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The shortages and spikes in prices of certain intermediate goods during the COVID-19 pan-
demic demonstrated the fragility of supply chains. Prominent examples included a global shortage
of semiconductors that led to a dramatic rise in the price of secondhand cars in the U.S. and an
unprecedented demand for hand sanitizer and personal protective gear that triggered supply short-
ages in their respective, as well as interlinked, industries. Policymakers reacted strongly by taking
industry-specific actions to repair linkages and improve resilience. For example, the Biden-Harris
Administration worked in partnership with Congress to provide new legislation to alleviate specific
supply chain disruptions and promote greater resilience in future situations.1

These experiences with supply network disruptions left open the question: Had firms invested
too little in resilience ex ante? The pandemic was an extreme event, and, in general firms should
not be expected to anticipate and plan for every possible contingency. Doing so would almost
surely be inefficient, entailing excessive focus on resilience. We show here, however, that given
market power and market incompleteness, one should expect markets to underinvest in resilience
relative to a constrained efficient benchmark.

We formulate a tractable theoretical model whereby a collection of intermediate and final goods
producers form supply linkages to meet uncertain consumer demand and accommodate supply
shocks. Each final goods producer (the downstream firm) can source differentiated inputs from
one or more suppliers of the intermediate goods (the upstream firms). Intermediate goods pro-
ducers engage in price - that is, Bertrand - competition with differentiated products, taking the
prices set by competitors as given. Lowering the price charged allows an intermediate goods pro-
ducer to increase demand on the extensive margin (by attracting more final goods producers).2

Intermediate goods producers face uncertainty in demand and supply conditions. They invest in
non-scalable production capacity (“K”) which cannot be increased in the second period (capturing
the idea that some factors of production cannot be readily adjusted at short notice),3 as well as a
scalable factor (”L”) that can be adjusted in response to shocks. Given the structural frictions in
the economy - namely, the lags in production and the uncertainty around future market conditions
- over-investment in capacity can be inefficient just as under-investment can be. A supply network

1While the large and small supply chain disruptions during COVID-19 had propelled the issue into popular dis-
course, the cracks had been evident before the pandemic. Hanjin Shipping, a world’s top 10 container carrier, filed
for bankruptcy in September 2016 because of sluggish freight rates caused by weak demand and soaring global ca-
pacity. The bankruptcy affected global supply chains, because half of Hanjin’s container ships were denied access to
ports. Major U.S. retailers, such as J.C. Penney and Walmart, began to divert and switch carriers for their containers
to other suppliers. Similarly, the failure of Carillion in January 2018, once the second-largest construction company
in the U.K., brought down many of its suppliers. A more academic account can be found in Baqaee and Farhi (2022),
Guerrieri et al. (2022) and Di Giovanni et al. (2022).

2In a more general case, lowering the price may also affect the intensive margin.
3Semiconductors are an example of an important intermediate goods that requires significant capacity investment

upfront. In the European Union, the European Chips Act (2023) aims to provide additional public and private invest-
ments of more than EUR 15 billion.
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that is efficiently resilient strikes the optimal balance.
Using the model, we demonstrate the existence of a market failure in decentralized supply

networks, whereby upstream firms do not fully internalize the social benefits of building production
capacity. When upstream firms over-invest in capacity, part of the cost savings are passed on to
downstream firms via lower prices; but when firms underinvest, they can defend their profit margins
despite mounting costs by charging higher prices. There is a pecuniary externality from upstream
firms’ investment in capacity, and whenever markets are incomplete, as is obviously the case here,
these pecuniary externalities matter (see Greenwald and Stiglitz (1986)).

Firms do not have access to the full set of Arrow-Debreu securities, and instead must trade
either on the pre-order market, or on the spot market once the shocks have realized. The pre-
order market offers partial insurance to both the upstream and downstream firms. For the upstream
firms, pre-orders establish a minimum level of demand for their outputs, and help with their upfront
non-scalable capacity investment decision. For the downstream final goods producers, a pre-order
contract locks in an agreed price for the intermediary inputs in their production, shielding them
from cost shocks in the upstream sector. If realized demand for final goods exceeds what can be
fulfilled through pre-orders, the downstream firm can then source the extra inputs required from the
spot market. As we observe in practice, the spot and pre-order markets are insufficient to deal with
the full spectrum of possible shocks, and thus are unable to provide full insurance against supply
network disruptions.4 In the model, in the absence of complete markets, agents demonstrate an
over-reliance on the spot market.

In our model, there is one further source of market failure: market power. Upstream intermedi-
ate good producers exhibit market power because: (a) there are only a finite number of such firms;
and (b) the intermediate goods they produce are imperfect substitutes of each other. Studying re-
silience is especially relevant in this context, where the inherent decentralized market structure
leads to monopolistic competition. However, this analysis departs from the Dixit-Stiglitz frame-
work prevalent in the macroeconomic literature. Here, mark-ups are endogenous and vary across
firms and economic states, providing a more dynamic examination of market behaviors.

Taken together, we show that the market-based network invests too little in production capacity
(K∗) relative to a constrained optimal benchmark (KSP) with a social planner facing the same
informational and technological constraints as the private market. Even under the constrained
benchmark, it is not optimal to build enough capacity to account for all contingencies, so there will
be times when firms ex post have considerable market power, which, obviously, the social planner
would not take advantage of but private firms would. In short, market-based supply networks are

4It is obvious that such full insurance does not exist. Given the range of shocks that could occur – some of which
are now not even really conceivable – the incompleteness of insurance markets is inevitable. Theories of asymmetric
information provide further explanations of the absence of a full set of insurance markets. See Greenwald and Stiglitz
(1986) and Stiglitz (1982).
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inefficiently resilient: K∗ < KSP.
Remarkably, this wedge between the decentralized and centralized solution arises even when

rare large shocks are absent, and the economy operates in a “full production” equilibrium whereby
supply capacity is sufficiently agile to accommodate all possible demands. Our results do not
depend on an arbitrary specification of the distribution of shocks - for example, we do not require
a threshold for the probability of large negative shocks. The wedge between the decentralized
solution and the constrained optimal benchmark exists as long as firms cannot perfectly adjust
their non-scalable production capacity in response to unanticipated shocks. We also do not need
to impose a level of risk aversion on the part of private agents or the social planner. Capacity
investment is suboptimally low, even when every agent – including the constrained social planner
– is risk neutral.

Extending the analysis to account for rare disasters (in the online appendix), we show that
the response of market-based supply networks to shocks can be highly nonlinear. Private supply
networks are seemingly resilient during normal times and can comfortably withstand small to
moderate shocks, but they are fragile to rare large shocks, when real rigidities prevent suppliers
from fully meeting the needs of the market.5 With a large enough shock, there is a transition from
a monopolistically competitive regime to a local monopoly regime, whereby upstream firms are
no longer pricing to compete and each downstream firm will receive only one credible offer for
inputs. In other words, in a crisis, individual suppliers prioritize the needs of their local market but
with increased margins.6 Supply network fragility can lead to an increase in market power (in our
model, reflected in suboptimal retrenchment in market coverage), especially when demand is at its
greatest.

The size of the wedge between the decentralized and centralized solution depends endoge-
nously on firms’ reliance on the spot market, and exogenously on the structural parameters of the
economy. An economy exhibiting greater scalability (production functions that rely less on non-
scalable capacity investments), higher substitutability (intermediate goods inputs that are more
interchangeable) and more competition (more upstream firms) will be more efficiently resilient.

Therefore, there are broadly three avenues for narrowing the wedge. First, a direct governmen-
tal subsidy targeting investment in production capacity could serve as the most pragmatic remedy.
Second, enhancing incentives for the use of pre-order markets can offer upstream firms the as-
surance of recouping initial costs. We show that an overreliance on the spot market contributes

5By “seemingly resilient,” we mean that demand can be fully met at some price. It is still the case that there is too
little capacity.

6The surge in demand for COVID vaccines in 2021 and the frantic pursuit of natural gas during the European
energy crisis in 2022 serve as illustrative examples. Global supply constraints often lead to redirection toward wealthier
nations, leaving less-affluent developing markets economically disadvantaged during challenging times. During the
post-COVID recovery, evidence suggests a marked increase in market power (markups) associated with the supply
chain interruptions. See Konczal and Lusiani (2022).
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to fragility in the supply network.7 Third, the government can promote structural changes in the
economy to enhance scalability, substitutability and competition. Enhancing competition is good
in its own right, and doubly so when making supply networks more efficiently resilient.

The rest of the paper is organized as follows. Section 1 relates our paper to the existing liter-
ature. Section 2 sets up the model economy. Section 3 constructs the social planner benchmarks,
and characterizes the constrained-optimal level of capacity investment (KSP). Section 4 character-
izes the decentralized equilibrium and the market solution for capacity (K∗). Section 5 presents our
core result that firms’ investment in capacity is insufficient - K∗ < KSP - and discusses potential
policy interventions. Section 6 concludes with suggestions for further research. We present formal
derivations and proofs in the Appendix. In the separate Online Appendix, we discuss an extension
of the analysis to rare large shocks pushing the economy away from full production.

1 Related literature

The literature on the resilience of supply networks to shocks can be roughly categorized into two
branches. The first focuses on analyzing the mechanisms through which idiosyncratic shocks
propagate and amplify within a fixed network of firms with pre-specified relationships. Acemoglu
and Tahbaz-Salehi (Acemoglu and Tahbaz-Salehi) examine the effect of productivity shocks on the
distribution of economic surplus, firm failures, and the amplification of shocks through disruptions.
Acemoglu et al. (2012) propose a model that explains how micro shocks can be magnified into
macro fluctuations through input-output linkages. Carvalho et al. (2021) use data from the 2011
Japanese earthquake to demonstrate the significant macroeconomic implications of idiosyncratic
shocks. Barrot and Sauvagnat (2016) reveal evidence of fragility caused by the propagation of
firm-specific shocks, using data on natural disasters. We refer to Carvalho (2014) and Carvalho
and Tahbaz-Salehi (2019) for a thorough review of such mechanisms.

That markets would not be prepared for every shock they confront is not a surprise. The ana-
lytically interesting question is the normative one: Relative to an appropriate benchmark, do they
adequately prepare for shocks? The failure of each firm in a competitive environment to take ac-
count of how capacity decisions affect the distribution of prices in the spot markets is one of the
two central market failures that we identify.

The second branch of literature focuses on firms’ strategic responses to mitigate the negative
effects of supply chain disruptions. Birge et al. (2023) explore how firms in a supply chain net-
work strategically react post-disruption by optimally switching demand and rerouting supply from

7For instance, in 2021 and 2022, more than 30 energy companies in the U.K. failed as a result of to a rapid increase
in wholesale natural gas prices and inadequate hedging through futures/forward contracts by the energy companies.
For details, see https://www.forbes.com/uk/advisor/energy/failed-uk-energy-suppliers-update.
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defaulted firms. Amelkin and Vohra (2024) examine the competing retailers’ decisionmaking pro-
cess when selecting suppliers, taking into account factors such as prices and suppliers’ reliability
as measured by yield uncertainty and congestion.8

Our work is closely related to Elliot et al. (2022) and that by Grossman et al. (2023), which
(also) examine supply network formation and fragility. In their models, downstream firms source
customized inputs from upstream firms. To insure against possible supply disruptions, downstream
firms strategically invest in relationships with multiple potential suppliers.9 One might infer from
their analyses that systemic fragility should be reduced if inputs were more (albeit still imper-
fectly) substitutable, and there existed a common spot market for such inputs. We show that not
only would such a spot market be insufficient to eliminate supply network fragility, but that market
participants’ overreliance on spot market transactions would actually amplify the inherent exter-
nalities. In our model, fragility within the supply network is not a consequence of a catastrophic
breakdown of upstream suppliers or a failure in supplier diversification but due to a more structural
combination of market power and incomplete markets.

On the empirical side, Atalay et al. (2011) estimate a model of firms’ buyer-supplier relation-
ships using microdata on firms’ customers. Crosignani et al. (2019) investigate the consequences
of supply shocks resulting from NotPetya, one of the most severe cyberattacks in history. They
observe that the affected downstream customers were more inclined to establish new relationships
with alternative suppliers while terminating existing relationships with the directly affected firms.
Lastly, Baldwin and Freeman (2022) examine the cross-border dimensions of resilience in global
supply chains.

A separate branch of literature has studied the role of market power in amplifying demand or
supply shocks. Noticeable contributions in this direction include Franzoni et al. (2024), who study
the mechanisms by which supply chain shortages influence industry competition. Their empirical
analysis demonstrates that "superstar" firms, when faced with supply chain shortages, incur com-
paratively smaller cost increases. This advantage enables them to expand their market share and
enhance profitability. The study by Acharya et al. (2023) shows that elevated household inflation
expectations enabled firms with high market power to transfer cost shocks directly to prices, with
more pronounced effects observed among these firms. Unlike these studies, our findings reveal
that market power held by intermediate good producers leads them to underinvest in production
capacity, resulting in a supply network that is inefficiently resilient.

