s(X
−
it , ηit)

)∣∣Xi

]
=E[ai|Xi]

′βi + E[
1

T

T∑
t=1

H+
it r(X

+
it , ηit)|Xi]− E[

1

T

T∑
t=1

H−
it r(X

−
it , ηit)|Xi].

By Assumption 3, the terms in the RHS are bounded above in magnitude, and so by iterated
expectations we have:

θ0 =E[a′iβi] +
1

T

T∑
t=1

E[H+
t (Xi)r(X

+
it , ηit)]−

1

T

T∑
t=1

E[H−
t (Xi)r(X

−
it , ηit)]

It will be convenient to define the mean-zero random variable ϵi as follows

ϵi = a′iβi − E[a′iβi] +
1

n

n∑
i=1

a′iWiQ
†
i

1

Ti
B′

iui.

Using the expression for θ0 above, we decompose the estimation error θ̂ − θ0 into a zero-mean
part 1

n

∑n
i=1 ϵi, and a number of remainder terms which are generally not mean-zero:

θ̂ − θ0 −
1

n

n∑
i=1

ϵi =
1

n

n∑
i=1

a′i(I −Wi)
( 1
n

n∑
i=1

AiWi

)−1 1

n

n∑
i=1

AiWiβi +
1

n

n∑
i=1

a′i(Wi − I)βi

+
1

n

n∑
i=1

a′i(I −Wi)
( 1
n

n∑
i=1

AiWi

)−1 1

n

n∑
i=1

AiWiQ
†
i

1

Ti
B′

iui

+
1

n

n∑
i=1

a′i
( 1
n

n∑
i=1

AiWi

)−1 1

n

n∑
i=1

AiWiQ
†
i

1

Ti
B′

iri

− 1

T

T∑
t=1

E
[
H+

t (Xi)r(X
+
it , ηit)

]
+

1

T

T∑
t=1

E
[
H−

t (Xi)r(X
−
it , ηit)

]
,
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where we have used that ai = A′
iv for some vector v and that WiQ

†
iQi = Wi. By the triangle

inequality and properties of the matrix norm and ∥ai∥ ≤ c by Assumption 3.i. we get:

∥θ̂ − θ0 −
1

n

n∑
i=1

ϵi∥ ≤∥ 1
n

n∑
i=1

a′i(I −Wi)∥∥
( 1
n

n∑
i=1

AiWi

)−1∥∥ 1
n

n∑
i=1

AiWiβi∥

+∥ 1
n

n∑
i=1

a′i(Wi − I)βi∥

+∥ 1
n

n∑
i=1

a′i(I −Wi)∥∥
( 1
n

n∑
i=1

AiWi

)−1∥∥ 1
n

n∑
i=1

AiWiQ
†
i

1

Ti
B′

iui∥

+c∥
( 1
n

n∑
i=1

AiWi

)−1∥∥ 1
n

n∑
i=1

AiWiQ
†
i

1

Ti
B′

iri∥

+∥ 1
T

T∑
t=1

E
[
H+

t (Xi)r(X
+
it , ηit)

]
∥+ ∥ 1

T

T∑
t=1

E
[
H−

t (Xi)r(X
−
it , ηit)

]
∥

The RHS above contains a number of objects which we derive rates for below.

Step 1: Derive Rates for the Remainder

1. 1
n

∑n
i=1 a

′
i(Wi − I), 1

n

∑n
i=1Ai(Wi − I) = Op(κn)

First we establish that 1
n

∑n
i=1 a

′
i(Wi−I) and 1

n

∑n
i=1Ai(Wi−I) are bothOp(κn). Under Assumption

3.i ∥ai∥, ∥Ai∥ ≤ c and so by the triangle inequality and definition of the matrix norm:

∥ 1
n

n∑
i=1

a′i(Wi − I)∥ ≤ 1

n

n∑
i=1

∥a′i(Wi − I)∥ ≤ c
1

n

n∑
i=1

∥Wi − I∥ = Op(κn)

∥ 1
n

n∑
i=1

A(Wi − I)∥ ≤ 1

n

n∑
i=1

∥Ai(Wi − I)∥ ≤ c
1

n

n∑
i=1

∥Wi − I∥ = Op(κn)

Where the final equalities both follow by Markov’s inequality. By supposition E[∥Wi − I∥] = o(1)
and so we see that the terms on the LHSs above are also op(1).

