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ABSTRACT

Causal inference is of central interest in many empirical applications, yet often challenging because 
of the presence of endogenous regressors. The classical approach to the problem requires using 
instrumental variables that must satisfy the stringent condition of exclusion restriction. In recent 
research, instrument-free copula methods have been increasingly used to handle endogenous 
regressors. This article aims to provide a practical guide for how to handle endogeneity using 
copulas. The authors give an overview of copula endogeneity correction, outlining its theoretical 
rationales, advantages, and limitations for empirical research. They also discuss recent advances 
that enhance the understanding, applicability, and robustness of copula correction, and address 
implementation aspects of copula correction such as constructing copula control functions and 
handling higher-order terms of endogenous regressors. To facilitate the appropriate usage of copula 
correction in order to realize its full potential, the authors detail a process of checking data 
requirements and identification assumptions to determine when and how to use copula correction 
methods, and illustrate its usage using empirical examples.
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Many research questions in marketing, management, economics, and health sciences concern

causality rather than mere association. Such questions are often addressed by estimating

structural regression models that represent causal relationships. A pervasive issue in these

analyses is regressor endogeneity, which arise when regressors representing the causes (e.g.,

an economic program to be evaluated, marketing mix variables, etc.) are not randomly

assigned and thus correlate with unobservables (e.g., unobserved product characteristics or

common market shocks) in the structural error term (Villas-Boas and Winer 1999). Ignoring

the regressor-error dependence can lead to severely biased parameter estimates.

Given the ubiquity of endogenous regressors and the need to address endogeneity bias,

extensive research is devoted to developing suitable correction methods. The instrumental

variable (IV) method is the classical econometric solution. It depends on valid and strong

IVs that satisfy the stringent requirement of exclusion restriction (ER), making IVs difficult

to identify and justify in practice (Ebbes et al. 2005). Concerns over IV availability and

quality have spurred growing interest in IV-free endogeneity correction methods (Ebbes,

Wedel, and Böckenholt 2009; Papies, Ebbes, and Van Heerde 2017; Rutz and Watson 2019;

Papies, Ebbes, and Feit 2023). These methods exploit higher moments (HM, Lewbel 1997),

identification via heteroscedastic error structures (IH, Rigobon 2003), latent IVs (LIV, Ebbes

et al. 2005), semiparametric odds ratio endogeneity models (SORE, Qian and Xie 2024), and

copulas1, starting from the seminal work of Park and Gupta (2012).2

Copula correction methods provide substantial advantages for addressing the prevalent

and thorny issue of endogenous regressors. These methods directly address the regressor-

error dependence using copulas, a widely used multivariate dependence model applicable in

many practical applications (Danaher and Smith 2011). Unlike the IV approach and other

IV-free methods, copula correction does not require the endogenous regressor to contain

1“Copula” was introduced by Sklar (1959) from the Latin “to link”, as a function linking two variables. Copulas

encompass different forms, but we use ‘copulas’ here to speak synonymously with Gaussian copulas (GC).
2See also Christopoulos, McAdam, and Tzavalis (2021); Tran and Tsionas (2021); Becker, Proksch, and Ringle

(2022); Haschka (2022); Eckert and Hohberger (2023); Yang, Qian, and Xie (2024a,b); Liengaard et al. (2024);

Breitung, Mayer, and Wied (2024); Park and Gupta (2024); Hu, Qian, and Xie (2025).
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an exogenous component (either observed or latent) that must satisfy the stringent ER

condition. Thus, copula correction is feasible in many situations when appropriate conditions

are met. Moreover, it can be implemented by incorporating copula-based control functions—

derived from existing regressors—into the structural model as additional control variables

to address endogeneity. Thus, copula correction using control functions is computationally

tractable and straightforward to apply in a wide array of settings, including both linear and

nonlinear models (e.g., discrete choice models), multiple endogenous regressors, panel data,

endogenous interaction and higher-order terms, and the slope endogeneity problem.

Largely due to these advantages, copula correction has gained growing popularity in

empirical research. Beyond marketing, it is increasingly adopted in other fields such as eco-

nomics, management, and information systems (e.g., Christopoulos, McAdam, and Tzavalis

2021; Becerra and Markarian 2021; Ananthakrishnan et al. 2025). The pie chart in Figure

1 breaks down by discipline book chapters and journal publications (n=615) using copula

endogeneity correction, according to Google Scholar. Each slice in the pie chart matches

journals and journal fields as defined by the Australian Business Dean’s Council. Outside

marketing, strategy and information systems are the two most common business disciplines

adopting copula correction. Within marketing, the bar chart in Figure 1 display the distribu-

tion of publications using copula correction (n=100) by substantive area in leading marketing

journals 3 from 2013 to 2025 (see Web Appendix A for the full list of publications).

Like other causal inference methods for nonexperimental data, copula correction relies on

specific underlying assumptions and data requirements. Earlier studies (Papies, Ebbes, and

Van Heerde 2017; Becker, Proksch, and Ringle 2022; Eckert and Hohberger 2023) reviewed

and evaluated the assumptions and limitations of the original method by Park and Gupta

(2012). Since then, methodological advances have significantly relaxed these constraints,

enabling copula correction to operate under less strict conditions than previously believed.

3This list includes Journal of Marketing, Journal of Marketing Research, Marketing Science, Journal of Consumer

Research, Journal of the Academy of Marketing Science, International Journal of Research in Marketing, Journal of

Retailing, and Journal of Consumer Psychology.
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Figure 1: Pie Chart (left): Publications (n=615) using Copula Correction by Disciplines.
Bar Chart (right): Publications (n=100) using Copula Correction in Leading Marketing Journals

by Substantive Areas. “Other” includes word-of-mouth, warranty claims, etc.

We demonstrate that copula correction using control functions does not require the error

to be normally distributed or follow a specific copula structure jointly with endogenous

regressors (Web Appendix B), making the approach more robust and widely applicable than

previously thought. Although copula correction originally required endogenous regressors

to be uncorrelated with exogenous regressors and have sufficient nonnormality, limiting its

applicability, the recent two-stage copula endogeneity correction (2sCOPE) approach by

Yang, Qian, and Xie (2024a) simultaneously relaxes these restrictions and provides a general

framework for further development (e.g., Liengaard et al. 2024; Yang, Qian, and Xie 2024b).

Haschka (2022) and Yang, Qian, and Xie (2024b) generalize copula correction to panel data.

Hu, Qian, and Xie (2025) introduce nonparametric copula control functions that generalize

and unify existing copula correction methods. Qian and Xie (2024) and Hu, Qian, and

Xie (2025) develop IV-free methods for handling noncontinuous endogenous regressors (e.g,

binary treatment) that current copula control function methods cannot accommodate.

Given the substantial advances since Park and Gupta (2024), updated guidelines are
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needed to clarify the scope and boundaries of these new methods and to guide the use of

the expanded copula correction toolbox. Without randomization or exclusion restrictions,

the trade-off in copula correction lies in the need to explicitly model the regressor-error

dependence. While recent advances enhance the copula approach to address endogeneity, it

is not a panacea for every instance. We discuss its boundary conditions and limitations to

help researchers make a conscious choice of when to use the copula approach.

Focusing on assisting potential users of copula correction, the objectives of this article

are to: (a) raise awareness of the importance of addressing endogenous regressors in empir-

ical studies and demystify theoretical rationales of copula correction; (b) synthesize recent

advances that enhance the understanding, applicability, and robustness of copula correction;

(c) provide updated guidance and delineate a process of checking data requirements and

identification assumptions to aid proper usage of copula correction; and (d) demonstrate the

use of copula correction in practical applications.

The rest of the paper proceeds as follows. First, we overview the theoretical rationale

for endogeneity correction using copulas. This addresses how, when, and why copulas work,

including identification assumptions, data requirements, and boundary conditions. Second,

we present the methodological background: how copula correction assumptions might be

relaxed, its usage for panel data, how it is constructed, optimal estimation for moderators

and nonlinear effects, and obtaining standard errors. Third, we provide guidance for practical

usage, including a flowchart ‘cookbook’ to check data requirements and assumptions at key

steps. Fourth, we present two examples that follow the flowchart, using real world sales data.

Finally, we conclude with discussions and future research directions.

THEORETICAL RATIONALE FOR ENDOGENEITY CORRECTION

USING COPULAS

As an entry point, we first provide an overview for how copulas address endogeneity

correction: why and when should they be used? How do they work? We examine what
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assumptions and data requirements are actually needed for model identification and discuss

boundary conditions to guide appropriate use. This leads to the impact of copula correction.

Why and When Use Copula Correction?

Empirical examples of endogenous regressors abound. For concreteness, consider a run-

ning example of estimating the following linear structural model using nonexperimental data:

Yi = µ+ αPi + β′Wi + Ei, (1)

where i = 1, · · · , n indexes cross-sectional units or markets across regions or time; Yi is a

scalar response variable (e.g., log sales volume of ice cream in market i); Pi is the endogenous

regressor (e.g., log price), and Wi is a vector of exogenous control variables affecting both

Pi and Yi (as shown by the two arrows from W to P and Y in Figure 2.a). The model

parameters are (µ, α, β), among which α captures the causal or independent effect of Pi and

is of primary interest. The exogenous control variables in W are determined outside the

system (e.g., weather) or under control by researchers such that no dependence between Wi

and Ei exists (i.e., no arrow between W and E in Figure 2.a) and thus Cov(Wi, Ei) = 0.

In contrast, Pi may depend on unobserved factors in Ei (e.g., market shocks or product

attributes), creating endogeneity through the E → P link in Figure 2.a.

Figure 2: Directed Acyclic Graph (DAG) for Endogeneity

Copula endogeneity correction’s advantages contributing to its wide usage include broad

applicability and high feasibility, as compared with alternative methods (Table 1). The

directed acyclic graphs (DAGs) in Figure 2 explicitly include the unobserved error term

E and highlights the important role of P -E dependence. Conceptually, copula correction
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addresses the general cases represented by the DAGs in panels (a), (d), and (e) of Figure 2,

while relaxing key assumptions and restrictions required by alternative methods shown in

panels (b) and (c). Below, we highlight some common use cases for copula correction.

Case 1: Leveraging experiments or acquiring perfect observational data is infeasible

Ensuring independence between P and E—such as through random assignment of P in

experiments or by measuring and controlling for all confounders (the rich data approach)—

are often impractical (Germann, Ebbes, and Grewal 2015). Randomized experiments are

widely regarded as the gold standard for causal inference due to their high internal validity.

However, they can be costly, ethically constrained, and often limited to discrete treatment

levels (Table 1). Even when feasible, experiments may face challenges such as limited external

validity, treatment noncompliance, and failure to balance all confounders. For example, a

firm’s randomized pricing experiment may not account for competitors’ strategic responses

(Rutz and Watson 2019), and natural experiments may rely on events or thresholds that

coincide with other events (Table 1). Similarly, rich observational data can be costly or

infeasible to obtain, and may fail to fully or accurately capture all relevant variables.

In such cases, the distribution of the endogenous regressor P , via its dependence on

E, carries useful information about model parameters. Standard methods that ignore this

dependence—such as ordinary least squares (OLS), matching or weighting based on observ-

ables, or fixed effects models— assume exogeneity (Figure 2.b) and can suffer from endogene-

ity bias due to omitted variables, measurement error, or simultaneity. By contrast, copula

correction addresses this bias (Rutz and Watson 2019; Eckert and Hohberger 2023) by re-

laxing the exogeneity assumption and modeling the more general DAG in Figure 2.a, which

nests Figure 2.b as a special case. It does so without requiring experiments or exhaustive

measurement of all confounders (Table 1).

Case 2: Suitable IVs are unavailable

As the classical approach to addressing endogeneity bias, the IV method is based on the

DAG shown in Figure 2.c — a special case of Figure 2.a. Like control variables W , the
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instrument Z must be relevant (affecting the endogenous regressor P ) and exogenous (un-

correlated with the error term E). The crucial distinction is the exclusion restriction (ER):

Z must not directly affect the outcome Y (i.e., β = 0 in Figure 2.c), meaning Z is excluded

from the outcome model in Equation 1. This ER condition, which is untestable in practice,

is what differentiates valid instruments from merely exogenous variables and makes good IVs

hard to find and justify. For instance, in the earlier ice cream example, weather is exogenous

but it would likely violate the ER condition, as it directly influences demand—people tend to

buy more ice cream on hot days, even if prices remain constant. Moreover, the relevance and

ER conditions often conflict: variables that strongly predict the endogenous regressor may

also directly influence the outcome. Thus, despite the theoretical appeal of the IV approach,

identifying valid instruments in practice remains a major challenge, highlighting the need

for more flexible methods to address regressor endogeneity.

Other IV-free methods (LIV, IH, HM) do not require an observed instrument Z but

assume that P can be linearly decomposed as P = Z + ν, where Z is unobserved and meets

the ER condition (Park and Gupta 2012). Identification relies on distributional assumptions:

the instrument Z is discrete in LIV, skewed in HM, and heteroscedastic in IH.4 Although

these methods circumvent the need to find instruments, researchers must still justify the ER

condition for an unobserved instrument Z, whose nature and interpretation are ambiguous.

Unlike IV and these other IV-free methods, copula correction requires no instrument—

observed or latent— and thus avoids justifying an instrument Z that satisfies the ER condi-

tion and causally affects P . Exogenous control variables in W can enhance the precision and

identification of copula correction. A good starting place to find such W is the existing ex-

ogenous control variables in OLS or IV models.5 Unlike instruments, these control variables

4Additionally, HM requires certain higher-order moment conditions (e.g., zero correlation between second mo-

ments of the centered endogenous regressor and outcome), while IH requires heteroscedastic errors across levels of an

observed grouping variable. These higher-moment conditions may not always hold, and suitable grouping variables

may be unavailable. In contrast, the LIV method avoids these requirements, making it more broadly applicable (Park

and Gupta 2012; Rutz and Watson 2019). LIV instead assumes a normally distributed error term and a continuous,

nonnormally distributed endogenous regressor (Table 1).
5In many cases, IVs are plausible only after good control variables are included in the model (Ebbes et al. 2005).

These control variables need to be exogenous to ensure the consistency of IV estimation.
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(e.g., exogenous demand shocks) need not satisfy the strict ER condition. That is, these W s

do not have to be excluded from the structural model and can affect the outcome directly.

Such W s are much more readily available than IVs, and because empirical association be-

tween the candidate W and P is sufficient (Figure 2.e), researchers using copula correction

do not need to argue for the causal pathways between W and P like in the case of IVs. Thus,

copula correction substantially enhances the feasibility of addressing endogeneity.

Case 3: Conduct multi-methods causal inference as a robustness check

Examples here are when IVs exist but are imperfect with questionable validity or weak

relevance; control variables used in rich data methods have questionable comprehensiveness,

accuracy, or validity of exogeneity. In such situations, copula correction can be used along-

side these approaches to compare results and cross-validate findings (Germann, Ebbes, and

Grewal 2015; Papies, Ebbes, and Van Heerde 2017; Qian and Xie 2024).

Case 4: A combination of multiple methods is required to address endogeneity

For instance, an IV may be available for the treatment variable, while potential moder-

ators are endogenous and lack valid instruments. In such cases, copula correction can be

used in conjunction with the IV to address multiple endogenous regressors. Similarly, cop-

ula methods can be combined with methods like regression adjustment or SORE to address

residual endogeneity and mixed (continuous or discrete) endogenous variables, respectively.

Summary and trade-offs of copula correction

As discussed above, copula correction can serve as either a primary or complementary

method to address regressor endogeneity. It requires no experiments, exhaustive measure-

ment of all confounders, or IVs satisfying the ER condition, and is feasible and tractable

to use in a wide variety of settings. However, these advantages come with trade-offs. In

exchange for randomization, exhaustive measurement, or ER, copula correction requires ad-

equately capturing regressor-error dependence with copulas —a process outlined below.
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How Does Copula Correction Work? — A Primer on Copula Correction

Copula correction, first proposed by Park and Gupta (2012) (P&G), is based on the idea

that adequately capturing regressor-error dependence can yield unbiased causal estimates.

To address the endogeneity of P in Equation 1, P&G propose two estimation methods based

on a Gaussian copula (GC) dependence model for the joint distribution of (Pi, Ei) and a nor-

mal structural error. The first maximizes the likelihood derived from this joint distribution.

The second uses a simpler control function approach that rewrites the maximum likelihood

estimation as a regression augmented with a copula generated term P ∗
i = Φ−1(F̂ (Pi)), where

Φ−1 is the inverse standard normal cumulative distribution function (CDF) and F̂ (Pi) is the

empirical CDF of P . Both estimators were derived under fully specified likelihood, leading

to the belief that copula correction is likelihood-based (Table 2). Consequently, estimation

and inference may be sensitive to likelihood misspecifications and depend on a set of strict

data requirements and traditional assumptions (TAs 1 to 5 in Table 2) for identification.

Contrary to common belief, we show copula control function methods require neither a

normal error distribution nor GC regressor-error dependence, and can work under substan-

tially less strict conditions (Table 2). To highlight how copula correction works under these

weaker conditions (and derive general copula control functions), consider the DAG in Figure

2.d which decomposes the structural error as Ei = Ui + ξi. Here, Ui is the error’s endoge-

nous part as the combined effect of unobserved confounders, ξi is an exogenous disturbance

satisfying E(ξi|Pi,Wi) = 0, and E is the expectation operator. We rewrite Equation 1 as:

Yi = E(Yi|Pi,Wi) + ϵi = µ+ αPi + β′Wi +

Structural error E︷ ︸︸ ︷
E(Ui|Pi,Wi)︸ ︷︷ ︸
Endogenous

+ ϵi︸︷︷︸
Exogenous

. (2)

Equation 2 decomposes the error Ei into two parts: (1) E(Ui|Pi,Wi): the expected omit-

ted effect Ui given regressors (Pi,Wi), which is the error’s endogenous part correlated with

regressors and (2) the exogenous part ϵi uncorrelated with all regressors and E(Ui|Pi,Wi)
6.

Important from Equation 2 is that one needs not to know unobserved Ui to control for

6Note ϵi = ϵUi + ξi and both ϵUi = Ui − E(Ui|Pi,Wi) and ξi are uncorrelated with each of (Ui,Wi,E(Ui|Pi,Wi)).
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endogeneity: E(Ui|Pi,Wi) sufficiently captures the error’s endogenous part and completely

controls the confounding effects of omitted variables. If E(Ui|Pi,Wi) is known and added to

the outcome model as an offset term, the resulting OLS regression yields consistent model

estimates, as the new error term ϵi is uncorrelated with all regressors (Pi,Wi,E(Ui|Pi,Wi)).

This approach clearly hinges on whether the control function E(Ui|Pi,Wi) can be recovered.

Copula correction based on Equation 2 proceeds by noting that the dependence between

the endogenous regressor Pi and the omitted term Ui, unexplained by the control variables

in Wi, can be captured by copula models. This copula dependence structure and economic

theory7 enable the derivation and recovery of control functions that break the dependence

between endogenous regressors and the structural error. As discussed in the next subsection,

the copula dependence model is chosen for a number of reasons, including its flexibility,

wide applicability, and the ability to faithfully maintain regressor distributional features and

multivariate dependence crucial for model identification.

Yang, Qian, and Xie (2024a) introduce a two-stage copula endogeneity (2sCOPE) correc-

tion procedure that simultaneously recovers the control function and structural parameters.

Under a joint GC model for all regressors and the error, they show that the residual from

the first-stage model for the endogenous regressor Pi breaks the regressor-error dependence,

serving as the control function up to a constant. As a result, Equation 2 becomes

Yi = µ+ αPi + β′Wi + γCi,p|w + ϵi, where Ci,p|w = P ∗
i − δ̂′W ∗

i ; (3)

γCi,p|w is the control function E(Ui|Pi,Wi) capturing the error’s endogenous part and Ci,p|w

is the copula term; P ∗
i = Φ−1(F̂P (Pi)) and W ∗

i,l = Φ−1(F̂Wl
(Wi,l)) for the lth (l = 1, · · · , L)

variable in W are copula transformed regressors. Recall that P ∗
i is the copula term from the

P&G method. The 2sCOPE approach (Equation 3) removes the part of P ∗
i that is correlated

with exogenous regressors and uses the remaining cleaned part to control for endogeneity.

Conditioning on this cleaned part in Pi makes the new error ϵi independent of all regressors

7While the first-stage model for endogenous regressors can be made nonparametric/assumption-lean in copula

correction, economic theory can guide the choices of exogenous control variables in W which play an important role

in model identification.
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(Pi,Wi, Ci,p|w). As a result, adding Ci,p|w as a control variable allows standard methods like

OLS to yield consistent estimates, with γ̂Ci,p|w acting as the estimated control function.

Operationally, 2sCOPE proceeds in two steps: (1) regresses P ∗
i on W ∗

i , and (2) adds the

first-stage residuals Ci,p|w = P ∗
i − δ̂′W ∗

i to control for endogeneity, where δ̂ denotes first-

stage coefficient estimates.8 If no endogeneity exists, the true coefficient γ on Ci,p|w is zero.

Thus, with the copula control function approach, one can test the presence of endogeneity

by statistically testing whether the coefficient γ for the copula term Ci,p|w is zero or not.

The two-stage residual approach has been adapted to various settings (see later the

Methodological Background section and Table 5). Hu, Qian, and Xie (2025) develop a two-

stage nonparametric copula control function (2sCOPE-np) that generalizes and unifies these

methods, expressing the copula term in Equation 3 generally as: Ci,p|w = Φ−1(F̂ (Pi|Wi)).

Here, the conditional CDF of P given W , F (Pi|Wi), can be consistently estimated using a

nonparametric conditional CDF estimator, F̂ (Pi|Wi). Thus, one can estimate the control

function non-parametrically without specifying first-stage auxiliary models for regressors.

Copula control function offers an alternative to the control function of Petrin and Train

(2010). Unlike their approach, copula correction requires no IVs that must satisfy the strict

ER condition, a stronger requirement than exogeneity. No arguments for the nature, direc-

tion, or forms of relationships betweenW and P are needed: empirical association between P

and W is sufficient and 2sCOPE-np employs first-stage model-free control functions. Thus,

copula correction greatly increases the feasibility of endogeneity correction.

Table 3 summarizes the 2sCOPE estimation algorithm for the general case of multiple

endogenous regressors. For K continuous endogenous regressors (P1, · · · , PK), the copula

control function approach estimates the following augmented regression model:

Yi = µ+
K∑
k=1

αkPi,k ++β′Wi +
K∑
k=1

γkCi,pk|w + ϵi, (4)

where the copula term Ci,pk|w = P ∗
i,k−δ̂′kW

∗
i . The algorithm in the later Equation 9 is used for

the copula transformation of these regressors, including both continuous and noncontinuous

8Although P ∗
i = δ′W ∗

i + Vi includes no intercept, the implementation of 2sCOPE includes the intercept, which

is more general and performs well in simulation studies.
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Table 3: Summary of the 2sCOPE Estimation Procedure

Stage 1:

• Obtain empirical CDFs for each regressor in Pi and Wi, F̂Pk
(·) and F̂Wl

(·);
• Compute P ∗

i,k = Φ−1(F̂Pk
(Pi,k)) and W ∗

i,l = Φ−1(F̂Wl
(Wi,l)) using copula transformation

algorithm defined in Equation 9;

• Regress P ∗
i,k on W ∗

i and obtain residual Ci,pk|w = P ∗
i,k − δ′kW

∗
i , which removes the

component related to exogenous regressors.

Stage 2:

• Add Ci,pk|w to the outcome structural regression model as a control variable to correct

for endogeneity of Pk. The augmented regression model takes the form of Equation 3 (or

Equation 12 when the model contains higher-order or interaction terms of regressors).

Note: W can contain a mixture of continuous and noncontinuous variables (Also see Footnote 9 for alternative

2sCOPE implementations that bypass copula transformations of noncontinuous variables in W ).

exogenous regressors inW (Web Appendices E2 and E3 in Yang, Qian, and Xie 2024a).9 The

2sCOPE-np replaces Stage 1 with the following: for the kth endogenous regressor Pk, perform

nonparametric kernel conditional CDF estimation for Pk given W (Web Appendix Equation

W35 or Equation W37) and obtain the copula term Ci,pk|w = Φ−1(F̂ (Pi,k|Wi)), which involves

no copula transformations of individual regressors. In Equation 4,
∑K

k=1 γkCi,pk|w is the linear

combination of the K copula terms {Ci,pk|w} used to control for endogenous regressors and

is the copula control function (CCF) with multiple endogenous regressors.