8A few other studies from the operations management literature analyze the mechanisms through which multi-
sourcing strategies and supplier selection can help mitigate risk in supply chains. See Anupindi and Akella (1993),
Tomlin (2006), Babich et al. (2012) and Babich et al. (2007).

9See also Elliott and Golub (2022) for a survey on supply chain disruptions and their macroeconomic implications.
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2 Model

Consider an economy with two types of goods: final goods (the consumption numeraire) and in-
termediate goods used in the production of the final goods. There is a continuum of final goods
producers (that is, downstream firms, indexed i ∈ I = [0,1]) and n ≥ 2 intermediate goods produc-
ers (that is, upstream firms, indexed j ∈ J = {0,1, . . . ,n−1}), all located around a circle with unit
circumference. The positions of the intermediate goods producers around the circle are represented
by nodes, which divide the continuum of final goods producers into n “market segments.” Figure
2.1 illustrates a simplified example of such an economy with n = 3 intermediate goods produc-
ers. Distance is quantified along the circle’s circumference, ensuring that the maximum distance
separating any two points is 1

2 .

Figure 2.1: Illustrative Economy

Consider an illustrative economy with three intermediate goods firms ( j ∈ {0,1,2}). The intermediate goods firms are located equi-distant from
each other, separating the circle into three equal market segments {I0, I1, I2}. In a typical equilibrium, firms j = 0 and j = 1 compete over final
goods firms located in the market segment I0.

Intermediate goods producers j ∈ J are price-setters. They set prices
{

p j
}

to compete over
final goods producers in their two neighboring market segments.10 The mass of final goods pro-
ducers in each market segment is denoted as {mk}k=0,...,n−1. To fulfill the endogenous demand
for intermediate goods, each intermediate goods producer j operates a Cobb-Douglas production
function with partial delay: Yj,t = Lα j

j,tK
1−α j
j,t−1 , where L j denotes the scalable input factors in produc-

tion with factor price w j > 0, and K j the non-scalable capacity investments that must be installed
one period in advance at unit price r j > 0. The key distinction is that non-scalable inputs K j can-

10It is possible for any particular intermediate goods producer to price so aggressively as to capture demand from
market segments further afield. This possibility corresponds to the “super-competitive” region of the demand curve in
a circular economy (see Salop (1979)). For the purpose of the present analysis, our closed-form solutions focus on a
symmetric equilibrium in which all intermediate goods producers find it optimal to set the same price, thus ruling out
competition outside of the neighboring market segments.
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not be adjusted in the short run.11 The parameter α j ∈ (0,1), the exponent of L, measures the
scalability of each sector j. Crucially, intermediate goods producers j must decide on the level of
non-scalable capacity investments K j before the realization of shocks to the economy. As we will
discuss in greater detail below, the intermediate goods producer’s capacity investment (K j), and
pricing decisions (on both the spot and futures market) form the core of our model.

We model the final goods producers in a more reduced-form fashion. Specifically, final goods
producers i ∈ I are price-takers. Each atomistic final goods producer i faces an exogenous demand
Qi for its output, valued at unit price v.12 These producers convert intermediate goods into the final
goods using a linear production function Ỹi = ∑ j

qi j
f (d(i, j)) , where Ỹi denotes the final goods output

of firm i, qi j is the quantity of intermediate goods input firm i sources from firm j, and f (d (i, j))

is a penalty function that depends on the distance (d (i, j) ∈
[
0, 1

2

]
) between the two firms.

One way to think about this distance-based penalty function is that for every unit of interme-
diate goods j purchased by i, only a fraction 1

f (d(i, j)) is usable. The remainder,
(

1− 1
f (d(i, j))

)
,

“perishes in transit.” A second interpretation of f (·) is a valuation-based penalty function. For
any given valuation v, the effective valuation of the final goods i that uses inputs j is given by

v
f (d(i, j)) . Therefore, the function f (·) can also account for heterogeneous valuations of final goods.
Specifically, a final goods firm i producing outputs using more “distant” intermediate goods would
experience a diminished valuation for its output. A third interpretation (and the one we focus upon
in the discussion below) is that the different intermediate goods are imperfect substitutes for each
other. The production at any place in the circle is designed for a certain type of intermediate goods
but can use other intermediate goods, though they yield less output per unit of input. (Think of an
oil refinery designed to refine oil of a specific gravity and sulfur content. It can refine oil with other
characteristics, but less efficiently). For ease of exposition, we will refer to f (·) henceforth as the
distance-based penalty function (distance, in this interpretation, refers to distance in the product
space).13

We assume that f (·) is an increasing function, normalized such that f (0) = 1. This penalty
function, f (·), combined with the starting distance between firms, d (i, j), captures the extent of
substitutability among intermediate goods. The greater the distance d (i, j) between two firms, and

11For brevity, we will henceforth drop the time subscripts, and note simply that K must be precommitted in advance
of production.

12In our model, final goods firms form expectations over the level of demand Qi, taking the price v as a fixed
constant, whereas, more generally, shocks to final goods demand would affect both (their desired) equilibrium quantity
Qi and price vi. We simplify the analysis by taking the integral over the distribution of Qi only, instead of the joint
distribution over both Qi and vi. This simplification offers greater analytical tractability and highlights the critical
market failures, while preserving the essential economics of resilience. One can think of this modeling approach
either as: (1) a stylized portrayal of final goods demand - a demand curve with demand equal to Q for price equal
or less than v, and zero demand for price above v, or (2) a description of specific markets (like that for electricity) in
which all firms have signed contracts to deliver output at price v regardless of the level of demand that materializes.

13For a discussion of the measurement of distance in product space, see, for example, Stiglitz (1986).
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the steeper the slope f ′ (x) of the penalty function, the more inefficient it becomes for final goods
producer i to source inputs from intermediate goods producer j. For brevity, let fi j := f (d (i, j))

and fi := ( fi0, . . . , fi,n−1)
′

be the corresponding n× 1 column vector of penalties for final goods
producer i.

Figure 2.2: Model Timeline

Timeline of events, decisions and actions undertaken by intermediate and final goods producers.

Figure 2.2 summarizes the timeline of the model. At period 0, there is uncertainty around the
demand and supply conditions that will prevail in period 1. Specifically, the uncertainty around the
demand for final goods produced by firm i is captured by the random variable Qi. Qi is distributed
between

[
Qi, Q̄i

]
, with cumulative density function (c.d.f.) Gi (·) and associated probability density

function (p.d.f.) gi (·). There is also uncertainty around
{

w j
}

j∈J , the price of the scalable input
factor, which affects the supply of the intermediate goods j. w j is distributed between

[
w j, w̄ j

]
,

with c.d.f. H j (·) and p.d.f. h j (·).14 Supply shocks are assumed to be independent of demand
shocks. In our formulation, there is no uncertainty about the price of the final goods, v.

In period 0, to hedge against these demand and supply shocks, each final goods producer i

decides whether to enter into a supplier contract with each intermediate goods producer j, placing

pre-orders qpre
i :=

[
qpre

i0 , . . . ,qpre
i j , . . . ,qpre

in−1

]′
. Each intermediate goods producer j sets pre-order

price φ j. Concurrently, firm j make a cost-minimizing decision on the level of non-scalable ca-
pacity K j, incurring associated costs denoted by r jK j. The pre-order contracts between final goods
and intermediate goods producers define the endogenous network formed in period 0.

In period 1, firms observe the realization of the demand and supply shocks. Final goods pro-

ducer i submits spot-market orders qspot
i :=

[
qspot

i0 , . . . ,qspot
i j , . . . ,qspot

in−1

]′
. The total cost of pre-

orders and spot-market orders for firm i is given by
[
φ ·qpre

i +p ·qspot
i
]
, where φ :=

[
φ0, . . . ,φ j, . . .φn−1

]′
denote the vector of pre-order prices, and p the vector of spot-market prices. At period 1, interme-
diate goods producer j takes pre-committed capacity K j as given, solves for the cost-minimizing

14Without loss of generality, let ∞ > Q̄i > Qi > 0, ∀i ∈ [0,1]; and ∞ > w̄ j > w j > 0, ∀ j ∈ J.
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scalable input L j, and sets prices p j to maximize profits. Production occurs, and contracts are
settled. The excess of production over the contracted pre-orders is sold on the spot market.

In our model, the final goods producers can buy from any intermediate goods producer at the
posted price. This flexibility stands in contrast to much of the network literature discussed in
Section 1 (for example, Elliot et al. (2022)), where final goods producers can only buy from the
firms with whom they have previous relations, so shocks to those firms obviously get passed on
strongly through the network. Here, in effect, the ex ante and ex post networks can be different.
15 This is a crucial distinction. Even when there are established networks in “normal” situations,
firms can turn to markets when there are large shocks. The real world is one in which there are
both networks and markets.

For analytical tractability, we impose symmetry on the primitives of the model and derive
closed-form solutions for the resulting symmetric equilibrium.

Assumption A1 [Symmetry]: α j = α and r j = r, ∀ j ∈ J; Qi = Q, ∀i ∈ I; w j = w, ∀ j ∈ J ;
mk =

1
n , ∀k ∈ {0, . . . ,n−1}

By assumption, all intermediate goods producers share a common Cobb-Douglas production func-
tion: α j = α,∀ j ∈ J; and face the same non-scalable input costs in period 0: r j = r, ∀ j ∈ J. We
also assume that the shocks to the economy are symmetric and identical. The realization of final
goods demand is the same for all final goods firms: Qi = Q, ∀i ∈ I; and the realization of scalable
input cost is also the same for all intermediate goods firms: w j = w, ∀ j ∈ J.16 This symmetry cap-
tures an economy that is subject to systemic, correlated shocks. For instance, a symmetric demand
shock might resemble the surge in demand for vaccines amid a pandemic, whereas a symmetric
supply shock could be akin to a military conflict causing a spike in energy prices that affects all
manufacturing sectors. Lastly, mk =

1
n , ∀k implies that the sizes of each market segment are equal.

The intermediate goods producers are uniformly distributed around the unit circle at equidistant
intervals.

It is important to note that fully symmetric shocks to final goods demand (Q) and intermediate
goods supply (w) do not immediately imply fully symmetric equilibrium outcomes. For instance,
final goods producers that are further away from intermediate goods supplier nodes (that is, those
with less substitutable inputs) will need to order more of a given input - compared with another
final goods firm that is closer - to meet the same level of final goods demand. In practice, perfectly

15We assume that there are no costs to establishing a new link ex post. Our result may be generalized by assuming
either that there is a fixed cost to going to the market or to buying from any specific firm with whom one does not
have a previous relation. The problem would become analytically more challenging, but the main insights would stay
qualitatively the same

16This is a slight abuse of notation. We use Qi and w j to represent both the random variable and its realized value.
The intended meaning should be clear within the given context.
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correlated shocks are the most challenging for resilience, which makes them a key “test case” to
examine.

Before we dive into the formal equations that define the decentralized equilibrium, it is useful to
first explore the more straightforward problems of an unconstrained and constrained social planner.
The planner solutions will serve as our benchmarks for comparison.

3 The social planner benchmarks

We characterize the symmetric equilibrium outcomes for two separate benchmarks. In the first,
the social planner can perfectly observe the realization of the state variables (Q,w) before com-
mitting to intermediate goods production across the network. The planner can therefore perfectly
adjust both input factors (L,K) in line with market conditions. We call this unconstrained planner’s
solution the first-best perfect foresight benchmark. We re-introduce the informational and techno-
logical constraints faced by private agents in the second - constrained optimal - social planner’s
benchmark. Of the two, the constrained optimal benchmark provides a more appropriate basis
for comparison. However, the perfect foresight benchmark serves a valuable role in isolating the
effects of real-world frictions - such as uncertainties around states and limitations in production
technology - from those associated with the distortions that arise as a result of market externalities
and other imperfections.

There are two key distinctions between the social planner (under both benchmarks) and the
decentralized market. First, a social planner can directly allocate order flows

{
qi j
}

without the
need to use price signals (p,φ) as a coordinating mechanism. Second, a social planner maximizes
the welfare of the economy as a whole, whereas individual private agents maximize their own
profit or utilities. Thus, the social planner internalizes any externalities that may arise.