2.
(
1
n

∑n
i=1AiWi

)−1
= Op(1)

By Assumption 3.ii, ∥( 1n
∑n

i=1Ai)
−1∥ = Op(1) and we have already shown that ∥ 1

n

∑n
i=1A(Wi −

I)∥ = Op(κn) = op(1), and so we have:

∥
( 1
n

n∑
i=1

AiWi

)−1 − (
1

n

n∑
i=1

Ai)
−1∥ = Op

(
E[∥Wi − I∥]

)
= op(1)

From the above and the fact that ∥( 1n
∑n

i=1Ai)
−1∥ = Op(1), we get from the triangle inequality

that ∥
(
1
n

∑n
i=1AiWi

)−1∥ = Op(1).

3. ∥ 1
n

∑n
i=1AiWiβi∥ = Op(1)

By the triangle inequality and properties of the matrix norm

∥ 1
n

n∑
i=1

AiWiβi∥ ≤ 1

n

n∑
i=1

∥Ai∥∥Wi∥∥βi∥ ≤ c2
1

n

n∑
i=1

∥Wi∥.
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The second inequality follows from ∥Ai∥, ∥βi∥ ≤ c by Assumption 3.i and 3.iii. Recall that E[∥Wi −
I∥] = o(1) and so by the triangle inequality E[∥Wi∥] = O(1). Thus we have by Markov’s inequality
∥ 1
n

∑n
i=1AiWiβi∥ = Op(1).

4.| 1n
∑n

i=1 a
′
i(Wi − I)βi| = Op(κn)

Note that by the triangle inequality and properties of the matrix norm

| 1
n

n∑
i=1

a′i(Wi − I)βi| ≤ c2
1

n

n∑
i=1

∥Wi − I∥ = Op(E[∥Wi − I∥]),

where the inequality follows from Assumptions 3.i and 3.iii, and the final line by Markov’s inequality.

5. 1
n

∑n
i=1AiWiQ

†
i

1
Ti
B′

iui = Op

Å»
Jγn

Tn

ã
Note that E[uit|Xi] = 0 and thus AiWiQ

†
iB

′
iui is mean zero. Moreover, using standard trace

inequalities, and properties of the psuedo-inverse we get:

E
[
∥ 1

Ti
AiWiQ

†
iB

′
iui∥2

]
=E

[ 1

T 2
i

tr(AiWiQ
†
iB

′
iE[uiu

′
i|Xi]BiQ

†
iW

′
iA

′
i)
]

≤cE[
1

Ti
tr(AiWiQ

†
iW

′
iA

′
i)]

≤JcE[∥AiWiQ
†
iW

′
iA

′
i∥/Ti]

≤Jc3E[∥Wi(Q
†
i )

1/2∥2/Ti]

Where the first equality uses Assumption 2 and the third line uses Assumption 3.iv which states
that ∥E[uiu

′
i|Xi]∥ ≤ c almost surely. And so, by the law of large numbers:

1

n

n∑
i=1

AiWiQ
†
i

1

Ti
B′

iui = Op

Å 
JE[∥Wi(Q

†
i )

1/2∥2/Ti]
n

ã
= Op

Å…
Jγn
Tn

ã
,

where the final line follows by Assumption 3.vii.

6. ∥ 1
n

∑n
i=1AiWiQ

†
i

1
Ti
B′

iri∥ = Op(ℓn
√
γn)

Again, using properties of the matrix norm, the triangle inequality, and ∥Ai∥ ≤ c,

∥ 1
n

n∑
i=1

AiWiQ
†
i

1

Ti
B′

iri∥ ≤ c
1

n

n∑
i=1

∥WiQ
†
i

1

Ti
B′

iri∥.

Using the properties of the matrix norm and pseudo-inverse, we get

∥WiQ
†
i

1

Ti
B′

iri∥2 = ∥WiQ
†
iQiQ

†
i

1

Ti
B′

iri∥2 ≤ ∥WiQ
†
iQ

1/2
i ∥2∥Q1/2

i Q†
i

1

Ti
B′

iri∥2

= ∥Wi(Q
†
i )

1/2∥2 1

Ti

Ti∑
t=1

|b(Xit)
′Q†

i

1

Ti
B′

iri|2.