Identification Assumptions and Data Requirements for Copula Correction

As shown above, copula correction can be achieved using control functions via the method

of moments10 estimation of the augmented regression in Equation 4, without needing to spec-

ify distributions for the error and individual regressors, the regressor-error joint distribution,

or the associated likelihood (Table 2). This increases the robustness of copula correction

and allows us to focus on the most essential assumptions and data requirements for copula

correction. We now contrast the assumptions (Table 4) used to derive the above general

2sCOPE procedures with traditional assumptions (TAs) listed in Table 2.

Nonnormal error distribution and non-copula regressor-error dependence

9One could also eliminate discrete control covariates from the model before applying 2sCOPE by using within

group demeaning of the outcome and continuous regressors with groups formed by combinations of discrete covari-

ates, in a similar way to the fixed-effect transformation of panel data to remove fixed-effects. Alternatively, one

can condition on discrete endogenous regressors and apply Stage 1 of 2sCOPE to only group-demeaned continuous

15



Table 4: Assumptions Used to Derive 2sCOPE/2sCOPE-np

Assumption 1. Either the error Ei or its endogenous part Ui is normally distributed (DR1).

Assumption 2. Either (P , E)|W or (P , U)|W follows a Gaussian copula a (DR2).

Assumption 3. Full rank of all regressors and Cov(W,E) = 0. b

Assumption 4. P is continuous and the copula term Cp|w is linearly independent of (1, P,W ).

Items to Assess Assumptions

a. Assumptions 1 and 2 are unverifiable from data alone. Though used in method derivation,

Assumptions 1 and 2 are not strictly required: copula correction is robust to symmetric

nonnormal distributions of U and to a range of departures from GC dependence (Web Appendix B).

Their plausibility should be evaluated based on identified sources of endogeneity and theoretical

reasoning, along with using residual inspection and Boundary Condition 1 to detect signs of

possible violations. If needed, revise the model (e.g., transform outcomes/regressors if U is

suspected to be highly skewed) or copula correction strategies (Web Appendix C).

b. To satisfy Assumption 3, researchers should take care to properly specify the structural model,

such as avoiding mistakenly including redundant regressors. To ensure Cov(W,E) = 0, include

only exogenous control variables in W based on institutional knowledge.

c. Assumption 4 for 2sCOPE requires that the continuous P or one correlated and continuous

regressor in W is nonnormal, which can be verified by Boundary Condition 2 below.c

Boundary Conditions

1. Dependence model misspecification: Inspect the inflation of standard errors of copula-corrected

estimates relative to those of uncorrected estimates; inflation > 6 flags GC dependence model

misspecification issues when other assumptions hold.

2. Regressor distribution & relevance requirement: The continuous P is nonnormal (normality test

p < 0.05) or for nearly normal P , one exogenous W is continuous, sufficiently nonnormal (normality

test p < 0.001), and sufficiently relevant (first-stage F statistic > 10).

3. A minimum sample size of 300 is recommended for satisfactory performance of 2sCOPE-npd.

Note: DR: Double Robustness. a: Assumption 2 means that the variation in P unexplained by W follows a
GC model jointly with E (or its endogenous part U). 2sCOPE further assumes a joint GC model for all
regressors (P,W ), an assumption not required by 2sCOPE-np. b: Full rank means rank(X

′
X) = Q, where

Q is the number of columns in X = (1, P,W ). c: Assumption 4 allows normally distributed P to be
identified via exogenous control regressors. 2sCOPE-np can also leverage exogenous regressors to handle
noncontinuous P . d: See Web Appendix Figure W4.

Assumptions 1 and 2 (Table 4) mean that the copula control function methods require

neither a normal error distribution nor GC regressor-error dependence (TAs 1 and 2 in Table

2) and can work under substantially less rigid conditions than previously believed. In fact,

the same 2sCOPE/2sCOPE-np procedure can be derived under both Figure 2.a and Figure

2.d and hence possesses a desirable property of double robustness (Web Appendix B): when a

GC model adequately captures either the regressor-error dependence or regressor-confounder

regressors and include residuals as generated regressors (Table 6), while leaving outcomes unchanged.
10For instance, the OLS estimation is a spacial case of the method of moments by equating the sample covariances

between regressors and the error term to the population covariance values (Wooldridge 2010).
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dependence unexplained by exogenous regressors, the copula corrects endogeneity bias. The

reason is intuitive: the exogenous part of Ei, ξi, simply adds noise but does not affect

endogeneity correction. Because ξi does not need to follow a normal distribution (or any GC

assumption) for the augmented regression to correct bias, copula control functions do not

require the error Ei to be normally distributed or follow a specific copula structure jointly

with Pi. Consequently, the normal error distribution and the GC regressor-error dependence

are only sufficient but not necessary conditions for copula control functions to work.

In many settings, it is plausible to assume that Ei is normally distributed (Yang, Chen,

and Allenby 2003; Ebbes et al. 2005) or Ui is normally distributed as a sum of many con-

founders’ effects (Qian and Xie 2024; Breitung, Mayer, and Wied 2024; Yang, Qian, and

Xie 2024a)11, satisfying Assumption 1. Furthermore, in many settings, the GC model can

adequately capture the dependence between Ui (or Ei) and Pi unexplained by exogenous re-

gressors, satisfying Assumption 2. The GC model has desirable properties, making it widely

used and applicable in empirical research to robustly capture multivariate dependence that

traditional models, such as linear additive dependence models, often fail to capture (Dana-

her and Smith 2011; Qian and Xie 2024). GC permits the full (-1,1) range of correlation

coefficient and is readily extensible and computationally scalable to more than two variables.

Moreover, GC separates modeling dependence from modeling individual variables’ dis-

tributions. Thus, distribution-free GC models can capture regressor-error dependence irre-

spective of (potentially complex) regressors’ distributional features, while nonparametrically

preserving these distributional features essential for model identification. Copula correction

also demonstrates robustness to a range of departures from the GC assumption. Conse-

quently, copula correction has broad applicability and become a valuable resource in the

toolkit for handling regressor endogeneity in various fields (Figure 1). In many applications,

including those in marketing (Web Appendix A), copula correction yields credible findings

11For example, Ui may be salesperson ability which combines many genetic and environmental factors, product

quality which sums many unmeasured product attributes, or a category attribute which sums many UPC products’

attributes. Normality of Ui here requires an enough number of composite confounders rather than a large sample

size (Billingsley 1995, Section 27, The Central Limit Theorem).
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that are consistent with theoretical predictions, attesting to its effectiveness and applicability.

Correlated endogenous and exogenous regressors

The 2sCOPE method extends the P&G method to account for correlated exogenous and

endogenous regressors. When P and W are independent, the first stage coefficient δ = 0

and the 2sCOPE copula term Ci,p|w in Equation 3 reduces to P ∗
i = Ci,p = Φ−1(F̂ (Pi)) used

in the P&G method (TA 3 in Table 2).12 But when P and W are dependent, using P ∗

as the copula correction term will confound the control function with effects of exogenous

regressors, biasing both the control function and model parameter estimates.

The 2sCOPE control function removes the exogenous regressors’ influences on the entire

distribution of P rather than just on some aspects such as its mean. In contrast, some

methods use a mean regression model for P given W ,13 implicitly assuming that W only

affects the mean of P , which is known to be violated for bounded, truncated, or discrete

endogenous regressors14 and can be questionable for unbounded continuous regressors (Chen

2007; Danaher and Smith 2011), leading to biased control function and model estimates.

The 2sCOPE/2sCOPE-np procedures are more flexible, permitting W to affect not only

the mean but also higher moments of P (Yang, Qian, and Xie 2024a; Danaher and Smith

2011; Hu, Qian, and Xie 2025) and providing a model-free nonparametric adjustment. While

correlated exogenous regressors complicate copula correction and need to be carefully dealt

with, they also provide opportunities to relax key identification constraints, as seen below.

Normally distributed endogenous regressors

Under P&G, the source of identification comes from distributional features of the en-

dogenous regressor P (nonnormally distributed). If P is normally distributed, then P&G

12For 2sCOPE-np, Ci,p|w = Φ−1(F̂ (Pi|Wi)) also simplifies to P ∗
i (as in P&G) when P and W are independent.

13See Breitung, Mayer, and Wied (2024) and Mayer and Wied (2025).
14Examples include the percentage of trained salespeople that takes on continuous values in [0, 1] (Atefi et al.

2018), or brand price that takes on values between minimum and maximum prices (Qian and Xie 2011). One should

not confuse the first-stage models in copula correction with those in two-stage least squares (2SLS) using IVs. The

simple linear additive equation commonly used in the first stage mean regression for endogenous regressors in 2SLS is

not a dependence model or DGP, but merely a projection of endogenous regressors to the space of exogenous regressors

(Wooldridge 2010). 2SLS achieves identification through exclusion restriction rather than dependence modeling.
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fails by violating the full rank condition of the regressor matrix (TA 4 in Table 2). Although

distributional shapes of endogenous regressors are observed and regressor normality can be

tested, this requirement limits the applicability of copula correction because many important

endogenous regressors have close to normal distributions (Eckert and Hohberger 2023).

The 2sCOPE procedure relaxes this restriction by leveraging relevant exogenous regres-

sors to identify the effects of endogenous regressors with insufficient nonnormality. With

2sCOPE, the source of identification come from either the nonnormal distributional features

of the variations in P unexplained by W (a nonnormal conditional distribution for F (P |W ))

or nonlinear relationships between P and W , ensuring full rank of the copula augmented

model (Assumption 4 in Table 4). Even if P is normally distributed, Assumption 4 is sat-

isfied and the copula model is identified when a continuous exogenous regressor in W is

nonnormally distributed and nonlinearly related to P (Yang, Qian, and Xie 2024a).

Noncontinuous endogenous regressors

Noncontinuous endogenous regressors—such as binary, count with small means, or semi-

continuous variables—have many ties (observations with the same value) and limited sup-

port, creating identification issues in copula correction (TA 5 in Table 2). These issues arise

from plateaus in discrete CDFs and the nonuniqueness of their inverses, which can bias

copula-based control functions. To address this, Qian and Xie (2024) proposed a likelihood-

based SORE approach to bypass inverse mapping and accommodate such regressors. 15

Limitations and Boundary Conditions of Copula Correction

The considerations above show that copula control function methods work under substan-

tially less strict conditions than previously believed, increasing robustness and applicability.

With the underlying assumptions and data requirements being met, copula correction can

be a powerful tool for addressing endogeneity bias using nonexperimental data. However,

15More recent work shows that the 2sCOPE-np control function may overcome these identification issues by

leveraging variations in exogenous regressors to smooth out plateaus in discrete CDFs (Hu, Qian, and Xie 2025).
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some boundary conditions warrant checking to minimize potential pitfalls and inappropriate

use of copula correction (Table 4).

Limitation 1—Multicollinearity

Like weak instruments (Staiger and Stock 1997), copula correction can be ill-behaved

when copula terms exhibit severe collinearity with existing regressors. The copula terms

capture the error’s endogenous part and thus are expected to correlate with endogenous

regressors. However, copula augmented models become weakly identified or nonidentified

when copula terms are severely or perfectly collinear with existing regressors (i.e., failure of

Assumption 4 in Table 4). This can occur when regressors and the error jointly follow a

multivariate normal distribution (Web Appendix C Table W6). Even in identified models,

strong collinearity inflates standard errors, reduces statistical power of hypothesis testing,

and inflicts finite-sample bias. While 2sCOPE identifies nearly normal endogenous regressors,

it requires sufficiently relevant and nonnormal exogenous control regressors to prevent severe

collinearity, as described in the following guideline (Yang, Qian, and Xie 2024a):

Guideline 1 : Check Boundary Condition 2 (requirements on regressor distributions

and relevance) in Table 4 on the threshold values of the p-value (for nonnormality) of endoge-

nous regressors; for nearly normal endogenous regressors, check the first-stage F statistic (for

relevance) and the p-value (for nonnormality) of candidate exogenous control regressors.16

Limitation 2—Violations of Assumptions 1 and 2

Assumption 1 is not strictly required, as copula correction is robust to symmetric non-

normality in U and skewed E (Web Appendix B Table W5). Yet, strong skewness in both

U and E can cause bias. Since neither is observed, this assumption should be assessed using

theory (see Footnote 11), aided by inspecting residuals. Because copula control functions

permit asymmetric error E (Web Appendix B Tables W4 and W5), skewed residuals alone

16This guideline is akin to using the first-stage F statistics to detect weak instruments (Staiger and Stock 1997).

When 2sCOPE-np is used, one can check the inflation of standard errors of copula corrected estimates relative to

the uncorrected estimates for severe collinearity (Boundary Condition 1 in Table 4). Conceptually, this parallels the

variance inflation factor (VIF) to assess multicollinearity in OLS and Shea’s measure to detect multicollinearity in

weak instruments, which compares the variances of IV estimates to those of OLS estimates (Wooldridge 2010, p.110).
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do not indicate failure. However, if U is also suspected to be highly skewed, revise model

specifications (e.g, transform variables or add controls) to avoid misspecification bias.

Assumption 2 is also not strictly necessary, as copula correction is robust to a range of

non-GC dependence structures (Web Appendix B Table W5; Park and Gupta 2012; Haschka

2022; Yang, Qian, and Xie 2024a). Nonetheless, gross violations of this assumption can cause

bias (Eckert and Hohberger 2023). Since neither E nor U is observed, its plausibility should

be evaluated based on the sources of endogeneity in the application—such as theoretical

guidance to the nature of omitted variables and their links to endogenous regressors, insti-

tutional knowledge, and diagnostics (Boundary Condition 1 in Table 4). Broadly speaking,

copula models capture this dependence via unbounded copula transformed variables invari-

ant to monotonic transformations, making copula models broadly applicable. By contrast,

in linear additive endogeneity models an endogenous regressor is itself linearly related to the

error; this often creates logical inconsistency and fails to capture multivariate dependence

structures, limiting its applicability in practical applications (see Qian and Xie 2024 Web Ap-

pendix D7; Danaher and Smith 2011). Hence, theoretical considerations can help guide the

selection of appropriate dependence models, suggesting here that copula dependence mod-

els are viable to capture multivariate regressor-error dependence in a much broader range

of applications. Meanwhile, we emphasize that the GC dependence assumption warrants

attention from users of copula methods as its misspecifications may introduce bias.

Misspecifying regressor-error dependence can weaken model identification and inflate

standard errors (Park and Gupta 2012; Haschka 2022; Qian and Xie 2024). When the

true dependence follows a linear model, copula correction produces biased estimates with

huge standard errors even if other assumptions hold (Haschka 2022; Qian and Xie 2024).

Theoretical and empirical evidence from these studies as summarized in Web Appendix C

indicates that significantly inflated standard errors serve as warning signs of dependence

misspecification. We introduce a diagnostic statistic, ICON (Web Appendix C), as the

ratios of the standard errors of copula-corrected estimates to those of uncorrected estimates
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to detect GC misspecifications. Prior studies (Haschka 2022; Qian and Xie 2024; Yang, Qian,

and Xie 2024a) and our own evaluation (Web Appendix C) have shown that in misspecified

models, standard errors of copula corrected estimates are typically more than 8-10 times

those of uncorrected estimates. To be conservative, we suggest ICON> 6 as a threshold

value for detecting GC misspecification, following the guideline below:

Guideline 2: In addition to theoretical considerations, check Boundary Condition 1

(dependence model misspecification) in Table 4 to detect warning signs of potential regressor-

error dependence misspecification and mitigate the risk of misspecification bias.

When GC misspecification is suspected, researchers can add relevant control variables,

refine copula correction (Web Appendix Table W8), or use other correction methods. As-

sumption 2 only requires that residual dependence between P and U given W follows GC,

which may hold after adding suitable controls even if unconditionally P and U do not.

Limitation 3—Exogeneity of control variables in W

Assumption 3 is shared by methods such as OLS and IV regression. While these meth-

ods and copula correction do not require W , relevant control variables are often included to

justify exogeneity of all regressors in OLS, satisfy ER for IV, or enhance precision and iden-

tification in copula correction. The selection of suitable control variables should be guided

by institutional knowledge and study goals (see Yang, Qian, and Xie 2024a for examples of

suitable and unsuitable W s). These control variables need to be exogenous to ensure the

consistency of these methods and copula correction, following the guideline below.

Guideline 3: Use only necessary exogenous control variables for causal estimation. Con-

trol variables suspected to be endogenous (e.g., potential mediators and colliders) should be

modeled as endogenous or excluded to avoid overcontrol bias.

Impacts of Copula Correction

In many cases, copula correction provides a feasible approach to controlling for the thorny

regressor endogeneity issue and offers opportunities for optimal managerial decision making,
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as illustrated in the following running example.

Example 1: Price Sensitivity Estimation. Managers and policy-makers are often in-

terested in understanding price sensitivity for category demand. This example estimates

price sensitivity in the diaper category using the IRI Academic store scanner purchase data

for a focal store in the Buffalo, NY market from 2002-2006 (261 weeks). Price may be en-

dogenous due to unobserved variables (e.g., product characteristics, retailer pricing decisions,

number of shelf facings) that, when omitted from a model, become part of the structural

error. These unobserved characteristics should induce positive correlation between price and

the error term, thereby causing the OLS estimate of price sensitivity to bias toward zero (i.e.,

be less negative). We show later on that the OLS price elasticity estimate here is -1.367,

significantly less than the copula corrected price elasticity estimate of -2.205, a 61% differ-

ence reflecting a large impact of a “wrong” estimate. The manager underestimates consumer

price sensitivity using OLS, and mistakenly sets the price too high, resulting in lost revenue

and profit. The analysis later on shows that the OLS price estimate will yield 30% less profit

compared to using the copula corrected price sensitivity estimate (Figure 3).
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Figure 3: Example 1: Impact of copula correction on price sensitivity estimation. OLS:
ordinary least squares; CC: copula correction.

Meta-analyses of studies that compare estimates after endogeneity correction to uncor-

rected estimates also find similar differences. Bijmolt, Van Heerde, and Pieters (2005) found
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price elasticity was -2.47 without endogeneity correction, but -3.74 when corrected. Sethu-

raman, Tellis, and Briesch (2011) found “Advertising elasticity is lower when endogeneity

in advertising is not incorporated in the model” (p.470).17 With personal selling (i.e., sales-

force), models that account for endogeneity have lower elasticity (.282) than models without

endogeneity correction (.373), a significant difference of 0.091 that importantly represents

an over-estimation of 32% (Albers, Mantrala, and Sridhar 2010). The importance of endo-

geneity correction is apparent: without correction, managers and academics likely experience

underestimated effects of pricing and advertising and overestimated effects of salesforce.

METHODOLOGICAL BACKGROUND

In this section, we discuss methodological aspects of implementing copula correction.

We first acquaint readers with recent advances in copula correction, then speak to copula

correction in panel data, show proper construction of the copula, address inconsistencies in

copula correction for higher-order endogenous terms, and how to obtain standard errors.

Methods to Relax Assumptions of Copula Correction

Recent methodological advances relax key assumptions and data requirements of the

P&G method, broadening the applicability of copula correction. These methods differ in

their features (Table 5) and fall into two broad classes: moment-based two-stage control

function methods and likelihood-based methods. We contribute to this growing literature by

systematically comparing these approaches to highlight their strengths and limitations and

to guide practitioners in selecting suitable methods for their empirical context.

Two-stage control function methods

The 2sCOPE method introduces a two-stage copula control function approach. Assump-

tions 1 and 2 in Table 4 mean that 2sCOPE has the double robustness property: the error

17Sethuraman, Tellis, and Briesch (2011) note that the bias when ignoring endogeneity will depend on the rela-

tionship between the omitted variable (e.g., price, product, or promotions), the endogenous variable (advertising),

and the dependent variable (sales). For instance, price, when omitted, should bias advertising’s effect downward:

price has (-) relationship to sales, but (+) with advertising (i.e., high price brands advertise; low price brands let

their price do the ‘selling’).
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Table 5: Copula Correction Methods with Enhanced Capabilities.

Features Methods

1. Control function approach without 2sCOPE proceduresa

specifying model likelihood

2. Likelihood-based joint estimation Haschka (2022); SORE

3. Permit nonnormal structural error 2sCOPE proceduresa

4. Permit both GC and non-GC SORE; 2sCOPE-np

regressor-error dependence Yang, Qian, and Xie (2024a,b); Liengaard et al. (2024)

5. Permit both GC and non-GC SORE; 2sCOPE-np

regressor-confounder dependencec

6. First-stage model-free control function 2sCOPE-np

7. Handle normal endogenous regressors Yang, Qian, and Xie (2024a,b); Liengaard et al. (2024)

2sCOPE-np

8. Handle discrete or semicontinuous

endogenous regressors SOREb

9. Handle noncontinuous and continuous

exogenous regressors correlated with Haschka (2022); SORE

endogenous regressors & handle nonlinear 2sCOPE proceduresa

terms such as interactions.

Note: SORE: Semiparametric odds ratio endogeneity model (Qian and Xie 2024). a: For succinctness,

2sCOPE procedures are defined broadly here to include Yang, Qian, and Xie (2024a,b); Liengaard et al.

(2024); Breitung, Mayer, and Wied (2024); Mayer and Wied (2025); Hu, Qian, and Xie (2025). Hu, Qian, and

Xie (2025) (2sCOPE-np) unifies the 2sCOPE procedures by employing first-stage model-free nonparametric

copula control functions. b: When relevant exogenous regressors are available, the 2sCOPE-np control

function can leverage their variations to handle noncontinuous endogenous regressors.

term does not need to be normally distributed and regressor-error dependence does not need

to follow a GC relationship as long as GC adequately captures the dependence between

regressors and Ui (Features 3 and 4 in Table 5). However, the pairwise dependence between

the endogenous regressor Pi and Ui unconditioned on W is restricted to a GC relationship.

In this aspect, 2sCOPE-np is more general and permits both GC and non-GC pairwise de-

pendence between Pi and Ui (Feature 5 in Table 5). Assumption 4 means 2sCOPE can

handle endogenous regressors that are normally distributed or correlated with W (Features

7 and 9 in Table 5). Even if the endogenous regressor is normally distributed, 2sCOPE can

identify the model as long as one correlated W is continuous18 and nonnormally distributed,

18Discrete exogenous regressors with few levels have high multicollinearity with their copula transformed values

and thus are uninformative to help identify models with normally distributed endogenous regressors.

25



which is feasible in many empirical applications. The 2sCOPE assumes the regressor-error

GC correlation structure is constant and does not vary in the population. Recent studies

(Liengaard et al. 2024; Yang, Qian, and Xie 2024b) relax this assumption through a robust-

ness check by permitting the GC dependence structure and 2sCOPE copula terms to vary

by the levels of discrete exogenous regressors. These methods require a sufficient sample size

and data requirements (shown later in the Flowchart in Figure 5) being met within each

level of combinations of discrete exogenous regressors (Web Appendix Table W19).

Breitung, Mayer, and Wied (2024) and Mayer and Wied (2025) propose using a first-stage

mean regression model for endogenous regressors to account for correlated exogenous regres-

sors. Like 2sCOPE, their approach is relatively easy to apply and allows nonnormal error.

Interestingly, although it originates from copula correction and permits non-GC regressor-

error dependence, their approach does not permit GC regressor-error dependence in general

(Table 5) and can yield biased estimates when regressor-error follows GC dependence (Hu,

Qian, and Xie 2025). Implicitly, their approach assumes (1) a degenerated GC dependence19

between Ui and the unobserved error parts in the first-stage models for endogenous regressors

and (2) W affects only the mean but not higher-moments of the conditional distribution for

P |W . Copula procedures using more flexible multivariate dependence models (i.e., meth-

ods with Feature 4 in Table 5) can better account for correlated regressors and also permit

both GC and non-GC types of regressor-error dependence. In particular, the nonparametric

2sCOPE-np procedure fully nests their approach as a special case.