We restrict attention to a full production equilibrium, where the total demand for final goods
can be met in a socially profitable way - that is where, at the margin, the value of the final goods
exceeds the marginal cost of production. This setting further underscores that our core findings
are not contingent on the occurrence of rare, large-scale shocks. Formally, a symmetric economy
E = { f (·) ,α,w,r,Q;v} admits a full production equilibrium if there exists an equilibrium whereby
Ỹi (Q,w) = Q, ∀i ∈ [0,1], and, for all states of the world (Q,w)⊂ R2

+.

Assumption A2 [Full production]: We provide conditions on the model primitives that ensure
the attainment of a full production equilibrium in a symmetric economy. More specifically,
we assume that at every point around the circle (that is, ∀i ∈ I = [0,1]), the marginal benefits
of producing final goods will at least match or exceed the marginal costs in all possible
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scenarios:

v
f
( 1

2n

) ≥ ( w̄
α

)α( r
1−α

)1−α

 w̄Q̄
1
α

E
[
wQ

1
α

]
1−α

for n ≥ 2.

Assumption A2 states that the marginal benefit of delivering intermediate goods to the final goods
producer located farthest from the nearest node (at a distance of 1

2n ) is weakly greater than the

marginal cost of producing the intermediate goods in equilibrium
( w̄

α

)α ( r
1−α

)1−α

(
w̄Q̄

1
α

E
[
wQ

1
α

]
)1−α

,

even when the negative supply shock is at its most extreme (w = w̄), and demand is at its upper
bound (Q = Q̄).17 For any given v, this assumption is equivalent to a restriction on the range of
the demand and supply shocks. The assumption guarantees full production under the constrained
optimal benchmark, where the social planner faces the same informational and technological con-
straints as the decentralized market.18 The corresponding condition for the perfect foresight bench-
mark is v

f( 1
2n)

≥
( w̄

α

)α ( r
1−α

)1−α for n ≥ 2, where the marginal cost of production is lower because
the social planner can fully adjust both inputs of production (K as well as L) in response to shocks
(that is, w̄Q̄

1
α > E

[
wQ

1
α

]
by construction). Assumption A2 is therefore a sufficient condition for

full production under both social planner benchmarks. See appendix C for a more detailed discus-
sion, and for sufficient conditions for a full production equilibrium in the decentralized solution.19

Relaxing Assumption A2 leads to cases where some segment of the economy (farthest away
from the intermediate goods producers) might become shut out from the final goods market under
adverse supply conditions. In such instances, intermediate goods suppliers operate as localized
monopolies rather than as direct competitors, each prioritizing the needs of their local markets
(at higher margins) and leaving demand from more “distant” firms unfulfilled. The emergence
of local monopolies introduces an extra layer of distortion to the decentralized market solution,
which further strengthens our core argument that there is insufficient investment in non-scalable
production capacity. We discuss the consequences of relaxing this assumption in greater detail in
online appendix G.

17In general, the marginal cost of production for intermediate goods should be a function of K. The expression we
use here represents the marginal cost in equilibrium, i.e., when K is chosen optimally.

18See appendix B.2 for details.
19On a technical note, the full production assumption also helps us circumvent issues related to non-differentiability

in the demand function.
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3.1 The perfect foresight (PF) benchmark

Consider the first-best problem for a social planner with a fully scalable production function and
perfect foresight. The social planner operates a standard Cobb-Douglas production function for
intermediate goods: Yj,t = Lα

j,tK
1−α

j,t .20 The planner can also dictate input choices
{

K j,L j
}

j∈J and
order flows

{
qi j
}

i∈I, j∈J for all firms after observing the realization of final goods demand Q and
scalable input cost w. Although production is delayed until period 1, there is no uncertainty. At
period 0, firms know the realization of the shocks that arrive at period 1. Mathematically, this is
equivalent to all decisions being made in a single period optimization problem, where the objective
is to maximize the value of production net of its costs.

[Optimization Problem PF]:

W (Q,w) = max
{K j} j∈J ,{L j} j∈J ,{qi j}i∈I, j∈J

{
v
∫ 1

0

[
min

{
Q,Ỹi

}]
di− ∑

j∈J

[
rK j +wL j

]}
, (3.1)

s.t. Ỹi =∑
j∈J

1
fi j

qi j [Production function for final good i],

Yj =Lα
j K1−α

j ∀ j ∈ J [Production function for intermediate good j],∫ 1

0
qi jdi ≤Yj ∀ j ∈ J [Feasibility of intermediate goods order flow],

qi j ≥0 ∀i ∈ [0,1] ,∀ j ∈ J [Nonnegative inputs].

The solution is simple and intuitive. In the perfect foresight benchmark, the planner would
meet final goods demand by sourcing intermediate goods inputs from the cheapest supplier and
produce the required intermediate goods at minimal cost by optimizing the ratio between scalable
and non-scalable inputs in every state.

Lemma 1. [Full production symmetric equilibrium under perfect foresight]

1. The social planner allocates sufficient intermediate goods j to each final goods firm i to

meet consumer demand Q, accounting for any imperfect substitutability fi j. The required

intermediate goods inputs will be sourced from the lowest effective-cost supplier(s) for each

i, whenever the value of production v exceeds the marginal cost of production:

qPF
i j (Q,w) =

 fi jQ if j ∈ J (i) and v ≥ fi j
(w

α

)α ( r
1−α

)1−α

0 otherwise
, (3.2)

where J (i) :=
{

j̃ ∈ J| fi j̃
(w

α

)α ( r
1−α

)1−α ≤ fi j
(w

α

)α ( r
1−α

)1−α ∀ j ∈ J
}

is the set of low-

20We suppress the t subscript henceforth to simplify the notation.
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est effective-cost supplier(s).

2. The planner’s input choices in intermediate goods production satisfy the optimality condi-

tion:

αrKPF (Q,w) = (1−α)wLPF (Q,w) . (3.3)

From the optimality condition above we can derive the explicit solutions for KPF and LPF :

KPF (Q,w) =
(

w
r
(1−α)

α

)α
(

2Q
∫ 1

2n

0
f (i)di

)
,

LPF (Q,w) =
(

r
w

α

1−α

)1−α
(

2Q
∫ 1

2n

0
f (i)di

)
,

where f (i) = fi0 := f (d (i,0)) is the shorthand for the distance penalty between final goods

firm i and intermediate goods firm 0, and, by symmetry, KPF
j = KPF and LPF

j = LPF for all

j ∈ J.

3.2 The constrained optimal social planner (SP) benchmark

Next, we consider the constrained optimal problem, whereby a social planner can dictate produc-
tion choices

{
L j,K j

}
and order flow

{
qi j
}

i∈I, j∈J but faces the same informational and technolog-
ical constraints as the private sector. We solve the constrained optimal problem through backward
induction.

In period 1, the social planner takes the pre-committed non-scalable capacity K j = K, ∀ j ∈ J

as given and chooses the scalable input factor
{

L j
}

j∈J and order flows
{

qi j
}

i∈I, j∈J to maximize
aggregate welfare for any given realization of demand and supply conditions (Q,w). For given
intermediate goods output Yj =

∫ 1
0 qi jdi, we can express the cost-minimizing level of the scalable

factor as L j =
(∫ 1

0 qi jdi
) 1

α j K
−(

1−α j)
α j

j . Substituting out L j and imposing symmetry (Assumption
A1), we can express the optimization problem [SP1] in terms of the order flows

{
qi j
}

i∈I, j∈J only:
[Optimization problem SP1]:
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W SP (K|Q,w) = max
{qi j}i∈I, j∈J

{
v
∫ 1

0

(
∑
j∈J

1
fi j

qi j

)
di− ∑

j∈J

[
rK +w

((∫ 1

0
qi jdi

) 1
α

K− (1−α)
α

)]}
(3.4)

s.t. Q ≥ ∑
j∈J

1
fi j

qi j ∀i ∈ [0,1] , [Demand cap]

qi j ≥ 0 ∀i ∈ [0,1] , j ∈ J, [Nonnegative inputs]

where v
∫ 1

0

(
∑ j∈J

1
fi j

qi j

)
di is the aggregate value derived from the production of final goods and

∑ j∈J

[
rK +w

((∫ 1
0 qi jdi

) 1
α

K− (1−α)
α

)]
the aggregate cost of producing the necessary intermediate

inputs. The demand cap reflects that any production in excess of the realized demand Q will be
wasted.21

Back in period 0, the social planner chooses non-scalable inputs
{

K j
}

j∈J to maximize expected
welfare in period 1, accounting for the probability distribution of demand and supply shocks (Q,w).

[Optimization problem SP0]:

W SP = max
K

E
[
W SP (K|Q,w)

]
(3.5)

The solution resembles that of the perfect foresight scenario, but with important distinctions,
arising from the necessity of committing to a specific level of capacity investment in period 0,
before the realization of states in period 1.

Lemma 2. [Full production symmetric equilibrium in the constrained optimal benchmark]

1. In period 1, the social planner allocates sufficient intermediate goods to each final goods

firm i to meet consumer demand Q, accounting for imperfect substitutability. The required

intermediate goods inputs will be sourced from the lowest effective-cost supplier(s) for each

i, whenever the value of production v exceeds the marginal cost of production:

qSP
i j (Q,w) =

 fi jQ if j ∈ J (i) and v ≥ fi jM̃C

0 otherwise
, (3.6)

where M̃C :=
(w

α

)α ( r
1−α

)1−α

(
wQ

1
α

E
[
wQ

1
α

]
)1−α

is the marginal cost of producing the interme-

21In this analysis, we deliberately exclude the effect of inventory management because of the framework’s static,
one-shot nature. See Ferrari (2022) for a network model with inventories.
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diate goods in the symmetric equilibrium and J (i) :=
{

j̃ ∈ J| fi j̃M̃C ≤ fi jM̃C ∀ j ∈ J
}

is the set of lowest effective-cost supplier(s).

The optimal level of scalable input is given by

LSP (Q,w) =
(∫ 1

0
qSP

i j (Q,w)di
) 1

α (
KSP

)− (1−α)
α

. (3.7)

2. In period 0, the optimal level of non-scalable production capacity KSP satisfies the optimality

condition:

αrKSP = (1−α)E
[
wLSP

]
, (3.8)

which can be solved explicitly to give

KSP =

(
1
r

1−α

α

)α
(

2
∫ 1

2n

0
f (i)di

)(
E
[
wQ

1
α

])α

.

3. The relationship between capacity investment across the two benchmark scenarios can be

summarized as follows:

KSP = KPF (Q,w)

E
[
wQ

1
α

]
wQ

1
α

α

, (3.9)

and by Jensen’s inequality we have

KSP ≥ E
[
KPF (Q,w)

]
.

The first part of the proposition relating to the optimal order flow (qSP
i j ) and the level of scalable

capacity (LSP) is straight-forward. Here, we will concentrate our discussion on the underlying
intuition of the constrained optimal solution for capacity investment KSP. The choice of non-
scalable capacity at period 0, KSP, influences aggregate welfare in period 1 through two primary
mechanisms. First, any increase in KSP generates a direct cost given by r. This cost, however, is
partly offset by the resultant decrease in the scalable input LSP needed to achieve a given output Y ,
thus offering a direct benefit. Second, a rise in capacity KSP may increase aggregate intermediate
goods production Y , and indirectly improve welfare through this output channel dY

dK . However, in
a full-production equilibrium where the demand for final goods is always met (that is, the demand
cap is binding), there can be no further welfare gains from increasing aggregate intermediate goods
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production. Therefore, the indirect effect of K on welfare is exactly zero.22 We are left with
the familiar optimality condition that is typical for Cobb-Douglas production functions, αrKSP =

(1−α)E
[
wLSP], albeit with an expectation function to account for the ex ante uncertainty.

Finally, equation 3.9 illustrates the relationship between the level of capacity investment across
the two benchmarks. Under the constrained optimal benchmark, the social planner must com-
mit to a given level of capacity KSP before observing the shocks. Hence, capacity investment is
lower than that in the perfect foresight case, KSP < KPF (Q,w), in states where marginal costs ex-
ceed expectations (when w, Q, or both are higher than expected). Conversely, KSP > KPF (Q,w)

when marginal costs fall below expectations. Importantly, this result implies that the constrained
social planner recognizes that investing in a level of production capacity that accommodates all
contingencies (KPF (Q̄, w̄

)
) would give rise to a supply network that is inefficiently resilient. Nev-

ertheless, the constrained social planner invests in more capacity than its counterpart with perfect
foresight does on average, KSP ≥ E

[
KPF (Q,w)

]
, as a way to insure against uncertainty.23

4 The decentralized solution: Equilibrium in the spot and pre-
order markets

In the decentralized market equilibrium, firms adjust production in response to prices in both the
pre-order and spot markets. We solve the model through backward induction.