By the properties of least squares projections we have

1

Ti

Ti∑
t=1

|b(Xit)
′Q†

i

1

Ti
B′

iri|2 ≤ 1

Ti

Ti∑
t=1

r2it ≤ ℓ2n,
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and so:

1

n

n∑
i=1

∥WiQ
†
i

1

Ti

Ti∑
t=1

1

Ti
B′

iri∥ ≤ ℓn
1

n

n∑
i=1

∥Wi(Q
†
i )

1/2∥.

By Markov’s inequality 1
n

∑n
i=1 ∥Wi(Q

†
i )

1/2∥ = O(E[∥Wi(Q
†
i )

1/2∥]) and by Jensen’s ineqality

E[∥Wi(Q
†
i )

1/2∥] ≤ √
γn. And so, using ∥

(
1
n

∑n
i=1AiWi

)−1∥ = Op(1) established earlier, we see that

∥ 1
n

∑n
i=1AiWiQ

†
i

1
Ti
B′

iri∥ = Op(ℓn
√
γn).

7. ∥ 1
T

∑T
t=1E

[
H+

t (Xi)r(X
+
it , ηit)

]
∥ = O(ℓn), ∥ 1

T

∑T
t=1E

[
H−

t (Xi)r(X
−
it , ηit)

]
∥ = O(ℓn)

Note that Ht(X
+
i ) is uniformly bounded by Assumption 3.v and |r(X+

it , ηit)| ≤ ℓn by Assumption

3.vi. Thus ∥ 1
T

∑T
t=1E

[
H+

t (Xi)r(X
+
it , ηit)

]
∥ = O(ℓn). and similarly for 1

T

∑T
t=1E

[
H−

t (Xi)r(X
−
it , ηit)

]
.

Combining:

Using all of the rates derived above, we get

θ̂ − θ0 −
1

n

n∑
i=1

ϵi = Op

Å
κn + κn

…
Jγn
nT

+ ℓn + ℓn
√
γn

ã
.

Step 2: Derive a Rate for 1
n

∑n
i=1 ϵi

Recall E[ϵi] = 0. We will derive a rate for the variance of ϵi. First note that uit is a function of Xi

and ηit, the latter of which is independent of ai given Xi by Assumption 2, and E[ui|Xi] = 0, so we
have:

E[ϵ2i ] = E[(
1

Ti
a′iWiQ

†
iB

′
iui

)2
] + E[(a′iβi − E[a′iβi])

2]

Using properties of the matrix norm and that ∥ai∥ ≤ c and ∥E[uiu
′
i|Xi]∥ ≤ c by Assumptions

3.i and 3.iv we have:

E[(
1

Ti
a′iWiQ

†
iB

′
iui)

2] =E[∥E[uiu
′
i|Xi]

1/2 1

Ti
BiQ

†
iW

′
iai∥2]

≤cE[∥ 1

Ti
BiQ

†
iW

′
iai∥2]

=cE[
1

Ti
a′iWiQ

†
iW

′
iai]

≤c3E[∥Wi(Q
†
i )

1/2∥2/Ti], (B.5)

where the second line uses the law of iterated expectations. In addition, note that by Assumptions
3.i and iii. V ar(a′iβi) ≤ 2c2. So in all: E[ϵ2i ] ≤ c3E[∥Wi(Q

†
i )

1/2∥2/Ti] + 2c2.
So by the law of large numbers:

1

n

n∑
i=1

ϵi = Op

Å 
E[∥Wi(Q

†
i )

1/2∥2/Ti]
n

+ n−1/2

ã
= Op

Å…
γn
nT

+ n−1/2

ã
Where the final line follows by Assumption 3.vii.
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Convergence Rate

Putting everything together we see

θ̂ − θ0 = Op

Å
n−1/2 + κn + (1 +

√
Jκn)

…
γn
nT

+ (1 +
√
γn)ℓn

ã
.

So for root-n convergence it suffices that κn, ℓn, ℓn
√
γn = o(

»
1
n ),

γnJκ
2
n

T ,
»

γn

T = o(1).