As noted earlier, the 2sCOPE-np unifies existing copula correction methods. It employs

nonparametric copula control functions that generalize and make robust the existing copula

correction methods using model-based first-stage residuals. It is model-free in the first stage,

accommodates both GC and non-GC regressor–error (or regressor-confounder) dependence,

and handles normal or discrete endogenous regressors (Features 3-9 in Table 5). The non-

parametric feature of 2sCOPE-np does require larger samples (≥ 300; Table 4) and greater

19Specifically, the correlation coefficient in the GC model is fixed at 1 or -1 (i.e., a deterministic relationship) such

that Ui is a linear function of the copula transformed error term for the endogenous regressor.
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computation cost for kernel conditional CDF estimation (Hu, Qian, and Xie 2025).

Likelihood-based copula correction procedures

Haschka (2022) and Qian and Xie (2024) develop likelihood-based methods that general-

ize P&G (Table 5). Here we describe Qian and Xie (2024) and then Haschka (2022), which

was developed in the context of panel data to be described next. Qian and Xie (2024) propose

a bias correction procedure that accounts for regressor-error dependence using a flexible semi-

parametric odds ratio endogeneity (SORE) model. The semiparametric model is often used

in marketing and other fields as a flexible multivariate model to measure dependence (Chen

2007), handle missing data and selective sampling (Qian and Xie 2011, 2022), and combine

sensitive data (Qian and Xie 2014, 2015; Feit and Bradlow 2021). SORE encompasses a

number of existing dependence models (including copulas), capable of capturing both GC

and non-copula dependence structures. SORE requires a special estimation algorithm that

eliminates potentially high-dimensional nuisance parameters in the nonparametric baseline

distribution function, and maximizes the profile likelihood concentrating on the parameter

of interest. Likelihood-based model selection measures (such as AIC and BIC) guide the

choice of appropriate odds ratio dependence functions and identification strategies.

Unlike other IV-free methods except 2sCOPE-np20, SORE can handle noncontinuous

endogenous regressors (Feature 8 in Table 5). It avoids the inverse CDF mapping of dis-

crete endogenous regressors required by copula control functions, enabling identification for

noncontinuous endogenous regressors without any help from exogenous regressors. SORE

encompasses likelihood-based GC models and expands identification strategies for noncon-

tinuous endogenous regressors. Furthermore, implementing SORE is straightforward, as it

conditions on exogenous regressors and uses a simple likelihood involving no integrals with

respect to latent copula data. Thus SORE is applicable to many applications involving non-

continuous endogenous regressors. By contrast, more methods can handle noncontinuous

exogenous control regressors (Feature 9 in Table 5 and Footnote 9).

20Unlike 2sCOPE-np, SORE does not require the availability of powerful exogenous control covariates.
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Control Function vs Likelihood-based Correction Methods

Generally speaking, SORE employs one-step estimation, potentially offering greater effi-

ciency (smaller standard errors) and allows well-established likelihood-based tests and model

comparisons. In contrast, the moment-based 2sCOPE requires fewer assumptions and is com-

putationally simpler. While SORE nests copula dependence models and can capture both

GC and non-copula dependence structures, the 2sCOPE also permits departures from GC

regressor-error dependence by modeling regressor-confounder dependence. Thus, SORE and

2sCOPE are complementary to each other and non-hierarchical (one not nesting the other).

Copula Correction in Panel/Clustered Data

Copula correction can also address various sources of bias in panel data (Park and Gupta

2012; Haschka 2022; Yang, Qian, and Xie 2024a,b). Haschka (2022) generalizes copula

endogeneity correction to the following fixed-effects (FE) panel data model:

yit = µi + P ′
itα +W ′

itβ + eit, (5)

where yit denotes the dependent variable (e.g., store sales) for cross-sectional unit i =

1, · · · , N at occasions t = 1, · · · , T ; the fixed effect parameter µi captures the effects of

time-constant (unobserved) variables (e.g., store size and market characteristics that do not

change over time); Pit denotes endogenous regressors (e.g., price) such that Cov(Pit, eit) ̸= 0

due to time-varying unobservables (e.g., unmeasured consumer tastes or brand attributes

varying over time), where the error eit ∼ N(0, σ2
e); Wit denotes exogenous control variables

(e.g., prearranged promotions, quarter time periods). The parameters α and β capture the

effect of Pit and Wit, respectively. Given fixed-effects µi, all regressors in (Pit,Wit) must be

time-varying. Since fixed-effect parameters µi can be correlated with the regressors Pit and

Wit, the fixed-effects transformation (Wooldridge 2010, p.302-303) is often used to eliminate

these incidental intercept parameters. Because fixed-effects transformation changes the panel

error structure to be nonspherical (nondiagonal covariance matrix), the GLS transformation

is applied to handle nonspherical errors and collapses panel data to pooled observations with

spherical errors ξ̃it
iid∼ N(0, σ2

ξ ). After eliminating the nonspherical error problem, Haschka
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(2022) developed an efficient MLE estimation procedure that maximizes the likelihood of a

GC model for the error and all explanatory variables to address regressor endogeneity.

Panel studies often face slope heterogeneity. As shown in extant marketing studies,

consumers’ heterogeneous responses to marketing mix variables (e.g., price slope coefficients)

are ubiquitous and substantial bias can arise when ignoring such slope heterogeneity. Thus,

it is important to allow for individual-specific slope coefficients, by using random coefficients

or mixed-effects (i.e., both fixed-effects and random coefficients). Extending the copula

MLE method to these more general models with endogenous regressors can be challenging,

as the model likelihood contains new intractable integrals of complex functions that involve

products of copula density functions (Yang, Qian, and Xie 2024a). Copula correction for

these general panel data models remains to be developed.

For greater generality and computational tractability, Yang, Qian, and Xie (2024a,b)

propose copula control function approaches for the following more general panel data model:

yit = µi + αiPit + β′
iWit + eit, (6)

where individual-specific parameters (µi, αi, βi) can be treated as fixed, random, or mixed

effects. The model includes the FE panel model in Equation 5 as a special case. Their copula

control functions involve no numerical integrals and can be implemented straightforwardly

using standard software programs, assuming all regressors are exogenous.

In principle, the general copula term can extend to the panel data setting as Φ−1(F (Pit,k|Wit, Di),

where Di is the dummy variable for unit i to account for panel data structure. This may

involve a high-dimensional conditional CDF estimation, which can be computationally in-

tensive. To balance robustness and computational ease, we propose using the following

general location GC model (Yang, Qian, and Xie 2024b) to calculate proper copula terms in

multilevel data21 when cov(Pit, eit) ̸= 0, cov(Pit, µi) ̸= 0, and/or cov(Pit,Wit) ̸= 0:

pit = αi,p + eit,p, and wit = αi,w + eit,w, (7)

where pit and wit are allowed to depend on unit-specific mean levels αi,p and αi,w. The fixed-

21This general-location GC model can also be applied to grouped/clustered data formed by discrete exogenous

regressors.
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effects αi,p and αi,w capture the dependence between µi and regressors (cov(Pit, µi) ̸= 0 and

cov(Wit, µi) ̸= 0). The error terms in (6) and (7) then follow the GC model, capturing the

regressor endogeneity of pit (cov(Pit, eit) ̸= 0) and the dependence among endogenous and

exogenous regressors (cov(Pit,Wit) ̸= 0). Assuming a homogeneous GC model, a two-stage

copula control function approach estimates the following augmented panel regression model:

yit = µi + P ′
itαi +W ′

itβi +
K∑
k=1

γkCit,k + ωit, (8)

where Cit,k is the copula term in Table 6; P̃it,k and W̃it in the copula term are the time

demeaned value of Pit,k and Wit (i.e., fixed-effect transformation). Thus, the procedure is to

apply the 2sCOPE in Table 3 to the time-demeaned regressors. The new error term ωit is

shown to be uncorrelated with all regressors and the fixed-effects µi in the augmented panel

regression model in Equation 8, eliminating the regressor-error dependence. Standard panel

regression estimators assuming all regressors are exogenous can be applied to Equation 8

and yield consistent estimates. Yang, Qian, and Xie (2024b) formally demonstrate the

consistency, asymptotic normality, and standard error formula for the model parameter

estimates. Copula correction assuming homogeneity is found to be robust to heterogeneous

endogeneity across panel units (Haschka 2022; Yang, Qian, and Xie 2024b). When the panel

is sufficiently long, Yang, Qian, and Xie (2024b) explicitly permit the copula dependence

to vary across panel units and recover estimates of panel-specific endogeneity; they further

employ the mean group estimator to estimate the model in Equation 8 with slope endogeneity

(cov(Pit, αi) ̸= 0).

Copula correction can also be applied to address regressor endogeneity in random coeffi-

cients logit (RCL) models for panel discrete choice outcomes (Park and Gupta 2012; Yang,

Qian, and Xie 2024a). In RCL models, the endogeneity of price is modeled as the depen-

dence between product price and unobserved time-varying product characteristics. One can

then map an RCL model specified at the consumer level to an aggregate linear model for the

product utility averaged across all consumers, for which copula correction for linear models

can be directly applied to address regressor endogeneity.
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Table 6: Copula Control Function Estimation Procedures for Panel/Clustered Data

Stage 1:

• Do time demeaning of Pit,k and Wit within each panel unit, and obtain the demeaned

regressors (P̃it,k, W̃it).

• Apply Stage 1 of 2sCOPE (Table 3) to the demeaned regressors (P̃it,k, W̃it) and

obtain Cit,k = (P̃it,k)
∗ − δ̂′k(W̃it)

∗.

Stage 2:

• Add copula term Cit,k as the generated regressor to control for endogeneity of Pit,k.

The augmented panel regression model takes the form of Equation 8.

Note: One can also apply 2sCOPE-np to the time demeaned regressors and obtain Cit,k = Φ−1(F̂ (P̃it,k|W̃it)).

Time demeaning subtracts each unit’s averages over time of Pit,k and Wit from the original values of Pit,k

and Wit. Thus, time demeaning removes the effects of all time-constant confounders correlated with µi and is

needed for handling endogenous regressors that vary over both i and t. Endogenous regressors that vary only

over t or only over i do not need time-demeaning. The algorithm can also be applied to grouped/clustered

data formed by discrete exogenous regressors, in which i indexes the ith group/cluster.

Proper Construction of Nonparametric Rank-Based Copula Transformation

Applications of copula endogeneity correction mostly use the nonparametric rank-based

copula transformation based on empirical marginal distributions of regressors. While conve-

nient and robust to misspecification, this approach requires careful handling when mapping

from ranks to latent copula data. Becker, Proksch, and Ringle (2022) found that the P&G

method can yield biased estimates in models with intercepts, especially in small to moderate

samples. We examine this issue and assess an alternative copula transformation with strong

theoretical grounding that avoids such bias.

The empirical rank-based copula transformation involves two steps: assigning percentile

ranks to observations, then applying the inverse normal CDF. However, the inverse normal

of the 100th percentile—assigned to the maximum rank—is undefined (see the toy example

in Web Appendix Table W9). To prevent this, one can adjust the copula transformation of

the maximum value of the regressor (e.g. P ) for a sample size n as follows:

P ∗
i = Φ−1(FP (Pi)) =


Φ−1(Rank(Pi)/n) if Pi < max(P )

Φ−1(n/(n+ 1)) if Pi = max(P ).

(9)

The above percentile adjustment ensures a theoretically valid maximum for the copula-

transformed data. This is justified by approximating the expected maximum of a standard
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normal sample of size n by Φ−1( n−α
n+1−2α

), with α = 0.375 recommended by Royston (1982).

Using Φ−1( n
n+1

) simplifies the formula (α = 0) and yields nearly identical result as setting

α = 0.375 for typical sample sizes (i.e., n >> α).

To demonstrate the importance of the empirical copula transformation, consider an al-

ternative approach used in Becker, Proksch, and Ringle (2022), which sets the percentile of

the highest-ranked observation to a fixed value of 0.9999999:

P ∗
i,F ix = Φ−1(FP (Pi)) =


Φ−1(Rank(Pi)/n) if Pi < max(P )

Φ−1(0.9999999) = 5.1999 if Pi = max(P ),

(10)

where P ∗
Fix refers to using a fixed percentile (0.9999999) for the highest rank to preserve rank

order unless the sample size exceeds one million. However, in smaller samples, this can lead

to substantial deviations from the theoretical maximum, creating a high-leverage outlier far

from the centroid of covariate distributions. Such an outlier can distort coefficient estimates

and weaken the performance of copula correction.

To assess the impact of empirical copula construction on the performance of copula

correction, we compare the algorithms in Equations 9 and 10 using simulation studies22 in

which the true parameter values are known. The simulation studies consider situations both

without correlated exogenous regressors, as described in Becker, Proksch, and Ringle (2022),

and with correlated exogenous regressors, as described in Web Appendix D.

Results in Web Appendix D reveal that judicious copula transformation is crucial for

effective copula correction. Notably, including an intercept poses no issue if the highest-

ranked value is properly adjusted using the recommended copula transformation algorithm.

A key finding is that the substantial bias in models with intercepts, reported by Becker,

Proksch, and Ringle (2022), is largely resolved by applying the adjustment in Equation 9.

Together, our analysis offers theoretical and empirical rationales for optimal copula trans-

formation. The new insights help demystify misinterpretations about copula correction and

22The R codes for simulation studies and empirical examples are available at https://copula-

correction.github.io/Webpage/code%20and%20examples.html. We also provide an interactive applet interfaced

supplement accessible at https://copula-correction.github.io/Webpage/histogram.html for readers to visually

explore the results of the simulation study.
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promote optimal copula transformation for effective copula correction. We recommend avoid-

ing fixed percentiles for the highest rank, suggesting instead to use the algorithm in Equation

9 for valid transformation regardless of sample sizes.

Optimal Copula Estimation of Endogenous Moderating and Nonlinear Effects

Higher-order terms of endogenous regressors (e.g., interactions with moderators) are com-

mon in empirical studies aimed at understanding causal mechanisms or informing optimal

policy. While copula methods can address such nonlinear terms (Table 5), practices vary

widely (Web Appendix Table W3). Some studies omit copula-generated terms without ex-

planation, while others include them to account for endogeneity. The following example

illustrates the impact of these differences.

Example 2: Moderator of Price Sensitivity Price may work together with a retail

store’s feature advertising to achieve synergistic effects on sales. This can be tested by esti-

mating the interaction term between price and feature advertisement in a sales model, with

feature advertisement as a potential moderator of price. Blattberg and Neslin (1990) note

that feature advertising “may interact with price discounts. If the consumer is not informed

that a price discount is offered, the price elasticity is likely to be small” (p.347). This suggests

a negative sign for the interaction term between price and feature advertisement.

Figure 4 plots mean price sensitivity estimates by feature intensity quartile in the peanut

butter category, predicted from a sales model with an interaction term between price and

feature, using the IRI Academic data for a New York City store. The black (gray) bars are

price sensitivity estimates estimated with (without) a copula term for the interaction term.

Including the copula term for the interaction yields similar price sensitivity estimates across

different feature intensity (i.e., lack of interactive effect), while excluding the copula term

yields a statistically significant and negative interaction effect. In this section, we examine

the best approach to handling these higher-order endogenous terms via both theoretical proof

and empirical evaluations. As shown next, adding the copula term for the interaction term
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Figure 4: Mean price sensitivity estimates by quartile of feature intensity.

can induce bias and increase parameter estimate variability.

Consider the following general model containing higher-order terms of regressors:

Yi = µ+ α′
1Pi + α′

2f1(Pi) + α′
3f2(Pi,Wi) + β′Wi + ηf3(Wi) + Ei, (11)

where Pi is a vector of K continuous and endogenous regressors, and Wi is a vector of

exogenous regressors. The structural model in Equation 11 expands the model in Equation

1 to include higher-order endogenous terms, namely f1(Pi) and f2(Pi,Wi), and higher-order

exogenous terms, f3(Wi). Below are examples of these higher-order terms:

• Polynomial functions of a scalar Pi: α
′
2f1(Pi) = α2P

2
i

• Interaction of two endogenous regressors Pi = (P1i, P2i): α
′
2f1(Pi) = α2P1iP2i

• Interaction of endogenous and exogenous regressors: α′
3(Pi,Wi) = α3PiWi.

Because higher-order terms of endogenous regressors, f1(Pi) and f2(Pi,Wi), are also endoge-

nous, it is tempting to control their endogeneity by adding separate copula correction terms

for them. However, the point of not needing these copula correction terms for these higher-

order terms is clearly shown in the following copula augmented regression, including only

copula correction terms for the first-order endogenous terms (i.e., main effects):

Yi = µ+ α′
1Pi + α′

2f1(Pi) + α′
3f2(Pi,Wi) + β′Wi + ηf3(Wi) + γ′Ci,main + ϵi, (12)

where Ci,main = (Ci,1, · · · , Ci,K) contains copula correction terms for main terms Pi only

(Table 3). Because the new error term ϵ is independent of P and W , it is also independent
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of their functions, such as f1(P ), f2(P,W ) and f3(W ). Thus, once the copula correction

terms for main effects Cmain are included as control variables in Equation 12, no additional

correction for these higher-order terms are needed. This simplicity of handling higher-order

endogenous regressors is a merit of copula correction.23

Although it is unnecessary to add the copula correction terms for higher-order terms,24

a further question is what might happen if the additional copula generated regressors for

the higher-order terms are included. Will doing this lead to better or worse performance

of copula correction? The issue with adding unnecessary regressors Cf1(Pi) and Cf2(Pi,Wi)

is the significant collinearity between these higher-order copula terms and their co-varying

constituents (P , f1(P ), f2(P,W ), and Cmain). This substantially decreases precision of co-

efficient estimates, making copula correction methods perform worse than otherwise, shown

formally by Theorem 1 in Web Appendix E. Consistent with the theoretical results, sim-

ulation studies (Web Appendix F) demonstrate substantial harmful effects if copula terms

for higher-order regressors are added to control for their endogeneity. These effects include

large finite sample bias and inflated variability of structural model parameter estimates.

Obtaining Standard Errors

For methods performing joint estimation in one step (Qian and Xie 2024), standard errors

can be directly obtained by inverting the Hessian matrix as a byproduct of the estimation

process. For two-step copula methods, bootstrapping is applied to obtain proper standard er-

rors in order to account for additional uncertainty from obtaining generated regressors in the

first step. Specifically, the data are resampled with replacement to form bootstrap samples,

on which copula-corrected estimates are recomputed repeatedly. The standard deviation of

these estimates provides the standard error. For panel data, cluster bootstrapping should

23IV control function approach also shares this merit (Petrin and Train 2010), but not 2SLS (Wooldridge 2010

Chapter 6.2); this may sow the confusion, as the 2SLS approach advocates for including instruments of the endogenous

higher-order terms.
24Papies, Ebbes, and Van Heerde (2017) (p. 615) noted this point for the P&G method. Our analysis (1) extends

this result to more general methods and (2) demonstrates a stronger result that adding the unnecessary high-order

copula terms is suboptimal and has significant adverse effects through both theoretical proof and empirical evaluation.
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be used to resample independent cross-sectional units rather than individual observations

(Haschka 2022). That is, only the cross-sectional units (clusters) are resampled, while all

the observations within the sampled clusters are retained and unchanged. This ensures the

bootstrap samples retain dependence structures among panel observations existing in the

original data, and simulation studies have shown bootstrapping produces reliable standard

error estimates (Park and Gupta 2012; Haschka 2022; Yang, Qian, and Xie 2024a).

GUIDANCE FOR PRACTICAL USE

Based on recent advances, this section describes a procedure guiding practical usage of

copula correction methods. Figure 5 presents a step-by-step flowchart25 of key steps and

checkpoints. Before using it, clearly define the causal structure—specifying the outcome,

main explanatory variables, and relevant control covariates. Ensure the model is theoretically

sound, with pertinent control variables included in W and the regressor matrix being full

rank. To ensure exogeneity ofW , include only necessary exogenous control variables. Control

variables suspected to be endogenous should be modeled as such or excluded from the model.

When the need to use copula correction is affirmed at the start of the flowchart (Step 0a

of Figure 5), assess the plausibility of the underlying assumptions in the focal application

(Step 0b of Figure 5) according to Item a under Assess Assumptions in Table 4. The double

robustness property of copula correction using control functions means that copula correction

can be used with departures from GC regressor-error dependence, as long as GC adequately

captures unexplained dependence between endogenous regressors and U (the combined effects

of all unobserved confounders) given exogenous regressors. Copula correction also works with

a nonnormal error distribution. However, out of an abundance of caution and for optimal

robustness, consider revising model specifications (e.g., transform variables or add more

control variables) if the error distribution is suspected to be highly skewed.

If copula correction is chosen, follow the rest of the flowchart to determine appropriate

copula correction methods. As shown previously, copula correction only needs to include

25A web selector tool is available at https://copula-correction.github.io/Webpage/flowchart.html
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Is Pmain continuous?

Is Pmain normally 

distributed?

SOREb (Qian and Xie 2024)

Yes
No

3a. Is Pmain correlated 

with any term in W?

No

Check potential bias of 2sCOPEb 

using bootstrap 

No

No
Yes

Step 1:

Step 2:

Step 3:

Yes

3b. Is at least one exogenous W continuous, 

sufficiently non-normal, and sufficiently relevant?c

2sCOPEb, or 

MLE (Haschka 2022 or SORE)

Yes

P&G or 

BMWb,d 
Step 4:

Are Assumptions 1 & 2 in Table 4 of copula correction plausible? 

See Item a under Assess Assumptions in Table 4

Yes

2sCOPEb 

Consider other IV-free methods 

(LIV, HM, IH, SORE)a
No

Step 5: Check potential model nonidentification or misspecification issuese. 

Revise model specification or copula correction strategy if needed.

Step 0a:

Step 0b:

Is it feasible to leverage field 

or natural experiments, rich 

observational data, or IVs?

Do experiments balance or rich data 

capture all confounders? Are IVs strong 

and do they meet the ER condition?

No

Yes

Analyze data assuming 

no endogenous 

regressors (or use IV for 

endogenous regressors)

Yes

No (conduct multi-methods analysis)

Figure 5: Flowchart for Copula Procedure.
Note: Pmain denotes the first-order terms of endogenous regressors. W denotes exogenous control variables
and Cov(W,E) = 0.
For panel data, use the MLE method of Haschka (2022) or the copula control function method (Table 6)
that uses time-demeaned regressors to check Steps 2-3 and to obtain the copula correction terms in Step 4.
a: See Table 1 and Footnote 4 for choosing between these IV-free methods.
b: The 2sCOPE-np (Hu, Qian, and Xie 2025) can be used in these steps. A sample size of > 300 is
recommended for 2sCOPE-np. To handle noncontinuous endogenous regressors, 2sCOPE-np requires the
availability of powerful exogenous control regressors for model identification.
c: W is sufficiently nonnormal if normality test p < .001 & sufficiently relevant to Pmain if F statistics >10.
d: The BMW method (Breitung, Mayer, and Wied 2024) was suggested as a robust check of the P&G
method (Park and Gupta 2024). This method and Mayer and Wied (2025) rely on some implicit
assumptions (e.g., W affects only the mean of P ) and do not permit GC regressor-error dependence in
general (so can yield biased results when regressor-error follows GC dependence). Thus, using this method
as a robustness check of the GC regressor-error dependence can yield ambiguous results. By contrast,
2sCOPE/2sCOPE-np permit GC and non-GC regressor-error dependence. In particular, the nonparametric
2sCOPE-np nests the BMW method as a special case and is better suited for robustness checking purposes.
e: Check the inflation of standard errors of copula corrected estimates relative to those of uncorrected
estimates. An inflation of > 6 times flags potential model identification and misspecification issues.
Consider a robustness check using the method of Yang, Qian, and Xie (2024b) that generalizes Liengaard
et al. (2024) when sample size is sufficient and boundary conditions are met within each level of
combinations of discrete exogenous regressors.

