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ABSTRACT

Causal inference is of central interest in many empirical applications, yet often challenging because
of the presence of endogenous regressors. The classical approach to the problem requires using
instrumental variables that must satisfy the stringent condition of exclusion restriction. In recent
research, instrument-free copula methods have been increasingly used to handle endogenous
regressors. This article aims to provide a practical guide for how to handle endogeneity using
copulas. The authors give an overview of copula endogeneity correction, outlining its theoretical
rationales, advantages, and limitations for empirical research. They also discuss recent advances
that enhance the understanding, applicability, and robustness of copula correction, and address
implementation aspects of copula correction such as constructing copula control functions and
handling higher-order terms of endogenous regressors. To facilitate the appropriate usage of copula
correction in order to realize its full potential, the authors detail a process of checking data
requirements and identification assumptions to determine when and how to use copula correction
methods, and illustrate its usage using empirical examples.
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Many research questions in marketing, management, economics, and health sciences concern
causality rather than mere association. Such questions are often addressed by estimating
structural regression models that represent causal relationships. A pervasive issue in these
analyses is regressor endogeneity, which arise when regressors representing the causes (e.g.,
an economic program to be evaluated, marketing mix variables, etc.) are not randomly
assigned and thus correlate with unobservables (e.g., unobserved product characteristics or
common market shocks) in the structural error term (Villas-Boas and Winer 1999). Ignoring
the regressor-error dependence can lead to severely biased parameter estimates.

Given the ubiquity of endogenous regressors and the need to address endogeneity bias,
extensive research is devoted to developing suitable correction methods. The instrumental
variable (IV) method is the classical econometric solution. It depends on valid and strong
IVs that satisfy the stringent requirement of exclusion restriction (ER), making Vs difficult
to identify and justify in practice (Ebbes et al. 2005). Concerns over IV availability and
quality have spurred growing interest in IV-free endogeneity correction methods (Ebbes,
Wedel, and Bockenholt 2009; Papies, Ebbes, and Van Heerde 2017; Rutz and Watson 2019;
Papies, Ebbes, and Feit 2023). These methods exploit higher moments (HM, Lewbel 1997),
identification via heteroscedastic error structures (IH, Rigobon 2003), latent IVs (LIV, Ebbes
et al. 2005), semiparametric odds ratio endogeneity models (SORE, Qian and Xie 2024), and
copulas!, starting from the seminal work of Park and Gupta (2012).2

Copula correction methods provide substantial advantages for addressing the prevalent
and thorny issue of endogenous regressors. These methods directly address the regressor-
error dependence using copulas, a widely used multivariate dependence model applicable in
many practical applications (Danaher and Smith 2011). Unlike the IV approach and other

[V-free methods, copula correction does not require the endogenous regressor to contain

L“Copula” was introduced by Sklar (1959) from the Latin “to link”, as a function linking two variables. Copulas
encompass different forms, but we use ‘copulas’ here to speak synonymously with Gaussian copulas (GC).

2See also Christopoulos, McAdam, and Tzavalis (2021); Tran and Tsionas (2021); Becker, Proksch, and Ringle
(2022); Haschka (2022); Eckert and Hohberger (2023); Yang, Qian, and Xie (2024a,b); Liengaard et al. (2024);
Breitung, Mayer, and Wied (2024); Park and Gupta (2024); Hu, Qian, and Xie (2025).



an exogenous component (either observed or latent) that must satisfy the stringent ER
condition. Thus, copula correction is feasible in many situations when appropriate conditions
are met. Moreover, it can be implemented by incorporating copula-based control functions—
derived from existing regressors—into the structural model as additional control variables
to address endogeneity. Thus, copula correction using control functions is computationally
tractable and straightforward to apply in a wide array of settings, including both linear and
nonlinear models (e.g., discrete choice models), multiple endogenous regressors, panel data,
endogenous interaction and higher-order terms, and the slope endogeneity problem.

Largely due to these advantages, copula correction has gained growing popularity in
empirical research. Beyond marketing, it is increasingly adopted in other fields such as eco-
nomics, management, and information systems (e.g., Christopoulos, McAdam, and Tzavalis
2021; Becerra and Markarian 2021; Ananthakrishnan et al. 2025). The pie chart in Figure
1 breaks down by discipline book chapters and journal publications (n=615) using copula
endogeneity correction, according to Google Scholar. Each slice in the pie chart matches
journals and journal fields as defined by the Australian Business Dean’s Council. Outside
marketing, strategy and information systems are the two most common business disciplines
adopting copula correction. Within marketing, the bar chart in Figure 1 display the distribu-
tion of publications using copula correction (n=100) by substantive area in leading marketing
journals ? from 2013 to 2025 (see Web Appendix A for the full list of publications).

Like other causal inference methods for nonexperimental data, copula correction relies on
specific underlying assumptions and data requirements. Earlier studies (Papies, Ebbes, and
Van Heerde 2017; Becker, Proksch, and Ringle 2022; Eckert and Hohberger 2023) reviewed
and evaluated the assumptions and limitations of the original method by Park and Gupta
(2012). Since then, methodological advances have significantly relaxed these constraints,

enabling copula correction to operate under less strict conditions than previously believed.

3This list includes Journal of Marketing, Journal of Marketing Research, Marketing Science, Journal of Consumer
Research, Journal of the Academy of Marketing Science, International Journal of Research in Marketing, Journal of
Retailing, and Journal of Consumer Psychology.
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Figure 1: Pie Chart (left): Publications (n=615) using Copula Correction by Disciplines.
Bar Chart (right): Publications (n=100) using Copula Correction in Leading Marketing Journals
by Substantive Areas. “Other” includes word-of-mouth, warranty claims, etc.

We demonstrate that copula correction using control functions does not require the error
to be normally distributed or follow a specific copula structure jointly with endogenous
regressors (Web Appendix B), making the approach more robust and widely applicable than
previously thought. Although copula correction originally required endogenous regressors
to be uncorrelated with exogenous regressors and have sufficient nonnormality, limiting its
applicability, the recent two-stage copula endogeneity correction (2sCOPE) approach by
Yang, Qian, and Xie (2024a) simultaneously relaxes these restrictions and provides a general
framework for further development (e.g., Liengaard et al. 2024; Yang, Qian, and Xie 2024b).
Haschka (2022) and Yang, Qian, and Xie (2024b) generalize copula correction to panel data.
Hu, Qian, and Xie (2025) introduce nonparametric copula control functions that generalize
and unify existing copula correction methods. Qian and Xie (2024) and Hu, Qian, and
Xie (2025) develop IV-free methods for handling noncontinuous endogenous regressors (e.g,
binary treatment) that current copula control function methods cannot accommodate.

Given the substantial advances since Park and Gupta (2024), updated guidelines are



needed to clarify the scope and boundaries of these new methods and to guide the use of
the expanded copula correction toolbox. Without randomization or exclusion restrictions,
the trade-off in copula correction lies in the need to explicitly model the regressor-error
dependence. While recent advances enhance the copula approach to address endogeneity, it
is not a panacea for every instance. We discuss its boundary conditions and limitations to
help researchers make a conscious choice of when to use the copula approach.

Focusing on assisting potential users of copula correction, the objectives of this article
are to: (a) raise awareness of the importance of addressing endogenous regressors in empir-
ical studies and demystify theoretical rationales of copula correction; (b) synthesize recent
advances that enhance the understanding, applicability, and robustness of copula correction;
(c) provide updated guidance and delineate a process of checking data requirements and
identification assumptions to aid proper usage of copula correction; and (d) demonstrate the
use of copula correction in practical applications.

The rest of the paper proceeds as follows. First, we overview the theoretical rationale
for endogeneity correction using copulas. This addresses how, when, and why copulas work,
including identification assumptions, data requirements, and boundary conditions. Second,
we present the methodological background: how copula correction assumptions might be
relaxed, its usage for panel data, how it is constructed, optimal estimation for moderators
and nonlinear effects, and obtaining standard errors. Third, we provide guidance for practical
usage, including a flowchart ‘cookbook’ to check data requirements and assumptions at key
steps. Fourth, we present two examples that follow the flowchart, using real world sales data.

Finally, we conclude with discussions and future research directions.

THEORETICAL RATIONALE FOR ENDOGENEITY CORRECTION
USING COPULAS

As an entry point, we first provide an overview for how copulas address endogeneity

correction: why and when should they be used? How do they work? We examine what



assumptions and data requirements are actually needed for model identification and discuss

boundary conditions to guide appropriate use. This leads to the impact of copula correction.

Why and When Use Copula Correction?

Empirical examples of endogenous regressors abound. For concreteness, consider a run-
ning example of estimating the following linear structural model using nonexperimental data:
Y, = p+aP,+ W, + E;, (1)
where ¢ = 1,--- ,n indexes cross-sectional units or markets across regions or time; Y; is a
scalar response variable (e.g., log sales volume of ice cream in market 7); P; is the endogenous
regressor (e.g., log price), and W; is a vector of exogenous control variables affecting both
P, and Y; (as shown by the two arrows from W to P and Y in Figure 2.a). The model
parameters are (u, a, ), among which « captures the causal or independent effect of P; and
is of primary interest. The exogenous control variables in W are determined outside the
system (e.g., weather) or under control by researchers such that no dependence between W;
and F; exists (i.e., no arrow between W and FE in Figure 2.a) and thus Cov(W;, E;) = 0.
In contrast, P; may depend on unobserved factors in E; (e.g., market shocks or product
attributes), creating endogeneity through the £ — P link in Figure 2.a.
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Figure 2: Directed Acyclic Graph (DAG) for Endogeneity

Copula endogeneity correction’s advantages contributing to its wide usage include broad
applicability and high feasibility, as compared with alternative methods (Table 1). The
directed acyclic graphs (DAGs) in Figure 2 explicitly include the unobserved error term

E and highlights the important role of P-FE dependence. Conceptually, copula correction
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addresses the general cases represented by the DAGs in panels (a), (d), and (e) of Figure 2,
while relaxing key assumptions and restrictions required by alternative methods shown in

panels (b) and (c). Below, we highlight some common use cases for copula correction.

Case 1: Leveraging experiments or acquiring perfect observational data is infeasible

Ensuring independence between P and E—such as through random assignment of P in
experiments or by measuring and controlling for all confounders (the rich data approach)—
are often impractical (Germann, Ebbes, and Grewal 2015). Randomized experiments are
widely regarded as the gold standard for causal inference due to their high internal validity.
However, they can be costly, ethically constrained, and often limited to discrete treatment
levels (Table 1). Even when feasible, experiments may face challenges such as limited external
validity, treatment noncompliance, and failure to balance all confounders. For example, a
firm’s randomized pricing experiment may not account for competitors’ strategic responses
(Rutz and Watson 2019), and natural experiments may rely on events or thresholds that
coincide with other events (Table 1). Similarly, rich observational data can be costly or
infeasible to obtain, and may fail to fully or accurately capture all relevant variables.

In such cases, the distribution of the endogenous regressor P, via its dependence on
E; carries useful information about model parameters. Standard methods that ignore this
dependence—such as ordinary least squares (OLS), matching or weighting based on observ-
ables, or fixed effects models— assume exogeneity (Figure 2.b) and can suffer from endogene-
ity bias due to omitted variables, measurement error, or simultaneity. By contrast, copula
correction addresses this bias (Rutz and Watson 2019; Eckert and Hohberger 2023) by re-
laxing the exogeneity assumption and modeling the more general DAG in Figure 2.a, which
nests Figure 2.b as a special case. It does so without requiring experiments or exhaustive

measurement of all confounders (Table 1).

Case 2: Suitable IVs are unavailable
As the classical approach to addressing endogeneity bias, the IV method is based on the

DAG shown in Figure 2.c — a special case of Figure 2.a. Like control variables W the



instrument Z must be relevant (affecting the endogenous regressor P) and exogenous (un-
correlated with the error term FE). The crucial distinction is the exclusion restriction (ER):
Z must not directly affect the outcome Y (i.e., f = 0 in Figure 2.c), meaning Z is excluded
from the outcome model in Equation 1. This ER condition, which is untestable in practice,
is what differentiates valid instruments from merely exogenous variables and makes good IVs
hard to find and justify. For instance, in the earlier ice cream example, weather is exogenous
but it would likely violate the ER condition, as it directly influences demand—people tend to
buy more ice cream on hot days, even if prices remain constant. Moreover, the relevance and
ER conditions often conflict: variables that strongly predict the endogenous regressor may
also directly influence the outcome. Thus, despite the theoretical appeal of the IV approach,
identifying valid instruments in practice remains a major challenge, highlighting the need
for more flexible methods to address regressor endogeneity.

Other IV-free methods (LIV, IH, HM) do not require an observed instrument Z but
assume that P can be linearly decomposed as P = Z 4 v, where Z is unobserved and meets
the ER condition (Park and Gupta 2012). Identification relies on distributional assumptions:
the instrument Z is discrete in LIV, skewed in HM, and heteroscedastic in IH.* Although
these methods circumvent the need to find instruments, researchers must still justify the ER
condition for an unobserved instrument Z, whose nature and interpretation are ambiguous.

Unlike IV and these other IV-free methods, copula correction requires no instrument—
observed or latent— and thus avoids justifying an instrument Z that satisfies the ER condi-
tion and causally affects P. Exogenous control variables in W can enhance the precision and
identification of copula correction. A good starting place to find such W is the existing ex-

ogenous control variables in OLS or IV models.® Unlike instruments, these control variables

4Additionally, HM requires certain higher-order moment conditions (e.g., zero correlation between second mo-
ments of the centered endogenous regressor and outcome), while IH requires heteroscedastic errors across levels of an
observed grouping variable. These higher-moment conditions may not always hold, and suitable grouping variables
may be unavailable. In contrast, the LIV method avoids these requirements, making it more broadly applicable (Park
and Gupta 2012; Rutz and Watson 2019). LIV instead assumes a normally distributed error term and a continuous,
nonnormally distributed endogenous regressor (Table 1).

5n many cases, IVs are plausible only after good control variables are included in the model (Ebbes et al. 2005).
These control variables need to be exogenous to ensure the consistency of IV estimation.



(e.g., exogenous demand shocks) need not satisfy the strict ER condition. That is, these W's
do not have to be excluded from the structural model and can affect the outcome directly.
Such Ws are much more readily available than IVs, and because empirical association be-
tween the candidate W and P is sufficient (Figure 2.e), researchers using copula correction
do not need to argue for the causal pathways between W and P like in the case of IVs. Thus,

copula correction substantially enhances the feasibility of addressing endogeneity.

Case 3: Conduct multi-methods causal inference as a robustness check

Examples here are when IVs exist but are imperfect with questionable validity or weak
relevance; control variables used in rich data methods have questionable comprehensiveness,
accuracy, or validity of exogeneity. In such situations, copula correction can be used along-
side these approaches to compare results and cross-validate findings (Germann, Ebbes, and

Grewal 2015; Papies, Ebbes, and Van Heerde 2017; Qian and Xie 2024).

Case 4: A combination of multiple methods is required to address endogeneity

For instance, an IV may be available for the treatment variable, while potential moder-
ators are endogenous and lack valid instruments. In such cases, copula correction can be
used in conjunction with the IV to address multiple endogenous regressors. Similarly, cop-
ula methods can be combined with methods like regression adjustment or SORE to address

residual endogeneity and mixed (continuous or discrete) endogenous variables, respectively.

Summary and trade-offs of copula correction

As discussed above, copula correction can serve as either a primary or complementary
method to address regressor endogeneity. It requires no experiments, exhaustive measure-
ment of all confounders, or IVs satisfying the ER condition, and is feasible and tractable
to use in a wide variety of settings. However, these advantages come with trade-offs. In
exchange for randomization, exhaustive measurement, or ER, copula correction requires ad-

equately capturing regressor-error dependence with copulas —a process outlined below.
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How Does Copula Correction Work? — A Primer on Copula Correction

Copula correction, first proposed by Park and Gupta (2012) (P&G), is based on the idea
that adequately capturing regressor-error dependence can yield unbiased causal estimates.
To address the endogeneity of P in Equation 1, P&G propose two estimation methods based
on a Gaussian copula (GC) dependence model for the joint distribution of (P;, F;) and a nor-
mal structural error. The first maximizes the likelihood derived from this joint distribution.
The second uses a simpler control function approach that rewrites the maximum likelihood
estimation as a regression augmented with a copula generated term P = @’1(ﬁ (P;)), where
&~ is the inverse standard normal cumulative distribution function (CDF) and F(B;) is the
empirical CDF of P. Both estimators were derived under fully specified likelihood, leading
to the belief that copula correction is likelihood-based (Table 2). Consequently, estimation
and inference may be sensitive to likelihood misspecifications and depend on a set of strict
data requirements and traditional assumptions (TAs 1 to 5 in Table 2) for identification.

Contrary to common belief, we show copula control function methods require neither a
normal error distribution nor GC regressor-error dependence, and can work under substan-
tially less strict conditions (Table 2). To highlight how copula correction works under these
weaker conditions (and derive general copula control functions), consider the DAG in Figure
2.d which decomposes the structural error as F; = U; + &. Here, U; is the error’s endoge-
nous part as the combined effect of unobserved confounders, &; is an exogenous disturbance

satisfying E(&|P;, W;) = 0, and E is the expectation operator. We rewrite Equation 1 as:

Structural error E
7\

Y, = E(YiP, W) +&=pn+ab+BW, +EU|P,W,) + & . (2)
~—_——— o ~—~
Endogenous Togenous

Equation 2 decomposes the error E; into two parts: (1) E(U;|P;, W;): the expected omit-
ted effect U; given regressors (P;, W;), which is the error’s endogenous part correlated with
regressors and (2) the exogenous part ¢; uncorrelated with all regressors and E(U;|B;, W;)°.

Important from Equation 2 is that one needs not to know unobserved U; to control for

SNote €; = €/ 4 & and both €/ = U; — E(U;|P;, W;) and &; are uncorrelated with each of (Ui, Wi, E(Us| Pi, W5)).
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endogeneity: E(U;|P;, W;) sufficiently captures the error’s endogenous part and completely
controls the confounding effects of omitted variables. If E(U;|P;, W;) is known and added to
the outcome model as an offset term, the resulting OLS regression yields consistent model
estimates, as the new error term ¢; is uncorrelated with all regressors (P;, W;, E(U;| P;, W;)).
This approach clearly hinges on whether the control function E(U;|P;, W;) can be recovered.

Copula correction based on Equation 2 proceeds by noting that the dependence between
the endogenous regressor P; and the omitted term U;, unexplained by the control variables
in W;, can be captured by copula models. This copula dependence structure and economic
theory” enable the derivation and recovery of control functions that break the dependence
between endogenous regressors and the structural error. As discussed in the next subsection,
the copula dependence model is chosen for a number of reasons, including its flexibility,
wide applicability, and the ability to faithfully maintain regressor distributional features and
multivariate dependence crucial for model identification.

Yang, Qian, and Xie (2024a) introduce a two-stage copula endogeneity (2sCOPE) correc-
tion procedure that simultaneously recovers the control function and structural parameters.
Under a joint GC model for all regressors and the error, they show that the residual from
the first-stage model for the endogenous regressor P; breaks the regressor-error dependence,
serving as the control function up to a constant. As a result, Equation 2 becomes

Y, = p+aP,+ W, +~C;pw + €, where Cip = P — S’I/VZ*, (3)
vC plw is the control function E(U;|F;, W;) capturing the error’s endogenous part and Cj pp,
is the copula term; P* = ® 1(Fp(P,)) and Wi = &1 (Fy,(Wy,)) for the I (1 =1,--- L)
variable in W are copula transformed regressors. Recall that P’ is the copula term from the
P&G method. The 2sCOPE approach (Equation 3) removes the part of P;* that is correlated
with exogenous regressors and uses the remaining cleaned part to control for endogeneity.

Conditioning on this cleaned part in P; makes the new error ¢; independent of all regressors

"While the first-stage model for endogenous regressors can be made nonparametric/assumption-lean in copula
correction, economic theory can guide the choices of exogenous control variables in W which play an important role
in model identification.
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(P;, Wi, C; pjw)- As a result, adding Cj ., as a control variable allows standard methods like
OLS to yield consistent estimates, with 7C; ., acting as the estimated control function.
Operationally, 2sCOPE proceeds in two steps: (1) regresses P on W/, and (2) adds the
first-stage residuals Cj ., = P — S’I/Vz* to control for endogeneity, where § denotes first-
stage coefficient estimates.® If no endogeneity exists, the true coefficient v on Cj pp,, is zero.
Thus, with the copula control function approach, one can test the presence of endogeneity
by statistically testing whether the coefficient v for the copula term C; ), is zero or not.
The two-stage residual approach has been adapted to various settings (see later the
Methodological Background section and Table 5). Hu, Qian, and Xie (2025) develop a two-
stage nonparametric copula control function (2sCOPE-np) that generalizes and unifies these
methods, expressing the copula term in Equation 3 generally as: Cj ., = (Ifl(ﬁ (B;|W5)).
Here, the conditional CDF of P given W, F(P;|W;), can be consistently estimated using a
nonparametric conditional CDF estimator, F (P;|W;). Thus, one can estimate the control
function non-parametrically without specifying first-stage auxiliary models for regressors.
Copula control function offers an alternative to the control function of Petrin and Train
(2010). Unlike their approach, copula correction requires no IVs that must satisfy the strict
ER condition, a stronger requirement than exogeneity. No arguments for the nature, direc-
tion, or forms of relationships between W and P are needed: empirical association between P
and W is sufficient and 2sCOPE-np employs first-stage model-free control functions. Thus,
copula correction greatly increases the feasibility of endogeneity correction.
Table 3 summarizes the 2sCOPE estimation algorithm for the general case of multiple
endogenous regressors. For K continuous endogenous regressors (Py,--- , Pg), the copula

control function approach estimates the following augmented regression model:

K K
Y, = p+ Z Py ++8W; + Z Y Cipplw + €is (4)
k=1 k=1
where the copula term Cj p, ., = Py, — 0, W;*. The algorithm in the later Equation 9 is used for

the copula transformation of these regressors, including both continuous and noncontinuous

8 Although P = §'W;* + V; includes no intercept, the implementation of 2sCOPE includes the intercept, which
is more general and performs well in simulation studies.
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Table 3: Summary of the 2sCOPE Estimation Procedure

Stage 1:
e Obtain empirical CDFs for each regressor in P, and W;, F. p. () and ﬁWl(-);
o Compute Py, = &~ (Fp,(Pix)) and W, = & (Fy,(W;,)) using copula transformation

algorithm defined in Equation 9;
e Regress P/, on W and obtain residual Cjy, 1, = By, — 6, W;", which removes the
component related to exogenous regressors.
Stage 2:
e Add Cjp,jw to the outcome structural regression model as a control variable to correct
for endogeneity of Py. The augmented regression model takes the form of Equation 3 (or

Equation 12 when the model contains higher-order or interaction terms of regressors).