4.1 Period 1 equilibrium in the spot market

In period 1, each final goods producer can turn to the spot market to acquire additional inter-
mediate goods beyond those that have been pre-ordered. Formally, each final goods producer i

takes realized demand for final goods Qi, prior commitments qpre
i , pre-order and spot intermediate

goods prices (φ ,p) as given24, and purchases intermediate goods qspot
i from intermediate goods

22In online appendix F, we show that the optimality condition for non-scalable production capacity KSP (equation
3.8) remains unchanged when we relax the full production assumption. We can safely ignore the indirect effects of K
on welfare through changes in output Y . This result bears resemblance to the Envelope Theorem, in which the total
derivative of the value function with respect to the parameters of the model is equal to its partial derivative. Here K is
the choice variable, but the total derivative of W SP (K|Q,w) with respect to K is also equal to its partial derivative.

23A formal exposition of this result can be found in appendix B.3. This result may be contingent on our assumption
of a Cobb-Douglas production function. In a somewhat simpler context of a utility having to meet a fixed demand,
Rothschild and Stiglitz show that whether uncertainty increases or decreases capacity depends on the elasticity of
substitution between the scalable and nonscalable factors of production. See Rothschild and Stiglitz (1971).

24As is conventional in the literature on Bertrand equilibria, each firm assumes it can buy as much on the spot market
as it wishes. This assumption is particularly important for the analysis of firms’ decision making at time 0.
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producers on the spot market in order to maximize profit:

Πi
(
qpre

i ,φ ,p
)
= max

qspot
i

{
vmin

{
Qi,Ỹi

}
−C̃i

(
qpre

i ,qi,φ ,p
)}

(4.1)

s.t. qspot
i ≥ 0 [No-default constraint],

where final goods production and total costs are given by:

Ỹi = ∑
j∈J

1
fi j

(
qspot

i j +qpre
i j

)
C̃i
(
qpre

i ,qi,φ ,p
)
= φ ·qpre

i +p ·qspot
i .

We interpret qspot
i ≥ 0 as a “no-default constraint” because it implies that the total volume of

intermediate goods orders will never fall below the pre-ordered amount: qi := qspot
i +qpre

i ≥ qpre
i .

The final goods producers cannot renege on the promises made in period 0. In principle, a firm
could also resell its pre-order to some other firm, so that the level of input could be less than the
pre-ordered level. In a symmetric equilibrium, however, that never occurs.25

If the spot market were perfectly competitive, each intermediate supplier would produce up
to the point where the price of the intermediate goods (on the spot market) were equal to the
marginal cost of production, and the demand for intermediate goods would be determined in the
usual way, with equilibrium in the spot market occurring at the price where demand equals supply.
Instead, this is a highly differentiated market for intermediate goods, and each intermediate goods
producer acts in a monopolistically competitive way, setting a spot price p j and taking its non-
scalable production capacity K j, and the price of its competitors p− j as given. Pre-order contracts{

qpre
i j

}
i∈I

are honored at the agreed price φ j. The profit of firm j is given by its pre-order revenue
plus spot-market revenue, minus the total costs of production:

Π j

(
K j,
(

φ j,q
pre
j

)
,p− j

)
= max

p j

{[
φ jY

pre
j

]
+
[

p jY
spot
j

]
−
[
w jL∗

j + r jK j
]}

, (4.2)

where Y pre
j :=

∫ 1
0 qpre

i j di and Y spot
j :=

∫ 1
0 qspot

i j di are the level of intermediate goods production re-
quired to meet pre-order demand and spot market-demand, respectively.

Similar to our treatment of the social planner benchmarks, we restrict attention to a full pro-
duction symmetric equilibrium for analytical tractability. In a symmetric setting, all intermediate

25Conceptually, we could imagine an equilibrium where, say, in some states, those in one set of locations sold excess
pre-orders to those in another set of locations. Our assumption of perfectly correlated shocks rules out this scenario.
Alternatively, even with imperfectly correlated shocks, reselling excess orders can be assumed away, for example,
because there are some (not fully specified here) adaptations of production to each producer, which make such sales
impossible. In practice resale of pre-ordered inputs do occur, though they are likely limited in scale.
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goods firms j ∈ J share the same characteristics α j = α , r j = r and w j = w; and every final goods
firm i ∈ [0,1] will face the same exogenous demand Qi = Q. In equilibrium, input choices will be
the same across intermediate goods firms: K j = K and L j = L, ∀ j ∈ J; and final goods firms will
fulfill the same proportion of the realized demand for final goods through the pre-order market:
Qpre

i := ∑ j
1
fi j

qpre
i j = Qpre ∀i ∈ [0,1].

It is important to note that Qpre
i denotes the level of final goods demand fulfilled through pre-

orders and not the quantity of intermediate goods pre-ordered qpre
i . The link between the two is

given by Qpre
i := ∑ j

1
fi j

qpre
i j , where 1

fi j
accounts for imperfect substitutability. Later, in Section 4.2,

we show that Qpre
i = Qpre ∀i ∈ [0,1] is indeed an optimal equilibrium strategy in period 0, but this

strategy implies pre-orders for intermediate goods qpre
i j are not equalized across i’s.

Lemma 3. [Full Production Symmetric Equilibrium in the spot market] In period 1, taking

period 0 choices
({

qpre,∗
i

}
,K∗,φ∗) as given:

1. Final goods firms order intermediate goods on the spot market from the supplier offering the

lowest effective-prices j ∈ J (i;p) :=
{

j̃ ∈ J : fi j̃ p j̃ = min{fi ◦p}
}

:

qspot,∗
i j =

 fi j
(
Q−Qpre

i
)

if Q ≥ Qpre
i , j ∈ J (i;p) , and v ≥ fi j p j

0 otherwise
∀i ∈ [0,1] . (4.3)

2. Intermediate goods firms:

• purchase the cost-minimizing level of scalable inputs:

L∗
j = L∗ =

(
Y pre,∗+Y spot,∗) 1

α (K∗)−
1−α

α ∀ j ∈ J, (4.4)

• set spot-market prices at a markup over marginal costs:

p∗j = p∗ = (1+µ)︸ ︷︷ ︸
mark-up≥1

MC ∀ j ∈ J, (4.5)

where

– Y pre,∗ :=
∫ 1

0 qpre,∗
i j di and Y spot,∗ :=

∫ 1
0 qspot,∗

i j di are the level of intermediate goods

production required to meet equilibrium pre-order demand and spot market de-

mand, respectively;
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– µ is the proportional mark-up over marginal costs given by:

µ :=
2 f ′
( 1

2n

)∫ 1
2n

0 f (i)di(
f
( 1

2n

))2 −2 f ′
( 1

2n

)∫ 1
2n

0 f (i)di
, (4.6)

– MC is the marginal cost faced by intermediate goods suppliers:

MC =
w
α

(
Y pre,∗+Y spot,∗

K∗

) 1−α

α

. (4.7)

In the period 1 equilibrium, each final goods producer first evaluates whether its pre-committed
orders for intermediate goods will be adequate to satisfy the existing demand for final goods - that
is, whether Qpre

i :=∑ j
1
fi j

qpre
i j ≥Qi. Should the pre-orders prove sufficient, the final goods producer

i will eschew the spot market, setting qspot
i = 0. Otherwise, additional intermediate goods will be

purchased on the spot market to meet realized demand, provided that the cost of doing so is less
than the value of the output v. Spot-market purchases are made from the cheapest intermediate
goods producer, adjusting for the distance-based penalties (equation 4.3).

For intermediate goods producers, L∗ is the cost-minimizing choice for given capacity invest-
ment K∗ (equation 4.4). Equation 4.5 characterizes the optimal spot-market pricing. Intermediate
goods producers engage in monopolistic competition and charge a mark-up over marginal costs.
This mark-up is higher when substitutability is poor for the marginal buyer (that is, when f

′ ( 1
2n

)
is

high); and lower when competition is fierce (that is, when n is large). In the limit, as n approaches
infinity - such that the distance between nodes shrinks to zero and intermediate goods become per-
fect substitutes - equation 4.5 simplifies down to price equals marginal cost (perfect competition).
We explicitly assume that intermediate goods producers cannot engage in price discrimination,
charging those at a greater distance less than those nearby. This assumption is natural in this con-
text: intermediate goods producers may not fully observe the characteristics of the firms that seek
to buy from them.

From equations 4.5 and 4.7, we see that non-scalable capacity K plays a key role through the
marginal cost function. Higher capacity investments by any firm j in period 0 reduce its marginal
cost of production in every state in period 1 (though more so in some states than in others). How-
ever, this decrease in marginal cost does not directly translate into proportionate increases in profit,
especially if competing firms also expand their capacities, which would drive down the equilib-
rium spot price and pass on gains to final goods producers. This price response has important
implications for investment in capacity, as the next section shows.
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4.2 Period 0 equilibrium in the pre-order market

In period 0, the final goods producers take pre-order prices φ as given, form expectations over
the state contingent distribution of spot prices at period 1, and submit pre-orders for intermediate
goods qpre

i to maximize their expected profit:

max
qpre

i

E
[
Πi
(
qpre

i ;φ ,p∗)]
=vE [Q]−Pr

(
Q > Qpre

i
)

E
[
p∗ (Q,w) ·qspot,∗

i (Q,w) |Q > Qpre
i
]
−φ ·qpre

i , (4.8)

where Πi is the profit of firm i in period 1 (eqn. 4.1), qpre
i :=

(
qpre

i0 ,qpre
i1 , . . . ,qpre

i,n−1

)′

is the vector

of pre-orders for intermediate goods, φ := (φ0,φ1, . . . ,φn−1)
′

is the menu of pre-order prices, and
Qpre

i := ∑ j
1
fi j

qpre
i j is the volume of final goods demand that can be met through pre-orders. The

final goods producer anticipates that the realized demand for final goods Q may fall short of what
could be produced from pre-orders Qpre

i with probability
(
1−Pr

(
Q > Qpre

i
))

. In such a scenario,
the final goods producer will eschew the spot market in period 1, and not incur any additional costs
beyond those associated with the pre-orders.26 With complement probability Pr

(
Q > Qpre

i
)
, the

final goods producer will need to purchase additional intermediate inputs on the spot market at
expected cost E

[
p∗ (Q,w) ·qspot,∗

i (Q,w) |Q > Qpre
i
]
.

Simultaneously, each intermediate goods producer j sets pre-order price φ j taking its com-
petitors’ prices φ− j as given and commits to a level of non-scalable input factor K j in order to
maximize expected profit in period 1,

max
K j,φ j

E
[
Π j

(
K j,
{

φ j,φ− j

}
,qpre,∗

j

)]
=
[
φ jY

pre,∗
j − rK j

]
+E

[
p∗jY

spot,∗
j −wL∗

j

]
, (4.9)

where Y pre,∗
j :=

∫ 1
0 qpre,∗

i j di and Y spot,∗
j :=

∫ 1
0 qspot,∗

i j di are the intermediate goods output required
to meet equilibrium pre-orders and spot-market orders respectively.

We show that in a full-production symmetric equilibrium, the optimal pre-order price is equal
to the unconditional expectation of spot-market prices. Without a discount over expected spot
market prices, final goods firms pre-order only what is necessary to cover the lowest realization of
demand. This limited demand for pre-orders affects the intermediate goods producer’s incentive to
invest in non-scalable production capacity.

Lemma 4. [Full production symmetric equilibrium in the pre-order market] In period 0,

1. Each final goods producer i pre-orders only what is necessary to cover the lowest realization

26As discussed in the previous section, we have imposed a constraint qspot
i ≥ 0 ruling out the resale of pre-ordered

intermediate goods.
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of final goods demand from its nearest intermediat e goods supplier:

qpre,∗
i j =

 fi jQ if j ∈ J (i;φ) , and v ≥ fi jφ j

0 otherwise
∀i ∈ [0,1] , (4.10)

where J (i;φ) :=
{

j̃ ∈ J : fi j̃φ j̃ = min{ fi ◦φ}
}

denote the set of suppliers that provides the

lowest effective pre-order price for i, which is equivalent under symmetry to the set of the

nearest suppliers.

2. Each intermediate goods producer j:

(a) sets pre-order prices to the unconditional expectation of spot-market prices

φ
∗ = E [p∗ (Q,w)] , (4.11)

(b) invests in a level of non-scalable capacity K∗ given by the optimality condition:

α

r+E

−d p∗

dK︸︷︷︸
<0

Y spot


K∗ = (1−α)E [wL∗] . (4.12)

There is an important intermediate step to show why final goods firms find it optimal in
equilibrium to pre-order only what is sufficient to meet the lowest realization of final goods
demand. In appendix E (Lemma 6), we characterize final goods firms’ demand for pre-orders
(Qpre,∗

i := ∑ j
1
fi j

qpre,∗
i j ) in terms of the equation:

φ = Pr
(
Q > Qpre,∗

i
)

E
[
p∗ (Q,w) |Q > Qpre,∗

i
]
, (4.13)

where
{

Q > Qpre,∗
i

}
is the set of states in which the final goods firms need to purchase additional

intermediate goods from the spot market in period 1. For every (effective) unit of intermediate
goods pre-ordered in period 0, the final goods firm will need to order one fewer unit on the spot
market, but only in states where Q > Qpre,∗

i . Thus, for a given pre-order price φ , final goods firms
will pre-order just enough intermediate goods such that the φ is equal to the expected marginal
savings on the spot market, accounting for the fact that larger pre-orders reduce the probability
that spot-market purchases will be required.