CCFs corresponding to the first-order terms of endogenous regressors, Pmain, even when the

structural model contains higher-order terms of endogenous regressors. Thus, the flowchart

only needs to consider Pmain. Furthermore, when the structural model includes an intercept,

the copula transformation should use the algorithm in Equation 9 to avoid estimation bias.
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When conditions are met, the P&G method can be followed, but more recent research

relaxes these conditions and presents the path to perform copula correction even when these

conditions are not met.

Step 1. This step checks whether the endogenous regressor Pmain has sufficient support.

If Pmain is noncontinuous (binary, discrete with only a few levels, or semicontinuous), use

likelihood-based SORE. Otherwise, continue to Step 2 below.

Step 2. This step checks whether Pmain is normally distributed or not. If Pmain is normally

distributed, the P&G method cannot be used because the model is unidentified. However, a

normally distributed Pmain can still be a candidate for copula correction through 2sCOPE.

Yet, this route follows a different path, as seen in Figure 5 and discussed more below in Step

3.b. The literature notes that more powerful tests for normality, such as the Shapiro-Wilk

test or Anderson-Darling test, might not fully rule out nonidentification, because these tests

can detect small departures from normality that are insufficient for copula correction (Becker,

Proksch, and Ringle 2022; Eckert and Hohberger 2023). Yet, the Kolmogorov-Smirnov (KS)

test is relatively conservative among the most commonly used normality tests; a p-value less

than 0.05 from the KS normality test has been shown to perform well for ruling out finite

sample bias due to insufficient regressor nonnormality (Yang, Qian, and Xie 2024a).

Step 3. This step marks one of the biggest shifts in copula usage since P&G, consisting

of two disjoint steps (3.a and 3.b below), depending on the outcome of Step 2. The data

requirements in this step are established using comprehensive factorial design simulation

experiments to assure satisfactory performance of copula correction, across a wide range of

conditions in finite samples (Web Appendix E.8 in Yang, Qian, and Xie 2024a).

3.a. If the endogenous regressor Pmain has sufficient nonnormality (KS p-value < 0.05)

in Step 2 above, Step 3 will check an additional condition of no correlation between Pmain

and all exogenous regressors (using Fisher’s Z test for correlation) to determine if the P&G

method can be used.26 When this condition is met and sample size is small, the P&G method

26A less stringent condition for using P&G withK endogenous regressors is no correlation between
∑K

k=1 P
∗
main,kγk

with all exogenous regressors (Yang, Qian, and Xie 2024a).
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may be preferred because a simpler and valid model is more efficient than a more general

method. As sample size increases, 2sCOPE has negligible efficiency loss relative to P&G and

is the preferred method. If Pmain is correlated with any exogenous regressors, one should use

2sCOPE to handle correlated exogenous regressors. Alternatively, an MLE copula procedure

(either the one-step SORE or the two-step procedure of Haschka 2022) can be used.

3.b. If the endogenous regressor Pmain is found to have insufficient nonnormality (KS

p-value > 0.05) in Step 2, then one cannot use the P&G method, but can use 2sCOPE

to leverage correlated exogenous regressors to achieve model identification. To compensate

for the lack of nonnormality of endogenous regressor P in 2sCOPE, at least one exogenous

and continuous regressor W needs to satisfy the following two conditions: (1) sufficient

nonnormality, and (2) sufficient association with the endogenous regressor P . A conservative

rule of thumb for such a W is the p-value from the KS test on W being < 0.001 and a strong

association with P (F statistic for the effect ofW ∗ on P ∗
main > 10 in the first-stage regression).

When these conditions are met, 2sCOPE is expected to yield estimates with negligible bias

even if Pmain is normally distributed. When these conditions are not met, Yang, Qian, and

Xie (2024a) suggest gauging potential bias of 2sCOPE for data at hand via a bootstrap

procedure described there, and using 2sCOPE only if the potential bias is small.

As seen above, only one of 3.a or 3.b is used. Importantly, if P already has sufficient

nonnormality that leads to 3.a, there is no need to do 3.b to check if any continuous W has

sufficient nonnormality and is associated with P . These conditions are only checked to find

a useful W to compensate for the lack of nonnormality of P . In 3.b, 2sCOPE uses W to

tease out an exogenous part of the endogenous regressor for model identification.

Step 4. This step applies the appropriate copula procedures using either control func-

tions or likelihood-based joint estimation. To choose between likelihood-based methods and

moment-based control function methods when both can be used, see the previous section

“Control Function vs Likelihood-based Correction Methods”. Among copula control func-

tion methods, 2sCOPE is relatively easy to apply and reasonably robust (e.g., assumes no
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particular error distribution and no specific copula structure for regressor-error dependence).

This balance of simplicity and robustness makes it well suited for a first-line method. The

more general 2sCOPE-np is first-stage model-free and allows for broader types of regressor-

confounder dependence, making it preferred when more robustness is desired. The nonpara-

metric kernel control function estimation employed in 2sCOPE-np does require larger sample

sizes (Boundary Condition 3 in Table 4) and greater computation power, compared with the

simpler 2sCOPE. For control function methods, if the generated regressor is not statistically

significant, this suggests the endogenous regressor Pmain is not sufficiently correlated with

the error term, and endogeneity is unlikely. Thus, non-significant generated regressors should

be dropped and the model re-estimated. Marketing studies have dropped copula correction

terms at the p > 0.10 level (e.g., Datta et al. 2022), suggesting even marginally significant

copula correction terms are still worth retaining. If no generated regressor is significant, the

model can be estimated in a more traditional manner (i.e., OLS).

Step 5. The final step is to check the inflation of standard errors of copula corrected

estimates relative to those of uncorrected estimates using the ICON statistics. An inflation

of > 6 times flags potential model misspecification issues or lack of model identification.

COPULA IMPLEMENTATION EXAMPLES

This section illustrates use of the flowchart to guide copula implementation via two ex-

amples using weekly store sales data from the IRI Academic data set (Bronnenberg, Kruger,

and Mela 2008). To correct for price endogeneity, the first example examines the main effect

of price, while the second example examines higher-order moderating effects captured by the

interaction between price and store feature (i.e., weekly store flyer promoting products).

Example 1: Main Effects Application of Copula Correction

Returning to our running Example 1, the outcome of interest is the weekly sale volume

in the diaper category for one focal store in the Buffalo, NY market in the years 2002-2006,
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where volume is measured in diaper counts. Price is defined on an equitable volume across

UPCs, since pack sizes vary in diapers per pack. IRI additionally collected information on

whether UPCs were featured in the store’s weekly flyer that week. Category price and feature

are evaluated as market-share weighted averages of UPC-level price and feature, respectively.

Knowledge of category price elasticity is critical for retailers or category managers to set

optimal pricing and increase category demand that is the first source of profitable growth, and

for policymakers to design interventions (e.g., gasoline tax). Price is commonly considered

endogenous in category demand models (Nijs et al. 2001; Park and Gupta 2012; Li, Linn, and

Muehlegger 2014). In this example, price was treated as endogenous because of unobserved

variables (e.g., retailer pricing decisions, number of shelf facings) that, when omitted from

a model, become part of the structural error. For brevity, we use “Price” and “Volume”

hereafter to refer to the log-transformed category price and sales volume, respectively. The

impacts of price and feature advertising appear in the following model:

Volumet = µ+ αPt + β′Wt + Et. (13)

In the model, Pt is the endogenous regressor as log-transformed price. Wt is a vector of

control variables including feature, week, and binary variables for quarters 2, 3, and 4. We

treat feature as exogenous because decisions to promote items in the store flyer are made

well in advance of implementation, and are likely uncorrelated with weekly unobservables

(Chintagunta 2002; Sriram, Balachander, and Kalwani 2007). The week variable is included

as a control variable to account for a small but significant trend in price increases over time.

One solution to price endogeneity is to use IVs, where the diaper price of another store in

the same market was used as an IV. Prices are correlated for both stores, with the belief that

wholesale prices are similar for products sold by the two stores (relevance), but uncaptured

product characteristics (including retailer decisions like shelf facings and shelf location) are

unlikely related to wholesale prices (ER). However, the ER assumption is untestable and

the IV may be not strong enough. This is one of the use cases for copula correction as

shown in Figure 5: use multiple methods (both IV estimation and copula correction here)

41



to cross-validate results and increase robustness of causal inference.

We next assess the plausibility of the underlying assumptions in the application (Step 0b

in Figure 5), following Item a under Assess Assumptions in Table 4. Since the model includes

feature and quarters to control for planned promotion activities affecting sales, the omitted

variables mainly involve unmeasured product attributes tied to retailer decisions (like shelf

facings and locations). Their joint effect (U) can be expected to follow a normal distribu-

tion.27 We then use both theoretical reasoning and diagnostic tools to assess regressor-error

dependence. The endogenous regressor, Price, is likely bounded within a feasible range due

to bounded price-setting (Kocherlakota 2021). As discussed previously, the GC dependence

is empirically plausible because it can flexibly capture regressor–error dependence irrespec-

tive of the bounded nature of endogenous regressors. We will further apply ICON (Boundary

Condition 1 in Table 4) to inspect standard errors from copula correction to confirm empiri-

cal identification and check for signs of regressor-error dependence misspecifications. Before

we present the results, we first walk through the steps of the Figure 5 flowchart.

Step 1. Is Pmain continuous? The endogenous regressor, Price, is a continuous measure,

ranging from $0.140 to $0.262 per diaper, with a mean of $0.221, median of $0.224, and

standard deviation of $0.018.

Step 2. Is Pmain normally distributed? Figure 6 shows somewhat skewness to the left

for the price variable. However, the skewness is not strong enough to reject the KS test

for normality (D = 0.08, p > 0.05) at the 0.05 level of significance. This means that the

endogenous regressor may not have sufficient nonnormality. One solution is to leverage

related exogenous regressors with sufficient nonnormality via 2sCOPE as described next.

Step 3.b. Is at least one W sufficiently nonnormal and correlated with Pmain? The

first-stage regression shows only one exogenous regressor is sufficiently correlated with price

(F -stat > 10): feature (F = 16.8). The regressor, feature, is highly skewed (Figure 6) and

27Because copula control function (CCF) is robust to symmetric nonnormal distributions of U , we checked residuals

for signs of asymmetrically distributed U . The residuals from using OLS and CCF have skewness of -0.088 and -0.083,

respectively, indicating no residual skewness. This provides greater assurance of copula validity, although we should

note that skewed residuals do not necessarily contradict the use of CCF since CCF permits nonnormal error term.
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Figure 6: Distributions of Price and Feature in Example 1.

nonnormally distributed based on the KS test (D = 0.14, p < 0.0001).

Step 4. Perform 2sCOPE estimation. The above steps show that conditions have been

verified such that 2sCOPE can be used to handle the price endogeneity.28 The standard

errors are obtained using 500 bootstrap samples.

Step 5. Check the inflation of standard errors using the ICON statistics. All ICON

statistics are far less than 6 (Table 7), showing no signs of weak identification.

Table 7 compares 2sCOPE to OLS and 2SLS using the IV. The 2sCOPE estimation

results show that the copula correction term Cprice (i.e., the first-stage residual) is significant

(Est. = 0.077, SD = 0.037, p < 0.05), indicating the presence of price endogeneity, so we

retain the CCF in the model to control for price endogeneity.

The results show that while price has the smallest absolute effect in the OLS model (Est.

= -1.367, SE = 0.137, p < 0.01), the effect is greatest in the 2SLS model (Est. = -2.470, SE

= 0.661, p < 0.01); the 2sCOPE price estimate falls in between and is much closer to the

2SLS price estimate (Est. = -2.205, SE = 0.446, p < 0.01). Compared to 2SLS using IV, the

2sCOPE results are not unlike that of 2SLS, within one SD of the 2SLS price estimates. The

2SLS price estimate differs somewhat from the 2sCOPE price estimate by 12.0%. Although

the correlation in prices between the two stores is significant and passes the weak instruments

test (F = 13.89, p < 0.01), the correlation is not especially strong (r = 0.218). Thus, the

difference between 2sCOPE and 2SLS seen here could be because the other store’s price as an

28Although the sample size (n=261) does not reach 300 to use 2sCOPE-np (Boundary Condition 3 in Table 4),

2sCOPE-np yields similar estimation results, which are reported in Web Appendix Table W16.
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Table 7: Estimation Results for Example 1

Parameters OLS 2SLS 2sCOPE

Est (SE) P Est (SE) P Est (SE) P ICON

Intercept 6.005 (0.205) 0.000 4.371 (0.978) 0.000 4.763 (0.668) 0.000 2.9

Price -1.367 (0.137) 0.000 -2.470 (0.661) 0.000 -2.205 (0.446) 0.000 3.3

Feature 0.298 (0.095) 0.002 0.059 (0.178) 0.738 0.124 (0.124) 0.317 1.3

Week -0.002 (0.000) 0.000 -0.002 (0.000) 0.000 -0.002 (0.000) 0.000 1.1

Q2 -0.019 (0.031) 0.550 -0.014 (0.035) 0.693 -0.018 (0.036) 0.617 1.2

Q3 -0.018 (0.032) 0.567 -0.034 (0.036) 0.349 -0.029 (0.035) 0.407 1.1

Q4 -0.018 (0.032) 0.576 -0.061 (0.041) 0.140 -0.044 (0.035) 0.209 1.1

Cprice 0.077 (0.037) 0.037 —

ρ 0.366 (0.160) 0.022 —

Note: Table presents estimates, bootstrapped standard errors in the parentheses, and the p-values. ICON is

the ratio of standard errors of 2sCOPE estimates to those of the OLS estimates.

IV is not particularly strong, and a strong IV is not always readily available. In such cases,

cross-validating results from different methods (IV correction and IV-free copula correction)

can increase the robustness of causal estimation. The 2sCOPE shows that price is positively

correlated with the error term (Est. = 0.366, SE = 0.160, p < 0.05), indicating the presence

of price endogeneity. This finding is consistent with the result of the Wu-Hausman test (H

= 3.56, p < 0.07) from 2SLS, which also suggests endogeneity was likely present. Overall,

the comparison with 2sCOPE shows that without endogeneity correction, managers would

severely under-estimate price elasticity based on the OLS findings for this store, by 38.0%.

Example 2: Copula Estimation of Endogenous Interactions

Example 2 illustrates how copula correction is applied with endogenous interaction terms

and examines the adverse effects (estimation bias and inflated estimation variability) of

including higher-order copula terms. This empirical application extends the sales response

model in Equation 13 to include an interaction term between price and feature. See Web

Appendix G.2 for detailed analysis and results of Example 2.

Managerial and Academic Implications

The two examples highlight how copulas can correct for endogeneity to remove bias in

estimation, as well as how copulas should be correctly specified in models with interactions.
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Example 1 showed that without the copula, the OLS estimate for price elasticity was severely

under-estimated (Est. = -1.367) compared to both 2SLS (Est. = -2.470) and 2sCOPE (Est.

= -2.205). The result showed price elasticity in OLS was 38% lower in size than 2sCOPE.

We also noted that the instrument was significant but not particularly strong, attributing

to the difference between 2SLS and 2sCOPE estimates.

Controlling for endogeneity in price elasticity estimates can have important managerial

implications. Price elasticity estimates are often a crucial piece of information for managers

to set the optimal pricing that maximizes profit. Let the profit function p(Price) = V ∗

(Price−Cost), where V is sales volume and cost is the marginal cost. The maximum profit

is then the value of Price that satisfies the condition ∂ ln p(Price)
∂Price

= 0. Following the Amoroso-

Robinson relation, the profit-maximizing price is Priceoptim = α
1+α

Cost, where α is the price

elasticity. In Example 1, we find the optimal pricing is Priceols =
−1.367

−1.367+1
Cost = 3.72∗Cost

if the OLS price elasticity estimate is used, and Pricecop = −2.205
−2.205+1

Cost = 1.83 ∗ Cost if

the 2sCOPE estimate is used. Because of the price endogeneity associated with the scanner

panel data, the biased OLS estimate underestimates the size of price elasticity, meaning that

OLS considers consumers less price sensitive than they actually are. Thus, the manager will

set the price more aggressively; in Example 1, using the OLS price elasticity estimate means

the manager will set price at 103% higher than the actual optimal price.

This considerable difference in optimal pricing based on the OLS and 2sCOPE price elas-

ticity estimates results in a substantial profit difference as well. It can be shown that the prof-

its achieved at the different prices have the following relationship: ln pcop
pols

= α ln[Pricecop/Priceols]+

ln[(Pricecop − Cost)/(Priceols − Cost)], where pcop and pols refer to the profit achieved

when using the 2sCOPE and OLS price elasticity estimates, respectively. For Example

1, pcop
pols

= 1.46, which corresponds to a loss of 31% in profit when using the incorrect OLS

price elasticity estimate, compared to using the correct 2sCOPE estimate (Figure 3).
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CONCLUSION

Endogeneity correction is a key concern for academics and practitioners, and the instrument-

free copula correction has been increasingly used to address endogeneity bias. Copula correc-

tion has practical advantages and feasible implementation. Yet, like other causal estimation

procedures designed for use with nonexperimental data, the validity of copula correction

requires correct implementation of the method, needing boundary conditions and data re-

quirements to be met in its empirical applications.

This study contributes to the field in three areas. One, we advance the discussion re-

garding the theoretical rationales of copula correction and provide a review for how copula

correction has been used in marketing and other fields to correct for endogeneity, across

substantive areas, and how it has been applied (and misapplied). Two, we elucidate the

identification assumptions and data requirements of copula correction and build on recent

advances to provide an updated best practices ‘cookbook’ for both managers and academics

to follow in applying and implementing the copula procedures (Tables 1 – 6; Figure 5). The

cookbook also informs how to modify analysis when certain conditions are not met. Three,

we evaluate implementation variations (such as optimal copula transformations and higher-

order effects of moderation) and demystify misconceptions of copula correction, showing

theoretically and with real-world data best practices for copula correction usage.

We demonstrate that existing variations in the implementation of copula correction have

substantial impacts on its performance. Our discussions on the methodological aspects of

the copula method informs optimal and theoretically sound implementation for copula cor-

rection. We present a theoretically grounded way of constructing copula transformation that

avoids the potential finite sample bias problem and substantially improves the performance

of copula correction. We show that excluding the copula terms for higher order endogenous

regressors (i.e., interactions) is optimal and considerably outperforms when these copula

terms are included. To our knowledge, these are the first theoretical results justifying the

optimal implementation of these aspects affecting the performance of copula correction.
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We also discuss the latest extensions that expand the applicability, flexibility and robust-

ness of copula correction, highlighting endogeneity correction when the conditions and data

requirements of earlier copula correction approaches are not met (Table 2); for cases where

the endogenous regressors have insufficient nonnormality and correlate with exogenous re-

gressors (and the traditional P&G method fails to work), we describe how a two-stage copula

correction (2sCOPE) and its extensions, as well as other copula correction procedures, can

still work by leveraging relevant exogenous regressors.

We synthesize the above discussions into a flowchart with easy-to-follow checkpoints and

data requirements. This guide is practical for researchers — in both academia and industry

— to employ copula correction methods. In addition to making the copula code available,

we illustrate its usage in two empirical examples for two different product categories.

Future avenues of research are teeming, such as extending current copula correction

frameworks for more generality and for handling discrete endogenous regressors such as

endogenous treatment selection (Qian and Xie 2024; Hu, Qian, and Xie 2025). This also

includes adapting copula correction to Bayesian inference (Haschka 2025), exploring methods

to further reduce the dependence on the GC assumption, and improving computational

efficiency especially for computationally intensive procedures (e.g., the MLE procedures), to

name a few. While copula correction has made advances, and a great variety of quantitative

models have utilized copulas, new models are regularly emerging. As such, new opportunities

to adapt copula correction to new types of data, models, or applications abound.
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Table W1: Examples of Substantive Areas in Marketing with Applications of Copula 

Endogeneity Correction 

Study Product Price Place Promotion 

SFa & 

CRM Othera 

Burmester et al 2015    x   

Datta, Foubert, and van Heerde 2015    x   

Mathys, Burmester, and Clement 2016 x   x   

Datta, Ailawadi, and van Heerde 2017  x x x   

Lenz, Wetzel, and Hammerschmidt 

2017 
     x 

Atefi et al 2018     x  

Gielens et al 2018 x   x   

Gijsbrechts, Campo, and Vroegrijk 2018      x 

Guitart, Gonzalez, and Stremersch 2018  x  x   

Lamey et al 2018  x  x   

Lim, Tuli, and Dekimpe 2018  x     

Ter Braak and Deleersnyder 2018 x x    x 

Wetzel et al 2018     x  

Carson and Ghosh 2019     x  

Keller, Deleersnyder, and Gedenk 2019  x     

Nath et al 2019      x 

Schulz, Shehu, and Clement 2019      x 

Vieira et al 2019    x  x 

Zhao et al 2020 x      

Bombaij and Dekimpe 2020      x 

Bornemann, Hattula, and Hattula 2020 x      

Campo et al 2021 x x     

Guitart, Hervet, and Gelper 2020    x   

Heitmann et al 2020 x x  x  x 

Homburg, Vomberg, and Muehlhaeuser 

2020 
  x   x 

Magnotta, Murtha, and Challagalla 2020     x  

Shehu, Papies, and Neslin 2020  x     

Vomberg, Homburg, and Gwinner 2020     x  

Maier and Wieringa 2021      x 

Aydinli et al 2021  x    x 

De Jong, Zacharias, and Nijssen 2021      x 

Garrido-Morgado et al 2021 x x     

Guitart and Stremersch 2021  x  x  x 

Liu et al 2021  x     

Van Ewijk et al 2021  x  x   

Bachmann, Meierer, and Näf 2021     x  

Cron et al 2021     x  

Dhaoui and Webster 2021      x 

Fossen and Bleier 2021      x 
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Hoskins et al 2021      x 

Kidwell et al 2021      x 

Lamey, Breugelmans, and ter Braak 

2021 
     x 

Sawant, Hada, and Blanchard 2021      x 

Bhattacharaya, Morgan, and Rego 2022      x 

Borah et al 2022 x   x  x 

Cao 2022 x     x 

Danaher 2022  x     

Datta et al 2022 x x x    

Janani et al 2022     x  

Krämer et al 2022     x x 

Ludwig et al 2022     x  

Maesen et al 2022  x x    

Moon, Tuli, and Mukherjee 2022       

Nahm et al 2022  x     

Rajavi, Kushwaha, and Steenkamp 2022 x x x x   

Scholdra et al 2022 x x x x   

Van Ewijk, Gijsbrechts, and Steenkamp 

2022a 
x x x x   

Van Ewijk, Gijsbrechts, and Steenkamp 

2022b 
x x x x   

Widdecke et al 2022  x  x   

Zhang et al 2022  x     

Wiseman et al 2022     x  

Xu et al 2022     x  

Wiegand, Peers, and Bleier 2022    x  x 

Cao et al 2023      x 

Gielens et al 2023 x x     

Umashankar, Kim, and Reutterer 2023      x 

Burchett, Murtha, and Kohli 2023     x  

Dall-Olio and Vakratsas 2023 x x  x   

Maesen and Lamey 2023 x x     

Zhang and Liu-Thompkins 2023     x  

Kan et al 2023  x  x   

Kumar et al 2023      x 

Sok, Danaher, and Sok 2023     x  

Cascio Rizzo et al 2024      x 

Elhelaly and Ray 2024      x 

Ma et al 2024  x x    

Tian et al 2024      x 

Geyskens et al 2024  x  x   

Wiles et al 2024    x   

Chaker et al 2024     x  

Yazdani, Gopinath, and Carson 2024      x 



3 

 

Kanuri, Hughes, and Hodges 2024      x 

Özturan, Deleersnyder, and Özsomer 

2024 
   x   

Sklenarz et al 2024      x 

Maesen 2024 x x  x   

Friess et al 2024     x  

Vafainia et al 2024    x   

Paschmann et al 2025      x 

Yazdani, Chakravarty, and Inman 2025      x 

Fang, Qian, and Xie 2025  x     

Holtrop et al 2025  x  x   

Vomberg and Gegerfelt 2025      x 

Rahman et al 2025   x    

Tran et al 2025      x 

Zaefarian et al 2025      x 

Park and Griffith 2025      x 

Van Crombrugge et al 2025 x x  x   

Ahearne, Pourmasoudi, and Habel 2025     x  

Haschka and Herwartz 2025  x     

Weiger et al 2025      x 

Note: a “SF” is Saleseforce; “Other” includes word-of-mouth, warranty claims, store visits 
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Table W2: Publications Using Copula Correction in Leading Marketing Journals

Characteristics Number Characteristics Number Characteristics Number

Endogenous Regressors Outcome Type Sample Size

Product 20 Continuous 89 ≤ 100 1

Price 35 Discrete Choice 15 101—1,000 40

Place 10 Count 3 1,001—5,000 8

Promotion 28 5,001—50,000 18

Sales Force & CRM 18 Panel Data 66 ≥ 50, 001 33

Other 40

Note: “Other” includes word-of-mouth, warranty claims, store visits, etc. The list of journals includes

Journal of Marketing, Journal of Marketing Research, Marketing Science, Journal of Consumer Research,

Journal of the Academy of Marketing Science, Journal of Retailing, International Journal of Research in

Marketing, and Journal of Consumer Psychology. See Web Appendix Table W1 for a detailed list of these

papers with their substantive areas. The total number of unique journal publications is n=100. Some

columns sum to more than the number of unique papers since multiple copulas may be used or multiple

models estimated in a paper using copulas.
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Table W3: Examples of Applications Involving Higher-order Endogenous Terms.