Note: W can contain a mixture of continuous and noncontinuous variables (Also see Footnote 9 for alternative

2sCOPE implementations that bypass copula transformations of noncontinuous variables in W).

exogenous regressors in W (Web Appendices E2 and E3 in Yang, Qian, and Xie 2024a).” The
2sCOPE-np replaces Stage 1 with the following: for the kth endogenous regressor Py, perform
nonparametric kernel conditional CDF estimation for P, given W (Web Appendix Equation

W35 or Equation W37) and obtain the copula term C; p, ., = ®H(F'(P; |W;)), which involves

no copula transformations of individual regressors. In Equation 4, Zszl Vi Ci 1w 18 the linear

7pk:|
combination of the K copula terms {C;,, |} used to control for endogenous regressors and

is the copula control function (CCF) with multiple endogenous regressors.

Identification Assumptions and Data Requirements for Copula Correction

As shown above, copula correction can be achieved using control functions via the method
of moments'® estimation of the augmented regression in Equation 4, without needing to spec-
ify distributions for the error and individual regressors, the regressor-error joint distribution,
or the associated likelihood (Table 2). This increases the robustness of copula correction
and allows us to focus on the most essential assumptions and data requirements for copula
correction. We now contrast the assumptions (Table 4) used to derive the above general

2sCOPE procedures with traditional assumptions (TAs) listed in Table 2.

Nonnormal error distribution and non-copula regressor-error dependence

90ne could also eliminate discrete control covariates from the model before applying 2sCOPE by using within
group demeaning of the outcome and continuous regressors with groups formed by combinations of discrete covari-
ates, in a similar way to the fixed-effect transformation of panel data to remove fixed-effects. Alternatively, one
can condition on discrete endogenous regressors and apply Stage 1 of 2sCOPE to only group-demeaned continuous
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Table 4: Assumptions Used to Derive 2sCOPE/2sCOPE-np

Assumption 1. Fither the error E; or its endogenous part U; is normally distributed (DR1).
Assumption 2. Fither (P, E)|W or (P, U)|W follows a Gaussian copula ® (DR2).

Assumption 3. Full rank of all regressors and Cov(W, E) = 0. °
Assumption 4. P is continuous and the copula term C,, is linearly independent of (1, P,W).

Items to Assess Assumptions

a. Assumptions 1 and 2 are unverifiable from data alone. Though used in method derivation,
Assumptions 1 and 2 are not strictly required: copula correction is robust to symmetric
nonnormal distributions of U and to a range of departures from GC dependence (Web Appendix B).
Their plausibility should be evaluated based on identified sources of endogeneity and theoretical
reasoning, along with using residual inspection and Boundary Condition 1 to detect signs of
possible violations. If needed, revise the model (e.g., transform outcomes/regressors if U is
suspected to be highly skewed) or copula correction strategies (Web Appendix C).

b. To satisfy Assumption 3, researchers should take care to properly specify the structural model,
such as avoiding mistakenly including redundant regressors. To ensure Cov(W, E) = 0, include
only exogenous control variables in W based on institutional knowledge.

c. Assumption 4 for 2sCOPE requires that the continuous P or one correlated and continuous

regressor in W is nonnormal, which can be verified by Boundary Condition 2 below.¢

Boundary Conditions

1. Dependence model misspecification: Inspect the inflation of standard errors of copula-corrected
estimates relative to those of uncorrected estimates; inflation > 6 flags GC dependence model
misspecification issues when other assumptions hold.

2. Regressor distribution & relevance requirement: The continuous P is nonnormal (normality test
p < 0.05) or for nearly normal P, one exogenous W is continuous, sufficiently nonnormal (normality
test p < 0.001), and sufficiently relevant (first-stage F' statistic > 10).

3. A minimum sample size of 300 is recommended for satisfactory performance of 2sCOPE-np?.

Note: DR: Double Robustness. ¢: Assumption 2 means that the variation in P unexplained by W follows a
GC model jointly with E (or its endogenous part U). 2sCOPE further assumes a joint GC model for all
regressors (P, W), an assumption not required by 2sCOPE-np. °: Full rank means rank (X X ) = @, where
@ is the number of columns in X = (1, P,W). ©: Assumption 4 allows normally distributed P to be
identified via exogenous control regressors. 2sCOPE-np can also leverage exogenous regressors to handle
noncontinuous P. ¢: See Web Appendix Figure W4.

Assumptions 1 and 2 (Table 4) mean that the copula control function methods require
neither a normal error distribution nor GC regressor-error dependence (TAs 1 and 2 in Table
2) and can work under substantially less rigid conditions than previously believed. In fact,
the same 2sCOPE/2sCOPE-np procedure can be derived under both Figure 2.a and Figure
2.d and hence possesses a desirable property of double robustness (Web Appendix B): when a

GC model adequately captures either the regressor-error dependence or regressor-confounder

regressors and include residuals as generated regressors (Table 6), while leaving outcomes unchanged.
0For instance, the OLS estimation is a spacial case of the method of moments by equating the sample covariances
between regressors and the error term to the population covariance values (Wooldridge 2010).
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dependence unexplained by exogenous regressors, the copula corrects endogeneity bias. The
reason is intuitive: the exogenous part of F;, &;, simply adds noise but does not affect
endogeneity correction. Because &; does not need to follow a normal distribution (or any GC
assumption) for the augmented regression to correct bias, copula control functions do not
require the error E; to be normally distributed or follow a specific copula structure jointly
with P;. Consequently, the normal error distribution and the GC regressor-error dependence
are only sufficient but not necessary conditions for copula control functions to work.

In many settings, it is plausible to assume that F; is normally distributed (Yang, Chen,
and Allenby 2003; Ebbes et al. 2005) or U; is normally distributed as a sum of many con-
founders’ effects (Qian and Xie 2024; Breitung, Mayer, and Wied 2024; Yang, Qian, and
Xie 2024a)!!, satisfying Assumption 1. Furthermore, in many settings, the GC model can
adequately capture the dependence between U; (or E;) and P; unexplained by exogenous re-
gressors, satisfying Assumption 2. The GC model has desirable properties, making it widely
used and applicable in empirical research to robustly capture multivariate dependence that
traditional models, such as linear additive dependence models, often fail to capture (Dana-
her and Smith 2011; Qian and Xie 2024). GC permits the full (-1,1) range of correlation
coefficient and is readily extensible and computationally scalable to more than two variables.

Moreover, GC separates modeling dependence from modeling individual variables’ dis-
tributions. Thus, distribution-free GC models can capture regressor-error dependence irre-
spective of (potentially complex) regressors’ distributional features, while nonparametrically
preserving these distributional features essential for model identification. Copula correction
also demonstrates robustness to a range of departures from the GC assumption. Conse-
quently, copula correction has broad applicability and become a valuable resource in the
toolkit for handling regressor endogeneity in various fields (Figure 1). In many applications,

including those in marketing (Web Appendix A), copula correction yields credible findings

Hpor example, U; may be salesperson ability which combines many genetic and environmental factors, product
quality which sums many unmeasured product attributes, or a category attribute which sums many UPC products’
attributes. Normality of U; here requires an enough number of composite confounders rather than a large sample
size (Billingsley 1995, Section 27, The Central Limit Theorem).
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that are consistent with theoretical predictions, attesting to its effectiveness and applicability.

Correlated endogenous and exogenous regressors

The 2sCOPE method extends the P&G method to account for correlated exogenous and
endogenous regressors. When P and W are independent, the first stage coefficient 6 = 0
and the 2sCOPE copula term C; ), in Equation 3 reduces to P = C; ), = O 1(F(P)) used
in the P&G method (TA 3 in Table 2).'* But when P and W are dependent, using P*
as the copula correction term will confound the control function with effects of exogenous
regressors, biasing both the control function and model parameter estimates.

The 2sCOPE control function removes the exogenous regressors’ influences on the entire
distribution of P rather than just on some aspects such as its mean. In contrast, some
methods use a mean regression model for P given W' implicitly assuming that W only
affects the mean of P, which is known to be violated for bounded, truncated, or discrete
endogenous regressors'* and can be questionable for unbounded continuous regressors (Chen
2007; Danaher and Smith 2011), leading to biased control function and model estimates.
The 2sCOPE/2sCOPE-np procedures are more flexible, permitting W to affect not only
the mean but also higher moments of P (Yang, Qian, and Xie 2024a; Danaher and Smith
2011; Hu, Qian, and Xie 2025) and providing a model-free nonparametric adjustment. While

correlated exogenous regressors complicate copula correction and need to be carefully dealt

with, they also provide opportunities to relax key identification constraints, as seen below.

Normally distributed endogenous regressors
Under P&G, the source of identification comes from distributional features of the en-

dogenous regressor P (nonnormally distributed). If P is normally distributed, then P&G

2For 2sCOPE-np, C; pjw = @fl(ﬁ(PJW,-)) also simplifies to P;" (as in P&G) when P and W are independent.

13See Breitung, Mayer, and Wied (2024) and Mayer and Wied (2025).

14Examples include the percentage of trained salespeople that takes on continuous values in [0, 1] (Atefi et al.
2018), or brand price that takes on values between minimum and maximum prices (Qian and Xie 2011). One should
not confuse the first-stage models in copula correction with those in two-stage least squares (2SLS) using IVs. The
simple linear additive equation commonly used in the first stage mean regression for endogenous regressors in 2SLS is
not a dependence model or DGP, but merely a projection of endogenous regressors to the space of exogenous regressors
(Wooldridge 2010). 2SLS achieves identification through exclusion restriction rather than dependence modeling.
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fails by violating the full rank condition of the regressor matrix (TA 4 in Table 2). Although
distributional shapes of endogenous regressors are observed and regressor normality can be
tested, this requirement limits the applicability of copula correction because many important
endogenous regressors have close to normal distributions (Eckert and Hohberger 2023).
The 2sCOPE procedure relaxes this restriction by leveraging relevant exogenous regres-
sors to identify the effects of endogenous regressors with insufficient nonnormality. With
2sCOPE, the source of identification come from either the nonnormal distributional features
of the variations in P unexplained by W (a nonnormal conditional distribution for F'(P|W))
or nonlinear relationships between P and W, ensuring full rank of the copula augmented
model (Assumption 4 in Table 4). Even if P is normally distributed, Assumption 4 is sat-
isfied and the copula model is identified when a continuous exogenous regressor in W is

nonnormally distributed and nonlinearly related to P (Yang, Qian, and Xie 2024a).

Noncontinuous endogenous regressors

Noncontinuous endogenous regressors—such as binary, count with small means, or semi-
continuous variables—have many ties (observations with the same value) and limited sup-
port, creating identification issues in copula correction (TA 5 in Table 2). These issues arise
from plateaus in discrete CDFs and the nonuniqueness of their inverses, which can bias
copula-based control functions. To address this, Qian and Xie (2024) proposed a likelihood-

based SORE approach to bypass inverse mapping and accommodate such regressors. °

Limatations and Boundary Conditions of Copula Correction

The considerations above show that copula control function methods work under substan-
tially less strict conditions than previously believed, increasing robustness and applicability.
With the underlying assumptions and data requirements being met, copula correction can

be a powerful tool for addressing endogeneity bias using nonexperimental data. However,

15More recent work shows that the 2sCOPE-np control function may overcome these identification issues by
leveraging variations in exogenous regressors to smooth out plateaus in discrete CDFs (Hu, Qian, and Xie 2025).
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some boundary conditions warrant checking to minimize potential pitfalls and inappropriate

use of copula correction (Table 4).

Limatation 1—Multicollinearity

Like weak instruments (Staiger and Stock 1997), copula correction can be ill-behaved
when copula terms exhibit severe collinearity with existing regressors. The copula terms
capture the error’s endogenous part and thus are expected to correlate with endogenous
regressors. However, copula augmented models become weakly identified or nonidentified
when copula terms are severely or perfectly collinear with existing regressors (i.e., failure of
Assumption 4 in Table 4). This can occur when regressors and the error jointly follow a
multivariate normal distribution (Web Appendix C Table W6). Even in identified models,
strong collinearity inflates standard errors, reduces statistical power of hypothesis testing,
and inflicts finite-sample bias. While 2sCOPE identifies nearly normal endogenous regressors,
it requires sufficiently relevant and nonnormal exogenous control regressors to prevent severe
collinearity, as described in the following guideline (Yang, Qian, and Xie 2024a):

Guideline 1 : Check Boundary Condition 2 (requirements on regressor distributions

and relevance) in Table 4 on the threshold values of the p-value (for nonnormality) of endoge-
nous regressors; for nearly normal endogenous regressors, check the first-stage F statistic (for

relevance) and the p-value (for nonnormality) of candidate exogenous control regressors.!®

Limitation 2— Violations of Assumptions 1 and 2

Assumption 1 is not strictly required, as copula correction is robust to symmetric non-
normality in U and skewed E (Web Appendix B Table W5). Yet, strong skewness in both
U and F can cause bias. Since neither is observed, this assumption should be assessed using
theory (see Footnote 11), aided by inspecting residuals. Because copula control functions

permit asymmetric error £ (Web Appendix B Tables W4 and W5), skewed residuals alone

16 his guideline is akin to using the first-stage F' statistics to detect weak instruments (Staiger and Stock 1997).
When 2sCOPE-np is used, one can check the inflation of standard errors of copula corrected estimates relative to
the uncorrected estimates for severe collinearity (Boundary Condition 1 in Table 4). Conceptually, this parallels the
variance inflation factor (VIF) to assess multicollinearity in OLS and Shea’s measure to detect multicollinearity in
weak instruments, which compares the variances of IV estimates to those of OLS estimates (Wooldridge 2010, p.110).
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do not indicate failure. However, if U is also suspected to be highly skewed, revise model
specifications (e.g, transform variables or add controls) to avoid misspecification bias.
Assumption 2 is also not strictly necessary, as copula correction is robust to a range of
non-GC dependence structures (Web Appendix B Table W5; Park and Gupta 2012; Haschka
2022; Yang, Qian, and Xie 2024a). Nonetheless, gross violations of this assumption can cause
bias (Eckert and Hohberger 2023). Since neither £ nor U is observed, its plausibility should
be evaluated based on the sources of endogeneity in the application—such as theoretical
guidance to the nature of omitted variables and their links to endogenous regressors, insti-
tutional knowledge, and diagnostics (Boundary Condition 1 in Table 4). Broadly speaking,
copula models capture this dependence via unbounded copula transformed variables invari-
ant to monotonic transformations, making copula models broadly applicable. By contrast,
in linear additive endogeneity models an endogenous regressor is itself linearly related to the
error; this often creates logical inconsistency and fails to capture multivariate dependence
structures, limiting its applicability in practical applications (see Qian and Xie 2024 Web Ap-
pendix D7; Danaher and Smith 2011). Hence, theoretical considerations can help guide the
selection of appropriate dependence models, suggesting here that copula dependence mod-
els are viable to capture multivariate regressor-error dependence in a much broader range
of applications. Meanwhile, we emphasize that the GC dependence assumption warrants
attention from users of copula methods as its misspecifications may introduce bias.
Misspecifying regressor-error dependence can weaken model identification and inflate
standard errors (Park and Gupta 2012; Haschka 2022; Qian and Xie 2024). When the
true dependence follows a linear model, copula correction produces biased estimates with
huge standard errors even if other assumptions hold (Haschka 2022; Qian and Xie 2024).
Theoretical and empirical evidence from these studies as summarized in Web Appendix C
indicates that significantly inflated standard errors serve as warning signs of dependence
misspecification. We introduce a diagnostic statistic, ICON (Web Appendix C), as the

ratios of the standard errors of copula-corrected estimates to those of uncorrected estimates

21



to detect GC misspecifications. Prior studies (Haschka 2022; Qian and Xie 2024; Yang, Qian,
and Xie 2024a) and our own evaluation (Web Appendix C) have shown that in misspecified
models, standard errors of copula corrected estimates are typically more than 8-10 times
those of uncorrected estimates. To be conservative, we suggest ICON> 6 as a threshold
value for detecting GC misspecification, following the guideline below:

Guideline 2: In addition to theoretical considerations, check Boundary Condition 1
(dependence model misspecification) in Table 4 to detect warning signs of potential regressor-
error dependence misspecification and mitigate the risk of misspecification bias.

When GC misspecification is suspected, researchers can add relevant control variables,
refine copula correction (Web Appendix Table W8), or use other correction methods. As-
sumption 2 only requires that residual dependence between P and U given W follows GC,

which may hold after adding suitable controls even if unconditionally P and U do not.

Limitation 3—FExogeneity of control variables in W

Assumption 3 is shared by methods such as OLS and IV regression. While these meth-
ods and copula correction do not require W, relevant control variables are often included to
justify exogeneity of all regressors in OLS, satisfy ER for IV, or enhance precision and iden-
tification in copula correction. The selection of suitable control variables should be guided
by institutional knowledge and study goals (see Yang, Qian, and Xie 2024a for examples of
suitable and unsuitable Ws). These control variables need to be exogenous to ensure the
consistency of these methods and copula correction, following the guideline below.

Guideline 3: Use only necessary exogenous control variables for causal estimation. Con-
trol variables suspected to be endogenous (e.g., potential mediators and colliders) should be

modeled as endogenous or excluded to avoid overcontrol bias.

Impacts of Copula Correction

In many cases, copula correction provides a feasible approach to controlling for the thorny

regressor endogeneity issue and offers opportunities for optimal managerial decision making,
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as illustrated in the following running example.

Example 1: Price Sensitivity Estimation. Managers and policy-makers are often in-
terested in understanding price sensitivity for category demand. This example estimates
price sensitivity in the diaper category using the IRI Academic store scanner purchase data
for a focal store in the Buffalo, NY market from 2002-2006 (261 weeks). Price may be en-
dogenous due to unobserved variables (e.g., product characteristics, retailer pricing decisions,
number of shelf facings) that, when omitted from a model, become part of the structural
error. These unobserved characteristics should induce positive correlation between price and
the error term, thereby causing the OLS estimate of price sensitivity to bias toward zero (i.e.,
be less negative). We show later on that the OLS price elasticity estimate here is -1.367,
significantly less than the copula corrected price elasticity estimate of -2.205, a 61% differ-
ence reflecting a large impact of a “wrong” estimate. The manager underestimates consumer
price sensitivity using OLS, and mistakenly sets the price too high, resulting in lost revenue
and profit. The analysis later on shows that the OLS price estimate will yield 30% less profit
compared to using the copula corrected price sensitivity estimate (Figure 3).

Price Elasticity Estimate ° Profit

0.0
1

-1.0

0.4

-1.5

-2.0
0.2

-2.5
0.0

OoLs CC OoLS CcC

Figure 3: Example 1: Impact of copula correction on price sensitivity estimation. OLS:
ordinary least squares; CC: copula correction.

Meta-analyses of studies that compare estimates after endogeneity correction to uncor-

rected estimates also find similar differences. Bijmolt, Van Heerde, and Pieters (2005) found
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price elasticity was -2.47 without endogeneity correction, but -3.74 when corrected. Sethu-
raman, Tellis, and Briesch (2011) found “Advertising elasticity is lower when endogeneity
in advertising is not incorporated in the model” (p.470).!" With personal selling (i.e., sales-
force), models that account for endogeneity have lower elasticity (.282) than models without
endogeneity correction (.373), a significant difference of 0.091 that importantly represents
an over-estimation of 32% (Albers, Mantrala, and Sridhar 2010). The importance of endo-
geneity correction is apparent: without correction, managers and academics likely experience

underestimated effects of pricing and advertising and overestimated effects of salesforce.

METHODOLOGICAL BACKGROUND

In this section, we discuss methodological aspects of implementing copula correction.
We first acquaint readers with recent advances in copula correction, then speak to copula
correction in panel data, show proper construction of the copula, address inconsistencies in

copula correction for higher-order endogenous terms, and how to obtain standard errors.

Methods to Relax Assumptions of Copula Correction

Recent methodological advances relax key assumptions and data requirements of the
P&G method, broadening the applicability of copula correction. These methods differ in
their features (Table 5) and fall into two broad classes: moment-based two-stage control
function methods and likelihood-based methods. We contribute to this growing literature by
systematically comparing these approaches to highlight their strengths and limitations and

to guide practitioners in selecting suitable methods for their empirical context.

Two-stage control function methods
The 2sCOPE method introduces a two-stage copula control function approach. Assump-

tions 1 and 2 in Table 4 mean that 2sCOPE has the double robustness property: the error

17Sethuraman, Tellis, and Briesch (2011) note that the bias when ignoring endogeneity will depend on the rela-
tionship between the omitted variable (e.g., price, product, or promotions), the endogenous variable (advertising),
and the dependent variable (sales). For instance, price, when omitted, should bias advertising’s effect downward:
price has (-) relationship to sales, but (+) with advertising (i.e., high price brands advertise; low price brands let
their price do the ‘selling’).
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Table 5: Copula Correction Methods with Enhanced Capabilities.

Features Methods
1. Control function approach without 2sCOPE procedures®
specifying model likelihood
2. Likelihood-based joint estimation Haschka (2022); SORE
3. Permit nonnormal structural error 2sCOPE procedures®
4. Permit both GC and non-GC SORE; 2sCOPE-np
regressor-error dependence Yang, Qian, and Xie (2024a,b); Liengaard et al. (2024)
5. Permit both GC and non-GC SORE; 2sCOPE-np
regressor-confounder dependence®
6. First-stage model-free control function 2sCOPE-np
7. Handle normal endogenous regressors Yang, Qian, and Xie (2024a,b); Liengaard et al. (2024)
2sCOPE-np
8. Handle discrete or semicontinuous
endogenous regressors SORE?
9. Handle noncontinuous and continuous
exogenous regressors correlated with Haschka (2022); SORE
endogenous regressors & handle nonlinear 2sCOPE procedures®

terms such as interactions.

Note: SORE: Semiparametric odds ratio endogeneity model (Qian and Xie 2024). “: For succinctness,
2sCOPE procedures are defined broadly here to include Yang, Qian, and Xie (2024a,b); Liengaard et al.
(2024); Breitung, Mayer, and Wied (2024); Mayer and Wied (2025); Hu, Qian, and Xie (2025). Hu, Qian, and

Xie (2025) (2sCOPE-np) unifies the 2sCOPE procedures by employing first-stage model-free nonparametric

b

copula control functions. °: When relevant exogenous regressors are available, the 2sCOPE-np control

function can leverage their variations to handle noncontinuous endogenous regressors.

term does not need to be normally distributed and regressor-error dependence does not need
to follow a GC relationship as long as GC adequately captures the dependence between
regressors and U; (Features 3 and 4 in Table 5). However, the pairwise dependence between
the endogenous regressor P; and U; unconditioned on W is restricted to a GC relationship.
In this aspect, 2sCOPE-np is more general and permits both GC and non-GC pairwise de-
pendence between P; and U; (Feature 5 in Table 5). Assumption 4 means 2sCOPE can
handle endogenous regressors that are normally distributed or correlated with W (Features
7 and 9 in Table 5). Even if the endogenous regressor is normally distributed, 2sCOPE can

identify the model as long as one correlated W is continuous'® and nonnormally distributed,

8 Discrete exogenous regressors with few levels have high multicollinearity with their copula transformed values
and thus are uninformative to help identify models with normally distributed endogenous regressors.
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which is feasible in many empirical applications. The 2sCOPE assumes the regressor-error
GC correlation structure is constant and does not vary in the population. Recent studies
(Liengaard et al. 2024; Yang, Qian, and Xie 2024b) relax this assumption through a robust-
ness check by permitting the GC dependence structure and 2sCOPE copula terms to vary
by the levels of discrete exogenous regressors. These methods require a sufficient sample size
and data requirements (shown later in the Flowchart in Figure 5) being met within each
level of combinations of discrete exogenous regressors (Web Appendix Table W19).