Applying the Central Limit Theorem

Finally, in order to obtain the last result in the theorem we apply the central limit theorem to
1√
n

∑n
i=1 ϵi using a Lyupunov condition. Given individuals are drawn iid from the population, the

Lyupunov condition requires that for some δ > 0, n−δ/2E
[
∥σ−1

n ϵi∥2+δ
]
goes to zero with n, where

σn is the square root of the variance of ϵi and is given by:

σ2
n = E[| 1

Ti
a′iWiQ

†
iB

′
iui|2] + V ar(a′iβi)

From Assumption 4.ii we then see σ−1
n = O(1). By Jensen’s inequality:

n−δ/2E
[
∥σ−1

n ϵi∥2+δ
]
≤ 21+δn−δ/2E

[
|σ−1

n (a′iβi − E[a′iβi])|2+δ
]

+ 21+δn−δ/2E
[
|σ−1

n

1

Ti
a′iWiQ

†
iB

′
iui|2+δ

]
And so it suffices to show that the following two conditions hold:

n−δ/2E
[
|a′iβi − E[a′iβi]|2+δ

]
→ 0 (B.6)

n−δ/2E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+δ

]
→ 0 (B.7)

The first condition follows trivially from Assumptions 3.i and 3.iii. The second condition requires
more work. By Holder’s inequality we have that for any 0 < δ ≤ α:

E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+δ

]
≤E

[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+α

]δ/α
E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2

]1−δ/α

≤E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+α

]δ/α
c2(1−δ/α)E[∥Wi(Q

†
i )

1/2∥2/Ti]1−δ/α

Where we have used our earlier result that E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2

]
is bounded above by c2E[∥Wi(Q

†
i )

1/2∥2/Ti],
which is O(E[∥Wi(Q

†
i )

1/2∥2]/T ) by Assumption 3.vii. Thus for (B.7), it is sufficient that:

n−1/2E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+α

]1/α
E[∥Wi(Q

†
i )

1/2∥2/T ] 1δ− 1
α → 0

Note that 0 < δ ≤ α ⇐⇒ 1
δ − 1

α ≥ 0, and so the above holds for some 0 < δ ≤ α if for some
δ, α > 0:

n−1/2E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+α

]1/α
E[∥Wi(Q

†
i )

1/2∥2/T ]δ → 0

Applying Cauchy-Schwartz we get:

| 1
Ti
a′iWiQ

†
iB

′
iui|2 ≤∥a′iWi(Q

†
i )

1/2∥2 1

Ti
∥ui∥2 ≤ c2∥Wi(Q

†
i )

1/2∥2 1

Ti
∥ui∥2,
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where the final inequality uses Assumption 3.i. And so, again applying Holder’s inequality, for any
p > 1:

E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+α

]
≤c2+αE

ï
∥Wi(Q

†
i )

1/2∥2+α(
1

Ti
∥ui∥2)

2+α
2

ò
≤c2+αE

ï
∥Wi(Q

†
i )

1/2∥(2+α)p

ò 1
p

E

ï
(
1

Ti
∥ui∥2)(

2+α
2 ) p

p−1

ò p−1
p

Reparameterizing by q = (2 + α)p and v = (2 + α) p
p−1 , in which case α = vq−2q−2v

q+v , we get:

E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+α

] 1
α ≤
Å
cE

ï
∥Wi(Q

†
i )

1/2∥q
ò 1

q

E

ï
(
1

Ti
∥ui∥2)

v
2

ò 1
v
ã vq

vq−2q−2v

By Jensen’s inequality and using r > 2 we have:

E[(
1

Ti
∥ui∥2)

r
2 ] = E[(

1

Ti

Ti∑
t=1

u2it)
r
2 ] ≤ E[

1

Ti

Ti∑
t=1

urit]

By Assumption 4.i the quantity on the RHS is bounded above by c, and so:

n−1/2E
[
| 1
Ti
a′iWiQ

†
iB

′
iui|2+α

] 1
α ≤n−1/2

ï
cE[∥Wi(Q

†
i )

1/2∥q]1/q
ò vq

vq−2q−2v

So for (B.7) it suffices that:

n(
1
v+

1
q−

1
2 )E[∥Wi(Q

†
i )

1/2∥q]1/qE[∥Wi(Q
†
i )

1/2∥2/T ]δ(1−
2
v−

2
q ) → 0

Now, recall that q = (2 + α)p and v = (2 + α) p
p−1 where α > 0 and p > 1. We will show that

for a given q and v, such an α and p exist if q, v > 0 and (q − 2)(v − 2) > 4. Fix q, v > 0 and
consider some α > 0. From the expression for q we have p = q/(2 +α). Substituting out p from the
expression for v and solving for α, we get α = qv−2q−2v

q+v , and so given q, v > 0 , α > 0 if and only if

qv − 2q − 2v > 0 or equivalently, (q − 2)(v − 2) > 4. Moreover, plugging our expression for α back
into the expression for p, we get p = (q + v)/v, which is strictly greater than 1 because q and v are
both strictly positive.