Study Higher-Order Endogenous Regressors CHI∗

Burmester eta al. (2015) Ad Stock * Publicity Stock Yes

Blauw and Franses (2016) Mobile Phone Ownership2 Yes

Lenz, Wetzel, and Hammerschmidt (2017) Corporate Social Responsibility2 No

Lamey et al. (2018) Promotion Intensity * Store context No

Gielens et al. (2018) R& D * Retailer Power No

Yoon et al. (2018) Knowledge * Government Activity Yes

Atefi et al. (2018) Trained Percentage2 Yes

Trained Percentage *Performance Diversity

Guitart, Gonzalez, and Stremersch (2018) Advertising * Price No

Wetzel et al. (2018) Recruitment Spend * Brand Age No

Keller, Deleersnyder, and Gedenk (2019) Price Index * Price Premium No

Heitmann et al. (2020) Complexity *Segment Typicality No

Vomberg, Homburg, and Gwinner (2020) Failure Culture* Reacquisition Policies No

Guitart and Stremersch (2021) Ad Stock2, Price2, Informational2 Yes

Magnotta, Murtha, and Challagalla (2020) Salesperson Training*Salesperson Incentive No

Homburg, Vomberg, and Muehlhaeuser (2020) Direct Channel Usage*Formalization No

Liu et al. (2021) Price Discount2, order Coupon2 Yes

Kramer et al. (2022) Industrial Service Share2 Yes

CHI: copula correction terms for high-order terms of endogenous regressors included.
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WEB APPENDIX B: DOUBLE ROBUSTNESS PROPERTY OF COPULA

CORRECTION

This section demonstrates the double robustness of copula correction using control func-

tions in that control functions do not require the error E to be normally distributed or

follow a specific copula structure jointly with the endogenous regressors P . Consequently,

the normal error distribution and the GC regressor-error dependence are only sufficient but

not necessary conditions for copula control functions to work.

Consider the following structural equation model according to the data generating process

from Figure 2.d:

Yi = µ+ α · Pi + β ·Wi + Ei (W1)

Ei = Ui + ξi (W2)

where Ui denotes the endogenous part of the error Ei and captures the joint effects of all

unobserved confounders, and ξi denotes the exogenous disturbance term that is independent

of Pi, Wi and Ui. With the intercept µ in the model and, without loss of generality, both Ui

and ξi have means of zero.

As noted in the main text, the exogenous part of Ei, ξi, simply adds noise but does

not affect endogeneity correction. Because ξi does not need to follow a normal distribution

or any GC assumption in order for the augmented OLS regression to correct for bias, this

means that the identification of the model for copula correction using control functions does

not require the structural error Ei be normally distributed or follow the GC dependence

structure jointly with regressors.
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We illustrate this double robustness property of copula correction using a simulation

study. We generate Pt,Wt, Ut using the same GC distribution as in Equations W3 to W7:


P ∗
t

W ∗
t

U∗
t


∼ N




0

0

0


,


1 ρpw ρpU

ρpw 1 0

ρpU 0 1




= N




0

0

0


,


1 0.5 0.5

0.5 1 0

0.5 0 1




, (W3)

Ut = Φ−1(Φ(U∗)) = 1 · U∗
t , (W4)

ξt ∼ N(0, 1), (W5)

Pt = H−1(UP,t) = H−1(Φ(P ∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (W6)

Yt = µ+ α · Pt + β ·Wt + Et = µ+ α · Pt + β ·Wt + Ut + ξt (W7)

In the simulation, we use the Gamma (1,1) distribution for Pt and the exponential distribu-

tion Exp(1) with rate 1 for Wt. We consider two distributions for ξt: uniform on [-0.5,0.5]

and the lognormal(0,1)-e0.5 distribution. Thus, the error term Ei = Ui + ξi will not follow

a normal distribution because of nonnormality of ξi. Furthermore, Ei will not follow a GC

model with regressors. However, Assumptions 1 and 2 of 2sCOPE still holds because Ui

is normally distributed and follow a GC model with regressors. Thus, we expect 2sCOPE

to be able to recover true parameter values. We then simulate Yt using Equation W7 with

parameter values given in Table W4. Sample size is n=1,000 per dataset. For each dataset,

we apply OLS and the 2sCOPE estimation described in Table 3. A total of 1,000 datasets

were generated.

Table W4 reports the mean and standard deviation of the model estimates across 1,000

simulated data sets. As shown in Table W4, OLS has large bias for both distributions of ξt.
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Table W4: Results of the Simulation Study: Double Robustness of Copula Correction

Distribution Skewness OLS 2sCOPE

of ξt of the error Et Param. True Mean SE Mean SE

Unif[-0.5,0.5] 0.00 µ 1 0.69 0.05 1.00 0.06

α 1 1.57 0.04 1.00 0.07

β -1 -1.26 0.03 -1.00 0.04

σE 1.04 0.91 0.02 1.04 0.04

Lnorm(0,1)- e0.5 3.68 µ 1 0.69 0.11 1.00 0.14

α 1 1.57 0.08 1.00 0.16

β -1 -1.26 0.08 -1.00 0.11

σE 2.37 2.31 0.27 2.37 0.26

As expected, 2sCOPE corrects for the OLS estimation bias and recovers the true parameter

values despite the error term E being nonnormally distributed and does not follow a GC

model with regressors, demonstrating the double robustness property of the 2sCOPE method

in that a GC regressor-error dependence is not required.

Furthermore, although used in method derivation, Assumptions 1 and 2 in Table 4 are not

strictly required as shown next. Table W5 evaluates the performance of copula correction

when the distribution of Ut follows a nonnormal distribution. That is, we use the same

simulation set up as above except that Ut = t−1
4 (Φ(U∗

t )) instead of Ut = U∗
t , where t4

represents the CDF for the t-distribution with 4 degrees of freedom. Thus, both Ut and

Et are nonnormally distributed, violating Assumptions 1 and 2 of the 2sCOPE procedure.

As shown in Table W5, 2sCOPE can still correct for the OLS estimation bias and recover

the true model parameters well. The results show that although Assumptions 1 and 2 are

used in the derivation of 2sCOPE, these assumptions are not strictly required; 2sCOPE

demonstrates desirable robustness to the violations of Assumptions 1 and 2.
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Table W5: Results of the Simulation Study: Robustness of Copula Correction with a
misspecified U distribution.

Distribution Skewness OLS 2sCOPE

of ξt of the error Et Param. True Mean SE Mean SE

Unif[-0.5,0.5] 0.00 µ 1 0.57 0.07 0.99 0.09

α 1 1.78 0.06 1.01 0.13

β -1 -1.35 0.05 -1.00 0.07

σE 1.44 1.26 0.07 1.43 0.09

Lnorm(0,1)- e0.5 2.99 µ 1 0.57 0.12 0.99 0.16

α 1 1.78 0.10 1.02 0.22

β -1 -1.35 0.09 -1.01 0.13

σE 2.57 2.47 0.30 2.57 0.30
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WEB APPENDIX C: ICON: AN INDEX OF COPULA-MODEL

NONIDENTIFICATION

When properly applied with the underlying assumptions and data requirements being

met, copula correction can be a powerful tool for addressing endogeneity bias using nonex-

perimental data. The main text shows that copula control function methods work under

considerably less strict conditions and thus are more robust and applicable than previously

believed. However, it is important to check boundary conditions to minimize the potential

pitfalls of incorrect applications of copula correction.

As noted in the main text and shown in existing research, when the main identification

assumptions of copula correction are violated, copula models can become weakly identified or

unidentified, resulting in poor performance of copula correction (e.g., Park and Gupta 2012;

Haschka 2022; Qian and Xie 2024; Yang, Qian, and Xie 2024a). Model weak identification

or nonidentification can occur when regressor distributional requirements are not satisfied.

When exogenous regressors lack sufficient relevance or sufficient nonnormality to compen-

sate for insufficient nonnormality of endogenous regressors, copula terms become nearly

collinear with existing regressors, yielding estimates with significant finite-sample bias and

huge standard errors (Yang, Qian, and Xie 2024a). The evaluation using simulation studies

has also shown that when the regressor-error dependence follows a linear model instead of

the GC model, copula correction yields significantly biased estimates with huge standard

errors (Haschka 2022; Qian and Xie 2024), which is caused by nearly singular Hessian ma-

trices of the almost flat likelihood functions in the misspecified GC copula model. Thus,

theory suggests significantly inflated standard errors of estimates as warning signs of nearly
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unidentified models caused by misspecified regressor-error dependence.

Because weakly identified copula models can yield significantly biased and imprecise

estimates, copula correction using such models is inappropriate. In this section, we propose

a simple measure, named ICON (an Index of Copula-model Nonidentification), to flag such

scenarios in which the deployed copula correction model/approach is likely inappropriate

or needs further refinement. The ICON measure is defined as the ratio of the standard

error of a copula corrected estimate to the standard error of the corresponding uncorrected

estimate. The rationale for this measure is that when the copula model becomes weakly or

nonidentified, the standard errors of the copula corrected estimates will become large. Prior

research has shown for such models, the standard errors of copula corrected estimates are

typically more than 8-10 times of those of copula uncorrected estimates (Park and Gupta

2012; Haschka 2022; Qian and Xie 2024; Yang, Qian, and Xie 2024a). To be conservative, we

suggest ICON> 6 as a threshold value for weakly identified or nonidentified copula models.

To illustrate the use of ICON, we first consider the case of model nonidentification caused

by the lack of meeting the regressor distributional requirements. We generate Pt,Wt, Ut using

the following GC model
P ∗
t

W ∗
t

E∗
t


∼ N
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
0

0

0


,


1 ρpw ρpe

ρpw 1 0

ρpe 0 1




= N
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0

0

0
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,
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1 0.5 0.5

0.5 1 0

0.5 0 1




, (W8)

Et = G−1(UE,t) = G−1(Φ(E∗
t )) = Φ−1(Φ(E∗)) = 1 · E∗

t , (W9)

Pt = H−1(UP,t) = H−1(Φ(P ∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (W10)
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Yt = µ+ α · Pt + β ·Wt + Et = 1 + 1 · Pt + (−1) ·Wt + Et, (W11)

In the simulation, we use standard normal distributions for the marginal distributions

of Pt and Wt. The GC model is unidentified because both endogenous regressor P and

exogenous regressor W are normally distributed, and the population copula term is perfectly

correlated with the regressors, leading to an unidentified population model. In any finite

sample, however, the regressors are not exactly normally distributed and copula terms are

severely (but not perfectly) collinear with the existing regressors. Thus, in finite samples,

the exogenous regressor Wt lacks sufficient nonnormality to compensate for the normality

of the endogenous regressor Pt. We demonstrate here that the ICON statistics can detect

such nonidentified models in finite samples. Table W6 summarizes the results over 1,000

simulated data sets.

Table W6: Detect Nonidentified Copula Models with ICON: Normal Regressors

Distribution OLS 2sCOPE ICON Percentage

P W Parameters True Mean SE Mean SE (SE2scope/SEols) (ICON> 6)

Normal Normal µ 1 1.00 0.025 1.001 0.031 (0.033) 1.4 0%

α 1 1.666 0.030 1.662 0.547 (0.529) 21.6 100%

β -1 -1.332 0.030 -1.331 0.287 (0.264) 10.8 100%

ρpξ 0.5 - - 0.001 0.363 (0.347) 14.0 100%

σξ 1 0.816 0.018 0.943 0.157 (0.171) 7.0 100%

Note: Table presents the means and standard deviations of parameter estimates over 1,000 simulated
datasets. For 2sCOPE, the numbers within the parenthesis are the averages of bootstrapped standard error
estimates over 1,000 simulated datasets. The ICON column “SE2scope/SEols” presents the averages of the
ratio of the bootstrapped standard error estimates for 2sCOPE to the standard error estimates for OLS
over 1,000 simulated datasets. The column “Percentage (ICON> 6)” presents the percentage of 1000
simulated datasets having ICON > 6.

We observe that 2sCOPE yields estimates that are, on average, very close to the OLS

estimates (i.e, not correcting for endogeneity bias) and also have large estimation variability.
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Overall, the copula correction appears to perform worse than the OLS estimation when the

copula model is nonidentified. The ICON statistic is able to detect model nonidentification

because the ICON statistics are far greater than the cutoff value of 6, flagging these copula

estimates as inappropriate to use. One can also detect the failure of regressor distribution

and relevance requirements using the guidelines provided in Yang, Qian, and Xie (2024a)

(see the boundary condition 2 in Table 4 in the main text that examines the normality

of regressors and first-stage F statistics for the relevance of exogenous regressors). Their

guideline is akin to using the first-stage F statistics to detect weak IVs in IV regressions

(Staiger and Stock 1997). While their guideline is developed for use with 2sCOPE under

the GC joint model for all regressors (and specifically for checking regressor distribution and

relevance requirements), the ICON statistics can be viewed as a more direct and general

measure for detecting model nonidentification, and can detect nonidentified copula models

due to other causes, as shown next.

The ICON statistics can also help detect model identification due to violations of the

regressor-error GC assumption. Past research has also shown that when the regressor-error

dependence follows a linear model instead of the GC model, copula correction yields signifi-

cantly biased estimates with huge standard errors (Haschka 2022; Qian and Xie 2024). The

ICON statistics can be used to detect such misspecified copula models.

To further demonstrate this point, consider the following example using simulated data

with the following data generating process (DGP):
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0 ρp2U 0 1




= N





0

0

0

0


,



1 0 0.5 0

0 1 0 0.5

0.5 0 1 0

0 0.5 0 1




,(W12)

Ut = Φ−1(Φ(U∗
t )) = 1 · U∗

t , (W13)

ξt ∼ N(0, 1) (W14)

P1t = H−1
1 (Φ(P ∗

1t)), P2t = H−1
2 (Φ(P ∗

2t)), (W15)

Pt = P1t + P2t, Wt = L−1(Φ(W ∗
t )), (W16)

Yt = µ+ α · Pt + β ·Wt + Et = 5 + (−1) · Pt + 3 ·Wt + Ut + ξt, (W17)

where U∗
t and P ∗

2t are correlated (ρp2U = 0.5), generating the endogeneity of Pt; Wt is

exogenous and uncorrelated with U∗
t ; W

∗
t and P ∗

1t are correlated (ρp1w = 0.5), and therefore

Wt and Pt are correlated. In this example, Pt represents the price at the market or occasion

t, and the price Pt is the sum of the cost P1t and the markup P2t. The analyst observes the

prices Pt, sales Yt, and an exogenous variable (Wt, e.g., ad spending). There is an unobserved

(omitted) variable Ut (e.g., temperature) that correlates with sales and the markup (ρp2U =

0.5). Furthermore, cost P1t is correlated with Wt (ρp1w = 0.5). We set W to have a

skewed normal distribution: L(·) is the CDF for skewed normal distribution with location=0,

scale=0, slant parameter =10; H1(·) for cost is the CDF for Unif(−1, 1) and H2(·) for

markup is the CDF for Unif(−2, 2), and the price is the sum of cost and markup. We also

have an unobserved exogenous sales shock ξt ∼ N(0, 1).
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Suppose the analyst assumes (Pt,Wt, Ut) follows the GC distribution and use the following

2sCOPE procedure

Yt = µ+ α · Pt + β ·Wt + γCt,p|w + ϵt (W18)

where Ct,p|w = P ∗
t − δ̂W ∗

t . For the above 2sCOPE to work as intended, we require the

assumptions in Table 4 to be reasonably satisfied (as noted above, 2sCOPE is robust to

a range of departures from Assumptions 1 and 2 in Table 4). The above DGP satisfies

all assumptions except Assumption 2 because (Pt,Wt, Ut) does not jointly follow the GC

distribution.

To examine the performance of copula correction, we conduct a simulation study that

generates 1,000 datasets from the above DGP. For each simulated data, we conduct both

OLS and 2sCOPE estimation using Equation W18. As a comparison, we also generate data

from a DGP that satisfies the condition that (Pt,Wt, Ut) follows the GC model below. This

represents that U denotes the combined effect of many omitted variables (e.g., unobserved

product attributes, retailer decisions, etc.) that affect both the cost and markup:


P ∗
t

W ∗
t

U∗
t


∼ N




0

0

0


,


1 ρpw ρpU

ρpw 1 0

ρpU 0 1




= N




0

0

0


,


1 0.5 0.5

0.5 1 0

0.5 0 1




,(W19)

Ut = Φ−1(Φ(U∗)) = 1 · U∗
t , (W20)

ξt ∼ N(0, 1), (W21)
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Pt = H−1(UP,t) = H−1(Φ(P ∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (W22)

Yt = µ+ α · Pt + β ·Wt + Et = 5 + (−1) · Pt + 3 ·Wt + Ut + ξt, (W23)

where H(·) is the CDF for Unif(−2, 2) and we set W as a skewed normal distribution: L(·)

is the CDF for a skewed normal distribution with location=0, scale=0, slant parameter =10.

Table W7 summarizes the results over 1,000 simulated data sets. The result shows that

for the misspecified DGP, the 2sCOPE improves upon OLS to some extent but considerable

bias remains: the α parameter has a bias of 0.25 (-0.751+1) for 2sCOPE instead of 0.36

(-0.647+1) for OLS in Table W7. Table W7 also shows the 2sCOPE α estimate for the

endogenous regressor Pt has a significantly inflated standard error relative to the OLS α

estimate with an average inflation of 7.8 (Table W7). This occurs because gross violations of

GC dependence structure can cause loss of model identification and lead to weakly identified

or nonidentified models, leading to significantly inflated standard errors relative to those

of the uncorrected estimates (Park and Gupta 2012; Haschka 2022; Qian and Xie 2024;

Yang, Qian, and Xie 2024a). Consistent with the literature, the inflated standard errors are

a red flag for model nonidentification or potential gross violations of copula assumptions.

The ICON statistic for the coefficient α estimate of the endogenous regressor exceeds the

cutoff value of 6, indicating potential model nonidentification issues. Here, the regressor

distributional and relevance requirements are satisfied, so the culprit can be attributed to

the violation of GC assumption. By contrast, Table W7 shows when the underlying DGP is

correctly specified, the OLS and 2sCOPE estimates have similar variability and the average

ICON statistic for α is only about 3.7 (Table W7), much less than the threshold of 6.

In practice, the analyst will consider what to do if the ICON statistics indicate potential
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Table W7: Detect Nonidentified Copula Model with ICON: Misspecified P − U
Dependence.

P − U OLS 2sCOPE ICON Percentage

Dependence Param. True Mean SE Mean SE SE2scope/SEols (ICON>6)

Misspecified µ 5 5.128 0.069 5.090 0.120 (0.118) 1.6 0%

α -1 -0.647 0.035 -0.751 0.265 (0.262) 7.8 100%

β 3 2.840 0.070 2.887 0.139 (0.135) 1.9 0%

σE 1.44 1.342 0.030 1.386 0.068 (0.079) 2.6 0%

Correctly Specified µ 5 5.389 0.073 5.000 0.132 (0.132) 1.7 0%

α -1 -0.457 0.039 -0.997 0.149 (0.148) 3.7 0%

β 3 2.509 0.078 2.998 0.156 (0.153) 2.0 0%

σE 1.44 1.298 0.030 1.416 0.067 (0.066) 2.2 0%

Note: Table presents the means and standard deviations of parameter estimates over 1,000 simulated
datasets. For 2sCOPE, the numbers within the parenthesis are the averages of bootstrapped standard error
estimates over 1,000 simulated datasets. The ICON column “SE2scope/SEols” presents averages of the
ratio of the bootstrapped standard error estimates for 2sCOPE to the standard error estimates for OLS
over 1,000 simulated datasets. The column “Percentage (ICON> 6)” presents the percentage of 1000
simulated datasets having ICON > 6. The P − U dependence is misspecified in copula correction when
DGP follows Equations W12-W17 and correctly specified when DGP follows Equations W19-W23.

model nonidentification issues due to potential violations of GC dependence. The analyst

can check the appropriateness of the model specifications and revise the copula correction

strategies if alternative copula specifications make more sense.

We offer two potential solutions. One solution is to include relevant control variables.

Note that Assumption 2 in Table 4 only requires that the unexplained dependence between P

and U (or E) given exogenous regressors inW to be adequately captured by the GC model. P

and U do not need to follow a GC dependence model unconditionally on exogenous regressors

(Hu, Qian, and Xie 2025). In the above example, one may consider adding control variables

that proxy or predict well either cost or markup so that one part of price is explained

away or determined sufficiently (such that the unexplained dependence between P and U

by relevant control variables can be captured by a GC relationship, even if P and U do not

follow GC model unconditionally on W ). Thus, exogenous variables can play an important
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role in copula correction just like the IV approach. In many cases, IVs are plausible only

after good control variables are included in the model. For example, proximity to a college

or hospital is often used as an IV that is valid when the model includes important control

variables to account for regional differences (e.g., Ebbes et al. 2005). Although exogenous

control variables can play important roles in both copula correction and IV methods, copula

correction does not require IVs.

The other solution when ICON detects potential model misspecification is that the ana-

lyst may consider collecting additional data (e.g., cost) and using alternative copula correc-

tion methods. In the above example, one may consider a revised 2sCOPE procedure with

two copula correction terms for cost and markup separately.

Yt = µ+ α · (P1t + P2t) + β ·Wt + γ1Ct,p1|w + γ2Ct,p2|w + ϵt, (W24)

where P1t represent the cost part computed using the collected data, and P2t represent the

remaining markup part of the price (i.e., Pt −P1t). Table W8 reports the results from 1,000

simulated data sets. The refined 2sCOPE using two copula correction terms for cost and

markup separately corrects the endogeneity bias of the OLS estimates. The standard error of

the price coefficient is substantially smaller now, and the ICON statistics indicate no model

identification issues.

In conclusion, it is prudent to assess the plausibility of copula correction by consider-

ing the source of endogeneity to design suitable copula correction procedures. Using the

ICON statistics helps identify potential model nonidentification and misspecification issues.

An ICON ratio > 6 for copula corrected coefficient estimates for endogenous regressors in-

dicates potential model identification issues and model violations. When this occurs, one
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Table W8: Results of the Simulation Study: Refined Copula Correction with Two Copula
Correction Terms.

OLS 2sCOPE ICON Percentage

Param. True Mean SE Mean SE SE2scope/SEols (ICON>6)

µ 5 5.128 0.069 5.001 0.092 (0.091) 1.2 0%

α -1 -0.647 0.035 -0.994 0.150 (0.151) 4.2 0%

β 3 2.840 0.070 3.000 0.100 (0.100) 1.3 0%

σE 1.44 1.342 0.030 1.422 0.069 (0.067) 2.0 0%

See Note under Table W7.

can consider revising model specifications, adding relevant control variables, refining copula

correction strategies, or using other endogeneity correction methods.
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WEB APPENDIX D: OPTIMAL ALGORITHM FOR COPULA

TRANSFORMATION

This section summarizes further results from simulation studies regarding the proper

construction of copula transformation. We also provide an interactive applet supplement

accessible at https://copula-correction.github.io/Webpage/histogram.html for read-

ers to visually explore the results of the simulation study with the source R code available

at https://copula-correction.github.io/Webpage/code%20and%20examples.html.