Breitung, Mayer, and Wied (2024) and Mayer and Wied (2025) propose using a first-stage
mean regression model for endogenous regressors to account for correlated exogenous regres-
sors. Like 2sCOPE, their approach is relatively easy to apply and allows nonnormal error.
Interestingly, although it originates from copula correction and permits non-GC regressor-
error dependence, their approach does not permit GC regressor-error dependence in general
(Table 5) and can yield biased estimates when regressor-error follows GC dependence (Hu,
Qian, and Xie 2025). Implicitly, their approach assumes (1) a degenerated GC dependence!”
between U; and the unobserved error parts in the first-stage models for endogenous regressors
and (2) W affects only the mean but not higher-moments of the conditional distribution for
P|W. Copula procedures using more flexible multivariate dependence models (i.e., meth-
ods with Feature 4 in Table 5) can better account for correlated regressors and also permit
both GC and non-GC types of regressor-error dependence. In particular, the nonparametric
2sCOPE-np procedure fully nests their approach as a special case.

As noted earlier, the 2sCOPE-np unifies existing copula correction methods. It employs
nonparametric copula control functions that generalize and make robust the existing copula
correction methods using model-based first-stage residuals. It is model-free in the first stage,
accommodates both GC and non-GC regressor—error (or regressor-confounder) dependence,
and handles normal or discrete endogenous regressors (Features 3-9 in Table 5). The non-

parametric feature of 2sCOPE-np does require larger samples (> 300; Table 4) and greater

9gpecifically, the correlation coefficient in the GC model is fixed at 1 or -1 (i.e., a deterministic relationship) such
that U; is a linear function of the copula transformed error term for the endogenous regressor.
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computation cost for kernel conditional CDF estimation (Hu, Qian, and Xie 2025).

Likelthood-based copula correction procedures

Haschka (2022) and Qian and Xie (2024) develop likelihood-based methods that general-
ize P&G (Table 5). Here we describe Qian and Xie (2024) and then Haschka (2022), which
was developed in the context of panel data to be described next. Qian and Xie (2024) propose
a bias correction procedure that accounts for regressor-error dependence using a flexible semi-
parametric odds ratio endogeneity (SORE) model. The semiparametric model is often used
in marketing and other fields as a flexible multivariate model to measure dependence (Chen
2007), handle missing data and selective sampling (Qian and Xie 2011, 2022), and combine
sensitive data (Qian and Xie 2014, 2015; Feit and Bradlow 2021). SORE encompasses a
number of existing dependence models (including copulas), capable of capturing both GC
and non-copula dependence structures. SORE requires a special estimation algorithm that
eliminates potentially high-dimensional nuisance parameters in the nonparametric baseline
distribution function, and maximizes the profile likelihood concentrating on the parameter
of interest. Likelihood-based model selection measures (such as AIC and BIC) guide the
choice of appropriate odds ratio dependence functions and identification strategies.

Unlike other IV-free methods except 2sCOPE-np?°, SORE can handle noncontinuous
endogenous regressors (Feature 8 in Table 5). It avoids the inverse CDF mapping of dis-
crete endogenous regressors required by copula control functions, enabling identification for
noncontinuous endogenous regressors without any help from exogenous regressors. SORE
encompasses likelihood-based GC models and expands identification strategies for noncon-
tinuous endogenous regressors. Furthermore, implementing SORE is straightforward, as it
conditions on exogenous regressors and uses a simple likelihood involving no integrals with
respect to latent copula data. Thus SORE is applicable to many applications involving non-
continuous endogenous regressors. By contrast, more methods can handle noncontinuous

exogenous control regressors (Feature 9 in Table 5 and Footnote 9).

20Unlike 2sCOPE-np, SORE does not require the availability of powerful exogenous control covariates.
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Control Function vs Likelihood-based Correction Methods

Generally speaking, SORE employs one-step estimation, potentially offering greater effi-
ciency (smaller standard errors) and allows well-established likelihood-based tests and model
comparisons. In contrast, the moment-based 2sCOPE requires fewer assumptions and is com-
putationally simpler. While SORE nests copula dependence models and can capture both
GC and non-copula dependence structures, the 2sCOPE also permits departures from GC
regressor-error dependence by modeling regressor-confounder dependence. Thus, SORE and

2sCOPE are complementary to each other and non-hierarchical (one not nesting the other).

Copula Correction in Panel/Clustered Data

Copula correction can also address various sources of bias in panel data (Park and Gupta
2012; Haschka 2022; Yang, Qian, and Xie 2024a,b). Haschka (2022) generalizes copula
endogeneity correction to the following fixed-effects (FE) panel data model:

Yir = pi + Pha+ Wi B + eq, (5)
where y; denotes the dependent variable (e.g., store sales) for cross-sectional unit ¢ =
1,---, N at occasions t = 1,---,T; the fixed effect parameter p; captures the effects of
time-constant (unobserved) variables (e.g., store size and market characteristics that do not
change over time); P, denotes endogenous regressors (e.g., price) such that Cov(Py,e;) # 0
due to time-varying unobservables (e.g., unmeasured consumer tastes or brand attributes
varying over time), where the error e; ~ N(0,02); W;; denotes exogenous control variables
(e.g., prearranged promotions, quarter time periods). The parameters a and [ capture the
effect of P, and Wy, respectively. Given fixed-effects p;, all regressors in (Py, W;;) must be
time-varying. Since fixed-effect parameters p; can be correlated with the regressors P;; and
Wi, the fixed-effects transformation (Wooldridge 2010, p.302-303) is often used to eliminate
these incidental intercept parameters. Because fixed-effects transformation changes the panel
error structure to be nonspherical (nondiagonal covariance matrix), the GLS transformation
is applied to handle nonspherical errors and collapses panel data to pooled observations with

spherical errors Eit YN (0, 02). After eliminating the nonspherical error problem, Haschka
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(2022) developed an efficient MLE estimation procedure that maximizes the likelihood of a
GC model for the error and all explanatory variables to address regressor endogeneity.

Panel studies often face slope heterogeneity. As shown in extant marketing studies,
consumers’ heterogeneous responses to marketing mix variables (e.g., price slope coefficients)
are ubiquitous and substantial bias can arise when ignoring such slope heterogeneity. Thus,
it is important to allow for individual-specific slope coefficients, by using random coefficients
or mixed-effects (i.e., both fixed-effects and random coefficients). Extending the copula
MLE method to these more general models with endogenous regressors can be challenging,
as the model likelihood contains new intractable integrals of complex functions that involve
products of copula density functions (Yang, Qian, and Xie 2024a). Copula correction for
these general panel data models remains to be developed.

For greater generality and computational tractability, Yang, Qian, and Xie (2024a,b)
propose copula control function approaches for the following more general panel data model:

Yie = thi + ;i Py + BiWi + eq, (6)
where individual-specific parameters (u;, y, §;) can be treated as fixed, random, or mixed
effects. The model includes the FE panel model in Equation 5 as a special case. Their copula
control functions involve no numerical integrals and can be implemented straightforwardly
using standard software programs, assuming all regressors are exogenous.

In principle, the general copula term can extend to the panel data setting as @~ (F( Py x|Wi, D;),
where D; is the dummy variable for unit ¢ to account for panel data structure. This may
involve a high-dimensional conditional CDF estimation, which can be computationally in-
tensive. To balance robustness and computational ease, we propose using the following
general location GC model (Yang, Qian, and Xie 2024b) to calculate proper copula terms in
multilevel data?’ when cov(Py, e;) # 0, cov(Py, p;) # 0, and/or cov(Py, Wy) # 0:

Pit = Qip+ €itp, and Wi = Qi + €itap, (7)

where p;; and w;; are allowed to depend on unit-specific mean levels «; , and «;,,. The fixed-

21 This general-location GC model can also be applied to grouped/clustered data formed by discrete exogenous
regressors.
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effects a; , and «;,, capture the dependence between f; and regressors (cov(Py, 1t;) # 0 and
cov(Wi, p;) # 0). The error terms in (6) and (7) then follow the GC model, capturing the
regressor endogeneity of p;; (cov(Py,e;) # 0) and the dependence among endogenous and
exogenous regressors (cov(Py, W) # 0). Assuming a homogeneous GC model, a two-stage

copula control function approach estimates the following augmented panel regression model:
K

Yie = pi + Phoy + Wi 0, + Z Y Citp + wit, (8)
k=1
where Cj is the copula term in Table 6; P, and Wj; in the copula term are the time

demeaned value of Py ) and Wy (i.e., fixed-effect transformation). Thus, the procedure is to
apply the 2sCOPE in Table 3 to the time-demeaned regressors. The new error term wj; is
shown to be uncorrelated with all regressors and the fixed-effects u; in the augmented panel
regression model in Equation 8, eliminating the regressor-error dependence. Standard panel
regression estimators assuming all regressors are exogenous can be applied to Equation 8
and yield consistent estimates. Yang, Qian, and Xie (2024b) formally demonstrate the
consistency, asymptotic normality, and standard error formula for the model parameter
estimates. Copula correction assuming homogeneity is found to be robust to heterogeneous
endogeneity across panel units (Haschka 2022; Yang, Qian, and Xie 2024b). When the panel
is sufficiently long, Yang, Qian, and Xie (2024b) explicitly permit the copula dependence
to vary across panel units and recover estimates of panel-specific endogeneity; they further
employ the mean group estimator to estimate the model in Equation 8 with slope endogeneity
(cov(Py, ;) # 0).

Copula correction can also be applied to address regressor endogeneity in random coeffi-
cients logit (RCL) models for panel discrete choice outcomes (Park and Gupta 2012; Yang,
Qian, and Xie 2024a). In RCL models, the endogeneity of price is modeled as the depen-
dence between product price and unobserved time-varying product characteristics. One can
then map an RCL model specified at the consumer level to an aggregate linear model for the
product utility averaged across all consumers, for which copula correction for linear models

can be directly applied to address regressor endogeneity.
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Table 6: Copula Control Function Estimation Procedures for Panel/Clustered Data

Stage 1:
e Do time demeaning of P ; and W;, within each panel unit, and obtain the demeaned
regressors (f’it,k, fVIZt)
e Apply Stage 1 of 2sCOPE (Table 3) to the demeaned regressors (]Sit,k, Wlt) and
obtain Cix = (Pig)® — 0L(W;)*.
Stage 2:
e Add copula term Cj;j as the generated regressor to control for endogeneity of P .

The augmented panel regression model takes the form of Equation 8.

Note: One can also apply 2sCOPE-np to the time demeaned regressors and obtain Cjy , = ®~* (ﬁ(étk |Wn))
Time demeaning subtracts each unit’s averages over time of P, and W;; from the original values of P j
and W;;. Thus, time demeaning removes the effects of all time-constant confounders correlated with p; and is
needed for handling endogenous regressors that vary over both ¢ and . Endogenous regressors that vary only
over t or only over ¢ do not need time-demeaning. The algorithm can also be applied to grouped/clustered
data formed by discrete exogenous regressors, in which ¢ indexes the ith group/cluster.
Proper Construction of Nonparametric Rank-Based Copula Transformation

Applications of copula endogeneity correction mostly use the nonparametric rank-based
copula transformation based on empirical marginal distributions of regressors. While conve-
nient and robust to misspecification, this approach requires careful handling when mapping
from ranks to latent copula data. Becker, Proksch, and Ringle (2022) found that the P&G
method can yield biased estimates in models with intercepts, especially in small to moderate
samples. We examine this issue and assess an alternative copula transformation with strong
theoretical grounding that avoids such bias.

The empirical rank-based copula transformation involves two steps: assigning percentile
ranks to observations, then applying the inverse normal CDF. However, the inverse normal
of the 100th percentile—assigned to the maximum rank—is undefined (see the toy example

in Web Appendix Table W9). To prevent this, one can adjust the copula transformation of

the maximum value of the regressor (e.g. P) for a sample size n as follows:

®~!(Rank(P;)/n) if P; < max(P)
Pr=® YFp(P)) = (9)

o tn/(n+1)) if P, =max(P).

The above percentile adjustment ensures a theoretically valid maximum for the copula-

transformed data. This is justified by approximating the expected maximum of a standard
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normal sample of size n by @fl(nfl__‘éa), with a = 0.375 recommended by Royston (1982).

Using cI)—l(nLH) simplifies the formula (« = 0) and yields nearly identical result as setting
a = 0.375 for typical sample sizes (i.e., n >> «).

To demonstrate the importance of the empirical copula transformation, consider an al-
ternative approach used in Becker, Proksch, and Ringle (2022), which sets the percentile of

the highest-ranked observation to a fixed value of 0.9999999:

P — 0 (Ep(P)) ¢~!(Rank(P;)/n) if P, < max(P) (10)

©1(0.9999999) = 5.1999 if P; = max(P),
where P}, refers to using a fixed percentile (0.9999999) for the highest rank to preserve rank

order unless the sample size exceeds one million. However, in smaller samples, this can lead
to substantial deviations from the theoretical maximum, creating a high-leverage outlier far
from the centroid of covariate distributions. Such an outlier can distort coefficient estimates
and weaken the performance of copula correction.

To assess the impact of empirical copula construction on the performance of copula
correction, we compare the algorithms in Equations 9 and 10 using simulation studies® in
which the true parameter values are known. The simulation studies consider situations both
without correlated exogenous regressors, as described in Becker, Proksch, and Ringle (2022),
and with correlated exogenous regressors, as described in Web Appendix D.

Results in Web Appendix D reveal that judicious copula transformation is crucial for
effective copula correction. Notably, including an intercept poses no issue if the highest-
ranked value is properly adjusted using the recommended copula transformation algorithm.
A key finding is that the substantial bias in models with intercepts, reported by Becker,
Proksch, and Ringle (2022), is largely resolved by applying the adjustment in Equation 9.

Together, our analysis offers theoretical and empirical rationales for optimal copula trans-

formation. The new insights help demystify misinterpretations about copula correction and

22The R codes for simulation studies and empirical examples are available at https://copula-
correction.github.io/Webpage/code%20and%20examples.html. We also provide an interactive applet interfaced
supplement accessible at https://copula-correction.github.io/Webpage/histogram.html for readers to visually
explore the results of the simulation study.
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promote optimal copula transformation for effective copula correction. We recommend avoid-
ing fixed percentiles for the highest rank, suggesting instead to use the algorithm in Equation

9 for valid transformation regardless of sample sizes.

Optimal Copula Estimation of Endogenous Moderating and Nonlinear Effects

Higher-order terms of endogenous regressors (e.g., interactions with moderators) are com-
mon in empirical studies aimed at understanding causal mechanisms or informing optimal
policy. While copula methods can address such nonlinear terms (Table 5), practices vary
widely (Web Appendix Table W3). Some studies omit copula-generated terms without ex-
planation, while others include them to account for endogeneity. The following example

illustrates the impact of these differences.

Example 2: Moderator of Price Sensitivity Price may work together with a retail
store’s feature advertising to achieve synergistic effects on sales. This can be tested by esti-
mating the interaction term between price and feature advertisement in a sales model, with
feature advertisement as a potential moderator of price. Blattberg and Neslin (1990) note
that feature advertising “may interact with price discounts. If the consumer is not informed
that a price discount is offered, the price elasticity is likely to be small” (p.347). This suggests
a negative sign for the interaction term between price and feature advertisement.

Figure 4 plots mean price sensitivity estimates by feature intensity quartile in the peanut
butter category, predicted from a sales model with an interaction term between price and
feature, using the IRI Academic data for a New York City store. The black (gray) bars are
price sensitivity estimates estimated with (without) a copula term for the interaction term.
Including the copula term for the interaction yields similar price sensitivity estimates across
different feature intensity (i.e., lack of interactive effect), while excluding the copula term
yields a statistically significant and negative interaction effect. In this section, we examine
the best approach to handling these higher-order endogenous terms via both theoretical proof

and empirical evaluations. As shown next, adding the copula term for the interaction term
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Figure 4: Mean price sensitivity estimates by quartile of feature intensity.
can induce bias and increase parameter estimate variability.
Consider the following general model containing higher-order terms of regressors:

Yi = ptaibi+asfi(P)+ o fo( B, Wi) + BWi+ nfs(Wi) + Ei, (11)
where P; is a vector of K continuous and endogenous regressors, and W; is a vector of
exogenous regressors. The structural model in Equation 11 expands the model in Equation
1 to include higher-order endogenous terms, namely fi(P;) and fo(P;, W;), and higher-order
exogenous terms, f3(W;). Below are examples of these higher-order terms:

e Polynomial functions of a scalar P;: o fi(P;) = aoP?

e Interaction of two endogenous regressors P; = (Py;, Pa;): o f1(P;) = ag Py Py;

e Interaction of endogenous and exogenous regressors: o4(P;, W;) = az B,W;.
Because higher-order terms of endogenous regressors, f1(FP;) and fao(P;, W;), are also endoge-
nous, it is tempting to control their endogeneity by adding separate copula correction terms
for them. However, the point of not needing these copula correction terms for these higher-
order terms is clearly shown in the following copula augmented regression, including only
copula correction terms for the first-order endogenous terms (i.e., main effects):

Y, = p+a P+ fi(P) + asfo(P, Wy) + B'Wi + nfs(W) + ' Cimain + €, (12)

where Cjmain = (Ci1,- -+ ,Ci k) contains copula correction terms for main terms P; only

(Table 3). Because the new error term ¢ is independent of P and W, it is also independent
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of their functions, such as fi(P), fo(P,W) and f35(W). Thus, once the copula correction
terms for main effects C,,q;, are included as control variables in Equation 12, no additional
correction for these higher-order terms are needed. This simplicity of handling higher-order
endogenous regressors is a merit of copula correction.??

Although it is unnecessary to add the copula correction terms for higher-order terms,?*
a further question is what might happen if the additional copula generated regressors for
the higher-order terms are included. Will doing this lead to better or worse performance
of copula correction? The issue with adding unnecessary regressors Cy,(p,) and Cy,(p,w,)
is the significant collinearity between these higher-order copula terms and their co-varying
constituents (P, fi(P), fo( P,W), and Cy4in). This substantially decreases precision of co-
efficient estimates, making copula correction methods perform worse than otherwise, shown
formally by Theorem 1 in Web Appendix E. Consistent with the theoretical results, sim-
ulation studies (Web Appendix F) demonstrate substantial harmful effects if copula terms

for higher-order regressors are added to control for their endogeneity. These effects include

large finite sample bias and inflated variability of structural model parameter estimates.

Obtaining Standard Errors

For methods performing joint estimation in one step (Qian and Xie 2024), standard errors
can be directly obtained by inverting the Hessian matrix as a byproduct of the estimation
process. For two-step copula methods, bootstrapping is applied to obtain proper standard er-
rors in order to account for additional uncertainty from obtaining generated regressors in the
first step. Specifically, the data are resampled with replacement to form bootstrap samples,
on which copula-corrected estimates are recomputed repeatedly. The standard deviation of

these estimates provides the standard error. For panel data, cluster bootstrapping should

231V control function approach also shares this merit (Petrin and Train 2010), but not 2SLS (Wooldridge 2010
Chapter 6.2); this may sow the confusion, as the 2SLS approach advocates for including instruments of the endogenous
higher-order terms.

24Papies, Ebbes, and Van Heerde (2017) (p. 615) noted this point for the P&G method. Our analysis (1) extends
this result to more general methods and (2) demonstrates a stronger result that adding the unnecessary high-order
copula terms is suboptimal and has significant adverse effects through both theoretical proof and empirical evaluation.
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be used to resample independent cross-sectional units rather than individual observations
(Haschka 2022). That is, only the cross-sectional units (clusters) are resampled, while all
the observations within the sampled clusters are retained and unchanged. This ensures the
bootstrap samples retain dependence structures among panel observations existing in the
original data, and simulation studies have shown bootstrapping produces reliable standard

error estimates (Park and Gupta 2012; Haschka 2022; Yang, Qian, and Xie 2024a).

GUIDANCE FOR PRACTICAL USE

Based on recent advances, this section describes a procedure guiding practical usage of
copula correction methods. Figure 5 presents a step-by-step flowchart? of key steps and
checkpoints. Before using it, clearly define the causal structure—specifying the outcome,
main explanatory variables, and relevant control covariates. Ensure the model is theoretically
sound, with pertinent control variables included in W and the regressor matrix being full
rank. To ensure exogeneity of W, include only necessary exogenous control variables. Control
variables suspected to be endogenous should be modeled as such or excluded from the model.

When the need to use copula correction is affirmed at the start of the flowchart (Step Oa
of Figure 5), assess the plausibility of the underlying assumptions in the focal application
(Step Ob of Figure 5) according to [tem a under Assess Assumptions in Table 4. The double
robustness property of copula correction using control functions means that copula correction
can be used with departures from GC regressor-error dependence, as long as GC adequately
captures unexplained dependence between endogenous regressors and U (the combined effects
of all unobserved confounders) given exogenous regressors. Copula correction also works with
a nonnormal error distribution. However, out of an abundance of caution and for optimal
robustness, consider revising model specifications (e.g., transform variables or add more
control variables) if the error distribution is suspected to be highly skewed.

If copula correction is chosen, follow the rest of the flowchart to determine appropriate

copula correction methods. As shown previously, copula correction only needs to include

25A web selector tool is available at https://copula-correction.github.io/Webpage/flowchart.html
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Is it feasible to leverage field Do experiments balance or rich data Analyze data assuming
Step Oa: or natural experiments, rich capture all confounders? Are Vs strong %’ no endogenous
observational data, or [Vs? Yes | und do they meet the ER condition? regressors (or use [V for
No l lNo (conduct multi-methods analysis) endogenous regressors)
Step Ob: Are Assumptions 1 & 2 in Table 4 of copula correction plausible? No Consider other I'V-free methods
See Item a under Assess Assumptions in Table 4 > (LIV, HM, IH, SORE)?
Yes l
Step 1: Is P,,,;, continuous? } No } SORE (Qian and Xie 2024)
Yes l
Step 2: Is P,,,;, normally
distributed?
Yes
No l
Step 3: 3a. Is P, correlated 3b. Is at least one exogenous W continuous,
’ with any term in #? sufficiently non-normal, and sufficiently relevant?®
Nol Yes Yes l No
Step 4: P&G or 2sCOPEP, or 2sCOPEP Check potential bias of 2sCOPEP
BMW?b-d MLE (Haschka 2022 or SORE) using bootstrap
Step 5: Check potential model nonidentification or misspecification issues®.