The demand function for pre-orders (characterized by equation 4.13) has two immediate im-
plications. First, aggregate pre-orders must be equalized across i in equilibrium (Qpre,∗

i = Qpre,∗

for all i). Second, the maximum sustainable pre-order price is the unconditional expectation of
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the spot market price φ = E [p∗]. As final goods firms are risk neutral, they will not pre-order if
φ > E [p∗]. Likewise, intermediate goods firms do not have incentives to offer a discount on pre-
orders (that is, pay a premium for insurance) by setting φ < E [p∗]. Intermediate goods producers
do not have incentives to reduce φ below E [p∗] to attract more pre-orders because they expect to
make more marginal profit on the spot market. Critically, any extra marginal costs incurred from
lower capacity investments can also be passed on to final goods firms on the spot market along
with a mark-up. With market power on the spot market, intermediate goods firms see no need to
promote pre-orders to insure against correlated adverse supply shocks.

In equilibrium, therefore, we have a corner solution with φ = E [p∗] and Qpre,∗ = Q. Intermedi-
ate goods firms set pre-order prices at the level that makes final goods firms indifferent between no
pre-orders at all and pre-ordering only what is necessary to cover the lowest realization of demand
Q. In effect, intermediate goods firms sets the highest possible pre-order price that drives the final
goods firms to their participation constraint.27

Having characterized the equilibrium quantity and price of pre-orders, the intermediate goods
suppliers determine the amount of production required to meet pre-orders (Y pre,∗) and forecast
expected prices (p∗) and production on the spot market (Y spot,∗). The intermediate goods suppliers
then invest in a level of non-scalable capacity K∗ that minimizes expected costs for the anticipated
level of production (equation 4.12). This optimality condition for K∗ is similar to its analogues
under the social planner benchmarks (equations 3.3 and 3.8 for the unconstrained and constrained
cases, respectively), except for the addition of a final term E

[
∂ p∗
∂K Y spot

]
that distorts the price

of the non-scalable input factor. This final term captures the pecuniary externality that arises
from enhanced market power and the overreliance on spot markets. It plays an important role
in explaining the wedge between the decentralized market solution and the constrained optimal
benchmark.

5 Decentralized solution versus constrained optimal benchmark

5.1 Under-investment in resilience

We can now prove the core proposition of the paper. The level of investment in the non-scalable
capacity in a decentralized market setting (K∗) is suboptimally low when compared with the level

27Both the full production and the symmetry assumption play an important role here. We no longer have φ = E [p∗]
as an equilibrium condition when these assumptions are relaxed. In this case, the analysis becomes more complex but
the underlying economic intuition remains unchanged. See online appendix G for details. Likewise, we will also move
away from this corner solution if agents are risk-averse, though the presence and qualitative properties of the market
failures we identify are likely to be the same. That is, while with risk aversion there is likely to be more investment in
capacity (greater resilience) in the market equilibrium, with more risk averse agents, (constrained) Pareto optimality
also requires greater resilience, and a gap will remain between the two.
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in the constrained optimal benchmark (KSP).

Proposition 1. [Sub-optimal non-scalable capacity investment] K∗ < KSP.

Proof. We prove K∗ < KSP by contradiction. This proof is instructive because it highlights the
importance of the pecuniary externality d p∗

dK and the overreliance on the spot market Y spot as the
main drivers behind the underinvestment in capacity.

First, by the full-production assumption, we know that the level of intermediate goods produc-
tion is the same under both the decentralized solution and the constrained benchmark, Y ∗ (Q,w) =

Y SP (Q,w), in all states of the world (Q,w).
The above equality implies that if K∗ = KSP, then L∗ (Q,w) = LSP (Q,w) in every state, leading

to a contradiction:

αrKSP = (1−α)E
[
wLSP

]
= (1−α)E [wL∗]

= α

r+E

−d p∗

dK︸︷︷︸
<0

Y spot


K∗ > αrK∗

If instead K∗ > KSP, then L∗ (Q,w) < LSP (Q,w) in every state, again giving rise to a contra-
diction:

αrK∗ = E

d p∗

dK︸︷︷︸
<0

Y spot

αK∗+(1−α)E [wL∗]

< (1−α)E [wL∗]< (1−α)E
[
wLSP

]
= αrKSP

The proposition reveals that intermediate goods producers underinvest in capacity upfront be-
cause they are unable to fully capture the cost savings generated by increased investment. Specif-
ically, each dollar saved through efficiency gains from capacity investment does not yield a corre-
sponding one-dollar increase in profits, because a part of these gains is transferred to final goods
producers through lower spot-market prices. The key term of interest is E

[
d p∗
dK Y spot

]
, which cap-

tures the interaction between the pecuniary externality (d p∗
dK the sensitivity of spot market prices to

capacity investment) and the degree of reliance on the spot market (Y spot).
Focus first on the price sensitivity term d p∗

dK and recall that equilibrium spot prices can be ex-
pressed as a proportional mark-up over marginal costs: p∗ = (1+µ)MC. All else being equal,
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higher capacity investment K, lowers the marginal cost (MC = w
α

(
Y ∗

K∗

) 1−α

α ) in every possible state
and thus lowers spot prices. The extent to which K matters depends on the scalability of the
economy (α). As scalability improves and α → 1, the less important is K in production, and the
externality shrinks.

The effect of K on marginal costs is amplified by the markup (µ =
2 f

′
( 1

2n)
∫ 1

2n
0 f (i)di

f( 1
2n)−2 f ′( 1

2n)
∫ 1

2n
0 f (i)di

). The

size of the mark-up depends on the substitutability between sectors, as measured by the distanced-
based penalty function f (evaluated at the marginal buyer i = 1

2n). Higher substitutability between
sectors lowers mark-up and reduces the wedge between the decentralized solution and the con-
strained optimal benchmark in equilibrium. Lastly, another important way to reduce the wedge is
through enhanced competition (that is, a larger n), which also reduces the amplification of marginal
cost changes by reducing mark-ups.

Equally as important, the wedge results from an over-reliance on the spot market. Unlike an
Arrow-Debreu economy, in which agents can trade contingent claims for every conceivable state
of the world, in our model - much like real-world conditions - the set of contracts that can feasibly
be written and traded is much smaller than the set of possible states. As a result, the pre-order,
forwards, and futures markets will fall short of providing adequate risk insurance for intermediate
goods producers. Downstream final goods producers fail to sufficiently compensate their suppliers
for the pecuniary externality arising from the benefits of increased capital investment.28 In the
extreme case where the pre-order market for intermediate goods doesn’t exist, all intermediate
goods must be sourced from the spot market. The volume of transactions on the spot market,

Y spot , therefore takes its maximum value under full production, Y spot = 2Q
∫ 1

2n
0 fi jdi, and the gap

between the decentralized solution and the constrained optimal benchmark widens.

5.2 The role of uncertainty, market power, and pre-order markets

The decentralized market will under-invest in non-scalable capacity as long as there is uncertainty
around the future states of the world, and K cannot be adjusted instantaneously in response to
shocks. The presence of market power, as represented by the price sensitivity term d p∗

dK , and market
incompleteness, as represented by the reliance on the spot market (Y spot),29 determines the size of
the wedge. We explore the role of each in greater detail below.

28In a sense, this pecuniary externality is a special case of the general pecuniary externality arising in economies
without a complete set of AD securities analyzed by Greenwald and Stiglitz (1986) and first discussed in Stiglitz
(1982).

29Note that since final goods firms pre-orders only what is necessary to cover the lowest realization of demand Q in
equilibrium, the expected volume of transaction on the spot market is always strictly positive.
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5.2.1 The model without uncertainty

We demonstrate that the presence of uncertainty is critical to the existence of the wedge in capacity
investments between the decentralized solution and the planner’s solution. If instead the future
state of the world was perfectly predictable in advance, or equivalently all capacity investments
can be adjusted instaneously in response to shocks, then the decentralized market would invest in
the same level of capacity as the planner with perfect foresight. There would be no need for pre-
order markets, and the existence of market power will only distort spot market prices (p∗) without
affecting capacity investment (K).

Proposition 2. [Model with certainty]: If every firm can determine their capacity investment after

observing the state of the world in period 1, then:

Kc
j (Q,w) = KPF (Q,w) , ∀ j ∈ J, ∀(Q,w) ∈ S ,

pc
j (n) =

(
1+

1
ε

spot
j (n)−1

)
MC j =:

(
1+µ j

)
MC j, ∀ j ∈ J,

lim
n→∞

pc
j (n) = MC j,

where ε
spot
j (n) is the elasticity of demand for intermediate goods in the spot market when there are

n intermediate goods producers.

Proof. The analysis is straightforward. First, observe that without uncertainty, the model collapses
to a simple one-period problem, where all agents optimize for given state (Q,w). Second, the final
goods firms’ behavior is unchanged; they still source intermediate inputs from the lowest-priced
supplier:

qc
i j (p) =

 fi jQ if j ∈ J (i;p) , and v ≥ fi j p j

0 otherwise
∀i ∈ [0,1] .

Third, for the intermediate goods firms, their optimization problem becomes:

Π j
(
p− j
)
= max

p j,K j,L j

{[
p jYj (p)

]
−
[
w jL j + r jK j

]}
,

where Yj (p) =
∫ 1

0 qc
i j (p)di and Y j (p)≤ Lα j

j K1−α j
j . From the first-order conditions to this problem,

we derive the familiar optimality condition for inputs given the Cobb-Douglas production function,(
1−α j

)
w jLc

j = α jr jKc
j , which gives an identical level of K to the first-best solution. Furthermore,

spot market prices are set at a mark-up to marginal costs, pc
j =

(
1+ 1

ε
spot
j −1

)
MC j, which depends

on the elasticity of demand ε
spot
j . In the limit, as n → ∞, we arrive at perfect competition with price

equals to marginal costs.
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Thus, market power is not integral to the existence of under-investment in capacity; the inability
to adjust non-scalable inputs to shocks is. In the presence of uncertainty, however, market power
and the reliance on the spot market amplifies the distortion.

5.2.2 The model without the pre-order market

We now consider the model with uncertainty, but without a pre-order market in period 0. Capacity
investments K still have to be put in place in period 0, before firms observe the realization of
shocks. The analysis is essentially identical to that in the main text, except with Qpre,∗

i = 0. This
implies that all demand for intermediate goods now need to be fulfilled on the spot market, so:

Y spot,only = 2
∫ 1

2n

0
f (i)Q > 2

∫ 1
2n

0
f (i)(Q−Qpre) = Y spot .

Substituting the above into the optimality condition for capacity investments,

α

r−E

d p∗

dK︸︷︷︸
<0

Y spot,only


K∗ = (1−α)E [wL∗] ,

it is straight-forward to see that capacity investments would be lower in the absence of pre-order
markets.30

5.2.3 The model without market power

Lastly, we observe that even in the limiting case with n → ∞, and p∗ = MC, the impact of capacity
investments on spot market prices is still strictly positive due to its direct effect on marginal costs
(i.e., dMC

dK > 0 ⇒ d p∗
dK > 0). The wedge in capacity investments remains. Market power is not

required for the existence of the distortion, it simply amplifies it (through mark-ups).

5.3 Policy implications

Using our model, it is possible to identify a number of ways to narrow the wedge between the
supply network delivered by unfettered markets and the efficiently resilient network characterized
under a constrained optimal benchmark.

30Note that since all production occurs in period 1 and the total amout of intermediate good produced is unchanged,
the marginal cost of production - for given K - is unaffected by the presence/absence of the pre-order market. Similarly,
the spot-market mark-up depends only on the substitutability of each intermediate goods. Thus d p∗

dK remains unchanged
when we eliminate the pre-order market.
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First, the most straightforward strategy to address the externality in the model is to offer subsi-
dies for capacity investments, thereby lowering the effective cost r incurred by intermediate goods
producers for non-scalable capacity. Second, the government might extend tax benefits to down-
stream firms that engage in pre-orders or transact in the futures market or, alternatively, levy ad-
ditional taxes on spot-market transactions to reduce dependency on spot markets. A third avenue
is to reduce the sensitivity of spot prices to changes in capacity investments. This approach could
entail structural economic reforms such as lowering entry barriers (including trade barriers), en-
acting stronger competition policies, and enhancing the substitutability of intermediate products,
all of which could reduce supplier markups. Similarly, technological advancements in production
scalability (through industrial policies) could shift the focus toward other input factors that can be
more readily adjusted on short notice.