An Example of Copula Transformation

To demonstrate how the empirical rank-based copula transformation is constructed, con-

sider the example of the selling price of twenty goods from a small retailer, as shown in

Table W9. The construction of the empirical rank-based copula follows two steps. First,

the observations are ordered and mapped to a ranked percentile according to the empirical

cumulative distribution, F (·). For example, the first observation (of twenty) is 1
20
, or 5% of

the cumulative observations; the second observation is 2
20
, or 10%, and so on. The second

step computes the inverse normal CDF of that ranked percentile as shown in the column

“Price*”: an observation in the bottom 5% (or fifth percentile) maps onto the far left end

of a standard normal distribution, in this case about -1.6449 standard deviations below 0.

One item from Table W9 is of particular importance: the last observation is technically

the 100th percentile, however, the inverse normal CDF of the 100th percentile is undefined.

This is because the probability (reflected as F ) must be between 0 and 1. The latent copula

data, Price*, for the 20th observation here reflects an adjustment, where F (·) becomes the
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observation count divided by the observation count plus one (i.e., n
n+1

= 20
21
). That is, we

compute the copula transformation using Equation 9. Besides ensuring that the copula

transformed values maintain the same rank order as the original regressor values for any

sample size 29, the percentile adjustment for the maximum value yields a theoretically valid

maximum value of the underlying copula data, and stabilizes the copula transformation

without producing an extremely transformed value.

Table W9: Example Creation of the Rank-based Gaussian Copula

Obs Price F (Price) Price∗ Obs Price F (Price) Price∗

1 $14.00 0.05 -1.6449 11 $32.10 0.55 0.1257

2 $15.20 0.10 -1.2816 12 $33.00 0.60 0.2533

3 $16.30 0.15 -1.0364 13 $34.60 0.65 0.3853

4 $16.50 0.20 -1.0364 14 $34.90 0.70 0.3853

5 $21.00 0.25 -0.6745 15 $37.00 0.75 0.6745

6 $24.20 0.30 -0.5244 16 $42.00 0.80 0.8416

7 $27.00 0.35 -0.3853 17 $43.50 0.85 1.0364

8 $29.00 0.40 -0.2533 18 $44.10 0.90 1.2816

9 $29.50 0.45 -0.2533 19 $45.00 0.95 1.6449

10 $30.00 0.50 0.0000 20 $47.80 0.9524+ 1.6684

+: To avoid generating undefined latent copula data, the rank for the maximum value of Price is
changed from 1 to n/(n+1), which is 20/21=0.9524 for the sample size n = 20 here.

29By contrast, in their example of 100 observations, Papies, Ebbes, and Van Heerde (2017) set the percentile for

the last observation to 0.99, which is the same as the second to last observation even though these two raw data

points do not have the same rank order.
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Simulation Study Setup and Findings

In this study, we use the following DGP that is the same as specified in Equations 1-4 in

Becker, Proksch, and Ringle (2022): E∗
t

P ∗
t

 = N


 0

0

 ,

 1 0.50

0.50 1


 (W25)

Et = Φ−1(Φ(E∗
t )) (W26)

Pt = Φ(P ∗
t ) (W27)

Yt = µ+ αPt + Et = −1Pt + Et, (W28)

where Yt, Pt, and Et represent the dependent variable, endogenous regressor, and the error

term, respectively. The DGP specifies a linear model with the endogenous regressor P

following a uniform distribution, and a correlation coefficient of 0.50 between P ∗
t and the

error term Et. The simulation study varies in sample size N from 100 to 60,000 (100, 200,

400, 600, 800, 1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 20,000, 40,000, and 60,000). For each

sample size, we generate 1,000 datasets from the above DGP.

For each generated data set, we apply OLS, the Park and Gupta (P&G) method using

the algorithm in Equation 10 to obtain generated regressor, the P&G method using the

algorithm in Equation 9, and the integrating kernel density estimates (IKDE) to obtain the

generated regressor in estimating the structural model. While the intercept term µ = 0 in

the DGP, the estimation does not assume this a-priori but instead estimates the intercept

parameter jointly with other model parameters. The difference between the average of the

estimates across 1,000 simulated datasets and its true value is the bias of an estimator, which
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is plotted in Figure W1 for α (discussed further below).
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Figure W1: Bias of the endogenous regressor.

Figure W1 shows the bias of α, evaluated as the difference between the mean parameter

estimate averaged over 1,000 simulated data sets and its true value, for different estimation

methods at sample sizes ranging from 100 to 60,000 (Figure W1 x-axis). OLS, as the curve

with circles in Figure W1, exhibits substantial bias (> 1.5) in the coefficient estimate α for

endogenous regressor P . Furthermore, this bias remains the same regardless of sample size.

Consistent with Becker, Proksch, and Ringle (2022), the P&Gmethod using Equation 10 (the

curve with cross marks in Figure W1) substantially reduces the bias in the OLS estimates,

but does not resolve the endogeneity in many situations: substantial bias remains after

copula correction in small to moderate sample sizes. The endogenous regressor’s coefficient
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estimation bias only becomes negligible for sample sizes larger than 4,000. The finite sample

bias for P&G copula regression with intercept discovered in Becker, Proksch, and Ringle

(2022) is a significant problem that needs addressing, so as to ensure appropriate use of

copula correction. This is relevant because prior to Becker, Proksch, and Ringle (2022),

users of copula correction were unaware of such surprisingly severe bias concerns.

A key finding in Figure W1 is that the substantial bias of the P&G copula correction

method for models with intercept, discovered in Becker, Proksch, and Ringle (2022), is largely

solved by adjusting the largest rank using Equation 9. The algorithm in Equation 9 results in

considerably improved performance of the P&G copula correction method; the endogenous

regressor’s coefficient estimate bias now becomes negligible when sample size reaches 400

rather than 4,000 (the curve with squares in Figure W1). Furthermore, even sample sizes

as small as 100 exhibit a bias of about 0.15 for our algorithm30, which is quite smaller

than 1.0 using the algorithm in Equation 10. The theoretical reason is that constructing the

empirical copula using the fixed-value percentile for the largest rank can substantially distort

the distribution of generated regressor P ∗, resulting in suboptimal performance of the PG

copula correction method and substantial bias in small to moderate samples. In conclusion,

including an intercept in the model does not cause concern as long as the last-ranked value

of the empirical CDF is properly handled by using the recommended copula transformation

algorithm.

30This is perhaps unsurprising because the copula correction method, like instrumental variables and other IV-free

methods, is a large sample procedure requiring sufficient information for satisfactory performance.
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Comparison with Integrating Nonparametric Kernel Density Estimation

This subsection aims to examine whether the bias problem discovered in Becker, Proksch,

and Ringle (2022) can be resolved by employing the approach of integrating nonparametric

kernel density estimation (IKDE) to obtain the copula correction term (Park and Gupta

2012). The IKDE method first estimates the marginal density function fP (p) of the contin-

uous regressor P using the following Epanechnikov kernel nonparametric method

f̂P (P = p) =
1

nb

n∑
i=1

K

(
p− Pi

b

)
, (W29)

where K(·) is the user-supplied kernel function and b is the bandwidth parameter that exerts

a strong influence on the density estimation. The optimal bandwidth value is unknown but

there are some suggestions for choosing the bandwidth. When using the Epanechnikov

kernel K(x) = 0.75(1 − x2)I(|X| ≤ 1), the rule-of-thumb for determining the bandwidth

is b = 0.9n−1/5min(s, IQR/1.34), where s is the sample standard deviation and IQR is

the interquartile range. The IKDE approach then integrates the marginal density function

estimate to obtain the marginal CDF as follows:

F̂P (p) =

∫ p

−∞
f̂P (u)du, (W30)

where the trapezoidal rule can be used for the above numerical integration (Park and Gupta

2012).

It is unclear if the IKDE approach to obtaining the copula correction terms outperforms

the approach of using empirical CDF. On the one hand, the IKDE approach does not en-

counter the problem of the last observation having infinite value of copula latent data as
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Figure W2: Boundary Bias of Nonparametric Kernel Density Estimates. Dotted line
denotes the true density function of the uniform distribution on [0, 1]. Solid line denotes

the KDE estimates.

empirical CDF encounters. On the other hand, the nonparametric KDE methods are sub-

ject to boundary bias (e.g., Cid and von Davier 2015, Karunamuni and Alberts 2005), which

is an important drawback of KDE density estimation. The boundary bias of KDE estimation

is particularly severe for variables with bounded support or for density estimation near the

boundaries of the support of the density to be estimated (Karunamuni and Alberts 2005).

Large sample size is required to control or mitigate the boundary bias. Figure W2 illustrates

boundary bias of kernel density estimation in four simulated datasets at sample size ranging

from N=100 to N=100,000 when the true density function is the uniform distribution on

[0,1]. We observe density estimation bias near the two ends of the uniform distribution,

although the boundary bias decreases with increasing sample size.
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Returning to Figure W1, consider the estimation bias of using IKDE for copula correc-

tion with the same DGP as specified in Equations 1-4 in Becker, Proksch, and Ringle (2022)

(i.e., Equations W25 to W28). We implemented the IKDE approach using the R function

density(P, kernel="epanechnikov") for nonparametric kernel density estimation and the

R function CDF() that integrates the KDE estimates to the cumulative distribution func-

tion using the trapezoidal rule. Figure W1 shows that copula correction using the IKDE

approach has larger bias across all sample sizes than the approaches using the ECDF. This

can arise from the severe boundary bias (Figure W2) of KDE for estimating the density near

the boundaries of the support. By contrast, the ECDF can automatically account for the

bounded support of the uniform distributions and avoid such severe boundary bias.

Models Without Intercept

Figure W3 plots the estimation results when estimating the model in Equation W28

without intercept. All settings remain the same as those when estimating the models with

unknown intercept, except that the estimation now assumes the intercept parameter µ is

known a-priori and consequently we estimate all the other model parameters given the a-

priori known intercept value. The difference between the average of the estimates across 1,000

simulated datasets and its true value is the bias of an estimator, which is plotted in Figure

W3 for α. Results in Figure W3 show large OLS estimation bias that remains constant

across all sample sizes. Interestingly, in this case, there is no bias at any sample size for

all algorithms to generate copula transformation (IKDE, fixed ECDF, or adaptive ECDF).

This means that unlike the case of estimating models with intercept, choice of algorithms

for handling the infinite value of copula transformation of the last-rank observation does
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Figure W3: Bias of the endogenous regressor without intercept.

not matter, and all three algorithms work well to correct OLS estimation bias across all

considered sample sizes.

Copula Transformation with Correlated Regressors

In this section, we assess the impact of copula transformation on the 2sCOPE procedure.

The DGP is summarized below:
P ∗
t

W ∗
t

E∗
t


∼ N
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0

0

0
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,
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1 ρpw ρpe

ρpw 1 0

ρpe 0 1
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= N
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
,


1 0.5 0.5

0.5 1 0

0.5 0 1




,(W31)

Et = G−1(UE,t) = G−1(Φ(E∗
t )) = Φ−1(Φ(E∗)) = 1 · E∗

t , (W32)

Pt = H−1(UP,t) = H−1(Φ(P ∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (W33)
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Yt = µ+ α · Pt + β ·Wt + Et = 0 + (−1) · Pt + 1 ·Wt + Et, (W34)

where E∗
t and P ∗

t are correlated (ρpe = 0.5), generating the endogeneity problem; W ∗
t is

exogenous and uncorrelated with E∗
t ; W

∗
t and P ∗

t are correlated (ρpw = 0.5), and therefore

Wt and Pt are correlated, which calls for the use of 2sCOPE. We consider the following

estimation methods: (1) OLS regression of Equation (W34); (2) 2sCOPE using the fixed

algorithm for copula transformation of P andW Equation 10; (3) 2sCOPE using the adaptive

algorithm for copula transformation of P and W (Equation 9), and (4) 2sCOPE-np using the

nonparametric copula control function Φ−1(F (Pi|Wi)) in Equation ??. In the simulation,

we use the uniform distribution on [0,1] for Pt and the exponential distribution Exp(1)

with rate 1 for Wt. Models are estimated on all generated datasets, providing the empirical

distributions of parameter estimates.

We use the procedures described in Table 3 for 2sCOPE and 2sCOPE-np. For 2sCOPE-

np, we use the following Nadaraya-Watson (NW) nonparametric kernel regression procedures

to estimate the conditional CDF F (Pi|Wi) with the following locally weighted average (Li

and Racine 2008):

F̂ a(p|w) =

∑n
i=1 I(Pi ≤ p)Kh(Wi − w)∑n

i=1Kh(Wi − w)
. (W35)

where I(Pi ≤ p) is the indicator function for the event Pi ≤ p; n denotes sample size;

Kh(Wi − w) is a weight function defined as:

Kh(Wi − w) =
1

h
k

(
Wi − w

h

)
. (W36)

where k(·) is a user-supplied smooth and symmetric kernel function and h is the bandwidth
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Figure W4: Method comparison with correlated endogenous and exogenous regressors

parameter. Another estimator smooths the continuous outcome Y as follows:

F̂ b(p|w) =

∑n
i=1G((p− Pi)/h0)Kh(Wi − w)∑n

i=1Kh(Wi − w)
, (W37)

where G(·) is the CDF function defined by G(v) =
∫ v

−∞ k(u)du from the density function

k(u), and h0 is the bandwidth for smoothing the outcome Y . See Hu, Qian, and Xie (2025)

for more details about the description and implementation of these kernel conditional CDF

estimators in 2sCOPE-np.

Figure W4 shows that 2sCOPE using the fixed algorithm also negatively affects the

performance of copula correction, while 2sCOPE using the adaptive algorithm avoids the

bias. Unlike 2sCOPE, 2sCOPE-np does not perform copula transformations directly on

regressors, but instead on the smoothed conditional CDF estimate of F (P |W ), which takes
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values less than one because of smoothing. Thus, fixed algorithm or adaptive algorithm is

irrelevant for 2sCOPE-np. As shown in Figure W4, the 2sCOPE using adaptive algorithm

performs best with negligible bias even at the relatively small sample size n = 100. As

expected for a nonparametric procedure, 2sCOPE-np (the curve with triangles) performs

well when sample size is sufficiently large even if it does not impose any model on regressors,

but it does require a larger sample size to have negligible finite sample bias than the correctly

specified 2sCOPE using the adaptive algorithm (the curve with squares). Figure W4 suggests

a minimum sample size of 300 for 2sCOPE-np to have negligible finite sample estimation

bias (i.e., Boundary Condition 3 in Table 4). This is consistent with that the the empirical

applications of the nonparametric kernel CDF estimation in Li and Racine (2008) all have a

minimum sample size of 300.
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WEB APPENDIX E: PROOF OF OPTIMALITY OF EXCLUDING

HIGHER-ORDER COPULA TERMS.

Theorem 1. Optimality of excluding higher-order copula terms. Let (θ̂Main
k ), k =

1, · · · , K, denote the structural model parameter estimates when only the copula terms for

the main endogenous effects are included to correct for endogeneity, and (θ̂All
k ), k = 1, · · · , K,

denote the corresponding estimates when copula terms for both the main effects and higher-

order endogenous regressors are included. This yields:

Var(θ̂All
k ) ≥ Var(θ̂Main

k ) for k = 1, · · · , K.

Thus, θ̂Main
k yields optimal copula estimation of structural model parameters with less vari-

ance and mean squared errors than θ̂All
k , for all k.

Proof: Consider the OLS regression of the model when only the copula main terms are

included to correct for endogeneity:

Y = Xθ + ϵ, V (ϵ) = σ2
cIn, (W38)

where X includes the intercept, the regressors in the structural model, and Cmain (the copula

generated regressors for the main effects); θ collects all the coefficients of these regressors.

Math symbols in bold represent matrices and vectors. The variance of the estimates using

copula terms for main effects only is:

V (θ̂Main) = σ2
c (X

′X)−1. (W39)

Then after introducing additional copula terms C for higher-order terms into the model in
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Equation (W38), we have:

Y = Xθ +Cϕ+ ϵ1, V (ϵ1) = σ′2
c In, (W40)

According to linear regression theory, the new estimates after entering the copula higher-

order terms C in the model become:

θ̂All = (X′X)−1X′(Y −Cϕ̂), ϕ̂ = (C′RC)−1C′RY, (W41)

V (θ̂All) = σ′2
c

[
(X′X)−1 +M(C′RC)−1M′], (W42)

where M = (X′X)−1X′C, R = In −P, and P = X(X′X)−1X′. Note that P is the projec-

tion matrix representing the orthogonal projection that maps the responses to the fitted

values, and R = In −P represents the orthogonal projection that maps the responses to the

residuals. Given that the newly added higher-order copula terms in C are highly correlated

with the higher-order terms in the structural model (as well as other copula terms already

included in the model), the extra variability in Y explained by adding C is small. Thus,

σ′2
c ≈ σ2

c and:

V (θ̂)All − V (θ̂)Main ≈ σ2
c

[
(X′X)−1 +M(C′RC)−1M′ − (X′X)−1

]
(W43)

= σ2
c

[
M(C′RC)−1M′]. (W44)

Since the matrix M(C′RC)−1M′ is positive semi-definite, all the diagonal elements are

greater than or equal to zero. For each of the K structural model parameters:

Var(θ̂All
k ) ≥ Var(θ̂Main

k ) for k = 1, · · · , K. (W45)

The magnitude of variance inflation is inversely related to C′RC, which represents the
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matrix of sum of squared residuals, obtained from regressing C on X. Thus, the higher the

correlation between the extra higher-order term C and existing regressors in X, the smaller

the sum of squares, which leads to greater variance inflation of Var(θ̂All
k ). Q.E.D.
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WEB APPENDIX F: SIMULATION STUDIES ILLUSTRATING THE

HARMFUL EFFECTS OF INCLUDING HIGHER-ORDER COPULA

TERMS

The theoretical proof in the preceding section shows that copula terms for higher-order

effects are not only unnecessary, but also substantially inflate estimation variability: the

higher the correlations between the extra higher-order copula term and other regressors, the

greater the estimation variance inflation. The empirical application of peanut butter sales in

the main text further demonstrates this adverse bias: omitting the higher-order copula term

yields model estimates closest to that of two-stage least squares using instrumental variables;

including the copula interaction term produces the opposite sign for the coefficient estimate

of the endogenous interaction term, and greater estimation variability.

In addition to the above theoretical results and real data analysis, this section presents

empirical evidences using simulated data to demonstrate (1) that there is no need to add

correction terms for higher-order terms of endogenous regressors to control for their endo-

geneity, and more importantly, (2) harmful effects occur if correction terms for higher-order

terms are added to control for their endogeneity. These effects include potential finite sam-

ple bias and inflated variability of structural model parameter estimates, as predicted by

the theoretical results in the previous section. The simulation study below highlights the

magnitude of such harmful effects: larger standard errors (by up to 5-times as shown in our

simulation studies), substantial estimation bias (about 30% of parameter values), and sig-

nificant loss of statistical power to detect moderating and nonlinear effects (e.g., a reduction

of power from 80% to 10% in Figure W7, much further below).
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Case I: Interaction Between Two Endogenous Regressors

Data were simulated from the following structural regression model with an interaction

between two endogenous regressors, P1 and P2:

Y = α0 + α1P1 + α2P2 + α3P1 ∗ P2 + E (W46)
E∗

P ∗
1

P ∗
2


= N




0

0

0


,


1 ρE1 ρE2

ρE1 1 ρ12

ρE2 ρ12 1




E = H−1

E (Φ(E∗)) = Φ−1(Φ(E∗)), P1 = H−1
P1

(Φ(P ∗
1 )), P2 = H−1

P2
(Φ(P ∗

2 )).(W47)

In this simulation, we set HP1(·) as the CDF of the uniform distribution on [4, 6], HP2(·)

as the CDF of the truncated standard normal with a lower bound of 0, and parameters

α0 = 0, α1 = 1, α2 = −1, α3 = 1, ρE1 = ρE2 = 0.5, ρ12 = −0.5. For each simulated data set,

the following three estimation procedures were applied regressing Y on the following sets of

regressors:

OLS: P1, P2

Copula-Main: P1, P2, CP1 , CP2

Copula-All: P1, P2, CP1 , CP2 , CP1∗P2

where CP1 = Φ−1(F̂P1(P1)), CP2 = Φ−1(F̂P2(P2)), and CP1∗P2 = Φ−1(F̂P1∗P2(P1 ∗ P2)) are

the copula correction terms. That is, we use the P&G method for copula correction since

the model contains no exogenous regressors. The OLS estimation regresses Y on P1, P2

and P1 ∗ P2 without any correction for the endogeneity of these regressors. Copula-Main
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adds two copula correction terms, CP1 and CP2 , to control for the endogeneity of these three

regressors, where:

CP1 = Φ−1(ĤP1(P1)), CP2 = Φ−1(ĤP2(P2)). (W48)

In addition to CP1 and CP2 , Copula-All adds the copula correction term CP1∗P2 , where:

CP1∗P2 = Φ−1(ĤP1∗P2(P1 ∗ P2)) (W49)

and ĤP1 , ĤP2 and ĤP1∗P2 denote the empirical marginal distribution functions of P1, P2 and

P1 ∗ P2 in the observed sample, respectively.

Bias and SEs of parameter estimates Across simulations, sample sizes (N) of 200, 500,

5,000, and 50,000 are examined. For each sample size N, we generate 5,000 data sets as

replicates to systematically evaluate average performance (estimation bias and variability)

for the three estimation methods. The simulation results appear in Table W10. As ex-

pected, OLS regression yields significant bias for all model parameters at all sample sizes.

For example, even for a large sample size of N=5,000, the OLS regression without any cor-

rection terms yields large bias for the regression parameter estimates (α̂1 : 2.281 [0.018]; α̂2 :

−1.549 [0.099]; α̂3 : 1.432 [0.021]) and the error standard deviation (σ̂ : 0.298 [0.006]).

Copula-Main corrects for the endogenous bias (α̂1 : 1.002 [0.058]; α̂2 : −1.017 [0.080]; α̂3 :

1.003 [0.015]), demonstrating that there is no need to additionally include the copula correc-

tion term, CP1∗P2 . Furthermore, Copula-Main performs substantially better in both estima-

tion bias and variability for all parameter estimates than Copula-All which includes CP1∗P2 .

In fact, Copula-All yields significantly biased parameter estimates, even at the large sample

size of N=5,000 (α̂0 : 0.202 [0.318]; α̂2 : −0.713 [0.240]; α̂3 : 0.929 [0.058]); bias decreases
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as sample size increases, but remains apparent even for a sample size as large as 50,000, as

including the copula term for the interaction P1 ∗ P2 causes significant estimation bias.

The same conclusion - that Copula-Main performs substantially better than Copula-All

in terms of both estimation bias and variability for all parameter estimates - applies to all

other sample sizes, except for the intercept parameter (α0) at small sample size N=200. The

exception likely results from both a small sample size and strong multicollinearity induced

by the interaction term; however, the bias in the intercept estimate bears less practical

implication, since the intercept parameter is often of less interest.

Copula-All also yields less precise estimates (larger standard errors) than Copula-Main;

underlined standard errors in Table W10 highlight much larger SE for Copula-All versus

Copula-Main. This imprecision includes an SE 3.00-times that for α2 and 3.86-times that

for α3 compared to Copula-Main at a sample size of 5,000.

Overall Estimation Efficiency and Accuracy We further compare the efficiency of Copula-

Main and Copula-All using the D-error measure (Arora and Huber 2001, Qian and Xie

2022). The D-error measure is defined as |Σ|1/K where Σ is the variance-covariance matrix

of the regression coefficient estimates, and K is the number of explanatory variables in

the structural regression model. A larger D-error value means lower efficiency, with a ∆%

increase in D-error corresponding to a ∆% larger sample size required to achieve the same

level of estimation precision. As shown in Table W10, the D-error inflation for Copula-All is

about 3-times at N=5,000. In this case, Copula-All requires about 3-times the sample size

in order to achieve approximately the same accuracy for estimating α1, α2 and α3 jointly as

Copula-Main. The variance inflation for the Copula-All estimate of α3, the coefficient for the
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Table W10: Results from Case I: Interaction of Endogenous Regressors.