Revise model specification or copula correction strategy if needed.

Figure 5: Flowchart for Copula Procedure.
Note: P4in denotes the first-order terms of endogenous regressors. W denotes exogenous control variables
and Cov(W, E) = 0.
For panel data, use the MLE method of Haschka (2022) or the copula control function method (Table 6)
that uses time-demeaned regressors to check Steps 2-3 and to obtain the copula correction terms in Step 4.
a: See Table 1 and Footnote 4 for choosing between these IV-free methods.
b: The 2sCOPE-np (Hu, Qian, and Xie 2025) can be used in these steps. A sample size of > 300 is
recommended for 2sCOPE-np. To handle noncontinuous endogenous regressors, 2sCOPE-np requires the
availability of powerful exogenous control regressors for model identification.
c: W is sufficiently nonnormal if normality test p < .001 & sufficiently relevant to P,,qq, if F' statistics >10.
d: The BMW method (Breitung, Mayer, and Wied 2024) was suggested as a robust check of the P&G
method (Park and Gupta 2024). This method and Mayer and Wied (2025) rely on some implicit
assumptions (e.g., W affects only the mean of P) and do not permit GC regressor-error dependence in
general (so can yield biased results when regressor-error follows GC dependence). Thus, using this method
as a robustness check of the GC regressor-error dependence can yield ambiguous results. By contrast,
2sCOPE/2sCOPE-np permit GC and non-GC regressor-error dependence. In particular, the nonparametric
2sCOPE-np nests the BMW method as a special case and is better suited for robustness checking purposes.
e: Check the inflation of standard errors of copula corrected estimates relative to those of uncorrected
estimates. An inflation of > 6 times flags potential model identification and misspecification issues.
Consider a robustness check using the method of Yang, Qian, and Xie (2024b) that generalizes Liengaard
et al. (2024) when sample size is sufficient and boundary conditions are met within each level of
combinations of discrete exogenous regressors.

CCF's corresponding to the first-order terms of endogenous regressors, P,.in, €ven when the
structural model contains higher-order terms of endogenous regressors. Thus, the flowchart
only needs to consider P,,q;,. Furthermore, when the structural model includes an intercept,

the copula transformation should use the algorithm in Equation 9 to avoid estimation bias.
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When conditions are met, the P&G method can be followed, but more recent research
relaxes these conditions and presents the path to perform copula correction even when these
conditions are not met.

Step 1. This step checks whether the endogenous regressor P,,.i, has sufficient support.
If P,in is noncontinuous (binary, discrete with only a few levels, or semicontinuous), use
likelihood-based SORE. Otherwise, continue to Step 2 below.

Step 2. This step checks whether P,,,;, is normally distributed or not. If P,,.;, is normally
distributed, the P&G method cannot be used because the model is unidentified. However, a
normally distributed P,,.;, can still be a candidate for copula correction through 2sCOPE.
Yet, this route follows a different path, as seen in Figure 5 and discussed more below in Step
3.b. The literature notes that more powerful tests for normality, such as the Shapiro-Wilk
test or Anderson-Darling test, might not fully rule out nonidentification, because these tests
can detect small departures from normality that are insufficient for copula correction (Becker,
Proksch, and Ringle 2022; Eckert and Hohberger 2023). Yet, the Kolmogorov-Smirnov (KS)
test is relatively conservative among the most commonly used normality tests; a p-value less
than 0.05 from the KS normality test has been shown to perform well for ruling out finite
sample bias due to insufficient regressor nonnormality (Yang, Qian, and Xie 2024a).

Step 3. This step marks one of the biggest shifts in copula usage since P&G, consisting
of two disjoint steps (3.a and 3.b below), depending on the outcome of Step 2. The data
requirements in this step are established using comprehensive factorial design simulation
experiments to assure satisfactory performance of copula correction, across a wide range of
conditions in finite samples (Web Appendix E.8 in Yang, Qian, and Xie 2024a).

3.a. If the endogenous regressor P, has sufficient nonnormality (KS p-value < 0.05)
in Step 2 above, Step 3 will check an additional condition of no correlation between P,,4in
and all exogenous regressors (using Fisher’s Z test for correlation) to determine if the P&G

method can be used.?® When this condition is met and sample size is small, the P&G method

26 A Jess stringent condition for using P&G with K endogenous regressors is no correlation between Zszl P in ke
with all exogenous regressors (Yang, Qian, and Xie 2024a).
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may be preferred because a simpler and valid model is more efficient than a more general
method. As sample size increases, 2sCOPE has negligible efficiency loss relative to P&G and
is the preferred method. If P,,.;, is correlated with any exogenous regressors, one should use
2sCOPE to handle correlated exogenous regressors. Alternatively, an MLE copula procedure
(either the one-step SORE or the two-step procedure of Haschka 2022) can be used.

3.b. If the endogenous regressor P,,q, is found to have insufficient nonnormality (KS
p-value > 0.05) in Step 2, then one cannot use the P&G method, but can use 2sCOPE
to leverage correlated exogenous regressors to achieve model identification. To compensate
for the lack of nonnormality of endogenous regressor P in 2sCOPE, at least one exogenous
and continuous regressor W needs to satisfy the following two conditions: (1) sufficient
nonnormality, and (2) sufficient association with the endogenous regressor P. A conservative
rule of thumb for such a W is the p-value from the KS test on W being < 0.001 and a strong

association with P (F statistic for the effect of W* on P}

main

> 10 in the first-stage regression).
When these conditions are met, 2sCOPE is expected to yield estimates with negligible bias
even if P4, is normally distributed. When these conditions are not met, Yang, Qian, and
Xie (2024a) suggest gauging potential bias of 2sCOPE for data at hand via a bootstrap
procedure described there, and using 2sCOPE only if the potential bias is small.

As seen above, only one of 3.a or 3.b is used. Importantly, if P already has sufficient
nonnormality that leads to 3.a, there is no need to do 3.b to check if any continuous W has
sufficient nonnormality and is associated with P. These conditions are only checked to find
a useful W to compensate for the lack of nonnormality of P. In 3.b, 2sCOPE uses W to
tease out an exogenous part of the endogenous regressor for model identification.

Step 4. This step applies the appropriate copula procedures using either control func-
tions or likelihood-based joint estimation. To choose between likelihood-based methods and
moment-based control function methods when both can be used, see the previous section
“Control Function vs Likelihood-based Correction Methods”. Among copula control func-

tion methods, 2sCOPE is relatively easy to apply and reasonably robust (e.g., assumes no
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particular error distribution and no specific copula structure for regressor-error dependence).
This balance of simplicity and robustness makes it well suited for a first-line method. The
more general 2sCOPE-np is first-stage model-free and allows for broader types of regressor-
confounder dependence, making it preferred when more robustness is desired. The nonpara-
metric kernel control function estimation employed in 2sCOPE-np does require larger sample
sizes (Boundary Condition 3 in Table 4) and greater computation power, compared with the
simpler 2sCOPE. For control function methods, if the generated regressor is not statistically
significant, this suggests the endogenous regressor P,,.;, is not sufficiently correlated with
the error term, and endogeneity is unlikely. Thus, non-significant generated regressors should
be dropped and the model re-estimated. Marketing studies have dropped copula correction
terms at the p > 0.10 level (e.g., Datta et al. 2022), suggesting even marginally significant
copula correction terms are still worth retaining. If no generated regressor is significant, the
model can be estimated in a more traditional manner (i.e., OLS).

Step 5. The final step is to check the inflation of standard errors of copula corrected
estimates relative to those of uncorrected estimates using the ICON statistics. An inflation

of > 6 times flags potential model misspecification issues or lack of model identification.

COPULA IMPLEMENTATION EXAMPLES

This section illustrates use of the flowchart to guide copula implementation via two ex-
amples using weekly store sales data from the IRI Academic data set (Bronnenberg, Kruger,
and Mela 2008). To correct for price endogeneity, the first example examines the main effect
of price, while the second example examines higher-order moderating effects captured by the

interaction between price and store feature (i.e., weekly store flyer promoting products).

Example 1: Main Effects Application of Copula Correction
Returning to our running Example 1, the outcome of interest is the weekly sale volume

in the diaper category for one focal store in the Buffalo, NY market in the years 2002-2006,

40



where volume is measured in diaper counts. Price is defined on an equitable volume across
UPCs, since pack sizes vary in diapers per pack. IRI additionally collected information on
whether UPCs were featured in the store’s weekly flyer that week. Category price and feature
are evaluated as market-share weighted averages of UPC-level price and feature, respectively.
Knowledge of category price elasticity is critical for retailers or category managers to set
optimal pricing and increase category demand that is the first source of profitable growth, and
for policymakers to design interventions (e.g., gasoline tax). Price is commonly considered
endogenous in category demand models (Nijs et al. 2001; Park and Gupta 2012; Li, Linn, and
Muehlegger 2014). In this example, price was treated as endogenous because of unobserved
variables (e.g., retailer pricing decisions, number of shelf facings) that, when omitted from
a model, become part of the structural error. For brevity, we use “Price” and “Volume”
hereafter to refer to the log-transformed category price and sales volume, respectively. The
impacts of price and feature advertising appear in the following model:
Volume; = p + aP; + 'W; + E;. (13)
In the model, P, is the endogenous regressor as log-transformed price. W, is a vector of
control variables including feature, week, and binary variables for quarters 2, 3, and 4. We
treat feature as exogenous because decisions to promote items in the store flyer are made
well in advance of implementation, and are likely uncorrelated with weekly unobservables
(Chintagunta 2002; Sriram, Balachander, and Kalwani 2007). The week variable is included
as a control variable to account for a small but significant trend in price increases over time.
One solution to price endogeneity is to use IVs, where the diaper price of another store in
the same market was used as an IV. Prices are correlated for both stores, with the belief that
wholesale prices are similar for products sold by the two stores (relevance), but uncaptured
product characteristics (including retailer decisions like shelf facings and shelf location) are
unlikely related to wholesale prices (ER). However, the ER assumption is untestable and
the IV may be not strong enough. This is one of the use cases for copula correction as

shown in Figure 5: use multiple methods (both IV estimation and copula correction here)
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to cross-validate results and increase robustness of causal inference.

We next assess the plausibility of the underlying assumptions in the application (Step 0b
in Figure 5), following Item a under Assess Assumptions in Table 4. Since the model includes
feature and quarters to control for planned promotion activities affecting sales, the omitted
variables mainly involve unmeasured product attributes tied to retailer decisions (like shelf
facings and locations). Their joint effect (U) can be expected to follow a normal distribu-
tion.?” We then use both theoretical reasoning and diagnostic tools to assess regressor-error
dependence. The endogenous regressor, Price, is likely bounded within a feasible range due
to bounded price-setting (Kocherlakota 2021). As discussed previously, the GC dependence
is empirically plausible because it can flexibly capture regressor—error dependence irrespec-
tive of the bounded nature of endogenous regressors. We will further apply ICON (Boundary
Condition 1 in Table 4) to inspect standard errors from copula correction to confirm empiri-
cal identification and check for signs of regressor-error dependence misspecifications. Before
we present the results, we first walk through the steps of the Figure 5 flowchart.

Step 1. Is P, continuous? The endogenous regressor, Price, is a continuous measure,
ranging from $0.140 to $0.262 per diaper, with a mean of $0.221, median of $0.224, and
standard deviation of $0.018.

Step 2. Is P4, normally distributed? Figure 6 shows somewhat skewness to the left
for the price variable. However, the skewness is not strong enough to reject the KS test
for normality (D = 0.08, p > 0.05) at the 0.05 level of significance. This means that the
endogenous regressor may not have sufficient nonnormality. One solution is to leverage
related exogenous regressors with sufficient nonnormality via 2sCOPE as described next.

Step 3.b. Is at least one W sufficiently nonnormal and correlated with P,,.;,,7 The
first-stage regression shows only one exogenous regressor is sufficiently correlated with price

(F-stat > 10): feature (F' = 16.8). The regressor, feature, is highly skewed (Figure 6) and

2"Because copula control function (CCF) is robust to symmetric nonnormal distributions of U, we checked residuals
for signs of asymmetrically distributed U. The residuals from using OLS and CCF have skewness of -0.088 and -0.083,
respectively, indicating no residual skewness. This provides greater assurance of copula validity, although we should
note that skewed residuals do not necessarily contradict the use of CCF since CCF permits nonnormal error term.
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Figure 6: Distributions of Price and Feature in Example 1.

nonnormally distributed based on the KS test (D = 0.14, p < 0.0001).

Step 4. Perform 2sCOPE estimation. The above steps show that conditions have been
verified such that 2sCOPE can be used to handle the price endogeneity.?® The standard
errors are obtained using 500 bootstrap samples.

Step 5. Check the inflation of standard errors using the ICON statistics. All ICON
statistics are far less than 6 (Table 7), showing no signs of weak identification.

Table 7 compares 2sCOPE to OLS and 2SLS using the IV. The 2sCOPE estimation
results show that the copula correction term C,,;.. (i.e., the first-stage residual) is significant
(Est. = 0.077, SD = 0.037, p < 0.05), indicating the presence of price endogeneity, so we
retain the CCF in the model to control for price endogeneity.

The results show that while price has the smallest absolute effect in the OLS model (Est.
=-1.367, SE = 0.137, p < 0.01), the effect is greatest in the 2SLS model (Est. = -2.470, SE
= 0.661, p < 0.01); the 2sCOPE price estimate falls in between and is much closer to the
2SLS price estimate (Est. = -2.205, SE = 0.446, p < 0.01). Compared to 2SLS using IV, the
2sCOPE results are not unlike that of 2SLS, within one SD of the 2SLS price estimates. The
2SLS price estimate differs somewhat from the 2sCOPE price estimate by 12.0%. Although
the correlation in prices between the two stores is significant and passes the weak instruments
test (F = 13.89, p < 0.01), the correlation is not especially strong (r = 0.218). Thus, the

difference between 2sCOPE and 2SLS seen here could be because the other store’s price as an

28 Although the sample size (n=261) does not reach 300 to use 2sCOPE-np (Boundary Condition 3 in Table 4),
2sCOPE-np yields similar estimation results, which are reported in Web Appendix Table W16.
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Table 7: Estimation Results for Example 1

Parameters OLS 2SLS 2sCOPE
Est (SE) P Est (SE) P Est (SE) P ICON

Intercept 6.005 (0.205) 0.000 4.371 (0.978) 0.000 4.763 (0.668) 0.000 2.9
Price -1.367 (0.137) 0.000 -2.470 (0.661) 0.000 -2.205 (0.446) 0.000 3.3
Feature 0.298 (0.095) 0.002 0.059 (0.178) 0.738 0.124 (0.124) 0.317 1.3
Week -0.002 (0.000) 0.000 -0.002 (0.000) 0.000 -0.002 (0.000) 0.000 1.1
Q2 -0.019 (0.031) 0.550 -0.014 (0.035) 0.693 -0.018 (0.036) 0.617 1.2
Q3 -0.018 (0.032) 0.567 -0.034 (0.036) 0.349 -0.029 (0.035) 0.407 1.1
Q4 -0.018 (0.032) 0.576 -0.061 (0.041) 0.140 -0.044 (0.035) 0.209 1.1
Coprice 0.077 (0.037) 0.037  —
p 0.366 (0.160) 0.022 —

Note: Table presents estimates, bootstrapped standard errors in the parentheses, and the p-values. ICON is
the ratio of standard errors of 2sCOPE estimates to those of the OLS estimates.

IV is not particularly strong, and a strong IV is not always readily available. In such cases,
cross-validating results from different methods (IV correction and IV-free copula correction)
can increase the robustness of causal estimation. The 2sCOPE shows that price is positively
correlated with the error term (Est. = 0.366, SE = 0.160, p < 0.05), indicating the presence
of price endogeneity. This finding is consistent with the result of the Wu-Hausman test (H
= 3.56, p < 0.07) from 2SLS, which also suggests endogeneity was likely present. Overall,
the comparison with 2sCOPE shows that without endogeneity correction, managers would

severely under-estimate price elasticity based on the OLS findings for this store, by 38.0%.

Example 2: Copula Estimation of Endogenous Interactions

Example 2 illustrates how copula correction is applied with endogenous interaction terms
and examines the adverse effects (estimation bias and inflated estimation variability) of
including higher-order copula terms. This empirical application extends the sales response
model in Equation 13 to include an interaction term between price and feature. See Web

Appendix G.2 for detailed analysis and results of Example 2.

Managerial and Academic I'mplications
The two examples highlight how copulas can correct for endogeneity to remove bias in

estimation, as well as how copulas should be correctly specified in models with interactions.
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Example 1 showed that without the copula, the OLS estimate for price elasticity was severely
under-estimated (Est. = -1.367) compared to both 2SLS (Est. = -2.470) and 2sCOPE (Est.
= -2.205). The result showed price elasticity in OLS was 38% lower in size than 2sCOPE.
We also noted that the instrument was significant but not particularly strong, attributing
to the difference between 2SLS and 2sCOPE estimates.

Controlling for endogeneity in price elasticity estimates can have important managerial
implications. Price elasticity estimates are often a crucial piece of information for managers
to set the optimal pricing that maximizes profit. Let the profit function p(Price) = V

(Price — Cost), where V is sales volume and cost is the marginal cost. The maximum profit

O ln p(Price)

5pc — 0. Following the Amoroso-

is then the value of Price that satisfies the condition

Robinson relation, the profit-maximizing price is Priceoptim = 1%{C’ost, where « is the price

elasticity. In Example 1, we find the optimal pricing is Price,s = 7;}3‘63761100575 = 3.72xCost
if the OLS price elasticity estimate is used, and Priceq,, = _;_22'35?21 Cost = 1.83 x Cost if

the 2sCOPE estimate is used. Because of the price endogeneity associated with the scanner
panel data, the biased OLS estimate underestimates the size of price elasticity, meaning that
OLS considers consumers less price sensitive than they actually are. Thus, the manager will
set the price more aggressively; in Example 1, using the OLS price elasticity estimate means
the manager will set price at 103% higher than the actual optimal price.

This considerable difference in optimal pricing based on the OLS and 2sCOPE price elas-
ticity estimates results in a substantial profit difference as well. It can be shown that the prof-
its achieved at the different prices have the following relationship: In % = aln[Priceqoy/Priceys)+
In[(Pricecy, — Cost)/(Priceys — Cost)], where pe,, and py,s refer to the profit achieved
when using the 2sCOPE and OLS price elasticity estimates, respectively. For Example
1, 22 = 1.46, which corresponds to a loss of 31% in profit when using the incorrect OLS

’ Pols

price elasticity estimate, compared to using the correct 2sCOPE estimate (Figure 3).
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CONCLUSION

Endogeneity correction is a key concern for academics and practitioners, and the instrument-
free copula correction has been increasingly used to address endogeneity bias. Copula correc-
tion has practical advantages and feasible implementation. Yet, like other causal estimation
procedures designed for use with nonexperimental data, the validity of copula correction
requires correct implementation of the method, needing boundary conditions and data re-
quirements to be met in its empirical applications.

This study contributes to the field in three areas. One, we advance the discussion re-
garding the theoretical rationales of copula correction and provide a review for how copula
correction has been used in marketing and other fields to correct for endogeneity, across
substantive areas, and how it has been applied (and misapplied). Two, we elucidate the
identification assumptions and data requirements of copula correction and build on recent
advances to provide an updated best practices ‘cookbook’ for both managers and academics
to follow in applying and implementing the copula procedures (Tables 1 — 6; Figure 5). The
cookbook also informs how to modify analysis when certain conditions are not met. Three,
we evaluate implementation variations (such as optimal copula transformations and higher-
order effects of moderation) and demystify misconceptions of copula correction, showing
theoretically and with real-world data best practices for copula correction usage.

We demonstrate that existing variations in the implementation of copula correction have
substantial impacts on its performance. Our discussions on the methodological aspects of
the copula method informs optimal and theoretically sound implementation for copula cor-
rection. We present a theoretically grounded way of constructing copula transformation that
avoids the potential finite sample bias problem and substantially improves the performance
of copula correction. We show that excluding the copula terms for higher order endogenous
regressors (i.e., interactions) is optimal and considerably outperforms when these copula
terms are included. To our knowledge, these are the first theoretical results justifying the

optimal implementation of these aspects affecting the performance of copula correction.
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We also discuss the latest extensions that expand the applicability, flexibility and robust-
ness of copula correction, highlighting endogeneity correction when the conditions and data
requirements of earlier copula correction approaches are not met (Table 2); for cases where
the endogenous regressors have insufficient nonnormality and correlate with exogenous re-
gressors (and the traditional P&G method fails to work), we describe how a two-stage copula
correction (2sCOPE) and its extensions, as well as other copula correction procedures, can
still work by leveraging relevant exogenous regressors.

We synthesize the above discussions into a flowchart with easy-to-follow checkpoints and
data requirements. This guide is practical for researchers — in both academia and industry
— to employ copula correction methods. In addition to making the copula code available,
we illustrate its usage in two empirical examples for two different product categories.

Future avenues of research are teeming, such as extending current copula correction
frameworks for more generality and for handling discrete endogenous regressors such as
endogenous treatment selection (Qian and Xie 2024; Hu, Qian, and Xie 2025). This also
includes adapting copula correction to Bayesian inference (Haschka 2025), exploring methods
to further reduce the dependence on the GC assumption, and improving computational
efficiency especially for computationally intensive procedures (e.g., the MLE procedures), to
name a few. While copula correction has made advances, and a great variety of quantitative
models have utilized copulas, new models are regularly emerging. As such, new opportunities

to adapt copula correction to new types of data, models, or applications abound.
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Table W2: Publications Using Copula Correction in Leading Marketing Journals

Characteristics Number | Characteristics Number | Characteristics  Number

Endogenous Regressors Outcome Type Sample Size
Product 20 Continuous 89 < 100 1
Price 35 Discrete Choice 15 101—1,000 40
Place 10 Count 3 1,001—5,000 8
Promotion 28 5,001—50,000 18
Sales Force & CRM 18 Panel Data 66 > 50,001 33
Other 40

Note: “Other” includes word-of-mouth, warranty claims, store visits, etc. The list of journals includes
Journal of Marketing, Journal of Marketing Research, Marketing Science, Journal of Consumer Research,
Journal of the Academy of Marketing Science, Journal of Retailing, International Journal of Research in
Marketing, and Journal of Consumer Psychology. See Web Appendix Table W1 for a detailed list of these
papers with their substantive areas. The total number of unique journal publications is n=100. Some
columns sum to more than the number of unique papers since multiple copulas may be used or multiple
models estimated in a paper using copulas.
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Table W3: Examples of Applications Involving Higher-order Endogenous Terms.