Note also that because qv− 2q− 2v > 0 and v, q > 0, we have that 1− 2
v − 2

q > 0. And since the
convergence to zero needs only hold for some fixed δ > 0, we can reparameterize again and we see
that it suffices that for some δ:

n(
1
v+

1
q−

1
2 )E[∥Wi(Q

†
i )

1/2∥q]1/qE[∥Wi(Q
†
i )

1/2∥2/T ]δ → 0,

which holds by supposition.
Having confirmed the Lyupunov condition we can apply the central limit theorem to 1√

n

∑n
i=1 ϵi.

We just need that the squares of the remainder terms go to zero strictly faster than the variance

of 1
n

∑n
i=1 ϵi, i.e., each remainder term must be o

(»
1
n

)
. Recall the remainders have the rate below

κn +
»

Jγnκ2
n

nT + ℓn + ℓn
√
γn. Hence it suffices that κn, ℓn, ℓn

√
γn = o(

»
1
n ),

γnJκ
2
n

T = o(1).

Proof of Theorem 1. For our choice of Wi we have:

∥Wi − I∥ = λ∥(Qi + λDi)
−1Di∥ ≤ λ∥(Qi + λDi)

−1∥∥Di∥ ≤ cλ∥(Qi + λDi)
−1∥,

and so E[∥Wi − I∥] = O(λδn). Moreover, we have:

∥Wi(Q
†
i )

1/2∥2 = ∥(Qi + λDi)
−1Qi(Qi + λDi)

−1∥ ≤ ∥(Qi + λDi)
−1Qi∥∥(Qi + λDi)

−1∥
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Now, with some work one can show that:

(Qi + λDi)
−1Qi =

Å
1 −B̄′

i

0 I

ãÅ
1 0

0 (Q̃i + λD1,i)
−1Q̃i

ãÅ
1 B̄′

i

0 1

ã
,

and so by properties of the matrix norm:

∥(Qi + λDi)
−1Qi∥ ≤ (1 + ∥B̄i∥)2

(
1 + ∥(Q̃i + λD1,i)

−1Q̃i∥
)

Now, using that D1,i is symmetric and strictly positive definite by Assumption 3.viii,

∥(Q̃i + λD1,i)
−1Q̃i∥ = ∥D−1/2

1,i

(
D

−1/2
1,i Q̃iD

−1/2
1,i + λI

)−1
D

−1/2
1,i Q̃iD

−1/2
1,i D

1/2
1,i ∥

≤ ∥D−1/2
1,i ∥∥

(
D

−1/2
1,i Q̃iD

−1/2
1,i + λI

)−1
D

−1/2
1,i Q̃iD

−1/2
1,i ∥∥D1/2

1,i ∥

≤ ∥D−1/2
1,i ∥∥D1/2

1,i ∥.

Where the final line uses that ∥(A + λI)−1A∥ ≤ 1 for any positive definite matrix A and λ > 0.

By Assumptions 3.i and 3.viii, ∥B̄i∥ ∥D−1/2
1,i ∥, ∥D1/2

1,i ∥ are all uniformly bounded, and so for some

constant C, ∥Wi(Q
†
i )

1/2∥2 ≤ C∥(Qi + λDi)
−1∥. Thus E[∥Wi − I∥] = O(λδn), E[∥Wi(Q

†
i )

1/2∥2] =
O(δn), and E[∥Wi(Q

†
i )

1/2∥q]1/q = O(E[∥(Qi + λDi)
−1∥q/2]1/q). Substituting into Lemma 1 then

gives the result.

Lemma 2. Suppose λ > 0 and with probability 1, the eigenvalues of D1,i are all bounded above by
c and below by 1/c, and ∥B̄i∥ ≤ c. Then for any α > 0:

E[∥(Qi + λDi)
−1∥α]1/α = O(1 + E[(µmin(Q̃i) + λ)−α]1/α

)
Thus if E[µmin(Q̃i)

−α]1/α < c then E[∥(Qi + λDi)
−1∥α]1/α = O(1).