In practice, it may be hard to devise practical, implementable interventions. Directly subsidiz-
ing capacity investments offers a straightforward strategy, yet distinguishing such investments from
other types of capital expenditure can be difficult, particularly in certain sectors. The government
may want to intervene only in certain critical industries - for example computer chip production,
where downstream externalities are especially significant and resilience is more important - by for
instance, offering lower taxes for firms operating with excess capacity. While tax incentives for
spot and pre-order markets can be effective in sectors like electricity, with its well-defined spot and
futures markets, this approach becomes less straightforward in industries where market boundaries
are more blurred. Industrial policies aimed at innovations increasing scalability and substitutability
may be among the most practicable policies.

6 Concluding remarks

Since the pandemic and subsequent supply chain interruptions, the question of resilience has
moved to the fore. Of course, we do not expect markets to be prepared for every shock, re-
gardless of size, as doing so would be extraordinarily expensive. The overarching question is
whether firms make appropriate preparations, measured against an appropriate benchmark? There
are many reasons to think that they might not, critics of the market, for instance, complain about
“short-termism”. Moreover, intermediate firms may systematically underestimate the magnitude
of upside potential demand.

We examine the normative question of resilience in a world with fully rational expectations and
in which firms do not suffer from short-termism, showing that, nonetheless, there is a bias toward
excessive vulnerability due to insufficient ex ante capacity investments by upstream intermediate
goods producers. This shortfall arises because these producers cannot fully capture the returns
on their capacity investments: A portion of the economic gains is transferred downstream to final
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goods producers through reduced spot-market prices.
To the best of our knowledge, our study is the first to incorporate interactions in both the spot

and futures markets in such a normative analysis of supply networks, which is essential for ad-
dressing the question at hand. Performing this analysis in the context of differentiated competition
necessarily entails a certain degree of complexity. For tractability and ease of exposition, we have
introduced a number of simplifications, however, in online appendix G, we show how the results
hold under significantly more general conditions. Most notably, we show that if there are very
large shocks, such that the cost of meeting the market demand is so high that there are “unserved”
customers (that is, Assumption A2 Full Production is not satisfied), then the analysis still holds.

The events of the past few years have made it clear that economists have paid insufficient
attention to resilience. This paper is intended as a contribution to the nascent literature attempting
to understand better why markets may have underinvested in resilience.
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Appendix

A Proof for Lemma 1 - perfect foresight benchmark

We start with the optimization problem for the perfect foresight benchmark [PF] characterized in
the main text. With perfect foresight, both L and K can be set as a function of the realized state
(Q,w) in period 1. This is equivalent to saying that both L and K can be adjusted flexibly and
simultaneously as the need arise. We thus have a standard Cobb-Douglas production for interme-
diate goods, with optimal input choices characterized by (1−α)wL=αrK, cost function C

(
Yj
)
=

Yj
(w

α

)α ( r
1−α

)1−α , and constant marginal cost of production ∂C
∂Y j

= ∂C
∂qi j

=
(w

α

)α ( r
1−α

)1−α .31

31The first equality ∂C
∂Y j

= ∂C
∂qi j

holds when the “feasibility of intermediate goods order flow” in the optimization
problem [PF] constraint binds with equality in equilibrium.
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Substituting the optimal input choices and the associated cost function into the original opti-
mization problem [PF] reduces the dimension of the problem to one in order flows

{
qi j
}

only:
[Optimization Problem PF*]

W (Q,w) = max
{qi j}i∈I, j∈J

{
v
∫ 1

0

[
∑
j∈J

1
fi j

qi j

]
di− ∑

j∈J

[(∫ 1

0
qi jdi

)(w
α

)α
(

r
1−α

)1−α
]}

s.t. ∑
j∈J

1
fi j

qi j ≤ Qi ∀i ∈ [0,1] , [Demand cap]

qi j ≥ 0 ∀i ∈ [0,1] , j ∈ J. [Non-negative inputs]

We can set up the Kuhn Tucker Lagrangian for Problem PF* as:

L PF = v
∫ 1

0

[
∑
j∈J

1
fi j

qi j

]
di− ∑

j∈J

[(∫ 1

0
qi jdi

)(w
α

)α
(

r
1−α

)1−α
]
−∑

i∈I
λi

[
∑
j∈J

1
fi j

qi j −Q

]
,

where by symmetry we have Qi = Q, ∀i ∈ [0,1].
The first-order conditions (FOCs) with the corresponding complementary slackness conditions

are given by:

qPF
i j

∂L PF

∂qi j
= qi j

(
v
fi j

−
(w

α

)α
(

r
1−α

)1−α

− λi

fi j

)
= 0 ∀i ∈ I, j ∈ J, (A.1)

λi
∂L PF

∂λi
= λi

[
∑
j∈J

1
fi j

qi j −Q

]
= 0 ∀i ∈ I. (A.2)

We observe from the FOCs that for each final goods i, the corresponding Lagrangian multiplier
λi, when strictly positive, is determined by the supplier j ∈ J that can provide the inputs most
cheaply to i:

λi = v−min
j∈J

{
fi j

(w
α

)α
(

r
1−α

)1−α
}

= v− fi j

(w
α

)α
(

r
1−α

)1−α

, (A.3)

where j (i) ∈ J (i) :=
{

j̃ ∈ J| fi j̃
(w

α

)α ( r
1−α

)1−α ≤ fi j
(w

α

)α ( r
1−α

)1−α ∀ j ∈ J
}

. Alternatively, if

v < min j∈J

{
fi j

(
w j
α j

)α j
(

r j
1−α j

)1−α j
}

, then qi j = 0 for all j ∈ J, Ỹi = 0 and λi = 0 (i.e. it is not

efficient for firm i to produce at all). This latter case is ruled out by the full production assumption
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(A2).
Thus, combining equations (A.2, A.3), when λi > 0 final firm i will be allocated sufficient

intermediate goods from its cheapest supplier to meet final demand Q:

qPF
i j =

 1
n(J(i)) fi jQ for j ∈ J (i)

0 for j ̸= J (i)
,

where n(J (i)) is the cardinality of the set J (i). In a symmetric equilibrium, the cheapest supplier(s)
coincides with the closest supplier(s). With intermediate goods firms located equidistant around
the circle, there are at most two closest suppliers for each i (e.g. nodes 0 and 1 for i = 1

2n ). In
such cases when there are two closest suppliers, instead of tie-breaking by dividing order volumes
in half, we assume each intermediate goods node j wins the tie-break to its right on the circle,
but loses the tie-break to its left. This is loosely equivalent to imposing n(J (i)) = 1, ∀i ∈ [0,1]; a
convention we will adopt to simplify exposition without loss of generality.

Having solved for the optimal order flow
{

qPF
i j

}
, we can now derive the aggregate output of

intermediate goods. By symmetry every intermediate goods firm j will produce the same amount
Yj = Y PF , ∀ j ∈ J. So we can compute Y PF from the perspective of firm j = 0, who is able to
capture the two equal market segments to its left and right-hand side, i ∈

[
0, 1

2n

]
and

[
1− 1

2n ,1
]

:

Y PF (Q,w) =
∫ 1

0
qPF

i0 di = 2Q
∫ 1

2n

0
fi0di. (A.4)

Finally, we can substitute the equilibrium intermediate goods production Y PF into the Cobb-
Douglas production function, combined with the optimality condition for inputs ((1−α)wL =

αK) to derive explicit solutions for KPF and LPF :

KPF (Q,w) =
(

w
r
(1−α)

α

)α
[

2Q
∫ 1

2n

0
fi0di

]
,

LPF (Q,w) =
(

r
w

α

1−α

)1−α
[

2Q
∫ 1

2n

0
fi0di

]
.

This completes the proof for Lemma 1.
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B Proof for Lemma 2 - social planner’s constrained optimal
problem

B.1 Period 1 optimization

Taking a similar approach to the Perfect Foresight benchmark, we form the corresponding Kuhn
Tucker Lagrangian for the social planner’s constrained optimal problem in period 1 [SP1]:

L = max
{qi j∈R+}i, j

v
∫ 1

0

(
∑
j∈J

1
fi j

qi j

)
di− ∑

j∈J

[
rK +w j

(∫ 1

0
qi jdi

) 1
α

K− (1−α)
α

]
. . .

−
∫ 1

0
λi

(
∑
j∈J

1
fi j

qi j −Q

)
di.

From the Lagrangian we obtain the first-order derivatives with shortcomplementary slackness con-
ditions:

qi j
∂L

∂qi j
= qi j

 v
fi j

− w
α

(∫ 1
0 qi jdi

K

) 1−α

α

− λi

fi j

= 0 ∀i ∈ [0,1] ,∀ j ∈ J

λi
∂L

∂λi
= λi

(
∑
j∈J

1
fi j

qi j −Q

)
= 0 ∀i ∈ [0,1] .

where v
fi j

is the marginal benefit from supplying i from j (i.e., qi j), and w
α

( ∫ 1
0 qi jdi

K

) 1−α

α

is the

marginal cost. Later, in the final step of this proof, we will substitute out the endogenously deter-

mined K and qi j to show that the marginal cost can be expressed as w
α

( ∫ 1
0 qi jdi

K

) 1−α

α

=
(w

α

)α ( r
1−α

)1−α

(
wQ

1
α

E
[
wQ

1
α

]
)1−α

.

When λi, the Lagrangian multiplier for final goods firm i, is strictly positive, it is determined
by the intermediate goods firm j that offers the lowest effective cost:

λi = v−min
j∈J

 fi j
w
α

(∫ 1
0 qi jdi

K

) 1−α

α

 ,

= v− fi j
w
α

(
Y
K

) 1−α

α

,
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where j belongs to the set of lowest effective cost suppliers for i:

j ∈ J (i) :=

 j̃ ∈ J| fi j̃
w
α

(∫ 1
0 qi jdi

K

) 1−α

α

≤ fi j
w
α

(∫ 1
0 qi jdi

K

) 1−α

α

∀ j ∈ J

 .

Substitute the solution for λi into the first-order condition for qi j, we arrive at the first part of
the Lemma (eqn 3.6):

qSP
i j (Q,w) =

 fi jQ if j ∈ J (i) and v ≥ fi j
w
α

(
Y SP

KSP

) 1−α

α

0 otherwise
,

where Y SP =
∫ 1

0 qSP
i j di, as required.

in the last part of the Lemma, the optimal choice of the scalable input factor in period 1,

LSP (Q,w)=Y
1
α K− (1−α)

α =
(∫ 1

0 qSP
i j di

) 1
α (

KSP)− (1−α)
α , is derived directly from the cost-minimization

problem for the Cobb-Douglas production with partial delay.

B.2 Period 0 optimization

Recall that the period 1 value function for given K and realization of Q and w can be expressed as
the difference between the value of final goods produced and the cost of the required intermediary
goods:

W SP (K|Q,w) = vỸ SP −n
(

rK +w
(

Y SP
) 1

α

K− (1−α)
α

)
,

In a full-production symemtric equilibrium, both the aggregate production of final goods
(
Ỹ SP)

and the production of intermediate goods by each firm
(
Y SP) are independent of capacity invest-

ment K.32 Totally differentiating the expectation of W SP with respect to K yields the desired

32By the full production assumption, we know that the marginal benefit of production exceeds the marginal cost
when final goods producers source from their nearest intermediate goods producers. Therefore, aggregate final goods
production in the symmetric equilibrium is equal to aggregate final goods demand:

Ỹ SP =
∫ 1

0

(
∑
j∈J

1
fi j

qi j

)
di = Q,

and each intermediate firm j’s intermediate goods production in a symmetric equilibrium is given by:

Y SP = Yj =
∫ 1

0
qidi = 2Q

∫ 1
2n

0
f (i)di, ∀ j ∈ J.
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first-order optimality condition for non-scalable capacity in period 0:

dE
[
W SP]

dK
=−n

(
r− (1−α)

α
E
[
wY

1
α K− 1

α

])
= 0

⇔ 0 = r− 1−α

α
E

w

((
LSP)α (KSP)1−α

KSP

) 1
α


⇔ αrKSP = (1−α)E

[
wLSP

]
.