Study Higher-Order Endogenous Regressors CHI*
Burmester eta al. (2015) Ad Stock * Publicity Stock Yes
Blauw and Franses (2016) Mobile Phone Ownership? Yes
Lenz, Wetzel, and Hammerschmidt (2017) Corporate Social Responsibility? No
Lamey et al. (2018) Promotion Intensity * Store context No
Gielens et al. (2018) R& D * Retailer Power No
Yoon et al. (2018) Knowledge * Government Activity Yes
Atefi et al. (2018) Trained Percentage? Yes
Trained Percentage *Performance Diversity
Guitart, Gonzalez, and Stremersch (2018) Advertising * Price No
Wetzel et al. (2018) Recruitment Spend * Brand Age No
Keller, Deleersnyder, and Gedenk (2019) Price Index * Price Premium No
Heitmann et al. (2020) Complexity *Segment Typicality No
Vomberg, Homburg, and Gwinner (2020) Failure Culture® Reacquisition Policies No
Guitart and Stremersch (2021) Ad Stock?, Price?, Informational? Yes
Magnotta, Murtha, and Challagalla (2020) Salesperson Training*Salesperson Incentive No
Homburg, Vomberg, and Muehlhaeuser (2020) Direct Channel Usage*Formalization No
Liu et al. (2021) Price Discount?, order Coupon? Yes
Kramer et al. (2022) Industrial Service Share? Yes

CHI: copula correction terms for high-order terms of endogenous regressors included.

14



WEB APPENDIX B: DOUBLE ROBUSTNESS PROPERTY OF COPULA

CORRECTION

This section demonstrates the double robustness of copula correction using control func-
tions in that control functions do not require the error F to be normally distributed or
follow a specific copula structure jointly with the endogenous regressors P. Consequently,
the normal error distribution and the GC regressor-error dependence are only sufficient but
not necessary conditions for copula control functions to work.

Consider the following structural equation model according to the data generating process

from Figure 2.d:

i = pta-P+8-W+E (W1)

E, = U+¢& (W2)

where U; denotes the endogenous part of the error E; and captures the joint effects of all
unobserved confounders, and &; denotes the exogenous disturbance term that is independent
of P;, W; and U;. With the intercept p in the model and, without loss of generality, both U;
and & have means of zero.

As noted in the main text, the exogenous part of E;, &, simply adds noise but does
not affect endogeneity correction. Because &; does not need to follow a normal distribution
or any GC assumption in order for the augmented OLS regression to correct for bias, this
means that the identification of the model for copula correction using control functions does
not require the structural error F; be normally distributed or follow the GC dependence

structure jointly with regressors.
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We illustrate this double robustness property of copula correction using a simulation

study. We generate P, W;, U, using the same GC distribution as in Equations W3 to WT:

Py 0 1 pow pov 0 1 05 05
wel~N1lol ] pw 10 =Nllo|-los 1 o || (W3
Uy 0 py 01 0 05 0 1
U= o o) =1-Ur, (WY
&~ N(0,1), (W5)
P =H ' (Upy) = HH(Q(F)), Wy =L (Uwy) = L7(2(W)), (W6)
Yi=p+a-P+p-W+E,=p+a-P+8-W,+U +& (W7)

In the simulation, we use the Gamma (1,1) distribution for P; and the exponential distribu-
tion Exp(1) with rate 1 for W;. We consider two distributions for &: uniform on [-0.5,0.5]
and the lognormal(0,1)-e%® distribution. Thus, the error term E; = U; + & will not follow
a normal distribution because of nonnormality of &;. Furthermore, F; will not follow a GC
model with regressors. However, Assumptions 1 and 2 of 2sCOPE still holds because U;
is normally distributed and follow a GC model with regressors. Thus, we expect 2sCOPE
to be able to recover true parameter values. We then simulate Y; using Equation W7 with
parameter values given in Table W4. Sample size is n=1,000 per dataset. For each dataset,
we apply OLS and the 2sCOPE estimation described in Table 3. A total of 1,000 datasets
were generated.

Table W4 reports the mean and standard deviation of the model estimates across 1,000

simulated data sets. As shown in Table W4, OLS has large bias for both distributions of &;.
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Table W4: Results of the Simulation Study: Double Robustness of Copula Correction

Distribution Skewness OLS 2sCOPE
of & of the error £y Param. True Mean SE Mean SE
Unif[-0.5,0.5] 0.00 I 1 0.69 0.05 1.00 0.06
« 1 1.57 0.04 1.00 0.07
I6] -1 -1.26 0.03 -1.00 0.04
OE 1.04 091 0.02 1.04 0.04
Lnorm(0,1)- %5 3.68 1 1 0.69 0.11 1.00 0.14
1 1.57 0.08 1.00 0.16
B -1 -1.26 0.08 -1.00 0.11

oE 237 231 027 237 0.26

As expected, 2sCOPE corrects for the OLS estimation bias and recovers the true parameter
values despite the error term E being nonnormally distributed and does not follow a GC
model with regressors, demonstrating the double robustness property of the 2sCOPE method
in that a GC regressor-error dependence is not required.

Furthermore, although used in method derivation, Assumptions 1 and 2 in Table 4 are not
strictly required as shown next. Table W5 evaluates the performance of copula correction
when the distribution of U, follows a nonnormal distribution. That is, we use the same
simulation set up as above except that U; = t;(®(U;)) instead of U, = U;, where t,
represents the CDF for the t-distribution with 4 degrees of freedom. Thus, both U; and
E} are nonnormally distributed, violating Assumptions 1 and 2 of the 2sCOPE procedure.
As shown in Table W5, 2sCOPE can still correct for the OLS estimation bias and recover
the true model parameters well. The results show that although Assumptions 1 and 2 are
used in the derivation of 2sCOPE, these assumptions are not strictly required; 2sCOPE

demonstrates desirable robustness to the violations of Assumptions 1 and 2.
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misspecified U distribution.

Table W5: Results of the Simulation Study: Robustness of Copula Correction with a

Distribution Skewness OLS 2sCOPE
of & of the error £y Param. True Mean SE Mean SE
Unif[-0.5,0.5] 0.00 1 1 0.57 0.07 0.99 0.09
o 1 1.78 0.06 1.01 0.13
I6] -1 -1.35 0.05 -1.00 0.07
OE 1.44 126 0.07 143 0.09
Lnorm(0,1)- €%5 2.99 1 1 0.57 0.12 099 0.16
« 1 1.78 0.10 1.02 0.22
B -1 -1.35 0.09 -1.01 0.13
OE 257 247 030 257 0.30
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WEB APPENDIX C: ICON: AN INDEX OF COPULA-MODEL

NONIDENTIFICATION

When properly applied with the underlying assumptions and data requirements being
met, copula correction can be a powerful tool for addressing endogeneity bias using nonex-
perimental data. The main text shows that copula control function methods work under
considerably less strict conditions and thus are more robust and applicable than previously
believed. However, it is important to check boundary conditions to minimize the potential
pitfalls of incorrect applications of copula correction.

As noted in the main text and shown in existing research, when the main identification
assumptions of copula correction are violated, copula models can become weakly identified or
unidentified, resulting in poor performance of copula correction (e.g., Park and Gupta 2012;
Haschka 2022; Qian and Xie 2024; Yang, Qian, and Xie 2024a). Model weak identification
or nonidentification can occur when regressor distributional requirements are not satisfied.
When exogenous regressors lack sufficient relevance or sufficient nonnormality to compen-
sate for insufficient nonnormality of endogenous regressors, copula terms become nearly
collinear with existing regressors, yielding estimates with significant finite-sample bias and
huge standard errors (Yang, Qian, and Xie 2024a). The evaluation using simulation studies
has also shown that when the regressor-error dependence follows a linear model instead of
the GC model, copula correction yields significantly biased estimates with huge standard
errors (Haschka 2022; Qian and Xie 2024), which is caused by nearly singular Hessian ma-
trices of the almost flat likelihood functions in the misspecified GC copula model. Thus,

theory suggests significantly inflated standard errors of estimates as warning signs of nearly
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unidentified models caused by misspecified regressor-error dependence.

Because weakly identified copula models can yield significantly biased and imprecise
estimates, copula correction using such models is inappropriate. In this section, we propose
a simple measure, named ICON (an Index of Copula-model Nonidentification), to flag such
scenarios in which the deployed copula correction model/approach is likely inappropriate
or needs further refinement. The ICON measure is defined as the ratio of the standard
error of a copula corrected estimate to the standard error of the corresponding uncorrected
estimate. The rationale for this measure is that when the copula model becomes weakly or
nonidentified, the standard errors of the copula corrected estimates will become large. Prior
research has shown for such models, the standard errors of copula corrected estimates are
typically more than 8-10 times of those of copula uncorrected estimates (Park and Gupta
2012; Haschka 2022; Qian and Xie 2024; Yang, Qian, and Xie 2024a). To be conservative, we
suggest ICON> 6 as a threshold value for weakly identified or nonidentified copula models.

To illustrate the use of ICON, we first consider the case of model nonidentification caused
by the lack of meeting the regressor distributional requirements. We generate P, W;, U, using

the following GC model

Py 0 1 ppw Ppe 0 1 05 05
wrl~Nlo] | pw 1 0 =N|lo|-lo5 1 o || (W8
EY 0 Ppe 0O 1 0 05 0 1
Ey = G (Upy) = GH(@(E})) = @7 (O(E")) = 1- E, )
Po= H (Up) = HY(B(P), Wi= L (Uwy) = LN@(W;)),  (WI0)
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Vi=p+a P+ -Wy+E =1+1-P+(-1)- W, + E, (W11)

In the simulation, we use standard normal distributions for the marginal distributions
of P, and W,. The GC model is unidentified because both endogenous regressor P and
exogenous regressor W are normally distributed, and the population copula term is perfectly
correlated with the regressors, leading to an unidentified population model. In any finite
sample, however, the regressors are not exactly normally distributed and copula terms are
severely (but not perfectly) collinear with the existing regressors. Thus, in finite samples,
the exogenous regressor W, lacks sufficient nonnormality to compensate for the normality
of the endogenous regressor P,. We demonstrate here that the ICON statistics can detect
such nonidentified models in finite samples. Table W6 summarizes the results over 1,000

simulated data sets.

Table W6: Detect Nonidentified Copula Models with ICON: Normal Regressors

Distribution OLS 2sCOPE ICON Percentage
P W Parameters True Mean SE  Mean SE (SE9scope/SEqls)  (ICON> 6)
Normal Normal ] 1 1.00  0.025 1.001 0.031 (0.033) 14 0%
a 1 1.666 0.030 1.662 0.547 (0.529) 21.6 100%
8 -1 -1.332 0.030 -1.331 0.287 (0.264) 10.8 100%
Dot 0.5 - - 0.001 0.363 (0.347) 14.0 100%
O¢ 1 0.816 0.018 0.943 0.157 (0.171) 7.0 100%

Note: Table presents the means and standard deviations of parameter estimates over 1,000 simulated
datasets. For 2sCOPE, the numbers within the parenthesis are the averages of bootstrapped standard error
estimates over 1,000 simulated datasets. The ICON column “SEQScope /SEs” presents the averages of the
ratio of the bootstrapped standard error estimates for 2sCOPE to the standard error estimates for OLS
over 1,000 simulated datasets. The column “Percentage (ICON> 6)” presents the percentage of 1000
simulated datasets having ICON > 6.

We observe that 2sCOPE yields estimates that are, on average, very close to the OLS

estimates (i.e, not correcting for endogeneity bias) and also have large estimation variability.
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Overall, the copula correction appears to perform worse than the OLS estimation when the
copula model is nonidentified. The ICON statistic is able to detect model nonidentification
because the ICON statistics are far greater than the cutoff value of 6, flagging these copula
estimates as inappropriate to use. One can also detect the failure of regressor distribution
and relevance requirements using the guidelines provided in Yang, Qian, and Xie (2024a)
(see the boundary condition 2 in Table 4 in the main text that examines the normality
of regressors and first-stage F' statistics for the relevance of exogenous regressors). Their
guideline is akin to using the first-stage F' statistics to detect weak IVs in IV regressions
(Staiger and Stock 1997). While their guideline is developed for use with 2sCOPE under
the GC joint model for all regressors (and specifically for checking regressor distribution and
relevance requirements), the ICON statistics can be viewed as a more direct and general
measure for detecting model nonidentification, and can detect nonidentified copula models
due to other causes, as shown next.

The ICON statistics can also help detect model identification due to violations of the
regressor-error GC assumption. Past research has also shown that when the regressor-error
dependence follows a linear model instead of the GC model, copula correction yields signifi-
cantly biased estimates with huge standard errors (Haschka 2022; Qian and Xie 2024). The
ICON statistics can be used to detect such misspecified copula models.

To further demonstrate this point, consider the following example using simulated data

with the following data generating process (DGP):
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Py 0 1 0 ppw O 0 1 0 05 0

Py 0 0 1 0 puv 0 0 1 0 05
~ N : - N ’

Wy 0 ppw 0 1 0 0 05 0 1 0

Uy 0 0 ppu 0 1 0 0 05 0 1

§e ~ N(Ov 1)
Plt :H1_1<q)(P1*t))7 P2t:H2_1((I)<P2*t)>7
P, = P+ Py, Wy =LY D(W))),

Vi=pt+a- B+ W +E=5+(-1)-B+3-W,+U +¢&,

where U} and Py, are correlated (p,,, = 0.5), generating the endogeneity of P,; W; is
exogenous and uncorrelated with U;; W) and Py, are correlated (pp,., = 0.5), and therefore
W; and P, are correlated. In this example, P, represents the price at the market or occasion
t, and the price P, is the sum of the cost P; and the markup P,;. The analyst observes the
prices P, sales Y;, and an exogenous variable (W, e.g., ad spending). There is an unobserved
(omitted) variable U, (e.g., temperature) that correlates with sales and the markup (pp,, =
0.5). Furthermore, cost Py; is correlated with W; (pp = 0.5). We set W to have a
skewed normal distribution: L(-) is the CDF for skewed normal distribution with location=0,
scale=0, slant parameter =10; H;(-) for cost is the CDF for Unif(—1,1) and H(-) for
markup is the CDF for Unif(—2,2), and the price is the sum of cost and markup. We also

have an unobserved exogenous sales shock & ~ N(0,1).
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Suppose the analyst assumes (P, Wy, Uy) follows the GC distribution and use the following

2sCOPE procedure
Y, = p+ra-P+B-Wi+~vCpw + & (W18)

where Cpj = P} — OW;. For the above 2sCOPE to work as intended, we require the
assumptions in Table 4 to be reasonably satisfied (as noted above, 2sCOPE is robust to
a range of departures from Assumptions 1 and 2 in Table 4). The above DGP satisfies
all assumptions except Assumption 2 because (P, Wy, U;) does not jointly follow the GC
distribution.

To examine the performance of copula correction, we conduct a simulation study that
generates 1,000 datasets from the above DGP. For each simulated data, we conduct both
OLS and 2sCOPE estimation using Equation W18. As a comparison, we also generate data
from a DGP that satisfies the condition that (P;, Wy, U;) follows the GC model below. This
represents that U denotes the combined effect of many omitted variables (e.g., unobserved

product attributes, retailer decisions, etc.) that affect both the cost and markup:

Py 0 L ppw ppU 0 1 05 0.5
wr |l ~N{ 1o ] pw 1 0 =Nllo|: |05 1 o |[{W19)
U; 0 pv 01 0 05 0 1
L n=eewy)=1Un 7 (wao)
& ~ N(0,1), (W21)
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Py =H™ N Upy) = HH(®(FY)), Wy =L (Uwy) = L7H (@), (W22)

Yi,=p+a-Po+B-W,+E =5+ (-1)-P+3-W,+ U, +&, (W23)

where H(-) is the CDF for Unif(—2,2) and we set W as a skewed normal distribution: L(-)
is the CDF for a skewed normal distribution with location=0, scale=0, slant parameter =10.
Table W7 summarizes the results over 1,000 simulated data sets. The result shows that
for the misspecified DGP, the 2sCOPE improves upon OLS to some extent but considerable
bias remains: the o parameter has a bias of 0.25 (-0.751+1) for 2sCOPE instead of 0.36
(-0.647+1) for OLS in Table W7. Table W7 also shows the 2sCOPE « estimate for the
endogenous regressor P, has a significantly inflated standard error relative to the OLS «
estimate with an average inflation of 7.8 (Table W7). This occurs because gross violations of
GC dependence structure can cause loss of model identification and lead to weakly identified
or nonidentified models, leading to significantly inflated standard errors relative to those
of the uncorrected estimates (Park and Gupta 2012; Haschka 2022; Qian and Xie 2024;
Yang, Qian, and Xie 2024a). Consistent with the literature, the inflated standard errors are
a red flag for model nonidentification or potential gross violations of copula assumptions.
The ICON statistic for the coefficient o estimate of the endogenous regressor exceeds the
cutoff value of 6, indicating potential model nonidentification issues. Here, the regressor
distributional and relevance requirements are satisfied, so the culprit can be attributed to
the violation of GC assumption. By contrast, Table W7 shows when the underlying DGP is
correctly specified, the OLS and 2sCOPE estimates have similar variability and the average
ICON statistic for « is only about 3.7 (Table W7), much less than the threshold of 6.

In practice, the analyst will consider what to do if the ICON statistics indicate potential
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Table WT7: Detect Nonidentified Copula Model with ICON: Misspecified P — U

Dependence.

P-U OLS 2sCOPE ICON Percentage
Dependence Param. True Mean SE  Mean SE SE2scope/SEols (ICON>6)
Misspecified I 5 5.128 0.069 5.090 0.120 (0.118) 1.6 0%

@ -1 -0.647 0.035 -0.751 0.265 (0.262) 7.8 100%

15} 3 2.840 0.070 2.887 0.139 (0.135) 1.9 0%

oE 144 1.342 0.030 1.386 0.068 (0.079) 2.6 0%
Correctly Specified 1] 5 5.389 0.073 5.000 0.132 (0.132) 1.7 0%

« -1 -0.457 0.039 -0.997 0.149 (0.148) 3.7 0%

I} 3 2.509 0.078 2.998 0.156 (0.153) 2.0 0%

oR 1.44 1.298 0.030 1.416 0.067 (0.066) 2.2 0%

Note: Table presents the means and standard deviations of parameter estimates over 1,000 simulated
datasets. For 2sCOPE, the numbers within the parenthesis are the averages of bootstrapped standard error
estimates over 1,000 simulated datasets. The ICON column “SEQSCOpe /SEq)s” presents averages of the
ratio of the bootstrapped standard error estimates for 2sCOPE to the standard error estimates for OLS
over 1,000 simulated datasets. The column “Percentage (ICON> 6)” presents the percentage of 1000
simulated datasets having ICON > 6. The P — U dependence is misspecified in copula correction when
DGP follows Equations W12-W17 and correctly specified when DGP follows Equations W19-W23.

model nonidentification issues due to potential violations of GC dependence. The analyst
can check the appropriateness of the model specifications and revise the copula correction
strategies if alternative copula specifications make more sense.

We offer two potential solutions. One solution is to include relevant control variables.
Note that Assumption 2 in Table 4 only requires that the unexplained dependence between P
and U (or E) given exogenous regressors in W to be adequately captured by the GC model. P
and U do not need to follow a GC dependence model unconditionally on exogenous regressors
(Hu, Qian, and Xie 2025). In the above example, one may consider adding control variables
that proxy or predict well either cost or markup so that one part of price is explained
away or determined sufficiently (such that the unexplained dependence between P and U
by relevant control variables can be captured by a GC relationship, even if P and U do not

follow GC model unconditionally on W). Thus, exogenous variables can play an important
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role in copula correction just like the IV approach. In many cases, [Vs are plausible only
after good control variables are included in the model. For example, proximity to a college
or hospital is often used as an IV that is valid when the model includes important control
variables to account for regional differences (e.g., Ebbes et al. 2005). Although exogenous
control variables can play important roles in both copula correction and IV methods, copula
correction does not require IVs.

The other solution when ICON detects potential model misspecification is that the ana-
lyst may consider collecting additional data (e.g., cost) and using alternative copula correc-
tion methods. In the above example, one may consider a revised 2sCOPE procedure with

two copula correction terms for cost and markup separately.

th = M +a- (Plt + P2t) + ﬁ : Wt + f}/lct,pl\w + 72Ct,p2|w + €, <W24>

where Pj; represent the cost part computed using the collected data, and P, represent the
remaining markup part of the price (i.e., P, — Pj;). Table W8 reports the results from 1,000
simulated data sets. The refined 2sCOPE using two copula correction terms for cost and
markup separately corrects the endogeneity bias of the OLS estimates. The standard error of
the price coefficient is substantially smaller now, and the ICON statistics indicate no model
identification issues.

In conclusion, it is prudent to assess the plausibility of copula correction by consider-
ing the source of endogeneity to design suitable copula correction procedures. Using the
ICON statistics helps identify potential model nonidentification and misspecification issues.
An ICON ratio > 6 for copula corrected coefficient estimates for endogenous regressors in-

dicates potential model identification issues and model violations. When this occurs, one
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Table WS8: Results of the Simulation Study: Refined Copula Correction with Two Copula
Correction Terms.

OLS 2sCOPE ICON Percentage

Param. True Mean SE  Mean SE SE9scope/SEqls  (ICON>6)
W 5 5.128 0.069 5.001 0.092 (0.091) 1.2 0%
o -1 -0.647 0.035 -0.994 0.150 (0.151) 4.2 0%
Ié] 3 2.840 0.070 3.000 0.100 (0.100) 1.3 0%
op 144 1342 0030 1.422 0.069 (0.067) 2.0 0%

See Note under Table W7.

can consider revising model specifications, adding relevant control variables, refining copula

correction strategies, or using other endogeneity correction methods.
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WEB APPENDIX D: OPTIMAL ALGORITHM FOR COPULA

TRANSFORMATION

This section summarizes further results from simulation studies regarding the proper
construction of copula transformation. We also provide an interactive applet supplement
accessible at https://copula-correction.github.io/Webpage/histogram.html for read-
ers to visually explore the results of the simulation study with the source R code available

at https://copula-correction.github.io/Webpage/code’,20and’,20examples.html.

An Example of Copula Transformation

To demonstrate how the empirical rank-based copula transformation is constructed, con-
sider the example of the selling price of twenty goods from a small retailer, as shown in
Table W9. The construction of the empirical rank-based copula follows two steps. First,
the observations are ordered and mapped to a ranked percentile according to the empirical

cumulative distribution, F'(-). For example, the first observation (of twenty) is 5, or 5% of

2

555 OF 10%, and so on. The second

the cumulative observations; the second observation is
step computes the inverse normal CDF of that ranked percentile as shown in the column
“Price™: an observation in the bottom 5% (or fifth percentile) maps onto the far left end
of a standard normal distribution, in this case about -1.6449 standard deviations below 0.
One item from Table W9 is of particular importance: the last observation is technically
the 100th percentile, however, the inverse normal CDF of the 100th percentile is undefined.