N Method α0(= 0) α1(= 1) α2(= −1) α3(= 1) σ(= 1) D-error

200 OLS -7.627 2.282 -1.546 1.433 0.294

(0.464) (0.093) (0.501) (0.106) (0.031) —

Copula-Main -0.358 1.046 -1.187 1.043 0.963

(1.363) (0.271) (0.417) (0.079) (0.121) 0.0293

Copula-All -0.058 1.012 -0.794 0.930 1.028

(1.364) (0.270) (0.468) (0.107) (0.134) 0.0368

500 OLS -7.624 2.281 -1.546 1.432 0.297

(0.290) (0.058) (0.312) (0.066) (0.019) —

Copula-Main -0.119 1.019 -1.104 1.024 0.99

(0.899) (0.179) (0.254) (0.047) (0.076) 0.0117

Copula-All 0.176 0.974 -0.702 0.923 1.051

(0.902) (0.178) (0.331) (0.077) (0.086) 0.0165

5,000 OLS -7.623 2.281 -1.549 1.432 0.298

(0.092) (0.018) (0.099) (0.021) (0.006) —

Copula-Main -0.012 1.002 -1.017 1.003 1.000

(0.291) (0.058) (0.080) (0.015) (0.024) 0.0011

Copula-All 0.202 0.968 -0.713 0.929 1.044

(0.318) (0.061) (0.240) (0.058) (0.041) 0.0031

50,000 OLS -7.621 2.281 -1.551 1.433 0.298

(0.029) (0.006) (0.031) (0.007) (0.002) —

Copula-Main 0.001 1.000 -1.003 1.000 1.000

(0.092) (0.018) (0.025) (0.005) (0.008) 0.00011

Copula-All 0.064 0.990 -0.912 0.978 1.013

(0.133) (0.023) (0.158) (0.038) (0.023) 0.00051

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from Copula-All are
inflated by at least 50% compared with the corresponding ones from Copula-Main. The P&G
method is used for copula correction since the model contains no exogenous regressors.
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interaction term, is much larger and equals (0.058
0.015

)2 ≈ 15 when N=5,000. This means 15-times

the sample size is required for Copula-All to achieve the same estimation accuracy of the

interaction term as Copula-Main. Regarding overall estimation efficiency, the D-error ratios

for Copula-All to Copula-Main increase as sample size increases, from 1.26-times (N=200)

to 1.41-times (N=500) to 2.82-times (N=5,000) to 4.64-times (N=50,000).

We also compute the ratio of mean squared error (MSE) of the structural estimate α̂k,

comparing Copula-All to Copula-Main (where MSE(α̂k) = Bias2(α̂k)+Var(α̂k), measuring

overall estimation accuracy). Notably, Copula-All increases MSEs for all model parameter

estimates, with the harmful effects being largest for the interaction parameter estimate α̂3,

whose MSE is more than 80-times that of Copula-Main when sample size N=50,000 (Figure

W5).
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Case II: Interaction Between an Endogenous Regressor and an Exogenous

Regressor

We simulated data from the following structural regression model with an interaction

term between an exogenous regressor X and an endogenous regressor P :

Y = α0 + β1W + α1P + α2W ∗ P + E
P ∗

W ∗

E∗


= N




0

0

0


,


1 ρpw ρpe

ρpw 1 0

ρpe 0 1




E = H−1

E (Φ(E∗)) = Φ−1(Φ(E∗)), P = H−1
P (Φ(P ∗)),W = L−1

W (Φ(W ∗)) (W50)

where HP (·) is the CDF of the truncated standard normal on [0,∞], and LW (·) is the

CDF of a uniform distribution on [4, 6], and we set α0 = 0, β1 = 1, α1 = −1, α2 = 1 and

ρpe = 0.5, ρpw = −0.5 with sample sizes of 200, 500, 5,000, and 50,000. For each sample size,

we generated 5,000 repeated samples.

For each generated sample, we then apply three estimation procedures: OLS, 2sCOPE-

Main and 2sCOPE-All. 2sCOPE is used to handle correlated regressors P and W . The OLS

regresses Y on P , W and W ∗P without any correction for the endogeneity of P and W ∗P .

2sCOPE-Main adds one copula correction term, CP = P ∗ − δ̂1W
∗ (Equation 12) to control

for endogeneity of P and W ∗ P , where P ∗ and W ∗ are copula transformations of P and

W using the ECDFs ĤP (·) and L̂W (·) estimated from data, respectively. In addition to CP ,

2sCOPE-All adds the copula correction term CW∗P = (W ∗ P )∗ − δ̂2W
∗, where (W ∗ P )∗ is

a copula transformation of the interaction term W ∗ P using its ECDF ĤW∗P (·) estimated
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from data. ĤP (·), L̂W (·), and ĤW∗P (·) denote the empirical marginal distribution functions

of P , W , and W ∗ P in the observed sample, respectively. Results over 5,000 simulated

samples are summarized in Table W11.

As expected, the OLS regression without any correction terms yields large bias for the

regression parameter estimates and the error standard deviation σ in the structural regres-

sion model. 2sCOPE-Main corrects for the endogenous bias, demonstrating that there is

no need to additionally include the correction term for the interaction term of P and W .

Importantly, 2sCOPE-All, which adds the unnecessary copula correction term for the in-

teraction term, yields less precise estimates (larger standard error of estimates as shown in

Table W11) than 2sCOPE-Main, increasing the D-error by more than 100% in some cases.

Furthermore, significant estimation bias in parameter estimates for α1 exists for 2sCOPE-All

which decrease as sample size increases, but still remains for a sample size as large as 50,000

(Table W11). The results demonstrate the substantial adverse effects of adding unnecessary

copula terms for interactions: significant finite sample estimation bias and inflated standard

errors.
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Table W11: Results from Case II: Interaction between Endogenous and Exogenous
Regressors

N Method α0(= 0) β1(= 1) α1(= −1) α2(= 1) σ(= 1) D-error

200 OLS -2.388 1.312 -1.281 1.274 0.829

(0.902) (0.174) (0.876) (0.182) (0.041) —

2sCOPE-Main -0.126 1.020 -1.047 1.026 0.987

(1.342) (0.223) (0.884) (0.208) (0.127) 0.0425

2sCOPE-All -0.141 1.028 -0.796 0.964 1.016

(1.371) (0.229) (1.305) (0.315) (0.152) 0.0651

500 OLS -2.351 1.306 -1.302 1.278 0.832

(0.561) (0.109) (0.549) (0.115) (0.026) —

2sCOPE-Main -0.013 1.000 -1.039 1.014 0.997

(0.842) (0.140) (0.543) (0.126) (0.083) 0.0159

2sCOPE-All -0.052 1.013 -0.791 0.946 1.024

(0.855) (0.144) (0.905) (0.232) (0.110) 0.0298

5,000 OLS -2.338 1.303 -1.312 1.280 0.833

(0.179) (0.034) (0.169) (0.035) (0.008) —-

2sCOPE-Main 0.018 0.997 -1.009 1.003 1.001

(0.242) (0.045) (0.165) (0.036) (0.025) 0.0016

2sCOPE-All 0.025 1.002 -0.896 0.970 1.009

(0.272) (0.057) (0.469) (0.112) (0.041) 0.0039

50,000 OLS -2.350 1.305 -1.298 1.277 0.833

(0.056) (0.011) (0.054) (0.011) (0.003) —

2sCOPE-Main 0.000 1.000 -1.000 1.000 1.000

(0.070) (0.011) (0.055) (0.013) (0.008) 0.0002

2sCOPE-All -0.002 1.001 -0.948 0.991 1.002

(0.083) (0.017) (0.166) (0.042) (0.014) 0.0004

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from 2sCOPE-All are
inflated by at least 50% compared with the corresponding ones from 2sCOPE-Main.
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Case III: A Squared Term of an Endogenous Regressor

Data were simulated from the following model:

Y = α0 + α1P + α2P
2 + E, E∗

P ∗

 = N


 0

0

 ,

 1 ρ

ρ 1




E = H−1
E (Φ(E∗)) = Φ−1(Φ(E∗)), P = H−1

P (Φ(P ∗)), (W51)

where HP (·) is the CDF for the marginal distribution of P , α0 = 0, α1 = −1, α2 = 1

and ρ = 0.7. We set HP (·) as the CDF of the truncated standard normal distribution on

[−0.5, 0.5]. For each simulated data set, the following three estimation procedures were

applied using OLS regression of Y on the following sets of regressors:

OLS: P, P 2

Copula-Main: P, P 2, CP

Copula-All: P, P 2, CP , CP 2

where CP = Φ−1(ĤP (P )) and CP 2 = Φ−1(ĤP 2(P 2)) are the copula correction terms for

endogenous regressors P and P 2, respectively; ĤP and ĤP 2 denote the empirical marginal

distribution functions of P and P 2 in the generated sample, respectively. Copula-Main

indicates including copula correction terms for the main effect only, while Copula-All signifies

including copula correction for all terms involving endogenous regressor P (i.e., higher-order

terms). That is, we use the P&G method for copula correction since the model contains no

exogenous regressors.
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Across simulations, sample sizes (N) of 200, 500, 5,000, and 50,000 are examined. For each

sample size N, we generate 5,000 data sets as replicates to systematically evaluate average

performance (estimation bias and variability) of different estimation methods. Averages and

standard deviations (SD) of parameter estimates over these 5,000 data sets are computed for

each method. The difference between the average of the estimates and its true value is the

bias of one estimator; the SD of the parameter estimates over these 5,000 repeated samples

is the standard error (SE) of the parameter estimate, capturing estimation variability.

Table W12 presents the simulation results. For each parameter, we report the average

of the estimates and SE in the parenthesis computed using 5,000 generated data sets. As

expected, OLS yields significant estimation bias at all values of N. For example, when N=200,

the OLS regression yields large bias in the parameter estimates (α̂1 : 1.413 [0.188]) and the

error standard deviation (σ̂ : 0.726 [0.037]) in the structural regression model. Copula-Main

corrects for the endogenous bias (α̂1 : −0.964 [1.049]; σ̂ : 1.013 [0.202]), demonstrating that

there is no need to additionally include CP 2 . Meanwhile, Copula-All yields substantial bias

for the coefficient parameter of P 2 (α̂2 : 0.771 [2.214]) because adding unnecessary generated

regressor CP 2 leads to the finite sample bias problem. In contrast, Copula-Main eliminates

the majority of the bias and performs much better in this small sample size with only small

bias and the SE reduced by approximately 70% (α̂2 : 0.922 [0.797]). In a large sample size

(n=5,000), the finite sample bias in Copula-All is reduced. Yet, Copula-All continues to

yield less precise estimates (i.e. larger standard errors) than Copula-Main.
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Table W12: Results from Case III: Endogenous Squared Terms.

N Method α0(= 0) α1(= −1) α2(= 1) σ(= 1) D-error

200 OLS 0.000 1.413 0.986 0.726

(0.078) (0.188) (0.742) (0.037) —

Copula-Main -0.001 -0.964 0.922 1.013

(0.099) (1.049) (0.797) (0.202) 0.835

Copula-All 0.009 -0.957 0.771 1.020

(0.190) (1.057) (2.214) (0.203) 2.338

500 OLS 0.001 1.410 0.982 0.728

(0.048) (0.118) (0.472) (0.024) —

Copula-Main 0.001 -0.978 0.951 1.005

(0.057) (0.640) (0.483) (0.126) 0.309

Copula-All 0.004 -0.974 0.889 1.008

(0.120) (0.641) (1.393) (0.126) 0.891

5,000 OLS 0.000 1.413 1.003 0.728

(0.015) (0.036) (0.146) (0.007) —

Copula-Main 0.000 -1.000 0.994 1.001

(0.019) (0.192) (0.157) (0.038) 0.030

Copula-All 0.000 -1.000 0.997 1.001

(0.037) (0.192) (0.427) (0.038) 0.082

50,000 OLS 0.000 1.415 1.001 0.728

(0.005) (0.012) (0.047) (0.002) —

Copula-Main 0.000 -1.004 1.000 1.001

(0.006) (0.060) (0.050) (0.012) 0.003

Copula-All 0.000 -1.004 0.999 1.001

(0.012) (0.060) (0.137) (0.012) 0.008

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from Copula-All are
inflated by at least 50% compared with the corresponding ones from Copula-Main. The P&G
method is used for copula correction since the model contains no exogenous regressors.

56



We also compute the ratio of mean squared error (MSE) of the structural estimate α̂k,

comparing Copula-All to Copula-Main (where MSE(α̂k) = Bias2(α̂k)+Var(α̂k), measuring

overall estimation accuracy). Notably, Copula-All increases MSEs for all model parameter

estimates, with the harmful effects being greatest for the squared term estimate α̂2, whose

MSE is more than 6-times that of Copula-Main for all sample sizes (Figure W6).
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Figure W6: Ratio of mean squared errors of structural model estimates, with using the
copula square term (Copula-All) to those without using the copula square term

(Copula-Main).

Such a large magnitude of variance inflation has important inferential consequences and

managerial implications. Figure W7 shows substantial loss of power of Copula-All to detect

the presence of the squared term (P 2) for sample size up to 5,000. For example, when sample

size is 1,000, the statistical power to detect the squared effect is about 8-fold for Copula-Main

(≈ 80% power) of that for Copula-All (≈ 10% power).
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Figure W7: Statistical Power to detect the squared term P 2 with the copula squared
term (Copula-All) and without the copula squared term (Copula-Main).
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Mean-Centering Regressors

Lastly, we examine whether mean-centering resolves the under-performance of Copula-

All. One may suspect that mean-centering might reduce the multicollinearity issue and

improve the performance of Copula-All. However, as shown below, mean-centering regressors

does not overturn the sub-optimal performance of adding the unnecessary copula correction

for higher-order terms, demonstrating again that these unnecessary copula correction terms

should be omitted from empirical models.

A common practice for researchers in economics, management, and other fields is to

mean-center the regressors before estimating models with higher-order terms. One argu-

ment for this practice is that by mean-centering the regressors, the correlation - and resulting

collinearity problem - between the linear and higher-order terms (e.g., quadratic terms or

interaction terms) is reduced (Aiken and West 1991; Kopalle and Lehmann 2006). How-

ever, Echambadi and Hess (2007) showed that mean-centering regressors does not alleviate

collinearity problems in moderated regression models. Namely, none of the parameter esti-

mates and sampling accuracy of main effects, simple effects, interactions, or R2 is changed

by mean-centering. By main effect and simple effect, we refer to the regression coefficient

for a first-order term with and without mean-centering, representing the effect of a regressor

when its moderators are set at their mean values and at zero (or absence of the attribute

quantified by these moderators), respectively.

To illustrate this point, consider the following structural regression model with an inter-

action term:

Y = α0 + α1P1 + α2P2 + α3P1 ∗ P2 + E
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For the purposes of ease in interpretation or reducing the correlation between the linear and

interaction terms, mean-centering regressors is often employed, which leads to the following

equivalent model with parameter transformation:

Y = αc
0 + αc

1(P1 − P̄1) + αc
2(P2 − P̄2) + αc

3(P1 − P̄1) ∗ (P2 − P̄2) + E, (W52)

where the parameters for the models before and after mean-centering have the following

one-to-one relationship:

αc
0 = α0 + α1P̄1 + α2P̄2 + α3P̄1P̄2

αc
1 = α1 + α3P̄2

αc
2 = α2 + α3P̄1

αc
3 = α3. (W53)

As shown above, the regression coefficient αc
1 for the centered linear term P1 − P̄1 repre-

sents the effect of P1 when P2 is equal to its mean value P̄2. Thus, αc
1 represents the main

effect: the effect of P1 when the other variables are at their mean values. In contrast, the

coefficient using uncentered data, α1, represents the simple effect: the effect of P1 when the

other variables are at zero (or absence of the attribute quantified by these other variables).

The differences in estimates and standard errors between α1 and αc
1 are due to the two coef-

ficients having different substantive meanings, and both effects can be of substantive interest

(Echambadi and Hess 2007). Quadratic terms can be considered a special case of the above

model because a quadratic term can be considered as the interaction term of a regressor with

itself. The relationship between parameters for models with quadratic terms before and af-

ter mean-centering can be derived similarly. Echambadi and Hess (2007) showed that the
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relationships in Equation W53 also hold for the OLS estimates of these model parameters.

However, our setting differs from the case of moderated regression models considered in

(Echambadi and Hess 2007 ), since we consider the more general case of endogeneity bias

correction of structural regression models with endogenous higher-order regressors. Although

the relationships in Equation W53 hold exactly for OLS estimates (Echambadi and Hess

2007) for all data sets, such relationships only hold approximately for copula corrected

estimates because copula generated regressors involve probability integral transformations.

Specifically, we use the same data generating process for Cases I, II, and III to generate data.

When estimating models, we first mean-center all the first-order terms of the regressors, and

then construct the higher-order terms using these mean-centered first-order terms. Copula

correction terms are then constructed using these new regressors based on centered versions of

the first-order terms of regressors. Because these copula correction terms involve probability

integral transformation, the estimates and sampling accuracy of main effects, simple effects,

and interactions can change after mean centering, which differs from the case of Echambadi

and Hess (2007) in which all regressors are exogenous.

For the models giving results in Tables W10, W11, and W12, we apply the OLS (without

any correction), Copula-Main, and Copula-All to estimate the corresponding mean-centered

structural regression models, with results summarized in Tables W13, W14, and W15, re-

spectively. The true values for the parameters in the models after mean-centering are also

listed in Tables W13 to W15. The mean values of the regressors (P̄1, P̄2) used to compute

these true parameter values are: ϕ(a)−ϕ(b)
Φ(b)−Φ(a)

, where ϕ(·) denotes the density function of the

standard normal; when the marginal distribution of the regressor is the truncated standard

normal on [a, b], and a+b
2

when it is the uniform distribution on [a, b].
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Because copula correction terms for higher-order terms are not invariant to mean-centering,

the ratios of the D-error for Copula-All to that of Copula-Main using mean-centered data

will not be the same as those in Tables W10, W11, and W12, using uncentered data. Still,

the same conclusion of inflated variability of estimates for Copula-All is apparent, and the

D-error measure ratios are all above 2. This finding is consistent with that of Echambadi

and Hess (2007) in that mean-centering regressors does not alleviate collinearity problems

in moderated regression models. Furthermore, mean-centering seemingly shifts the vari-

ance inflation from the regression coefficient estimates of first-order terms to those of the

higher-order terms, and may hurt the estimation of the higher-order terms in some cases.

It is important to note, however, that this does not imply that mean-centering affects

the estimation of the same first-order effects. As explained above, the regression coefficients

for a first-order term (with and without mean-centering) represent different effects of one

regressor evaluated at different values of its moderator: these regression coefficients represent

the main effects when mean-centering regressors and the simple effects when using uncentered

data. As such, regression coefficients for a first-order term with and without mean-centering

are not directly comparable, although both main and simple effects can be of substantive

interest (Echambadi and Hess 2007). When using the parameter estimates based on the

centered data to compute the simple effects, we again find finite sample bias and inflated

standard errors for the estimates of simple effects (results not shown here), as occurred

when using uncentered data. In sum, we conclude that mean-centering does not overturn

the under-performance of Copula-All relative to Copula-Main.
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Table W13: Results from Case I with Mean-Centering: Interaction of Endogenous
Regressors With Mean-Centering

N Method αc
0(= 8.192) αc

1(= 1.798) αc
2(= 4) αc

3(= 1) σ(= 1) D-error

200 OLS 8.259 3.425 5.619 1.432 0.294

(0.208) (0.071) (0.084) (0.105) (0.031) —

Copula-Main 8.172 1.897 4.072 1.041 0.967

(0.208) (0.279) (0.257) (0.080) (0.124) 0.0316

Copula-All 8.180 1.896 4.069 1.101 0.972

(0.215) (0.279) (0.266) (0.281) (0.124) 0.0734

500 OLS 8.262 3.425 5.615 1.431 0.297

(0.134) (0.045) (0.051) (0.065) (0.02) —

Copula- Main 8.184 1.838 4.018 1.025 0.990

(0.133) (0.179) (0.166) (0.047) (0.077) 0.0123

Copula-All 8.189 1.838 4.020 1.057 0.992

(0.137) (0.178) (0.174) (0.173) (0.078) 0.0293

5,000 OLS 8.263 3.424 5.612 1.433 0.298

(0.042) (0.014) (0.017) (0.021) (0.006) —

Copula-Main 8.191 1.803 3.999 1.003 1.000

(0.042) (0.057) (0.051) (0.015) (0.024) 0.0011

Copula-All 8.192 1.803 3.999 1.009 1.000

(0.043) (0.057) (0.054) (0.052) (0.024) 0.0028

50,000 OLS 8.263 3.424 5.613 1.433 0.298

(0.013) (0.004) (0.005) (0.007) (0.002) —

Copula-Main 8.192 1.799 3.999 1.000 1.000

(0.013) (0.018) (0.017) (0.005) (0.008) 0.0001

Copula-All 8.192 1.799 3.999 1.002 1.000

(0.014) (0.018) (0.017) (0.017) (0.008) 0.0003

See the same note under Table W12.
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Table W14: Results from Case II with Mean-centering: Interaction between Endogenous
and Exogenous Regressors With Mean-centering.

N Method αc
0(= 8.192) βc

1(= 1.798) αc
1(= 4) αc

2(= 1) σ(= 1) D-error

200 OLS 8.232 2.322 5.088 1.273 0.831

(0.195) (0.130) (0.129) (0.184) (0.041) —

2sCOPE-Main 8.191 1.823 4.045 1.024 0.995

(0.196) (0.241) (0.433) (0.195) (0.127) 0.0434

2sCOPE-All 8.198 1.821 4.044 1.066 1.017

(0.226) (0.250) 0.(461) (0.704) (0.131) 0.1459

500 OLS 8.234 2.331 5.096 1.273 0.833

(0.131) (0.078) (0.081) (0.113) (0.027) —

2sCOPE-Main 8.190 1.805 4.001 1.004 1.005

(0.132) (0.159) (0.291) (0.127) (0.088) 0.0169

2sCOPE-All 8.193 1.805 4.003 1.022 1.014

(0.147) (0.161) (0.303) (0.462) (0.090) 0.0475

5,000 OLS 8.236 2.325 5.088 1.276 0.833

(0.041) (0.024) (0.027) (0.036) (0.008) —

2sCOPE-Main 8.191 1.798 3.999 1.000 1.001

(0.041) (0.049) (0.088) (0.040) (0.027) 0.0017

2sCOPE-All 8.191 1.798 3.998 1.000 1.002

(0.045) (0.050) (0.093) (0.148) (0.027) 0.0044

50,000 OLS 8.237 2.325 5.088 1.277 0.833

(0.012) (0.008) (0.008) (0.012) (0.003) —

2sCOPE-Main 8.192 1.799 4.002 1.000 1.000

(0.012) (0.015) (0.027) (0.012) (0.008) 0.0002

2sCOPE-All 8.191 1.799 4.002 1.002 1.000

(0.015) (0.015) (0.029) (0.043) (0.008) 0.0004

See the same note under Table W11.
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Table W15: Results from Case III with Mean-centering: Endogenous Squared Terms
With Mean-Centering

N Method αc
0(= 0) αc

1(= −1) αc
2(= 1) σ(= 1) D-error

200 OLS 0.000 1.414 0.993 0.727

(0.080) (0.188) (0.737) (0.037) —

Copula-Main -0.001 -0.967 0.912 1.007

(0.085) (1.008) (0.785) (0.193) 0.790

Copula-All 0.000 -0.959 0.857 1.022

(0.196) (1.019) (2.353) (0.194) 2.396

500 OLS 0.000 1.414 0.995 0.729

(0.049) (0.117) (0.458) (0.024) —

Copula-Main 0.000 -0.993 0.949 1.005

(0.052) (0.628) (0.495) (0.125) 0.311

Copula-All 0.001 -0.999 0.936 1.011

(0.116) (0.631) (1.380) (0.125) 0.871

5,000 OLS -0.001 1.413 1.002 0.728

(0.016) (0.038) (0.151) (0.007) —

Copula-Main -0.001 -0.993 0.995 0.999

(0.017) (0.201) (0.159) (0.040) 0.031

Copula-All -0.002 -0.993 1.008 0.999

(0.036) (0.202) (0.417) (0.040) 0.085

50,000 OLS -0.001 1.415 1.000 0.728

(0.005) (0.013) (0.045) (0.002) —

Copula-Main 0.000 -1.003 1.000 1.001

(0.005) (0.062) (0.048) (0.012) 0.003

Copula-All 0.000 -1.003 0.998 1.001

(0.012) (0.062) (0.137) (0.012) 0.009

See the same note under Table W12.
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WEB APPENDIX G: ADDITIONAL MATERIALS FOR THE

IMPLEMENTATION EXAMPLES

Further results of Example 1

Table W16 reports additional estimation results using 2sCOPE-np, although the sample

size (n=261) is less than the recommended minimum sample size of 300. Overall, we find

both 2sCOPE and 2sCOPE-np yield similar estimation results in the example.