Using the production function to substitute out LSP =
(
Y SP) 1

α
(
KSP)− (1−α)

α and re-arranging
yields the explicit solution for KSP:

KSP =

(
1−α

α

1
r

)α

E

w

(
2Q
∫ 1

2n

0
f (i)di

) 1
α

α

,

where Y SP = 2Q
∫ 1

2n
0 f (i)di, as required for part 2 of the Lemma.

Finally, to complete the proof, we want to verify that this level of capacity investment
(
KSP)

indeed leads to a full production equilibrium under assumption A2. We do this by substituting
out the explicit expression for KSP in the marginal cost function to show that in equilibrium the
marginal cost of production is always below the valuation for the final goods (adjusted for the
distance-based penalty):

M̃C (Q,w) :=
w
α

(
Y SP

KSP

) 1−α

α

=
(w

α

)α
(

r
1−α

)1−α

 wQ
1
α

E
[
wQ

1
α

]
1−α

≤
(

w̄
α

)α( r
1−α

)1−α

 w̄Q̄
1
α

E
[
wQ

1
α

]
1−α

∀w,Q

≤ v
f
( 1

2n

) by assumption A2.
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B.3 Relationship between KPF and KSP

Recall that we can express KPF (Q,w) and KSP explicitly as:

KPF (Q,w) =
(

w
r
(1−α)

α

)α
(

2Q
∫ 1

2n

0
f (i)di

)
,

KSP =

(
1
r

1−α

α

)α
(

2
∫ 1

2n

0
f (i)di

)(
E
[
wQ

1
α

])α

.

Taking the expectation of KPF over (Q,w) and re-arrange to give:

E
[
KPF (Q,w)

]
=

(
1
r
(1−α)

α

)α
(

2
∫ 1

2n

0
f (i)di

)
E [wαQ] .

Therefore:

KSP =

(
E
[
wQ

1
α

])α

E [wαQ]
E
[
KPF (Q,w)

]
.

By Jensen’s inequality, given g(x) := xα is concave for α ∈ (0,1) and x > 0, we have:

KSP ≥ E
[
KPF (Q,w)

]
,

as required. This completes the proof for Lemma 2.

C Sufficient condition for full production symmetric equilib-
rium in the decentralized solution

First, we establish the sufficient conditions for the existence of a full-production symmetric equi-
librium.

Lemma 5. [Existence of Full Production Symmetric Equilibrium]: For every configuration of the

primitives of the model with the exception of v, E−v = { f (·) ,α,w,r,Q}, there exist a v̄ ∈R++ such

that the economies E (v) = { f (·) ,α,w,r,Q,v ≥ v̄} admits a full production symmetric equilibrium.

Intuitively, the marginal benefit of production is increasing in the valuation of the final goods
v, but the marginal cost is non-increasing in v. So, for every parameterization of the model, we can
find a large enough v̄ to guarantee full production in a symmetric equilibrium.

Formally, while assumption A2 establishes the sufficient conditions for full production under
the social planner benchmarks, the corresponding full-production condition for the decentralized
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case is given by:

v ≥ f
(

1
2n

)
p∗ = f

(
1

2n

)
µ (n)M̃C = f

(
1

2n

)
µ (n)

w̄
α

Q̄
∫ 1

2n
0 f (i)di

K∗

 1−α

α

,

where p∗ is the equilibrium price for intermediate goods, µ (n) :=
f( 1

2n)

f( 1
2n)−2

f ′( 1
2n)

f( 1
2n)

∫ 1
2n

0 f (i)di
is the

mark-up over marginal costs, and K∗ is the equilibrium level of non-scalable capacity. We ar-
gue that for every possible parameterization of the other primitives, there exists a v̄ ∈ R++ that
guarantees full production.

Consider an arbitrary economy E (ṽ) = { f (·) ,α,w,r,Q; ṽ} with valuation ṽ. We want to show
that by varying ṽ we can always construct an economy E (v̄) = { f (·) ,α,w,r,Q; v̄} that supports
a full production symmetric equilibrium holding all other primitives the same. To do this, we
compute K∗ (ṽ), the associated equilibrium level of capacity investment assuming full production,

and the corresponding MC (ṽ) = f
( 1

2n

)
µ (n) w̄

α

(
Q̄
∫ 1

2n
0 f (i)di
K∗(ṽ)

) 1−α

α

, the highest possible realiza-

tion of marginal costs in that economy. Note that K∗ (v) is a non-decreasing function of v and
therefore MC (v) is a non-increasing function of v (i.e. the marginal cost of production in any
full production equilibrium does not increase when the valuation increases). Then if ṽ ≥ MC (ṽ),
then the economy E (ṽ) admits a full production symmetric equilibrium characterized by K∗ (ṽ).
If instead ṽ < MC (ṽ), let v̄ = MC (ṽ) > ṽ. Then v̄ = MC (ṽ) ≥ MC (v̄). And every economy
E (v) = { f (·) ,α,w,r,Q;v ≥ v̄} admits a full production symmetric equilibrium as required.

Second, we remark that the full production assumption also enables us to avoid problems of
non-differentiability in the demand function. In a classical treatment of the circular economy, Salop
(1979) segments the demand function for intermediate goods into three sections: a “monopoly”
regime (whereby the firm acts as if it is a monopoly); a “competitive” regime (where it engages
in Bertrand competition with its neighbors); and a “super-competitive” regime (where it prices so
aggressively as to take over its neighbor’s native market). The demand function exhibits a kink at
the intersection between the monopoly and competitive regime, and makes a discontinuous jump
between the competitive and super-competitive regime. We can rule out equilibria falling under
the super-competitive regime by setting a sufficiently steep distance-based penalty function; and
for the purpose of the main analyses in section 3 and 4, the full production assumption ensures
the demand function is continuously differentiable. In appendix G we relax the full production
assumption to examine the interplay between the competitive and monopoly regime.
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D Proof of Proposition 3: full production symmetric equilib-
rium in the spot market

In period 1, the equilibrium spot market orders qspot,∗
i j by final goods firms, and the purchase of

scalable inputs L∗ by intermediate goods firms, take a similar form to their corresponding expres-
sions under the constrained optimal benchmark. We skip their derivations to avoid repetition, and
concentrate instead on the solution for the spot market price p∗, given by equation 4.5.

To solve for p∗, we will first need to derive the demand function facing the intermediate goods
firm j = 0 on the spot market. For now, we will also need to conjecture that the aggregate volume
of pre-orders must be equalized across all final goods firms in equilibrium: Qpre

i = Qpre, ∀i ∈ I, a
result that we will prove formally later in appendix E.

D.1 Finding the slope of the demand curve

The demand curve facing each intermediate goods firm is piece-wise linear (when plotted against
p j, for given p− j). To see this, note that the period 1 equilibrium is governed by two indifference
thresholds. First, for given price vector (p0,p−0), the participation threshold for firm j = 0, ī0, is
defined as the final goods firm that is indifferent between buying inputs from intermediate goods
firm j = 0 and not producing at all:

f (ī0) p0 = v, ∀p0 ∈

[
v

f
(1

2

) ,v] (D.1)

Second, the competitive threshold ī0,1 is the marginal final goods producer that is indifferent
from buying from supplier node j = 0 and j = 1:

f (d (ī0,1,0)) p0 = f (d (ī0,1,1)) p−0 (D.2)

Hence the demand cuve facing firm j = 0 depends on the lower envelope of the participation and
competitive threshold functions:

Y spot
0 = 2

∫ ī∗0

0
f (i) · (Q−Qpre)di (D.3)

where
ī∗0 := min

{
ī0 (p0) , ī0,1 (p0, p−0)

}
(D.4)

When the slope of the demand curve is well-defined (i.e., away from the knife-edge case when
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ī0 (p0) = ī0,1 (p0, p−0)), it is given by:

dY spot
0

d p0
= 2

[
dī∗0
d p0

f (ī∗0)(Q−Qpre)

]
(D.5)

Given the full production assumption, we have ī∗0 := ī0,1 (p0, p−0). So

dī∗0 (p0 = p∗, p−0 = p∗)
d p0

=
dī0,1 (p∗, p∗)

d p0
=−

∂

(
f(ī0,1)

f( 1
n−ī0,1)

p0

)
/∂ p0

∂

(
f(ī0,1)

f( 1
n−ī0,1)

p0

)
/∂ ī0,1

=− 1(
f ′(ī0,1)
f(ī0,1)

+
f ′( 1

n−ī0,1)
f( 1

n−ī0,1)

)
p0

Impose symmetry ī∗0 = ī0,1 (p∗, p∗) = 1
2n to get

dī0,1 (p∗, p∗)
d p0

=−
f
( 1

2n

)
2 f ′
( 1

2n

)
p0

(D.6)

D.2 Solving for the optimal spot market price

We can derive the following first-order condition with respect to p0 from the intermediate goods
producer j = 0’s optimization problem (equation 4.2):(

p∗− w
α

(
Y
K

) 1−α

α

)
= Y spot/

(
−dY spot

d p∗

)
(D.7)

where w
α

(Y
K

) 1−α

α is the marginal cost of production for intermediate goods; Y :=Y spot +Y pre is the
total amount of intermediate goods production; and dY spot

d p∗ is the slope of the demand curve in the
spot market. By imposing symmetry we get p∗ = p∗0 = p∗j for all j ∈ J.

Substituting equations D.5 and D.6 into equation D.7 gives the optimal spot-market price as
required:

(p∗−MC) =
2
∫ 1

2n
0 f (i)(Q−Qpre)di

−2
[
− f( 1

2n)
2 f ′( 1

2n)p∗
f
( 1

2n

)
(Q−Qpre)

]

⇒ p∗ =

1+
2 f ′
( 1

2n

)∫ 1
2n

0 f (i)di(
f
( 1

2n

))2 −2 f ′
( 1

2n

)∫ 1
2n

0 f (i)di

MC
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E Proof of proposition 4: full production symmetric equilib-
rium in the pre-order market

E.1 Final goods producers in period 0

We will start by verifying that the conjecture Qpre
i = Qpre, ∀i ∈ I is indeed an equilibrium solution.

Recall that Qpre
i := ∑ j

1
fi j

qpre
i j denotes the level of final goods demand fulfilled through pre-orders.

Lemma 6. [Optimal Pre-orders] In a full-production symmetric equilibrium, each final goods

producer i will:

1. pre-order from the intermediate goods producers that sets the lowest effective-price for i.

qpre,∗
i j =

 fi jQ
pre,∗
i if j ∈ J (i;φ) , and fi jφ j ≤ v

0 otherwise
(E.1)

where J (i;φ) :=
{

j̃ ∈ J : fi j̃φ j̃ = min{fi ◦φ}
}

denote the set of suppliers that provides the

lowest effective price for i.

2. target to fulfill a level of final goods demands Qpre,∗
i through pre-orders such that the marginal

cost of pre-orders is equal to its expected marginal benefit.

fi j̃φ j̃ = Pr
(
Q > Qpre,∗

i
)

E
[

fi ĵ p
∗
ĵ (Q,w) |Q > Qpre,∗

i

]
, for j̃ ∈ J (i;φ) , ĵ ∈ J (i;p) (E.2)

where J (i;p) :=
{

ĵ ∈ J : fi ĵ p ĵ = min{fi ◦p}
}

Furthermore, imposing symmetry implies

φ = Pr
(
Q > Qpre,∗

i
)

E
[
p∗ (Q,w) |Q > Qpre,∗

i
]

∀i ∈ [0,1] (E.3)

so that the volume of final goods demand fulfilled through pre-orders must be equalized across all

final goods firms:

Qpre,∗
i = Qpre,∗ ∀i ∈ [0,1] (E.4)

Equation E.2 is the first-order condition of final goods producer i’s period 0 optimization prob-
lem. It gives an implicit expression for the equilibrium volume of final goods demand fulfilled
through pre-orders Qpre,∗

i as a function of spot and pre-order prices (p∗,φ). On the left hand side
of the equation, fi j̃φ j̃ is the effective marginal cost of pre-orders. On the right hand side is the ex-
pected marginal benefit of pre-orders, which is equal to the probability that the spot market order
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of i will be strictly positive Pr
(
Q > Qpre,∗

i
)
, multiplied by the conditional expectation of the low-

est effective spot price, given i’s spot-market order is strictly positive E
[

fi ĵ p
∗ (Q,w) |Q > Qpre,∗

i

]
.

Under symmetry, p∗j = p∗ and φ j = φ for all j ∈ J; so the nearest intermediate goods node to i

will always provide the lowest effective price on both the pre-order and spot markets: fi j̃= fi ĵ.
Equation E.2 can thus be simplified to equation E.3, which we can also interpret as the demand
function for pre-orders for given pre-order price φ . Equation E.3 has two immediate implications:
(1) Qpre,∗

i must be equalized across i (equation E.4); and (2) the highest sustainable pre-order price
is φ = E [p∗], in which case the final goods producers will only pre-order to satisfy the minimal
possible realization of final goods demand Qpre,∗ = Q. For any pre-order price greater than the un-
conditional expectation of the spot market price, the aggregate quantity of pre-order will be zero.
So we can view equation E.3 also as a participation constraint for final goods firms on the pre-order
market.