This is because the probability (reflected as F') must be between 0 and 1. The latent copula

data, Price®, for the 20th observation here reflects an adjustment, where F'(-) becomes the
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o mg = 37). That is, we

observation count divided by the observation count plus one (i.e
compute the copula transformation using Equation 9. Besides ensuring that the copula
transformed values maintain the same rank order as the original regressor values for any
sample size 2%, the percentile adjustment for the maximum value yields a theoretically valid

maximum value of the underlying copula data, and stabilizes the copula transformation

without producing an extremely transformed value.

Table W9: Example Creation of the Rank-based Gaussian Copula

Obs Price F(Price) Price* Obs Price F(Price) Price*
1 $14.00 0.05 -1.6449 11 $32.10 0.55 0.1257
2 $15.20 0.10 -1.2816 12 $33.00 0.60 0.2533
3 $16.30 0.15 -1.0364 13 $34.60 0.65 0.3853
4 $16.50 0.20 -1.0364 14 $34.90 0.70 0.3853
5 $21.00 0.25 -0.6745 15 $37.00 0.75 0.6745
6 $24.20 0.30 -0.5244 16 $42.00 0.80 0.8416
7 $27.00 0.35 -0.3853 17 $43.50 0.85 1.0364
8 $29.00 0.40 -0.2533 18 $44.10 0.90 1.2816
9 $29.50 0.45 -0.2533 19 $45.00 0.95 1.6449
10 $30.00 0.50 0.0000 20 $47.80 0.95247F 1.6684

+: To avoid generating undefined latent copula data, the rank for the maximum value of Price is
changed from 1 to n/(n+1), which is 20/21=0.9524 for the sample size n = 20 here.

29By contrast, in their example of 100 observations, Papies, Ebbes, and Van Heerde (2017) set the percentile for
the last observation to 0.99, which is the same as the second to last observation even though these two raw data
points do not have the same rank order.
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Simulation Study Setup and Findings

In this study, we use the following DGP that is the same as specified in Equations 1-4 in

Becker, Proksch, and Ringle (2022):

E; 0 1 0.50
= N , (W25)
Py 0 0.50 1
B, = O7H(D(EY)) (W26)
P o= ®(F) (W27)
Y, = p+aP+E, =—1P+E,, (W28)

where Y;, P;, and E; represent the dependent variable, endogenous regressor, and the error
term, respectively. The DGP specifies a linear model with the endogenous regressor P
following a uniform distribution, and a correlation coefficient of 0.50 between P, and the
error term E;. The simulation study varies in sample size N from 100 to 60,000 (100, 200,
400, 600, 800, 1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 20,000, 40,000, and 60,000). For each
sample size, we generate 1,000 datasets from the above DGP.

For each generated data set, we apply OLS, the Park and Gupta (P&G) method using
the algorithm in Equation 10 to obtain generated regressor, the P&G method using the
algorithm in Equation 9, and the integrating kernel density estimates (IKDE) to obtain the
generated regressor in estimating the structural model. While the intercept term p = 0 in
the DGP, the estimation does not assume this a-priori but instead estimates the intercept
parameter jointly with other model parameters. The difference between the average of the

estimates across 1,000 simulated datasets and its true value is the bias of an estimator, which
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is plotted in Figure W1 for a (discussed further below).
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Figure W1: Bias of the endogenous regressor.

Figure W1 shows the bias of «, evaluated as the difference between the mean parameter
estimate averaged over 1,000 simulated data sets and its true value, for different estimation
methods at sample sizes ranging from 100 to 60,000 (Figure W1 x-axis). OLS, as the curve
with circles in Figure W1, exhibits substantial bias (> 1.5) in the coefficient estimate « for
endogenous regressor P. Furthermore, this bias remains the same regardless of sample size.
Consistent with Becker, Proksch, and Ringle (2022), the P&G method using Equation 10 (the
curve with cross marks in Figure W1) substantially reduces the bias in the OLS estimates,
but does not resolve the endogeneity in many situations: substantial bias remains after

copula correction in small to moderate sample sizes. The endogenous regressor’s coefficient

32



estimation bias only becomes negligible for sample sizes larger than 4,000. The finite sample
bias for P&G copula regression with intercept discovered in Becker, Proksch, and Ringle
(2022) is a significant problem that needs addressing, so as to ensure appropriate use of
copula correction. This is relevant because prior to Becker, Proksch, and Ringle (2022),
users of copula correction were unaware of such surprisingly severe bias concerns.

A key finding in Figure W1 is that the substantial bias of the P&G copula correction
method for models with intercept, discovered in Becker, Proksch, and Ringle (2022), is largely
solved by adjusting the largest rank using Equation 9. The algorithm in Equation 9 results in
considerably improved performance of the P&G copula correction method; the endogenous
regressor’s coefficient estimate bias now becomes negligible when sample size reaches 400
rather than 4,000 (the curve with squares in Figure W1). Furthermore, even sample sizes
as small as 100 exhibit a bias of about 0.15 for our algorithm?’, which is quite smaller
than 1.0 using the algorithm in Equation 10. The theoretical reason is that constructing the
empirical copula using the fixed-value percentile for the largest rank can substantially distort
the distribution of generated regressor P*, resulting in suboptimal performance of the PG
copula correction method and substantial bias in small to moderate samples. In conclusion,
including an intercept in the model does not cause concern as long as the last-ranked value
of the empirical CDF is properly handled by using the recommended copula transformation

algorithm.

30This is perhaps unsurprising because the copula correction method, like instrumental variables and other IV-free
methods, is a large sample procedure requiring sufficient information for satisfactory performance.
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Comparison with Integrating Nonparametric Kernel Density Estimation

This subsection aims to examine whether the bias problem discovered in Becker, Proksch,
and Ringle (2022) can be resolved by employing the approach of integrating nonparametric
kernel density estimation (IKDE) to obtain the copula correction term (Park and Gupta
2012). The IKDE method first estimates the marginal density function fp(p) of the contin-

uous regressor P using the following Epanechnikov kernel nonparametric method

foP=p) = %éf{(p‘bﬂ), (W29)

where K (-) is the user-supplied kernel function and b is the bandwidth parameter that exerts
a strong influence on the density estimation. The optimal bandwidth value is unknown but
there are some suggestions for choosing the bandwidth. When using the Epanechnikov
kernel K(z) = 0.75(1 — 2*)I(|X] < 1), the rule-of-thumb for determining the bandwidth
is b = 0.9n"Y>min(s, IQR/1.34), where s is the sample standard deviation and IQR is
the interquartile range. The IKDE approach then integrates the marginal density function

estimate to obtain the marginal CDF as follows:

B = [ " Fowdu, (W30)

where the trapezoidal rule can be used for the above numerical integration (Park and Gupta
2012).

It is unclear if the IKDE approach to obtaining the copula correction terms outperforms
the approach of using empirical CDF. On the one hand, the IKDE approach does not en-

counter the problem of the last observation having infinite value of copula latent data as
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Figure W2: Boundary Bias of Nonparametric Kernel Density Estimates. Dotted line
denotes the true density function of the uniform distribution on [0, 1]. Solid line denotes
the KDE estimates.

empirical CDF encounters. On the other hand, the nonparametric KDE methods are sub-
ject to boundary bias (e.g., Cid and von Davier 2015, Karunamuni and Alberts 2005), which
is an important drawback of KDE density estimation. The boundary bias of KDE estimation
is particularly severe for variables with bounded support or for density estimation near the
boundaries of the support of the density to be estimated (Karunamuni and Alberts 2005).
Large sample size is required to control or mitigate the boundary bias. Figure W2 illustrates
boundary bias of kernel density estimation in four simulated datasets at sample size ranging
from N=100 to N=100,000 when the true density function is the uniform distribution on
[0,1]. We observe density estimation bias near the two ends of the uniform distribution,

although the boundary bias decreases with increasing sample size.
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Returning to Figure W1, consider the estimation bias of using IKDE for copula correc-
tion with the same DGP as specified in Equations 1-4 in Becker, Proksch, and Ringle (2022)
(i.e., Equations W25 to W28). We implemented the IKDE approach using the R function
density (P, kernel="epanechnikov") for nonparametric kernel density estimation and the
R function CDF() that integrates the KDE estimates to the cumulative distribution func-
tion using the trapezoidal rule. Figure W1 shows that copula correction using the IKDE
approach has larger bias across all sample sizes than the approaches using the ECDF. This
can arise from the severe boundary bias (Figure W2) of KDE for estimating the density near
the boundaries of the support. By contrast, the ECDF can automatically account for the

bounded support of the uniform distributions and avoid such severe boundary bias.

Models Without Intercept

Figure W3 plots the estimation results when estimating the model in Equation W28
without intercept. All settings remain the same as those when estimating the models with
unknown intercept, except that the estimation now assumes the intercept parameter p is
known a-priori and consequently we estimate all the other model parameters given the a-
priori known intercept value. The difference between the average of the estimates across 1,000
simulated datasets and its true value is the bias of an estimator, which is plotted in Figure
W3 for a. Results in Figure W3 show large OLS estimation bias that remains constant
across all sample sizes. Interestingly, in this case, there is no bias at any sample size for
all algorithms to generate copula transformation (IKDE, fixed ECDF, or adaptive ECDF).
This means that unlike the case of estimating models with intercept, choice of algorithms

for handling the infinite value of copula transformation of the last-rank observation does
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Figure W3: Bias of the endogenous regressor without intercept.

not matter, and all three algorithms work well to correct OLS estimation bias across all

considered sample sizes.

Copula Transformation with Correlated Regressors

In this section, we assess the impact of copula transformation on the 2sCOPE procedure.

The DGP is summarized below:

by 0 L ppw  Ppe 0 1 05 05
wr |l ~NL1o] | pw 1 0 =Nllof|: o5 1 o0 (W31)
B 0 pre 01 o o5 0 1
E =G (Ugy) = G (B(E)) = & (O(E")) = 1- EY, C(W32)
P = H \Up,) = HN®(P?)), Wy =L (Uwy) = L~ (®(W})), (W33)



Yy=p+a-P+8-Wi+E =0+ (=-1)-B+1-W,+ Ej, (W34)

where E; and P are correlated (p,. = 0.5), generating the endogeneity problem; W} is
exogenous and uncorrelated with Ej; W and P are correlated (pp, = 0.5), and therefore
W, and P, are correlated, which calls for the use of 2sCOPE. We consider the following
estimation methods: (1) OLS regression of Equation (W34); (2) 2sCOPE using the fixed
algorithm for copula transformation of P and W Equation 10; (3) 2sCOPE using the adaptive
algorithm for copula transformation of P and W (Equation 9), and (4) 2sCOPE-np using the
nonparametric copula control function ®~'(F(F;|W;)) in Equation ??. In the simulation,
we use the uniform distribution on [0,1] for P, and the exponential distribution Exp(1)
with rate 1 for W;. Models are estimated on all generated datasets, providing the empirical
distributions of parameter estimates.

We use the procedures described in Table 3 for 2sCOPE and 2sCOPE-np. For 2sCOPE-
np, we use the following Nadaraya-Watson (NW) nonparametric kernel regression procedures
to estimate the conditional CDF F(P;|W;) with the following locally weighted average (Li

and Racine 2008):

Z?:l I(P; < p)Kp(W; — w).

F\a<p|w) = 27‘1—1 Kh(vvz _ w)

(W35)

where I(P; < p) is the indicator function for the event P; < p; n denotes sample size;

K,(W; —w) is a weight function defined as:

Kn(W; —w) = %k (Wh_w) (W36)

where k(-) is a user-supplied smooth and symmetric kernel function and h is the bandwidth
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Figure W4: Method comparison with correlated endogenous and exogenous regressors

parameter. Another estimator smooths the continuous outcome Y as follows:

S Gl(p = P)/ho)Kn (W: — w)
YW

P(plw) = (W37)

where G(-) is the CDF function defined by G(v) = [°__ k(u)du from the density function
k(u), and hg is the bandwidth for smoothing the outcome Y. See Hu, Qian, and Xie (2025)
for more details about the description and implementation of these kernel conditional CDF
estimators in 2sCOPE-np.

Figure W4 shows that 2sCOPE using the fixed algorithm also negatively affects the
performance of copula correction, while 2sCOPE using the adaptive algorithm avoids the
bias. Unlike 2sCOPE, 2sCOPE-np does not perform copula transformations directly on

regressors, but instead on the smoothed conditional CDF estimate of F'(P|WW), which takes
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values less than one because of smoothing. Thus, fixed algorithm or adaptive algorithm is
irrelevant for 2sCOPE-np. As shown in Figure W4, the 2sCOPE using adaptive algorithm
performs best with negligible bias even at the relatively small sample size n = 100. As
expected for a nonparametric procedure, 2sCOPE-np (the curve with triangles) performs
well when sample size is sufficiently large even if it does not impose any model on regressors,
but it does require a larger sample size to have negligible finite sample bias than the correctly
specified 2sCOPE using the adaptive algorithm (the curve with squares). Figure W4 suggests
a minimum sample size of 300 for 2sCOPE-np to have negligible finite sample estimation
bias (i.e., Boundary Condition 3 in Table 4). This is consistent with that the the empirical
applications of the nonparametric kernel CDF estimation in Li and Racine (2008) all have a

minimum sample size of 300.
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WEB APPENDIX E: PROOF OF OPTIMALITY OF EXCLUDING

HIGHER-ORDER COPULA TERMS.

Theorem 1. Optimality of excluding higher-order copula terms. Let (5,]@”‘”'"), k =
1,--- | K, denote the structural model parameter estimates when only the copula terms for
the main endogenous effects are included to correct for endogeneity, and (é\,?”), k=1,--- K,
denote the corresponding estimates when copula terms for both the main effects and higher-

order endogenous regressors are included. This yields:
Va,r(é\,f”) > Va'r'(é\,iwam) fork=1,--- K.

Thus, (9\%‘“” yields optimal copula estimation of structural model parameters with less vari-

~

ance and mean squared errors than 0%, for all k.

Proof: Consider the OLS regression of the model when only the copula main terms are

included to correct for endogeneity:
Y =X0+e€ V(e) =01, (W38)

where X includes the intercept, the regressors in the structural model, and C,,,;, (the copula
generated regressors for the main effects); @ collects all the coefficients of these regressors.
Math symbols in bold represent matrices and vectors. The variance of the estimates using

copula terms for main effects only is:
V(OMain) = 62(X'X) 71 (W39)
Then after introducing additional copula terms C for higher-order terms into the model in
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Equation (W38), we have:

Y =X0+Co+er, Vie)=0'1, (W40)

c

According to linear regression theory, the new estimates after entering the copula higher-

order terms C in the model become:

64 = (X'X)'X'(Y -C4), &= (C'RC)"'C'RY, (W41)
V(e = ol [(X'X)! +M(C'RC)*M], (W42)

where M = (X’X)"!X'C, R =1, — P, and P = X(X'X) X', Note that P is the projec-
tion matrix representing the orthogonal projection that maps the responses to the fitted
values, and R = I,, — P represents the orthogonal projection that maps the responses to the
residuals. Given that the newly added higher-order copula terms in C are highly correlated
with the higher-order terms in the structural model (as well as other copula terms already
included in the model), the extra variability in Y explained by adding C is small. Thus,
o ~ 02 and:

V(O)M - V(@M ~ o?[(X'X)7M+ M(C'RC)T'M — (X'X)7Y] (W43)
= 02[M(C'RC)'M']. (W44)

Since the matrix M(C'RC)™*M’ is positive semi-definite, all the diagonal elements are

greater than or equal to zero. For each of the K structural model parameters:
Var(é\,f”) > Var(é\,iw“i”) fork=1,--- K. (W45)
The magnitude of variance inflation is inversely related to C'RC, which represents the
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matrix of sum of squared residuals, obtained from regressing C on X. Thus, the higher the
correlation between the extra higher-order term C and existing regressors in X, the smaller

the sum of squares, which leads to greater variance inflation of Var(g,?”). Q.E.D.
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WEB APPENDIX F: SIMULATION STUDIES ILLUSTRATING THE
HARMFUL EFFECTS OF INCLUDING HIGHER-ORDER COPULA

TERMS

The theoretical proof in the preceding section shows that copula terms for higher-order
effects are not only unnecessary, but also substantially inflate estimation variability: the
higher the correlations between the extra higher-order copula term and other regressors, the
greater the estimation variance inflation. The empirical application of peanut butter sales in
the main text further demonstrates this adverse bias: omitting the higher-order copula term
yields model estimates closest to that of two-stage least squares using instrumental variables;
including the copula interaction term produces the opposite sign for the coefficient estimate
of the endogenous interaction term, and greater estimation variability.

In addition to the above theoretical results and real data analysis, this section presents
empirical evidences using simulated data to demonstrate (1) that there is no need to add
correction terms for higher-order terms of endogenous regressors to control for their endo-
geneity, and more importantly, (2) harmful effects occur if correction terms for higher-order
terms are added to control for their endogeneity. These effects include potential finite sam-
ple bias and inflated variability of structural model parameter estimates, as predicted by
the theoretical results in the previous section. The simulation study below highlights the
magnitude of such harmful effects: larger standard errors (by up to 5-times as shown in our
simulation studies), substantial estimation bias (about 30% of parameter values), and sig-
nificant loss of statistical power to detect moderating and nonlinear effects (e.g., a reduction

of power from 80% to 10% in Figure W7, much further below).
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Case I: Interaction Between Two Endogenous Regressors

Data were simulated from the following structural regression model with an interaction

between two endogenous regressors, P, and Ps:

Y = ap+a P+ oz_ng + a3 P * P2_—l— E (W46)
E* 0 L pe1 pee
Py = N O |pe;r 1 pr2
Py 0 | PE2 P12 1

E=Hy (P(E)) = o H((EY), Pi= HEII(CI’(I_DF)), Py = Hp,)(D(Py)).(WAT)

In this simulation, we set Hp,(-) as the CDF of the uniform distribution on [4,6], Hp,(-)
as the CDF of the truncated standard normal with a lower bound of 0, and parameters
ao=0,00 =1,a0 = =1, a3 = 1, pp1 = pr2 = 0.5, p1o = —0.5. For each simulated data set,
the following three estimation procedures were applied regressing Y on the following sets of

regressors:

OLS: Py, P
Copula-Main: P, Py, Cp,,Chp,
Copula—All: Pl, Pg, Cpl, sz, C’pl*p2

where Cp, = ®Y(Fp,(P1)), Cp, = O 1(Fp,(P2)), and Cpap, = O (Fpup, (P x P3)) are
the copula correction terms. That is, we use the P&G method for copula correction since
the model contains no exogenous regressors. The OLS estimation regresses Y on Py, P

and P, x P, without any correction for the endogeneity of these regressors. Copula-Main
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adds two copula correction terms, Cp, and Cp,, to control for the endogeneity of these three

regressors, where:
Cp, =@ Y (Hp,(P1)), Cp, =0 '(Hp(P)). (W48)
In addition to Cp, and Cp,, Copula-All adds the copula correction term Cp,,p,, where:
Cpupy, = O Y (Hpup,(PyxP)) (W49)

and H Py H p, and H p,«p, denote the empirical marginal distribution functions of Py, P, and
Py x P, in the observed sample, respectively.

Bias and SFEs of parameter estimates Across simulations, sample sizes (N) of 200, 500,

5,000, and 50,000 are examined. For each sample size N, we generate 5,000 data sets as
replicates to systematically evaluate average performance (estimation bias and variability)
for the three estimation methods. The simulation results appear in Table W10. As ex-
pected, OLS regression yields significant bias for all model parameters at all sample sizes.
For example, even for a large sample size of N=5,000, the OLS regression without any cor-
rection terms yields large bias for the regression parameter estimates (@ : 2.281 [0.018]; a :
—1.549 [0.099]; a3 : 1.432 [0.021]) and the error standard deviation (o : 0.298 [0.006]).
Copula-Main corrects for the endogenous bias (a; : 1.002 [0.058]; @ : —1.017 [0.080]; as :
1.003 [0.015]), demonstrating that there is no need to additionally include the copula correc-
tion term, Cp,p,. Furthermore, Copula-Main performs substantially better in both estima-
tion bias and variability for all parameter estimates than Copula-All which includes Cp,.p, .
In fact, Copula-All yields significantly biased parameter estimates, even at the large sample

size of N=5,000 (@ : 0.202 [0.318]; @y : —0.713 [0.240]; a5 : 0.929 [0.058]); bias decreases

46



as sample size increases, but remains apparent even for a sample size as large as 50,000, as
including the copula term for the interaction P; x P, causes significant estimation bias.

The same conclusion - that Copula-Main performs substantially better than Copula-All
in terms of both estimation bias and variability for all parameter estimates - applies to all
other sample sizes, except for the intercept parameter (o) at small sample size N=200. The
exception likely results from both a small sample size and strong multicollinearity induced
by the interaction term; however, the bias in the intercept estimate bears less practical
implication, since the intercept parameter is often of less interest.

Copula-All also yields less precise estimates (larger standard errors) than Copula-Main;
underlined standard errors in Table W10 highlight much larger SE for Copula-All versus
Copula-Main. This imprecision includes an SE 3.00-times that for as and 3.86-times that

for a3 compared to Copula-Main at a sample size of 5,000.

Overall Estimation Efficiency and Accuracy We further compare the efficiency of Copula-

Main and Copula-All using the D-error measure (Arora and Huber 2001, Qian and Xie
2022). The D-error measure is defined as |X|'/% where X is the variance-covariance matrix
of the regression coefficient estimates, and K is the number of explanatory variables in
the structural regression model. A larger D-error value means lower efficiency, with a A%
increase in D-error corresponding to a A% larger sample size required to achieve the same
level of estimation precision. As shown in Table W10, the D-error inflation for Copula-All is
about 3-times at N=>5,000. In this case, Copula-All requires about 3-times the sample size
in order to achieve approximately the same accuracy for estimating a;, as and az jointly as

Copula-Main. The variance inflation for the Copula-All estimate of a3, the coefficient for the
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Table W10: Results from Case I: Interaction of Endogenous Regressors.