Proof. We can decompose (Qi + λDi)
−1 into the product of block matrices as follows:

(Qi + λDi)
−1 =

Å
1 −B̄′

i

0 I

ãÅ
1 0

0 (Q̃i + λD1,i)
−1

ãÅ
1 0

−B̄i I

ã
By the properties of the Euclidean matrix norm we then have:

∥(Qi + λDi)
−1∥ ≤ (1 + ∥B̄i∥)2(1 + ∥(Q̃i + λD1,i)

−1∥)

Note that:

∥(Q̃i + λD1,i)
−1∥ = ∥D−1/2

1,i

(
D

−1/2
1,i Q̃iD

−1/2
1,i + λI

)−1
D

−1/2
1,i ∥

≤ ∥
(
D

−1/2
1,i Q̃iD

−1/2
1,i + λI

)−1∥∥D−1/2
1,i ∥2

≤ 1

µmin

(
D

−1/2
1,i Q̃iD

−1/2
1,i

)
+ λ

× 1

µmin(D
1/2
1,i )

2

≤ 1

µmin(D
−1/2
1,i )2µmin(Q̃i) + λ

× 1

µmin(D
1/2
1,i )

2

=
µmax(D1,i)/µmin(D1,i)

µmin(Q̃i) + λµmax(D1,i)
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Where we have used that D1,i is symmetric and so µmin(D
−1/2
1,i )2 = 1/µmax(D1,i) and µmin(D

1/2
1,i )

2 =
µmin(D1,i). Combining, we get:

∥(Qi + λDi)
−1∥ ≤ (1 + ∥B̄i∥)2

Å
1 +

µmax(D1,i)/µmin(D1,i)

µmin(Q̃i) + λµmax(D1,i)

ã
≤ (1 + c)2

Å
1 +

c2

µmin(Q̃i) + λ/c

ã
= (1 + c)2

Å
1 +

c3

µmin(Q̃i) + λ

ã
Where the final line uses ∥B̄i∥ ≤ c, µmax(D1,i) ≤ c and µmin(D1,i) ≥ 1/c by supposition and we

can take c ≥ 1 without loss of generality. So for any 1 ≤ α:

E[∥(Qi + λDi)
−1∥α]1/α ≤ (1 + c)2 + (1 + c)2E

ïÅ
c3

µmin(Q̃i) + λ

ãαò1/α
,

and hence:
E[∥(Qi + λDi)

−1∥α]1/α = O(1 + E[(µmin(Q̃i) + λ)−α]1/α
)

For the final step simply note that (µmin(Q̃i) + λ)−α ≤ µmin(Q̃i)
−α.

Proof of Corollary 2. By Lemma 2, E[∥(Qi+λDi)
−1∥] = O(1). Applying Theorem 1 with δn = O(1)

then gives the result.

Lemma 3. Suppose λ > 0 and with probability 1, the eigenvalues of D1,i are all bounded above by
c and below by 1/c. Suppose for some 1 ≤ α, ∥B̄i∥ ≤ c and E[µ−α

i ]1/α = O(1) for some individual-
specific random scalar µi, then for any fixed ε > 0:

E[∥(Qi + λDi)
−1∥α]1/α ≤ O

Å
1 + λ−1P [µmin(Q̃i) ≤ (1− ε)µi]

1/α

ã
Proof. From Lemma 2:

E[∥(Qi + λDi)
−1∥α]1/α ≤ O(1 + E[(µmin(Q̃i) + λ)−α]1/α

)
Let ε ∈ [0, 1] and define the binary random variable ϵi by ϵi = 1{µmin(Q̃i) ≥ (1 − ε)µi}. Using

this random variable we get:

1

µmin(Q̃i) + λ
≤ 1

(1− ε)µi
+ (1− ϵi)

1

λ

Using the triangle inequality and the fact that ϵi is binary we have:

E[(µmin(Q̃i) + λ)−α]1/α ≤ (1− ε)−1E[µ−α
i ]1/α +

E[1− ϵi]
1/α

λ

By definition we have E[1− ϵi] = P [µmin(Q̃i) ≤ (1− ε)µi]. Substituting gives the result.