Table W16: Additional Results for Example 1

Param. OLS 2SLS 2sCOPE 2sCOPE-np

Intercept 6.005 (0.205) 4.371 (0.978) 4.763 (0.668) 5.102 (0.396)

0.000 0.000 0.000 0.000

Price -1.367 (0.137) -2.470 (0.661) -2.205 (0.446) -1.977 (0.266)

0.000 0.000 0.000 0.000

Feature 0.298 (0.095) 0.059 (0.178) 0.124 (0.124) 0.172 (0.103)

0.002 0.738 0.317 0.095

Week -0.002 (0.000) -0.002 (0.000) -0.002 (0.000) -0.002 (0.000)

0.000 0.000 0.000 0.000

Q2 -0.019 (0.031) -0.014 (0.035) -0.018 (0.036) -0.015 (0.034)

0.550 0.693 0.617 0.659

Q3 -0.018 (0.032) -0.034 (0.036) -0.029 (0.035) -0.024 (0.033)

0.567 0.349 0.407 0.467

Q4 -0.018 (0.032) -0.061 (0.041) -0.044 (0.035) -0.036 (0.036)

0.576 0.140 0.209 0.317

Cprice 0.077 (0.037) 0.098 (0.035)

0.037 0.005

ρ 0.366 (0.160) 0.320 (0.105)

0.022 0.002

Note: Table presents estimates and bootstrapped standard errors in the parentheses, followed by the p-values

in the line below.
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Analysis and Results of Example 2

Example 2 examines what to do when an endogenous regressor has a higher-order effect,

such as a squared term or interaction (moderation) with another variable. For brevity, we

speak to these higher-order effects simply as interactions. The Methodological Background

section provided studies with simulated data showing that including a copula for the inter-

action term may induce bias and inflated estimation variability, and that the best course is

to only include copula correction terms for the main effects.

To show how copula correction is applied with interactions of endogenous regressors and

examine the adverse effects of including higher-order copula correction terms in an empirical

application, we extend the sales response model in Equation 13 to include an interaction

term (Pt ∗ Ft) between price and feature as follows:

Volumet = µ+ α ∗ Pt + β′Wt + ϕPt ∗ Ft + Et, (W54)

where Pt and Ft are category price and feature, respectively, and Wt includes Ft, week,

and binary variables for quarters 2, 3, and 4. We use the IRI academic data set for a new

store and product category, a New York City store and its peanut butter sales for the years

2001-2003 (156 weeks), allowing for price and feature to work together as an interaction.

Such interactions are common to both academics and managers, as marketing efforts often

work together. Of interest here is that price and feature advertising likely work together

to achieve interactive, synergistic effects on sales. This can be tested by estimating the

interaction term between price and feature advertisement in the above sales model, with

feature advertisement as a potential moderator of price. Like Example 1, we follow the same
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steps in Figure 5 to guide the selection of the appropriate copula method. The walk-through

of these steps are as follows:

Step 1. Is Pmain continuous? Price is a continuous measure here, ranging from $0.957

to $1.963 per pound, with a mean of $1.714, median of $1.798, and standard deviation of

$0.195.
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Figure W8: Price Distribution in Example 2.

Step 2. Is Pmain normally distributed? Unlike Example 1, the price variable in Example

2 is highly skewed (Figure W8) and rejects the KS test for normality (D = 0.23, p < 0.001)

at the 0.05 level of significance. The flowchart in Figure 5 show that what is needed is either

Pmain or one related W is nonnormally distributed; there is no need for both Pmain and W

to be nonnormally distributed. This means that when the endogenous regressor already has

sufficient nonnormality, we do not need to check any exogenous regressor W for sufficient

nonnormality and sufficient association with P , like what was needed in Figure 6 of Example

1. To determine if we should use P&G or 2sCOPE, we next check the uncorrelatedness

between the linear combination of copula transformations of Pmain with each W . When

Pmain is a scalar, this condition reduces to check the uncorrelatedness between P ∗
main and

each W .
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Step 3.a. Is P ∗
main correlated with W? The copula transformation of endogenous regressor

price, P ∗, is correlated with the following exogenous regressors at the 0.10 level of significance:

week (r = 0.21, p < 0.05), feature (r = -.76, p < 0.01), Q3 (r = -.16, p < 0.06), and Q4 (r

= 0.16, p < 0.04). This indicates we should use 2sCOPE for endogeneity correction.

Step 4. Perform 2sCOPE estimation. Until now, the steps had been met to indicate price

was a candidate to use the 2sCOPE method. We will not use 2sCOPE-np in this dataset

since the sample size (n=156) is well below the recommended minimum sample size of 300

(Boundary Condition 2 in Table 4).

Step 5. Check ICON statistics. The ICON statistics are the ratios of the standard errors

of the 2sCOPE estimates to the standard errors of the corresponding OLS estimates. These

standard errors are reported in Table W17 under columns “2sCOPE” and “OLS”, and show

the ICON statistics are all less than 6, so no model nonidentification issue is flagged.

Table W17 presents the 2sCOPE result with the copula correction term (i.e., the first-

stage residual) for price only. The results show the price copula correction term (i.e., the

first-stage residual) is significant (Est. = 0.069, SE = 0.028, p < 0.05), indicating the

presence of endogeneity. Like Example 1, we compare the results to OLS and 2SLS, as well

as when a copula correction term for the interaction term is also included (2sCOPE W/Int).

Similar to Example 1, price has the smallest absolute effect in the OLS model (Est. =

-.453, SE = 0.274, p < 0.10) and the greatest absolute effect in the 2SLS model (Est. =

-1.554, SE = 0.606, p < 0.05). The 2sCOPE estimate falls in between, closer to 2SLS in

both effect and SE (Est. = -1.314, SE = 0.430, p < 0.05). The closeness to 2SLS is more

expected here since the usage of another store’s price is a strong instrument (r = 0.90, p <

0.01), as 2SLS rejects the test for weak instrument (F = 21.567, p < 0.01); the Wu-Hausman
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Table W17: Estimation Results for Example 2

Parameters OLS 2SLS 2sCOPE 2sCOPE W/Int

Intercept 6.038 (0.165)*** 6.688 (0.359)*** 6.544 (0.256)*** 6.344 (0.307)***

Price -0.453 (0.274)* -1.554 (0.606)** -1.314 (0.430)** -0.999 (0.518)*

Feature 1.513 (0.234)*** 0.646 (0.487) 0.837 (0.388)** 0.619 (0.420)

Price*Feature -2.125 (0.379)*** -0.950 (0.694) -1.167 (0.661)* 0.148 (0.825)

Week 0.001 (0.000)*** 0.001 (0.000)*** 0.001 (0.000)*** 0.001 (0.000)***

Q2 -0.028 (0.034) -0.020 (0.036) -0.022 (0.033) -0.038 (0.041)

Q3 -0.083 (0.035)** -0.099 (0.038)*** -0.096 (0.034)*** -0.089 (0.045)**

Q4 -0.090 (0.036)** -0.081 (0.038)** -0.080 (0.035)** -0.066 (0.039)*

Cprice 0.069 (0.028)** 0.058 (0.030)*

CPrice∗Feature -0.168 (0.098)*

ρ1 0.185 (0.082)** 0.128 (0.086)

ρ2 -0.456 (0.229)**

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p

< 0.05, *** is p < 0.01

test also suggests endogeneity (W= 4.863, p < 0.03). Without correcting for endogeneity in

this example, managers would under-estimate the price elasticity by 65.5% in OLS.

Importantly, the 2sCOPE results point to a contrast with 2sCOPE when a copula correc-

tion term CPrice∗Feature is included for the interaction between price and feature. Here, the

price estimate is substantially smaller and becomes insignificant (Est. = -.999, SE = 0.518,

p > 0.05 under column “2sCOPE W/Int” in Table W17), which can lead to the incorrect

conclusion that price had no significant effect on sales. A more striking difference regards

the estimate of the interaction term Price*Feature. The Price*Feature estimates from 2SLS

and 2sCOPE (excluding the copula interaction term) are both negative and close: the 2SLS

Est. = -0.950 (SE = 0.694, p > 0.10) and 2sCOPE Est. = -1.167 (SE = 0.661, p < 0.10).

By contrast, 2sCOPE including the copula term for Price*Feature yields an interaction es-

timate with the opposite sign and larger SE (Est. = 0.148, SE = 0.825, p > 0.10). These

results mark an important point: when adding copula correction terms, only copula terms

for the main effects should be included, and no copula terms for higher-order terms should
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be included. Adding the unnecessary higher-order copula terms can exacerbate the multi-

collinearity issue (Web Appendix Table W21) and lead to substantially varied and biased

estimates.

Although the P&G method was not selected in both examples according to the flowchart

in Figure 5, Table W18 presents the results of applying P&G methods to the two implemen-

tation examples. In Example 1, the parameter estimates of 2sCOPE and P&G are similar

except the coefficient estimate for Feature (0.124 for 2sCOPE vs 0.276 for P&G vs 0.059 for

2SLS). The differences between P&G and 2sCOPE estimates are more pronounced in Ex-

ample 2. Besides the Feature coefficient estimate, we observed differences for Price (-1.314

for 2sCOPE vs -0.999 for P&G) and Price*Feature (-1.167 for 2sCOPE vs -1.621 for P&G).

Furthermore, in agreement with the 2SLS result, 2sCOPE identifies the presence of price

endogeneity (0.069 for the coefficient of copula term Cprice, p-value < 0.05) while P&G does

not (0.046 for the coefficient of copula term Cprice, p-value > 0.10) (Table W18).

Table W18: Estimation Results Using P&G

Example 1 Example 2

Parameters 2sCOPE P&G 2sCOPE P&G

Intercept 4.763 (0.668)*** 4.748 (0.683)*** 6.544 (0.256)*** 6.344 (0.346)***

Price -2.205 (0.446)*** -2.204 (0.468)*** -1.314 (0.430)** -0.999 (0.592)*

Feature 0.124 (0.124) 0.276 (0.092)*** 0.837 (0.388)** 1.255 (0.434)***

Price*Feature -1.167 (0.661)* -1.621 (0.779)**

Week -0.002 (0.000)*** -0.002 (0.001)*** 0.001 (0.000)*** 0.001 (0.000)***

Q2 -0.018 (0.036) -0.023 (0.031) -0.022 (0.033) -0.029 (0.033)

Q3 -0.029 (0.035) -0.022 (0.028) -0.096 (0.034)*** -0.088 (0.032)***

Q4 -0.044 (0.035) -0.014 (0.032) -0.080 (0.035)** -0.086 (0.035)**

Cprice 0.077 (0.037)** 0.078 (0.039)** 0.069 (0.028)** 0.046 (0.037)

ρ1 0.366 (0.160)** 0.412 (0.181)** 0.185 (0.082)* 0.203 (0.226)

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p

< 0.05, *** is p < 0.01
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Theoretically, the bias of the P&G method can be viewed as an omitted variable bias.

With one endogenous regressor P and one exogenous regressor W in the model, the bias

of the P&G method that ignores the correlation between the endogenous regressor (P ) and

the exogenous regressors (W ) comes from the omitted variable σ −qρ
1−q2

W ∗
i , absorbed into the

error term in the augmented regression model (Appendix of Haschka 2022). Consequently,

the bias of the P&G method for α due to ignoring the correlations between P and W is:

σ
−qρ

1− q2
[Cov(P,W ∗)/Var(P )] , (W55)

where σ is the variance of the structural error, ρ is the correlation between P and the

structural error, q is the correlation between P and W , Cov(P,W ∗) is the partial association

between P and the omitted variable W ∗ given P ∗ and W , and the variance of P is Var(P).

The formula sheds light on the sources affecting the sign and magnitude of the bias of the

P&G method. For example, if the explained part of the variation in the dependent variable

is large (i.e., small σ), we can expect the bias of P&G due to ignoring the correlation between

P and W to be minimal. The stronger the correlation between P and W (i.e., larger q),

the larger the bias of P&G. Also, if P has a wide variation relative to the partial covariance

between P and W ∗ given P ∗ and W , the bias of P&G would be small. Given a value of

Var(P ), the smaller the partial covariance between P and W ∗ given P ∗ and W , the smaller

the omitted variable bias of the P&G method. However, a ’too small’ value of the partial

covariance between P and W ∗ given P ∗ and W may mean high collinearity between P

and P ∗ (or between W and W ∗) such that the remaining partial covariance Cov(P,W ∗)

given P ∗ and W can only take small values. This can cause P&G estimates to suffer from

finite sample bias due to insufficient regressor nonnormality. Thus, the overall bias due
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to both ignoring the regressor dependence and insufficient regressor nonnormality can be

complicated. Furthermore, in practice, the true values of ρ (the magnitude of endogeneity)

is unknown, preventing an accurate assessment of the sign or magnitude of the bias for P&G.

Fortunately, the alternative 2sCOPE method is easy to apply and account for the de-

pendence between regressors. Because 2sCOPE employs the GC models, the computational

complexity increases at a much slower rate than other multivariate models as the number

of dimensions increases (Danaher and Smith 2011). Thus, it is computationally feasible to

run these more general copula correction methods to account for the dependence between

regressors. As shown in Yang, Qian, and Xie (2024a), the estimation efficiency loss (i.e., the

increase in standard errors) of 2sCOPE relative to P&G is negligible when the endogenous

and exogenous regressors have no or weak correlations and 2sCOPE is the preferred method

unless sample size is very small. When exogenous and endogenous regressors are correlated,

2sCOPE not only can remove the bias of P&G, but also can possibly increase estimation

efficiency and reduce standard errors by leveraging correlated exogenous regressors.

Next we consider appropriateness of using 2sCOPE-HGC in the examples. The general-

location heterogeneous GC (HGC) model (Yang, Qian, and Xie 2024b) for panel data can

also be applied to grouped data formed by discrete exogenous regressors that generalizes

Liengaard et al. (2024). Let W = (Wc,Wd) where Wc and Wd denote the continuous and

discrete exogenous regressors, respectively. Liengaard et al. (2024) permits the GC depen-

dence structure and the copula correction terms to vary by the levels of discrete exogenous

regressors in Wd. When the levels of combinations of all discrete regressors are not small,

this approach may lead to sparse data insufficient for ECDF estimation and a larger num-

ber of copula parameters and copula correction terms than necessary, resulting in inflated
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estimation variance and estimation bias. Thus, it is important to have sufficient sample size

and meet data requirements (shown in the Flowchart in Figure 5) within each level of com-

binations of discrete exogenous regressors.31 Yang, Qian, and Xie (2024b) propose a more

flexible 2sCOPE estimator based on a general-location heterogeneous GC model (see Web

Appendix Table W19).

The general-location HGC model permits the location and the GC dependence of the

error term and continuous regressors to vary by Wd in different ways. The 2sCOPE-HGC

procedure follows a modified two-stage estimation process (Web Appendix Table W19) with

the following augmented regression model

Yi = µ+
K∑
k=1

Pi,kαk + β′Wi +
K∑
k=1

{
Ci,kγk0 +

G−1∑
j=1

Ci,kI(gi(wd) = j) ∗ γkj

}
+ ωt, (W56)

where Ci,k = (P̃i,k)
∗|gi(Wd) − δ′gi(Wd),k

(W̃c,i)
∗|gi(Wd). (W57)

Inside the copula term Ci,k, P̃i,k = Pi,k − P̄mi
k ,W̃c,i = Wc,i − W̄mi

c , where P̄mi
k and W̄mi

c are

the group mean of Pk and Wc for observations in the same group mi as the observation

i and the groups {mi} are formed by the observed levels of combinations of the discrete

regressors. Thus, P̃mi
k and W̃mi

k are simply within-group demeaned Pk and Wc to account

for potential effects of discrete regressors on the location of continuous regressors. The

model further permits the GC dependence structure of the demeaned continuous regressors

and the error term to vary by the group variable gi(Wd) defined on Wd. The notation

∗|gi(Wd) in Equation W57 denotes empirical copula transformation using only observations

within the group gi(wd), across which the GC dependence may vary. The 2sCOPE-HGC is

31Simulation results (Figure 2 in Liengaard et al. 2024) show the finite sample estimation bias remains before

sample size reaches between 1600 and 3200 observations for an exogenous regressor with two levels. The finite sample

bias depends on the normality of regressors and correlations between endogenous and exogenous regressors.
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more general than that of Liengaard et al. (2024) in that 2sCOPE-HGC allows for different

sets of discrete exogenous regressors to separately affect the location and GC dependence

structure. For example, two discrete exogenous regressors Wd1 and Wd2 may both affect the

location but the dependence structure only vary by Wd1.

Table W19: Estimation Procedure for 2sCOPE-HGC

Stage 1:

• Do group demeaning of Pi,k and Wc,i and obtain the demeaned regressors (P̃i,k, W̃c,i).

• Within each of the subgroups {gi(Wd)} across which GC dependence may vary, apply

Stage 1 of the 2sCOPE to the demeaned continuous regressors (P̃i,k, W̃c,i) and obtain

residual Ci,k = (P̃i,k)
∗|gi(Wd) − δ′gi(Wd),k

(W̃c,i)
∗|gi(Wd) (Equation W57).

Stage 2:

• Add Ci,k and the interaction terms between Ci,k and the indicator variables for the (non-

reference) levels of the group variable (Equation W56).

It is important to have sufficient sample size and meet data requirements (shown in the

Flowchart in Figure 5) within each level of combinations of discrete exogenous regressors

in order to apply 2sCOPE-HGC. Both examples contain quarters as the discrete exogenous

regressors. In Example 1, within each group of observations formed by the quarters, no data

satisfy the requirement in Figure 5. The test for normality of price fails to reject normality

in all groups formed by quarters, and within no group the F -stat for any W have F > 10.

This means data in Example 1 do not satisfy the data requirement for 2sCOPE-HGC while

the 2sCOPE meets data requirements. In Example 2, the price variable in Quarter 3 rejects

normality (p < 0.02). For other quarters, the price variable fails to reject the normality

assumption and no W variable is found to have sufficient relevance (F >10) with the price

variable in groups formed in these quarters. Thus, strictly speaking, 2sCOPE-HGC does not

satisfy all data requirements and one should be cautious about applying 2sCOPE-HGC to

this example as well, although to a lesser extent. However, for illustration purposes, the result
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of 2sCOPE-HGC for this example is presented in Table W20. We observe that 2sCOPE-HGC

yielded results that largely agree with 2sCOPE rather than with OLS. Furthermore, none

of the interactions between the Cprice and quarters (i.e., Cprice ∗Q2, Cprice ∗Q3, Cprice ∗Q4)

is statistically significant. Thus we conclude that no evidence supports the HGC model.

Overall, the more parsimonious 2sCOPE is preferred.
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Table W20: Further Estimation Results for Example 2

Parameters OLS 2SLS 2sCOPE 2sCOPE-HGC

Intercept 6.038 (0.165)*** 6.688 (0.359)*** 6.544 (0.256)*** 6.378 (0.353)***

Price -0.453 (0.274)* -1.554 (0.606)** -1.314 (0.430)** -1.037 (0.591)*

Feature 1.513 (0.234)*** 0.646 (0.487) 0.837 (0.388)** 1.072 (0.487)**

Price*Feature -2.125 (0.379)*** -0.950 (0.694) -1.167 (0.661)* -1.513 (0.740)**

Week 0.001 (0.000)*** 0.001 (0.000)*** 0.001 (0.000)*** 0.001 (0.000)***

Q2 -0.028 (0.034) -0.020 (0.036) -0.022 (0.033) -0.024 (0.033)

Q3 -0.083 (0.035)** -0.099 (0.038)*** -0.096 (0.034)*** -0.093 (0.036)***

Q4 -0.090 (0.036)** -0.081 (0.038)** -0.080 (0.035)** -0.085 (0.036)***

Cprice 0.069 (0.028)** 0.049 (0.045)

Cprice∗Q2 0.033 (0.056)

Cprice∗Q3 0.016 (0.069)

Cprice∗Q4 -0.051 (0.050)

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p

< 0.05, *** is p < 0.01.
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Table W21: VIF Results in Example 2

Parameters 2sCOPE 2sCOPE W/Int

Est. (SE) VIF Est. (SE) VIF

Intercept 6.544 (0.256)*** — 6.344 (0.307)*** —

Price -1.314 (0.430)** 27.9 -0.999 (0.518)* 29.1

Feature 0.837 (0.388)** 59.3 0.619 (0.420) 61.5

Price*Feature -1.167 (0.661)* 18.8 0.148 (0.825) 29.1

Week 0.001 (0.000)*** 1.2 0.001 (0.000)*** 1.2

Q2 -0.022 (0.033) 1.5 -0.038 (0.041) 1.6

Q3 -0.096 (0.034)*** 1.7 -0.089 (0.045)** 1.7

Q4 -0.080 (0.035)** 1.7 -0.066 (0.039)* 1.7

Cprice 0.069 (0.028)** 3.2 0.058 (0.030)* 3.2

CPrice∗Feature -0.168 (0.098)* 6.2

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, **

is p < 0.05, *** is p < 0.01. Regression models with interaction terms will often yield high VIF values

because of high correlations between variables and their interactions. Such high VIF values do not imply

problems in terms of estimation and inference for models with interaction terms (Kalnins and Hill 2023, p.72,

and Echambadi and Hess 2007). However, in the case of copula correction, adding the unnecessary copula

term CPrice∗Feature for interaction term exacerbates the multicollinearity issue that substantially increases

the VIF for the interaction term estimate from 18.8 to 29.1, cause inflated standard errors, and introduce

potential finite sample bias as shown in our simulation studies.

Implications in Example 2

Example 2 presented the case of the interaction between an endogenous and exogenous

regressor (Web Appendix Table W17). Like Example 1, price elasticity in the absence of

feature was substantially under-estimated in OLS (Est. = -0.453) than 2SLS (Est. = -1.554)

or 2sCOPE (-1.314). The OLS price elasticity estimate was nearly a third that of 2sCOPE.

Furthermore, 2sCOPE including a copula term for the interaction term biased the price

elasticity estimate downwards (Est. = -0.999), about 30% lower as compared with the esti-

mate of -1.314 from 2sCOPE excluding this copula term (Web Appendix Table W17). This

bias in the price elasticity estimate becomes even larger as feature intensity increases. Includ-
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ing the copula term for the endogenous interaction term of Price*Feature yields a severely

biased interaction effect estimate; while 2sCOPE without this unnecessary copula term had

a negative estimate of -1.176, 2sCOPE including this term (2sCOPE W/Int) produced a

positive estimate of 0.148 (Table W17). As shown in Figure 4, including the unnecessary

copula term for Price*Feature yields price sensitivity estimates that are the same across dif-

ferent feature intensity (meaning lack of interactive effect); excluding this copula term yields

much greater magnitude of price sensitivity that increases with greater feature advertise-

ment. Such drastic differences in price elasticity estimates can have substantive managerial

implications, including the optimal price setting and profit maximization, like in Example 1.
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