N Method ap(=0)  ai(=1) a(=-1) a3(=1) o(=1) D-error
200 OLS -7.627 2.282 -1.546 1.433 0.294
(0.464) (0.093) (0.501) (0.106) (0.031) —
Copula-Main -0.358 1.046 -1.187 1.043 0.963
(1.363) (0.271) (0.417) (0.079) (0.121) 0.0293
Copula-All -0.058 1.012 -0.794 0.930 1.028
(1.364) (0.270) (0.468) (0.107) (0.134) 0.0368
500 OLS -7.624 2.281 -1.546 1.432 0.297
(0.290) (0.058) (0.312) (0.066) (0.019) —
Copula-Main -0.119 1.019 -1.104 1.024 0.99
(0.899) (0.179) (0.254) (0.047) (0.076) 0.0117
Copula-All 0.176 0.974 -0.702 0.923 1.051
(0.902) (0.178) (0.331) (0.077) (0.086) 0.0165
5,000 OLS -7.623 2.281 -1.549 1.432 0.298
(0.092) (0.018) (0.099) (0.021) (0.006) —
Copula-Main -0.012 1.002 -1.017 1.003 1.000
(0.291) (0.058) (0.080) (0.015) (0.024) 0.0011
Copula-All 0.202 0.968 -0.713 0.929 1.044
(0.318) (0.061) (0.240) (0.058) (0.041) 0.0031
50,000 OLS -7.621 2.281 -1.551 1.433 0.298
(0.029) (0.006) (0.031) (0.007) (0.002) —
Copula-Main 0.001 1.000 -1.003 1.000 1.000
(0.092) (0.018) (0.025) (0.005) (0.008)  0.00011
Copula-All 0.064 0.990 -0.912 0.978 1.013
(0.133) (0.023) (0.158) (0.038) (0.023)  0.00051

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from Copula-All are
inflated by at least 50% compared with the corresponding ones from Copula-Main. The P&G
method is used for copula correction since the model contains no exogenous regressors.
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Figure W5: Ratio of mean squared errors of structural model estimates, with using the
copula interaction term (Copula-All) to those without using the copula interaction term
(Copula-Main).
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interaction term, is much larger and equals (%)2 ~ 15 when N=5,000. This means 15-times
the sample size is required for Copula-All to achieve the same estimation accuracy of the
interaction term as Copula-Main. Regarding overall estimation efficiency, the D-error ratios
for Copula-All to Copula-Main increase as sample size increases, from 1.26-times (N=200)
to 1.41-times (N=500) to 2.82-times (N=5,000) to 4.64-times (N=50,000).

We also compute the ratio of mean squared error (MSE) of the structural estimate ay,
comparing Copula-All to Copula-Main (where MSE(a,) = Bias?(ay)+Var(dy), measuring
overall estimation accuracy). Notably, Copula-All increases MSEs for all model parameter
estimates, with the harmful effects being largest for the interaction parameter estimate as,

whose MSE is more than 80-times that of Copula-Main when sample size N=50,000 (Figure

W5).
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Case II: Interaction Between an Endogenous Regressor and an FExogenous

Regressor

We simulated data from the following structural regression model with an interaction

term between an exogenous regressor X and an endogenous regressor P:

Y = OZQ+B1W+OZ1P+052W*P+E

P 0 1 Ppw  Ppe
w | = N{lo| |pw 1 0
E* 0 pre 0 1

E=Hy'(®(E) = &(@(E).  P=Hy'(®(P),W = Ly (®(W")) (W50)

where Hp(-) is the CDF of the truncated standard normal on [0,00], and Lw(-) is the
CDF of a uniform distribution on [4,6], and we set oy = 0,51 = 1,09 = —1, a0 = 1 and
Ppe = 0.5, ppyy = —0.5 with sample sizes of 200, 500, 5,000, and 50,000. For each sample size,
we generated 5,000 repeated samples.

For each generated sample, we then apply three estimation procedures: OLS, 2sCOPE-
Main and 2sCOPE-AIlL. 2sCOPE is used to handle correlated regressors P and W. The OLS
regresses Y on P, W and W x P without any correction for the endogeneity of P and W x P.
2sCOPE-Main adds one copula correction term, Cp = P* — &, W* (Equation 12) to control
for endogeneity of P and W % P, where P* and W* are copula transformations of P and
W using the ECDFs Hp(-) and Ly (-) estimated from data, respectively. In addition to Cp,
2sCOPE-AIl adds the copula correction term Cyyyp = (W % P)* — 8,W*, where (W * P)* is

a copula transformation of the interaction term W P using its ECDF Hy,p(-) estimated
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from data. Hp(-), Ly (-), and Hy,p(-) denote the empirical marginal distribution functions
of P, W, and W % P in the observed sample, respectively. Results over 5,000 simulated
samples are summarized in Table W11.

As expected, the OLS regression without any correction terms yields large bias for the
regression parameter estimates and the error standard deviation o in the structural regres-
sion model. 2sCOPE-Main corrects for the endogenous bias, demonstrating that there is
no need to additionally include the correction term for the interaction term of P and W.
Importantly, 2sCOPE-All, which adds the unnecessary copula correction term for the in-
teraction term, yields less precise estimates (larger standard error of estimates as shown in
Table W11) than 2sCOPE-Main, increasing the D-error by more than 100% in some cases.
Furthermore, significant estimation bias in parameter estimates for oy exists for 2sCOPE-All
which decrease as sample size increases, but still remains for a sample size as large as 50,000
(Table W11). The results demonstrate the substantial adverse effects of adding unnecessary
copula terms for interactions: significant finite sample estimation bias and inflated standard

eITrors.
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Table W11: Results from Case II: Interaction between Endogenous and Exogenous

Regressors

N Method ap(=0)  fi(=1) ai(=-1) a(=1) o(=1) D-error

200 OLS -2.388 1.312 -1.281 1.274 0.829
(0.902)  (0.174) (0.876) (0.182)  (0.041) —

2sCOPE-Main -0.126 1.020 -1.047 1.026 0.987
(1.342)  (0.223) (0.884) (0.208)  (0.127)  0.0425

2sCOPE-All -0.141 1.028 -0.796 0.964 1.016
(1.371)  (0.229) (1.305) (0.315)  (0.152)  0.0651

500 OLS -2.351 1.306 -1.302 1.278 0.832
(0.561)  (0.109) (0.549) (0.115)  (0.026) —

2sCOPE-Main -0.013 1.000 -1.039 1.014 0.997
(0.842)  (0.140) (0.543) (0.126)  (0.083)  0.0159

2sCOPE-All -0.052 1.013 -0.791 0.946 1.024
(0.855)  (0.144) (0.905) (0.232)  (0.110)  0.0298

5,000 OLS -2.338 1.303 -1.312 1.280 0.833
(0.179)  (0.034) (0.169) (0.035)  (0.008) -

2sCOPE-Main 0.018 0.997 -1.009 1.003 1.001
(0.242)  (0.045) (0.165) (0.036)  (0.025)  0.0016

2sCOPE-AIl 0.025 1.002 -0.896 0.970 1.009
(0.272)  (0.057) (0.469) (0.112)  (0.041)  0.0039

50,000 OLS -2.350 1.305 -1.298 1.277 0.833
(0.056)  (0.011) (0.054) (0.011)  (0.003) —

2sCOPE-Main 0.000 1.000 -1.000 1.000 1.000
(0.070)  (0.011) (0.055) (0.013)  (0.008)  0.0002

2sCOPE-All -0.002 1.001 -0.948 0.991 1.002
(0.083)  (0.017) (0.166) (0.042)  (0.014)  0.0004

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from 2sCOPE-All are
inflated by at least 50% compared with the corresponding ones from 2sCOPE-Main.
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Case III: A Squared Term of an Endogenous Regressor

Data were simulated from the following model:

Y = @0+@1P+O{2P2+E,

E* 0 1 p
= N ,
P 0 p 1
— H:

E=Hp (®(EY) = ¢7H(2(EY), P H@(P)), (W51)

where Hp(-) is the CDF for the marginal distribution of P, ap = 0,01 = —1,a9 = 1
and p = 0.7. We set Hp(-) as the CDF of the truncated standard normal distribution on
[—0.5,0.5]. For each simulated data set, the following three estimation procedures were

applied using OLS regression of Y on the following sets of regressors:

OLS: P, P?
Copula-Main: P,P* Cp
Copula-All: P, P% Cp,Cp2

where Cp = & '(Hp(P)) and Cp> = & ' (Hp2(P?)) are the copula correction terms for
endogenous regressors P and P2, respectively; Hp and Hp: denote the empirical marginal
distribution functions of P and P? in the generated sample, respectively. Copula-Main
indicates including copula correction terms for the main effect only, while Copula-All signifies
including copula correction for all terms involving endogenous regressor P (i.e., higher-order
terms). That is, we use the P&G method for copula correction since the model contains no

€X0genous regressors.
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Across simulations, sample sizes (N) of 200, 500, 5,000, and 50,000 are examined. For each
sample size N, we generate 5,000 data sets as replicates to systematically evaluate average
performance (estimation bias and variability) of different estimation methods. Averages and
standard deviations (SD) of parameter estimates over these 5,000 data sets are computed for
each method. The difference between the average of the estimates and its true value is the
bias of one estimator; the SD of the parameter estimates over these 5,000 repeated samples
is the standard error (SE) of the parameter estimate, capturing estimation variability.

Table W12 presents the simulation results. For each parameter, we report the average
of the estimates and SFE in the parenthesis computed using 5,000 generated data sets. As
expected, OLS yields significant estimation bias at all values of N. For example, when N=200,
the OLS regression yields large bias in the parameter estimates (a; : 1.413 [0.188]) and the
error standard deviation (¢ : 0.726 [0.037]) in the structural regression model. Copula-Main
corrects for the endogenous bias (o : —0.964 [1.049]; o : 1.013 [0.202]), demonstrating that
there is no need to additionally include Cpz2. Meanwhile, Copula-All yields substantial bias
for the coefficient parameter of P? (@ : 0.771 [2.214]) because adding unnecessary generated
regressor C'p2 leads to the finite sample bias problem. In contrast, Copula-Main eliminates
the majority of the bias and performs much better in this small sample size with only small
bias and the SE reduced by approximately 70% (& : 0.922 [0.797]). In a large sample size
(n=>5,000), the finite sample bias in Copula-All is reduced. Yet, Copula-All continues to

yield less precise estimates (i.e. larger standard errors) than Copula-Main.
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Table W12: Results from Case III: Endogenous Squared Terms.

N Method ap(=0) ar(=—1) asz(=1) o(=1) D-error
200 OLS 0.000 1.413 0.986 0.726
(0.078) (0.188) (0.742) (0.037) —
Copula-Main -0.001 -0.964 0.922 1.013
(0.099) (1.049) (0.797) (0.202) 0.835
Copula-All 0.009 -0.957 0.771 1.020
(0.190) (1.057) (2.214) (0.203) 2.338
500 OLS 0.001 1.410 0.982 0.728
(0.048) (0.118) (0.472) (0.024) —
Copula-Main 0.001 -0.978 0.951 1.005
(0.057) (0.640) (0.483) (0.126) 0.309
Copula-All 0.004 -0.974 0.889 1.008
(0.120) (0.641) (1.393) (0.126) 0.891
5,000 OLS 0.000 1.413 1.003 0.728
(0.015) (0.036) (0.146) (0.007) —
Copula-Main 0.000 -1.000 0.994 1.001
(0.019) (0.192) (0.157) (0.038) 0.030
Copula-All 0.000 -1.000 0.997 1.001
(0.037) (0.192) (0.427) (0.038) 0.082
50,000 OLS 0.000 1.415 1.001 0.728
(0.005) (0.012) (0.047) (0.002) —
Copula-Main 0.000 -1.004 1.000 1.001
(0.006) (0.060) (0.050) (0.012) 0.003
Copula-All 0.000 -1.004 0.999 1.001
(0.012) (0.060) (0.137) (0.012) 0.008

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from Copula-All are
inflated by at least 50% compared with the corresponding ones from Copula-Main. The P&G
method is used for copula correction since the model contains no exogenous regressors.
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We also compute the ratio of mean squared error (MSE) of the structural estimate ay,
comparing Copula-All to Copula-Main (where MSE(a,) = Bias?(ay)+Var(dy), measuring
overall estimation accuracy). Notably, Copula-All increases MSEs for all model parameter
estimates, with the harmful effects being greatest for the squared term estimate a,, whose

MSE is more than 6-times that of Copula-Main for all sample sizes (Figure W6).
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Figure W6: Ratio of mean squared errors of structural model estimates, with using the
copula square term (Copula-All) to those without using the copula square term
(Copula-Main).

Such a large magnitude of variance inflation has important inferential consequences and
managerial implications. Figure W7 shows substantial loss of power of Copula-All to detect
the presence of the squared term (P?) for sample size up to 5,000. For example, when sample
size is 1,000, the statistical power to detect the squared effect is about 8-fold for Copula-Main
(=~ 80% power) of that for Copula-All (=~ 10% power).
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Figure WT: Statistical Power to detect the squared term P? with the copula squared
term (Copula-All) and without the copula squared term (Copula-Main).
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Mean-Centering Regressors

Lastly, we examine whether mean-centering resolves the under-performance of Copula-
All.  One may suspect that mean-centering might reduce the multicollinearity issue and
improve the performance of Copula-All. However, as shown below, mean-centering regressors
does not overturn the sub-optimal performance of adding the unnecessary copula correction
for higher-order terms, demonstrating again that these unnecessary copula correction terms
should be omitted from empirical models.

A common practice for researchers in economics, management, and other fields is to
mean-center the regressors before estimating models with higher-order terms. One argu-
ment for this practice is that by mean-centering the regressors, the correlation - and resulting
collinearity problem - between the linear and higher-order terms (e.g., quadratic terms or
interaction terms) is reduced (Aiken and West 1991; Kopalle and Lehmann 2006). How-
ever, Echambadi and Hess (2007) showed that mean-centering regressors does not alleviate
collinearity problems in moderated regression models. Namely, none of the parameter esti-
mates and sampling accuracy of main effects, simple effects, interactions, or R? is changed
by mean-centering. By main effect and simple effect, we refer to the regression coefficient
for a first-order term with and without mean-centering, representing the effect of a regressor
when its moderators are set at their mean values and at zero (or absence of the attribute
quantified by these moderators), respectively.

To illustrate this point, consider the following structural regression model with an inter-

action term:

Y = Oéo+041P1+042P2+063P1*P2+E
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For the purposes of ease in interpretation or reducing the correlation between the linear and
interaction terms, mean-centering regressors is often employed, which leads to the following

equivalent model with parameter transformation:

Y = af+af(PL—P)+a5(P,—P)+a5(P,— P)*(Po— P)+ E, (W52)

where the parameters for the models before and after mean-centering have the following

one-to-one relationship:

CMS = Oéo+alpl+a2P2+Oégplpg

af = a;+azh
a5 = ag+azh
a5 = as. (W53)

As shown above, the regression coefficient o for the centered linear term P, — P, repre-
sents the effect of P, when P, is equal to its mean value P,. Thus, af represents the main
effect: the effect of P, when the other variables are at their mean values. In contrast, the
coefficient using uncentered data, oy, represents the simple effect: the effect of P, when the
other variables are at zero (or absence of the attribute quantified by these other variables).
The differences in estimates and standard errors between oy and af are due to the two coef-
ficients having different substantive meanings, and both effects can be of substantive interest
(Echambadi and Hess 2007). Quadratic terms can be considered a special case of the above
model because a quadratic term can be considered as the interaction term of a regressor with
itself. The relationship between parameters for models with quadratic terms before and af-

ter mean-centering can be derived similarly. Echambadi and Hess (2007) showed that the
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relationships in Equation W53 also hold for the OLS estimates of these model parameters.

However, our setting differs from the case of moderated regression models considered in
(Echambadi and Hess 2007 ), since we consider the more general case of endogeneity bias
correction of structural regression models with endogenous higher-order regressors. Although
the relationships in Equation W53 hold exactly for OLS estimates (Echambadi and Hess
2007) for all data sets, such relationships only hold approximately for copula corrected
estimates because copula generated regressors involve probability integral transformations.
Specifically, we use the same data generating process for Cases I, I, and III to generate data.
When estimating models, we first mean-center all the first-order terms of the regressors, and
then construct the higher-order terms using these mean-centered first-order terms. Copula
correction terms are then constructed using these new regressors based on centered versions of
the first-order terms of regressors. Because these copula correction terms involve probability
integral transformation, the estimates and sampling accuracy of main effects, simple effects,
and interactions can change after mean centering, which differs from the case of Echambadi
and Hess (2007) in which all regressors are exogenous.

For the models giving results in Tables W10, W11, and W12, we apply the OLS (without
any correction), Copula-Main, and Copula-All to estimate the corresponding mean-centered
structural regression models, with results summarized in Tables W13, W14, and W15, re-
spectively. The true values for the parameters in the models after mean-centering are also
listed in Tables W13 to W15. The mean values of the regressors (P}, P;) used to compute
these true parameter values are: %, where ¢(-) denotes the density function of the
standard normal; when the marginal distribution of the regressor is the truncated standard

normal on [a,b], and %® when it is the uniform distribution on [a, b).
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Because copula correction terms for higher-order terms are not invariant to mean-centering,
the ratios of the D-error for Copula-All to that of Copula-Main using mean-centered data
will not be the same as those in Tables W10, W11, and W12, using uncentered data. Still,
the same conclusion of inflated variability of estimates for Copula-All is apparent, and the
D-error measure ratios are all above 2. This finding is consistent with that of Echambadi
and Hess (2007) in that mean-centering regressors does not alleviate collinearity problems
in moderated regression models. Furthermore, mean-centering seemingly shifts the vari-
ance inflation from the regression coefficient estimates of first-order terms to those of the
higher-order terms, and may hurt the estimation of the higher-order terms in some cases.

It is important to note, however, that this does not imply that mean-centering affects
the estimation of the same first-order effects. As explained above, the regression coefficients
for a first-order term (with and without mean-centering) represent different effects of one
regressor evaluated at different values of its moderator: these regression coefficients represent
the main effects when mean-centering regressors and the simple effects when using uncentered
data. As such, regression coefficients for a first-order term with and without mean-centering
are not directly comparable, although both main and simple effects can be of substantive
interest (Echambadi and Hess 2007). When using the parameter estimates based on the
centered data to compute the simple effects, we again find finite sample bias and inflated
standard errors for the estimates of simple effects (results not shown here), as occurred
when using uncentered data. In sum, we conclude that mean-centering does not overturn

the under-performance of Copula-All relative to Copula-Main.
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Table W13: Results from Case I with Mean-Centering: Interaction of Endogenous

Regressors With Mean-Centering

N Method af(=8.192) af(=1.798) a5(=4) of(=1) o(=1) D-error
200 OLS 8.259 3.425 5.619 1.432 0.294
(0.208) (0.071) (0.084)  (0.105)  (0.031)  —
Copula-Main 8.172 1.897 4.072 1.041 0.967
(0.208) (0.279) (0.257)  (0.080)  (0.124)  0.0316
Copula-All 8.180 1.896 4.069 1.101 0.972
(0.215) (0.279) (0.266)  (0.281)  (0.124)  0.0734
500 OLS 8.262 3.425 5.615 1.431 0.297
(0.134) (0.045) (0.051)  (0.065)  (0.02) —
Copula- Main 8.184 1.838 4.018 1.025 0.990
(0.133) (0.179) (0.166)  (0.047)  (0.077)  0.0123
Copula-All 8.189 1.838 4.020 1.057 0.992
(0.137) (0.178) (0.174)  (0.173)  (0.078)  0.0293
5,000 OLS 8.263 3.424 5.612 1.433 0.298
(0.042) (0.014) (0.017)  (0.021)  (0.006)  —
Copula-Main 8.191 1.803 3.999 1.003 1.000
(0.042) (0.057) (0.051)  (0.015) (0.024) 0.0011
Copula-All 8.192 1.803 3.999 1.009 1.000
(0.043) (0.057) (0.054)  (0.052)  (0.024)  0.0028
50,000 OLS 8.263 3.424 5.613 1.433 0.298
(0.013) (0.004) (0.005)  (0.007)  (0.002)  —
Copula-Main 8.192 1.799 3.999 1.000 1.000
(0.013) (0.018) (0.017)  (0.005)  (0.008)  0.0001
Copula-All 8.192 1.799 3.999 1.002 1.000
(0.014) (0.018) (0.017)  (0.017)  (0.008)  0.0003

See the same note under Table W12.
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Table W14: Results from Case II with Mean-centering: Interaction between Endogenous
and Exogenous Regressors With Mean-centering.

N Method af(=8.192) p{(=1.798) af(=4) o5(=1) o(=1) D-error
200 OLS 8.232 2.322 5.088 1.273 0.831
(0.195) (0.130) (0.120)  (0.184)  (0.041)  —
2sCOPE-Main 8.191 1.823 4.045 1.024 0.995
(0.196) (0.241) (0.433)  (0.195)  (0.127)  0.0434
2sCOPE-All 8.198 1.821 4.044 1.066 1.017
(0.226) (0.250) 0.(461)  (0.704)  (0.131)  0.1459
500 OLS 8.234 2.331 5.096 1.273 0.833
(0.131) (0.078) (0.081)  (0.113)  (0.027)  —
2sCOPE-Main 8.190 1.805 4.001 1.004 1.005
(0.132) (0.159) (0.201)  (0.127)  (0.088)  0.0169
2sCOPE-All 8.193 1.805 4.003 1.022 1.014
(0.147) (0.161) (0.303)  (0.462)  (0.090)  0.0475
5,000 OLS 8.236 2.325 5.088 1.276 0.833
(0.041) (0.024) (0.027)  (0.036)  (0.008) —
2sCOPE-Main 8.191 1.798 3.999 1.000 1.001
(0.041) (0.049) (0.088)  (0.040)  (0.027)  0.0017
2sCOPE-All 8.191 1.798 3.998 1.000 1.002
(0.045) (0.050) (0.093)  (0.148)  (0.027)  0.0044
50,000 OLS 8.237 2.325 5.088 1.277 0.833
(0.012) (0.008) (0.008)  (0.012)  (0.003) —
2sCOPE-Main 8.192 1.799 4.002 1.000 1.000
(0.012) (0.015) (0.027)  (0.012)  (0.008)  0.0002
2sCOPE-All 8.191 1.799 4.002 1.002 1.000
(0.015) (0.015) (0.029)  (0.043)  (0.008)  0.0004

See the same note under Table W11.
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Table W15: Results from Case III with Mean-centering: Endogenous Squared Terms

With Mean-Centering

N Method af(=0) af(=—1) as(=1) o(=1) D-error
200 OLS 0.000 1.414 0.993 0.727
(0.080) (0.188) (0.737) (0.037) —
Copula-Main -0.001 -0.967 0.912 1.007
(0.085) (1.008) (0.785) (0.193) 0.790
Copula-All 0.000 -0.959 0.857 1.022
(0.196) (1.019) (2.353) (0.194) 2.396
500 OLS 0.000 1.414 0.995 0.729
(0.049) (0.117) (0.458) (0.024) —
Copula-Main 0.000 -0.993 0.949 1.005
(0.052) (0.628) (0.495) (0.125) 0.311
Copula-All 0.001 -0.999 0.936 1.011
(0.116) (0.631) (1.380) (0.125) 0.871
5,000 OLS -0.001 1.413 1.002 0.728
(0.016) (0.038) (0.151) (0.007) —
Copula-Main -0.001 -0.993 0.995 0.999
(0.017) (0.201) (0.159) (0.040) 0.031
Copula-All -0.002 -0.993 1.008 0.999
(0.036) (0.202) (0.417) (0.040) 0.085
50,000 OLS -0.001 1.415 1.000 0.728
(0.005) (0.013) (0.045) (0.002) —
Copula-Main 0.000 -1.003 1.000 1.001
(0.005) (0.062) (0.048) (0.012) 0.003
Copula-All 0.000 -1.003 0.998 1.001
(0.012) (0.062) (0.137) (0.012) 0.009

See the same note under Table W12.
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WEB APPENDIX G: ADDITIONAL MATERIALS FOR THE

IMPLEMENTATION EXAMPLES

Further results of Example 1

Table W16 reports additional estimation results using 2sCOPE-np, although the sample
size (n=261) is less than the recommended minimum sample size of 300. Overall, we find

both 2sCOPE and 2sCOPE-np yield similar estimation results in the example.