Lemma 4. Suppose b(Xit) = (1, Xit)
′ where Xit is binary. Suppose P (Xit = 1|πi) = πi and the

entries of the sequence {Xit}Tt=1 are jointly independent conditional on πi. Let πi admit a probability
density fπ so that fπ(x) ≤ C(1− x)ωxω for some C. If r > 0 then E[x−1

i (1− xi)
−1] <∞ and:

E[µmin(Q̃i) ≤ (1− ε)πi(1− πi)] = O(T−(1+ω))

If in addition, ω > q/2− 1 for some q > 2, then E[π
−q/2
i (1− πi)

−q/2] <∞.
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Proof. Let X̄i =
1
Ti

∑Ti

t=1Xit. In this case µmin(Q̃i) = X̄i(1− X̄i) so we have:

P [µmin(Q̃i) ≤ (1− ε)πi(1− πi)|πi]
=P [X̄i(1− X̄i) ≤ (1− ε)πi(1− πi)|πi]
≤P [X̄i ≤

√
1− επi|πi] + P [(1− X̄i) ≤

√
1− ε(1− πi)|πi]

Let ε̃ = 1−
√
1− ε. By the multiplicative Chernoff bound, for 0 ≤ ε̃ ≤ 1:

P [X̄i ≤ (1− ε̃)πi|πi] ≤ exp(−ε̃2πiTi/2)

By supposition, the pdf of πi is bounded above by C(1 − π)ωπω with ω > 0. It is easy to see

that E[π−1
i (1− πi)

−1] ≤ ∞ and if ω > q/2− 1 then E[π
−q/2
i (1− πi)

−q/2] ≤ ∞. Moreover, from the
above we get:

E
[
P [X̄i ≤

√
1− επi|πi]

]
≤ C

∫ 1

0

yω(1− y)ωexp(−ε̃2yT/2)dy

≤ C

∫ 1

0

yωexp(−ε̃2yT/2)dy

= CT−(1+ω)(ε̃2/2)−(1+ω)

∫ ε̃2T/2

0

uωexp(−u)du

≤ CT−(1+ω)(ε̃2/2)−(1+ω)

∫ ∞

0

uωexp(−u)du

The integral
∫∞
0
uωexp(−u)du is finite for ω > −1 (it is the gamma function evaluated at ω+1),

and so we see E
[
P [X̄i ≤

√
1− επi|πi]

]
= O(T−(1+ω)).

We can apply the same reasoning for E
[
P [(1− X̄i) ≤

√
1− ε(1− πi)|πi]

]
. Combining and using

iterated expectations, we get that:

E[µmin(Q̃i) ≤ (1− ε)µi] = E
[
P [µmin(Q̃i) ≤ (1− ε)µi|πi]

]
= O(T−(1+ω))

Proof of Corollary 2 (Binary Regressor). From Lemma 4 we see E[π−1
i (1 − πi)

−1] ≤ C. Applying
Lemma 3 with α = 1, we then get:

E[∥(Qi + λDi)
−1∥] ≤ O

Å
1 + λ−1P [µmin(Q̃i) ≤ (1− ε)πi(1− πi)]

ã
Using Lemma 4 we then have E[∥(Qi + λDi)

−1∥] = O
(
1 + λ−1T−(1+ω)

)
. Thus we get that if

λ = o(1) and T → ∞ then λδn = o(1). J is fixed and clearly rit = 0 almost surely because the
model is exhaustive (so ℓn = 0). Thus combining with Theorem 1 gives the first result (where we
have simplified the rate using the fact that λκn

√
κn

nT is dominated). By Lemma 4, if ω > q/2 we

have E[π
−q/2
i (1− πi)

−q/2] ≤ C. Then applying Lemma 3 with α = q/2, we get:

E[∥(Qi + λDi)
−1∥q/2]

1
q ≤ O

Å
1 +

(
λ−1T−(1+ω)

)q/2ã
The above isO(1) by supposition and thus the condition in Assumption 4.iii becomes n(

1
v+

1
q−

1
2 )(1/T )δ =

o(1). But this holds trivially. In addition, we assume T−(1+v)

λ = O(1) and thus δn = O(1) and that

T−(1+v), λ = o(
√
1/n), so applying Theorem 1 we are done.
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