Table W16: Additional Results for Example 1

Param. OLS 2SLS 2sCOPE 2sCOPE-np

Intercept 6.005 (0.205) 4.371 (0.978) 4.763 (0.668) 5.102 (0.396)
0.000 0.000 0.000 0.000

Price -1.367 (0.137) -2.470 (0.661) -2.205 (0.446) -1.977 (0.266)
0.000 0.000 0.000 0.000

Feature 0.298 (0.095) 0.059 (0.178) 0.124 (0.124) 0.172 (0.103)
0.002 0.738 0.317 0.095

Week -0.002 (0.000) -0.002 (0.000) -0.002 (0.000) -0.002 (0.000)
0.000 0.000 0.000 0.000

Q2 -0.019 (0.031) -0.014 (0.035) -0.018 (0.036) -0.015 (0.034)
0.550 0.693 0.617 0.659

Q3 -0.018 (0.032) -0.034 (0.036) -0.029 (0.035) -0.024 (0.033)
0.567 0.349 0.407 0.467

Q4 -0.018 (0.032) -0.061 (0.041) -0.044 (0.035) -0.036 (0.036)
0.576 0.140 0.209 0.317

Cprice 0.077 (0.037) 0.098 (0.035)
0.037 0.005

P 0.366 (0.160) 0.320 (0.105)
0.022 0.002

Note: Table presents estimates and bootstrapped standard errors in the parentheses, followed by the p-values
in the line below.
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Analysis and Results of Example 2

Example 2 examines what to do when an endogenous regressor has a higher-order effect,
such as a squared term or interaction (moderation) with another variable. For brevity, we
speak to these higher-order effects simply as interactions. The Methodological Background
section provided studies with simulated data showing that including a copula for the inter-
action term may induce bias and inflated estimation variability, and that the best course is
to only include copula correction terms for the main effects.

To show how copula correction is applied with interactions of endogenous regressors and
examine the adverse effects of including higher-order copula correction terms in an empirical
application, we extend the sales response model in Equation 13 to include an interaction

term (P, x F}) between price and feature as follows:

Volume;, = p+ax* P+ W, + ¢P,x F, + Ey, (W54)

where P, and F; are category price and feature, respectively, and W, includes F}, week,
and binary variables for quarters 2, 3, and 4. We use the IRI academic data set for a new
store and product category, a New York City store and its peanut butter sales for the years
2001-2003 (156 weeks), allowing for price and feature to work together as an interaction.
Such interactions are common to both academics and managers, as marketing efforts often
work together. Of interest here is that price and feature advertising likely work together
to achieve interactive, synergistic effects on sales. This can be tested by estimating the
interaction term between price and feature advertisement in the above sales model, with

feature advertisement as a potential moderator of price. Like Example 1, we follow the same
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steps in Figure 5 to guide the selection of the appropriate copula method. The walk-through
of these steps are as follows:

Step 1. Is Py, continuous? Price is a continuous measure here, ranging from $0.957
to $1.963 per pound, with a mean of $1.714, median of $1.798, and standard deviation of

$0.195.
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Figure WS8: Price Distribution in Example 2.

Step 2. Is P,4in normally distributed? Unlike Example 1, the price variable in Example
2 is highly skewed (Figure W8) and rejects the KS test for normality (D = 0.23, p < 0.001)
at the 0.05 level of significance. The flowchart in Figure 5 show that what is needed is either
P,.ain or one related W is nonnormally distributed; there is no need for both P,,.;, and W
to be nonnormally distributed. This means that when the endogenous regressor already has
sufficient nonnormality, we do not need to check any exogenous regressor W for sufficient
nonnormality and sufficient association with P, like what was needed in Figure 6 of Example
1. To determine if we should use P&G or 2sCOPE, we next check the uncorrelatedness
between the linear combination of copula transformations of P,,., with each W. When
Prain 18 a scalar, this condition reduces to check the uncorrelatedness between P .~ and
each W.
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Step 3.a. Is P

main

correlated with W? The copula transformation of endogenous regressor
price, P*, is correlated with the following exogenous regressors at the 0.10 level of significance:
week (r = 0.21, p < 0.05), feature (r = -.76, p < 0.01), Q3 (r = -.16, p < 0.06), and Q4 (r
= 0.16, p < 0.04). This indicates we should use 2sCOPE for endogeneity correction.

Step 4. Perform 2sCOPE estimation. Until now, the steps had been met to indicate price
was a candidate to use the 2sCOPE method. We will not use 2sCOPE-np in this dataset
since the sample size (n=156) is well below the recommended minimum sample size of 300
(Boundary Condition 2 in Table 4).

Step 5. Check ICON statistics. The ICON statistics are the ratios of the standard errors
of the 2sCOPE estimates to the standard errors of the corresponding OLS estimates. These
standard errors are reported in Table W17 under columns “2sCOPE” and “OLS”, and show
the ICON statistics are all less than 6, so no model nonidentification issue is flagged.

Table W17 presents the 2sCOPE result with the copula correction term (i.e., the first-
stage residual) for price only. The results show the price copula correction term (i.e., the
first-stage residual) is significant (Est. = 0.069, SE = 0.028, p < 0.05), indicating the
presence of endogeneity. Like Example 1, we compare the results to OLS and 2SLS, as well
as when a copula correction term for the interaction term is also included (2sCOPE W /Int).

Similar to Example 1, price has the smallest absolute effect in the OLS model (Est. =
-.453, SE = 0.274, p < 0.10) and the greatest absolute effect in the 2SLS model (Est. =
-1.554, SE = 0.606, p < 0.05). The 2sCOPE estimate falls in between, closer to 2SLS in
both effect and SE (Est. = -1.314, SE = 0.430, p < 0.05). The closeness to 2SLS is more
expected here since the usage of another store’s price is a strong instrument (r = 0.90, p <

0.01), as 2SLS rejects the test for weak instrument (F' = 21.567, p < 0.01); the Wu-Hausman
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Table W17: Estimation Results for Example 2

Parameters OLS 25LS 2sCOPE 2sCOPE W/Int
Intercept 6.038 (0.165)***  6.688 (0.359)***  6.544 (0.256)***  6.344 (0.307)***
Price -0.453 (0.274)* -1.554 (0.606)**  -1.314 (0.430)**  -0.999 (0.518)*
Feature 1.513 (0.234)***  0.646 (0.487) 0.837 (0.388)**  0.619 (0.420)
Price*Feature -2.125 (0.379)*** -0.950 (0.694) -1.167 (0.661)* 0.148 (0.825)
Week 0.001 (0.000)***  0.001 (0.000)***  0.001 (0.000)***  0.001 (0.000)***
Qo -0.028 (0.034) -0.020 (0.036) -0.022 (0.033) -0.038 (0.041)
Qs -0.083 (0.035)**  -0.099 (0.038)*** -0.096 (0.034)*** -0.089 (0.045)**
Q4 -0.090 (0.036)**  -0.081 (0.038)**  -0.080 (0.035)**  -0.066 (0.039)*
Coprice 0.069 (0.028)**  0.058 (0.030)*
CricesPeature -0.168 (0.098)*
1 0.185 (0.082)**  0.128 (0.086)

P2 -0.456 (0.229)**

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p
< 0.05, ¥*** is p < 0.01

test also suggests endogeneity (W= 4.863, p < 0.03). Without correcting for endogeneity in
this example, managers would under-estimate the price elasticity by 65.5% in OLS.
Importantly, the 2sCOPE results point to a contrast with 2sCOPE when a copula correc-
tion term CppicesFeature 1S included for the interaction between price and feature. Here, the
price estimate is substantially smaller and becomes insignificant (Est. = -.999, SE = 0.518,
p > 0.05 under column “2sCOPE W/Int” in Table W17), which can lead to the incorrect
conclusion that price had no significant effect on sales. A more striking difference regards
the estimate of the interaction term Price*Feature. The Price*Feature estimates from 2SLS
and 2sCOPE (excluding the copula interaction term) are both negative and close: the 2SLS
Est. =-0.950 (SE = 0.694, p > 0.10) and 2sCOPE Est. = -1.167 (SE = 0.661, p < 0.10).
By contrast, 2sCOPE including the copula term for Price*Feature yields an interaction es-
timate with the opposite sign and larger SE (Est. = 0.148, SE = 0.825, p > 0.10). These
results mark an important point: when adding copula correction terms, only copula terms

for the main effects should be included, and no copula terms for higher-order terms should
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be included. Adding the unnecessary higher-order copula terms can exacerbate the multi-
collinearity issue (Web Appendix Table W21) and lead to substantially varied and biased
estimates.

Although the P&G method was not selected in both examples according to the flowchart
in Figure 5, Table W18 presents the results of applying P&G methods to the two implemen-
tation examples. In Example 1, the parameter estimates of 2sCOPE and P&G are similar
except the coefficient estimate for Feature (0.124 for 2sCOPE vs 0.276 for P&G vs 0.059 for
2SLS). The differences between P&G and 2sCOPE estimates are more pronounced in Ex-
ample 2. Besides the Feature coefficient estimate, we observed differences for Price (-1.314
for 2sCOPE vs -0.999 for P&G) and Price*Feature (-1.167 for 2sCOPE vs -1.621 for P&G).
Furthermore, in agreement with the 2SLS result, 2sCOPE identifies the presence of price
endogeneity (0.069 for the coefficient of copula term Cpjce, p-value < 0.05) while P&G does
not (0.046 for the coefficient of copula term Cpjce, p-value > 0.10) (Table W18).

Table W18: Estimation Results Using P&G

Example 1 Example 2
Parameters 2sCOPE P&G 2sCOPE P&G
Intercept 4.763 (0.668)***  4.748 (0.683)***  6.544 (0.256)***  6.344 (0.346)***
Price -2.205 (0.446)***  -2.204 (0.468)*** -1.314 (0.430)**  -0.999 (0.592)*
Feature 0.124 (0.124) 0.276 (0.092)***  0.837 (0.388)** 1.255 (0.434)%**
Price*Feature -1.167 (0.661)* -1.621 (0.779)**
Week -0.002 (0.000)*** -0.002 (0.001)*** 0.001 (0.000)***  0.001 (0.000)***
Q2 -0.018 (0.036) -0.023 (0.031) -0.022 (0.033) -0.029 (0.033)
Q3 -0.029 (0.035) -0.022 (0.028) -0.096 (0.034)*** -0.088 (0.032)***
Q4 -0.044 (0.035) -0.014 (0.032) -0.080 (0.035)**  -0.086 (0.035)**
Cprice 0.077 (0.037)** 0.078 (0.039)** 0.069 (0.028)** 0.046 (0.037)
p1 0.366 (0.160)** 0.412 (0.181)** 0.185 (0.082)* 0.203 (0.226)

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p
< 0.05, ¥*** is p < 0.01
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Theoretically, the bias of the P&G method can be viewed as an omitted variable bias.
With one endogenous regressor P and one exogenous regressor W in the model, the bias

of the P&G method that ignores the correlation between the endogenous regressor (P) and

the exogenous regressors (W) comes from the omitted variable o ;; W}, absorbed into the

error term in the augmented regression model (Appendix of Haschka 2022). Consequently,

the bias of the P&G method for o due to ignoring the correlations between P and W is:

01__qp [Cov(P, W™)/Var(P)], (W55)

q2

where o is the variance of the structural error, p is the correlation between P and the
structural error, ¢ is the correlation between P and W, Cov(P, W*) is the partial association
between P and the omitted variable W* given P* and W, and the variance of P is Var(P).
The formula sheds light on the sources affecting the sign and magnitude of the bias of the
P&G method. For example, if the explained part of the variation in the dependent variable
is large (i.e., small o), we can expect the bias of P&G due to ignoring the correlation between
P and W to be minimal. The stronger the correlation between P and W (i.e., larger q),
the larger the bias of P&G. Also, if P has a wide variation relative to the partial covariance
between P and W* given P* and W, the bias of P&G would be small. Given a value of
Var(P), the smaller the partial covariance between P and W* given P* and W, the smaller
the omitted variable bias of the P&G method. However, a 'too small’ value of the partial
covariance between P and W* given P* and W may mean high collinearity between P
and P* (or between W and W*) such that the remaining partial covariance Cov(P, W*)
given P* and W can only take small values. This can cause P&G estimates to suffer from

finite sample bias due to insufficient regressor nonnormality. Thus, the overall bias due
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to both ignoring the regressor dependence and insufficient regressor nonnormality can be
complicated. Furthermore, in practice, the true values of p (the magnitude of endogeneity)
is unknown, preventing an accurate assessment of the sign or magnitude of the bias for P&G.

Fortunately, the alternative 2sCOPE method is easy to apply and account for the de-
pendence between regressors. Because 2sCOPE employs the GC models, the computational
complexity increases at a much slower rate than other multivariate models as the number
of dimensions increases (Danaher and Smith 2011). Thus, it is computationally feasible to
run these more general copula correction methods to account for the dependence between
regressors. As shown in Yang, Qian, and Xie (2024a), the estimation efficiency loss (i.e., the
increase in standard errors) of 2sCOPE relative to P&G is negligible when the endogenous
and exogenous regressors have no or weak correlations and 2sCOPE is the preferred method
unless sample size is very small. When exogenous and endogenous regressors are correlated,
2sCOPE not only can remove the bias of P&G, but also can possibly increase estimation
efficiency and reduce standard errors by leveraging correlated exogenous regressors.

Next we consider appropriateness of using 2sCOPE-HGC in the examples. The general-
location heterogeneous GC (HGC) model (Yang, Qian, and Xie 2024b) for panel data can
also be applied to grouped data formed by discrete exogenous regressors that generalizes
Liengaard et al. (2024). Let W = (W,, Wy) where W, and W, denote the continuous and
discrete exogenous regressors, respectively. Liengaard et al. (2024) permits the GC depen-
dence structure and the copula correction terms to vary by the levels of discrete exogenous
regressors in W,;. When the levels of combinations of all discrete regressors are not small,
this approach may lead to sparse data insufficient for ECDF estimation and a larger num-

ber of copula parameters and copula correction terms than necessary, resulting in inflated
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estimation variance and estimation bias. Thus, it is important to have sufficient sample size
and meet data requirements (shown in the Flowchart in Figure 5) within each level of com-
binations of discrete exogenous regressors.>’ Yang, Qian, and Xie (2024b) propose a more
flexible 2sCOPE estimator based on a general-location heterogeneous GC model (see Web
Appendix Table W19).

The general-location HGC model permits the location and the GC dependence of the
error term and continuous regressors to vary by Wy in different ways. The 2sCOPE-HGC
procedure follows a modified two-stage estimation process (Web Appendix Table W19) with

the following augmented regression model

K K G-1
Vo= > Paar s WA {am £ Gt = ) %} + s (WS6)
k=1 k=1 j=1
where Ci,k = (é,k)ﬂgi(wd) _ 6;i(Wd)7k(/ch,i)*|gi(Wd)‘ (W57)

Inside the copula term Cj, ]3”6 = Py, — P" W, = W.; — W™ where P" and W™ are
the group mean of P, and W, for observations in the same group m,; as the observation
i and the groups {m;} are formed by the observed levels of combinations of the discrete
regressors. Thus, ﬁ,;” and W,:” are simply within-group demeaned P, and W, to account
for potential effects of discrete regressors on the location of continuous regressors. The
model further permits the GC dependence structure of the demeaned continuous regressors
and the error term to vary by the group variable g;(W,) defined on W,. The notation
| g;(Wy3) in Equation W57 denotes empirical copula transformation using only observations

within the group g;(wy), across which the GC dependence may vary. The 2sCOPE-HGC is

31Simulation results (Figure 2 in Liengaard et al. 2024) show the finite sample estimation bias remains before
sample size reaches between 1600 and 3200 observations for an exogenous regressor with two levels. The finite sample
bias depends on the normality of regressors and correlations between endogenous and exogenous regressors.
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more general than that of Liengaard et al. (2024) in that 2sCOPE-HGC allows for different
sets of discrete exogenous regressors to separately affect the location and GC dependence
structure. For example, two discrete exogenous regressors W, and Wy may both affect the

location but the dependence structure only vary by Wy;.

Table W19: Estimation Procedure for 2sCOPE-HGC

Stage 1:

e Do group demeaning of P; ;, and W, ; and obtain the demeaned regressors (Ek, WCZ)

e Within each of the subgroups {g;(Wy)} across which GC dependence may vary, apply
Stage 1 of the 2sCOPE to the demeaned continuous regressors (]32-’;€7 WCZ) and obtain
residual C; y = (P x)*l9:(Wa) — (5;i(Wd)7k(Wc,i)*‘gi(Wd) (Equation W57).

Stage 2:
e Add C; and the interaction terms between C;  and the indicator variables for the (non-

reference) levels of the group variable (Equation W56).

It is important to have sufficient sample size and meet data requirements (shown in the
Flowchart in Figure 5) within each level of combinations of discrete exogenous regressors
in order to apply 2sCOPE-HGC. Both examples contain quarters as the discrete exogenous
regressors. In Example 1, within each group of observations formed by the quarters, no data
satisfy the requirement in Figure 5. The test for normality of price fails to reject normality
in all groups formed by quarters, and within no group the F-stat for any W have F' > 10.
This means data in Example 1 do not satisfy the data requirement for 2sCOPE-HGC while
the 2sCOPE meets data requirements. In Example 2, the price variable in Quarter 3 rejects
normality (p < 0.02). For other quarters, the price variable fails to reject the normality
assumption and no W variable is found to have sufficient relevance (F' >10) with the price
variable in groups formed in these quarters. Thus, strictly speaking, 2sCOPE-HGC does not
satisfy all data requirements and one should be cautious about applying 2sCOPE-HGC to
this example as well, although to a lesser extent. However, for illustration purposes, the result
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of 2sCOPE-HGC for this example is presented in Table W20. We observe that 2sCOPE-HGC
yielded results that largely agree with 2sCOPE rather than with OLS. Furthermore, none
of the interactions between the Cp ;e and quarters (i.e., Cprice ¥ @2, Cprice * Q3, Cprice * Q4)
is statistically significant. Thus we conclude that no evidence supports the HGC model.

Overall, the more parsimonious 2sCOPE is preferred.
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Table W20: Further Estimation Results for Example 2

Parameters

OLS

2SLS

2sCOPE

2sCOPE-HGC

Intercept
Price

Feature
Price*Feature

Week

Q2

Qs

Q4

Corice
Cprice *Q2
Cpm'ce *Q3
Cprice *Q4

6.038 (0.165)%**
-0.453 (0.274)*
1.513 (0.234)%%*
-2.125 (0.379)%**
0.001 (0.000)***
-0.028 (0.034)
-0.083 (0.035)**
-0.090 (0.036)**

6.688 (0.359)***
~1.554 (0.606)**
0.646 (0.487)
-0.950 (0.694)
0.001 (0.000)***
-0.020 (0.036)
-0.099 (0.038)***
-0.081 (0.038)**

6.544 (0.256)%**
~1.314 (0.430)**
0.837 (0.388)**
-1.167 (0.661)*
0.001 (0.000)***
-0.022 (0.033)
-0.096 (0.034)***
-0.080 (0.035)**
0.069 (0.028)**

6.378 (0.353)%**
~1.037 (0.591)*
1.072 (0.487)%*
~1.513 (0.740)**
0.001 (0.000)***
-0.024 (0.033)
-0.093 (0.036)%**
-0.085 (0.036)***
0.049 (0.045)
0.033 (0.056)
0.016 (0.069)
-0.051 (0.050)

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p
< 0.05, ¥* is p < 0.01.

7



Table W21: VIF Results in Example 2

Parameters 2sCOPE 2sCOPE W /Int

Est. (SE) VIF Est. (SE) VIF
Intercept 6.544 (0.256)*** — 6.344 (0.307)%*** —
Price -1.314 (0.430)** 27.9 -0.999 (0.518)* 29.1
Feature 0.837 (0.388)** 59.3 0.619 (0.420) 61.5
Price*Feature -1.167 (0.661)* 18.8 0.148 (0.825) 29.1
Week 0.001 (0.000)*** 1.2 0.001 (0.000)*** 1.2
Qo -0.022 (0.033) 1.5 -0.038 (0.041) 1.6
Qs -0.096 (0.034)*** 1.7 -0.089 (0.045)** 1.7
Qu -0.080 (0.035)** 1.7 -0.066 (0.039)* 1.7
Coprice 0.069 (0.028)** 3.2 0.058 (0.030)* 3.2
Cpyrices Feature -0.168 (0.098)* 6.2

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, **
is p < 0.05, *** is p < 0.01. Regression models with interaction terms will often yield high VIF values
because of high correlations between variables and their interactions. Such high VIF values do not imply
problems in terms of estimation and inference for models with interaction terms (Kalnins and Hill 2023, p.72,
and Echambadi and Hess 2007). However, in the case of copula correction, adding the unnecessary copula
term Cppices Feature fOr interaction term exacerbates the multicollinearity issue that substantially increases
the VIF for the interaction term estimate from 18.8 to 29.1, cause inflated standard errors, and introduce

potential finite sample bias as shown in our simulation studies.

Implications in Example 2

Example 2 presented the case of the interaction between an endogenous and exogenous
regressor (Web Appendix Table W17). Like Example 1, price elasticity in the absence of
feature was substantially under-estimated in OLS (Est. = -0.453) than 2SLS (Est. =-1.554)
or 2sCOPE (-1.314). The OLS price elasticity estimate was nearly a third that of 2sCOPE.

Furthermore, 2sCOPE including a copula term for the interaction term biased the price
elasticity estimate downwards (Est. = -0.999), about 30% lower as compared with the esti-
mate of -1.314 from 2sCOPE excluding this copula term (Web Appendix Table W17). This

bias in the price elasticity estimate becomes even larger as feature intensity increases. Includ-
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ing the copula term for the endogenous interaction term of Price*Feature yields a severely
biased interaction effect estimate; while 2sCOPE without this unnecessary copula term had
a negative estimate of -1.176, 2sCOPE including this term (2sCOPE W/Int) produced a
positive estimate of 0.148 (Table W17). As shown in Figure 4, including the unnecessary
copula term for Price*Feature yields price sensitivity estimates that are the same across dif-
ferent feature intensity (meaning lack of interactive effect); excluding this copula term yields
much greater magnitude of price sensitivity that increases with greater feature advertise-
ment. Such drastic differences in price elasticity estimates can have substantive managerial

implications, including the optimal price setting and profit maximization, like in Example 1.
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