E.2 Intermediate goods producers in period 0

Recall the expected profit function for intermediate goods producers:

max
φ ,K

E
[
Π j
]
=E
[
p∗Y spot −wL∗]+φY pre − rK

=
∫ Q̄

Qpre

∫
w

(
p∗Y spot)h(w)g(Q)dwdQ . . .

−
(∫ Qpre

Q

∫
w
(wL∗)h(w)g(Q)dwdQ+

∫ Q̄

Qpre

∫
w
(wL∗)h(w)g(Q)dwdQ

)
. . .

+φY pre − rK (E.5)

We note that in a symmetric full production equilibrium, the aggregate production of intermediate

goods Y := Y pre +Y spot = 2Q
∫ 1

2n
0 f (i)di is exogenously pinned down by the realization of final

goods demand Q, and the distance-based penalty function f . But the relative importance of the
spot market and the pre-order market (Y pre and Y spot) depends on the volume of pre-orders qpre,
which is in turn determined by the choice of the pre-order price φ . On the other hand, the level
of non-scalable capacity investment K affects the period 1 equilibrium spot market price p∗ (Q,w)

and scalable input demand L∗ (Q,w) in each possible state. We examine the optimality conditions
for φ and K in turn.

First we take the derivative of expected profits with respect to φ . With some algebra, we can
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show that

dE
[
Π j

(
K j,φ j,q

pre
j

)]
dφ

=φ

(
−dY pre

dφ

)
−Pr(Q ≤ Qpre)E

[
w

∂L∗

∂Y
|Q ≤ Qpre

]
dY pre

dφ
. . .

+

(
Y pre +φ

dY pre

dφ

)
(E.6)

=−Pr(Q ≤ Qpre)E
[

w
∂L∗

∂Y
|Q ≤ Qpre

]
dY pre

dφ
+Y pre

=Pr(Q ≤ Qpre)E
[

w
∂L∗

∂Y
|Q ≤ Qpre

](
−dY pre

dφ

)
+Y pre > 0 (E.7)

This imply that the equilibrium must be a corner solution. Intermediate goods producers would
like to set the highest possible pre-order price subject to the participation constraint of final goods
producers (eqn E.3). Thus, from Lemma 6, equilibrium pre-orders will equal to the lowest possible
realization of final goods demand, and the equilibrium pre-order price will equal the unconditional
expectation of the spot market price:

Qpre,∗ = Q (E.8)

φ
∗ = E [p∗ (Q,w)] (E.9)

Next we take the derivative of the expected profit with respect to K:

E
[

∂ p∗

∂K
Y spot

]
−E

[
w

∂L∗

∂K

]
− r = 0 (E.10)

where L∗ = (Y pre +Y spot)
1
α (K)−

1−α

α , so

∂L∗

∂K
=−

(
1−α

α

)(
Y pre +Y spot) 1

α K− 1
α

=−
(

1−α

α

)
L∗

K

Substituting ∂L∗

∂K back into the first-order condition to give

(1−α)E [wL∗] = α

(
r−E

[
∂ p∗

∂K
Y spot

])
K∗ (E.11)

as required.
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Online appendix

This online appendix discusses the robustness of our results to the full production assumption
imposed on the main body of the paper.

F Relaxing the full production assumption for the constrained
social planner

As discussed in the main body, we can show that the optimality condition for non-scalable pro-
duction capacity KSP (equation 3.8) holds with and without the full production assumption. To
elucidate this point, note that when the full production assumption is relaxed, there may exist
states of the world (Q̃, w̃) where some final goods firms situated far from intermediate goods pro-
duction firms do not find it optimal to produce at all. In other words, let īSP

0
(
Q̃, w̃

)
represent a

“threshold” firm in the final goods sector. This firm is indifferent between sourcing inputs from
intermediate goods firm j = 0 and opting out of production altogether in state

(
Q̃, w̃

)
: v

f(īSP
0 )

=

( w̃
α

)α ( r
1−α

)1−α

(
w̃Q̃

1
α

E
[
wQ

1
α

]
)1−α

. Hence there may exist states
(
Q̃, w̃

)
whereby īSP

0
(
Q̃, w̃

)
< 1

2n ,

and the market segment
[
īSP
0
(
Q̃, w̃

)
, 1

2n

]
on the circle produces no final goods outputs and experi-

ences “empty shelves”.
To simplify notation, we will use s as a short-hand for states (Q,w), and denote the set of

“empty shelves” states by M :=
{

s ∈ S : īSP
0 (s)< 1

2n

}
. In the M subset of states, production is

less than “full” and intermediate goods producers operate like monopolies in their own disjoint
local market segments.

At first glance, one might expect that a constrained social planner, operating without the benefit
of an economy always in full production, might want to increase capacity investment KSP above the
level implied by the optimality condition: αrKSP = (1−α)Es

[
wLSP]. The extra capacity would

aim to: (a) reduce the range of shocks (i.e. the set of states M) where supply networks are strained,
and (b) reduce marginal costs and increase production Y in such stressed states.

However, somewhat counterintuitively, we can show that in the constrained social planner’s
problem the indirect effects of capacity through its impact on both (a) the probability of stressed
states

(
d Pr(M)

dK

)
, and (b) output in such states

( dY
dK |(Q,w)∈M

)
are zero in equilibrium. Specifically,

even though d Pr(M)
dK is strictly negative and dY

dK |(Q,w)∈M strictly positive (as expected), both terms
are multiplied by another term that is zero in equilibrium.33 Therefore, irrespective of whether the

33This result bears resemblance to the Envelope Theorem, in which the total derivative of the value function with
respect to the parameters of the model is equal to its partial derivative. Here K is the choice variable, but the total
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full-production assumption holds, αrKSP = (1−α)E
[
wLSP]. Only the direct effects of K on the

choice of inputs and on the cost of production matter.
Formally, recall that the period 1 value function for given K and realization of states s can be

expressed as the difference between the value of final goods produced and the cost of the required
intermediary goods:

W SP (K;s) = vỸ SP (K;s)−n
(

rK +w
(

Y SP (K;s)
) 1

α

K− (1−α)
α

)
= v

(
2n
∫ min{ 1

2n ,ī
SP
0 (K;s)}

0
Qdi

)
−n
(

rK +w
(

Y SP (K;s)
) 1

α

K− (1−α)
α

)
,

where iSP
0 (K;s) is the threshold buyer for intermediate goods 0, (implicitly) defined as the final

goods firm i for which the marginal benefit of sourcing inputs from j = 0 equals the marginal cost:

v
f
(
īSP
0
) = w

α

(
Y SP

K

) 1−α

α

. (F.1)

The upper limit of integration, min
{ 1

2n , ī
SP
0
}

, reflects the possibility of “regime switching” when
the full production assumption is relaxed. When the economy operates at a full-production equi-
librium, the relevant threshold buyer for intermediate goods firm j = 0 is given by i = 1

2n , the final
goods firm located at the half way point between j = 0 and j = 1. This is a competitive regime,
where intermediate goods firms engage in monopolistic competition. But when the indifference
threshold īSP

0 falls below 1
2n , we have instead a local monopolies regime, characterized by a gap in

market coverage between two supplier nodes (e.g. between j = 0 and j = 1). We account for the
possibility of “regime switching” between the competitive regime and the local monopolies regime
in the analyses that follows.

Totally differentiating the expectation of W SP with respect to K will yield the desired first-order
optimality condition for non-scalable capacity in period 0.

max
K

E
[
W SP (K,s)

]
= vE

[
Ỹ SP (K,s)

]
−nrK −nE

[
w
(

Y SP
) 1

α

K− (1−α)
α

]
,

derivative of W SP (K|Q,w) with respect to K is also equal to its partial derivative.
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with first-order condition:

0 =
E
[
W SP (KSP,s

)]
dK

= vE
[

dỸ SP (K,s)
dK

]
−nr−nE

w
α

(
Y SP

K

) (1−α)
α dY SP (K,s)

dK
−w

1−α

α

(
Y SP

K

) 1
α

 . (F.2)

Unlike in the full-production case, both the aggregate production of final goods
(
Ỹ SP) and

the production of intermediate goods by each firm
(
Y SP) will depend on the choice of period 0

capacity investment K. These two terms (E
[

dỸ SP

dK

]
,E
[

dY SP

dK

]
) will capture the indirect effects of K

on aggregate welfare. We examine each in turn.
First, for each K, we order the set of states s in ascending order of their implied threshold for

regime switch īSP
0 (K,s), such that states in the subset M are at the bottom. This allows us to express

the expected level of final goods production as:

E
[
Ỹ SP (K,s)

]
= 2nE

[∫ min{ 1
2n ,ī0(K,s)}

0
Qdi

]
= 2n

∫
s

[
min

{
1

2n
, ī0 (K,s)

}
·Q
]

g(s)ds

= 2n

[∫ sM(K)

s
ī0 (K,s)Qg(s)ds+

∫ s̄

sM(K)

1
2n

Qg(s)ds

]
,

where g(s) is the probability density function of state s. sM (K) :=
{

s̃ ∈ S : īSP
0 (K, s̃) = 1

2n

}
is

the state at the knife-edge intersection of the competitive regime and the local monopolies regime,
with dsM(K)

dK < 0 (i.e, higher capacity investment reduces the set of states under the local monopolies
regime). Totally differentiating the above expression with respect to K yields:

dE
[
Ỹ SP (K,s)

]
dK

= 2n

∫ sM

s

dī0 (K,s)
dK

Qg(s)ds+
dsM

dK
g
(
sM) ī0

(
K,sM)︸ ︷︷ ︸
:= 1

2n

Q− dsM

dK
g
(
sM) 1

2n
Q


= 2n

∫ sM

s

dī0 (K,s)
dK

Qg(s)ds

= 2nPr(M)E
[

dī0 (K,s)
dK

Q|s ∈ M
]
.

In the second equality above, we observe that the terms associated with the change in the prob-
ability of monopoly states d Pr(M)

dK ≡ dsM

dK g
(
sM) cancels out because at the knife-edge the limiting

local monopoly regime is identical to the competitive regime (ī0
(
K,sM) = 1

2n ). With a bit more
algebra, we can also verify that it is safe to exchange the order of differentiation and expectation

46



such that E
[

dỸ SP(K,s)
dK

]
=

dE[Ỹ SP(K,s)]
dK . Thus, we can safely ignore the effect of K on the probability

of regime change in the first-order condition (equation F.2).
Second, we repeat the same process for the expected level of intermediate goods production:

Y SP (K,s) = 2
∫ min{ 1

2n ,ī0(K,s)}
0

( f (i)Q)di.

Note that intermediate goods production is increasing in capacity investments only in the states
s ∈ M, where we don’t have full production already:

dY SP (K,s)
dK

=

0 for s /∈ M

2Qdī0(K,s)
dK f (ī0 (K,s)) for s ∈ M

.

Therefore the overall expected impact of K on intermediate goods production Y SP is given by its
conditional impact in states s ∈ M, multiplied by the probability of such states:

dE
[
Y SP (K,s)

]
dK

= E
[

dY SP (K,s)
dK

]
= Pr(M)E

[
dY SP (K,s)

dK
|s ∈ M

]
= 2Pr(M)E

[
dī0 (K,s)

dK
f (ī0 (K,s))Q|s ∈ M

]
.

The final equality above allows us to establish a link between E
[

dỸ SP

dK

]
and E

[
dY SP

dK

]
as follows:

dE
[
Ỹ SP (K,s)

]
dK

= 2nPr(M)E
[

dī0 (K,s)
dK

Q|s ∈ M
]

= nPr(M)E
[

1
f (ī0 (K,s))

dY SP (K,s)
dK

|s ∈ M
]
.

Finally, we substitute the expressions above for
dE[Ỹ SP(K,s)]

dK and
dE[Y SP(K,s)]

dK into the first order
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condition for the constrained social planner to yield main result as required:

0 = v
dE
[
Ỹ SP]

dK
−nr−nE

w
α

(
Y SP

K

) (1−α)
α dY SP

dK
−w

1−α

α

(
Y SP

K

) 1
α


= nPr(M)E

[
v

f (ī0)
dY SP

dK
|s ∈ M

]
−nr+ . . .

−nPr(M)E

w
α

(
Y SP

K

) (1−α)
α dY SP

dK
|s ∈ M

+nE

w
1−α

α

(
Y SP

K

) 1
α



⇔ 0 = Pr(M)E


 v

f (ī0)
− w

α

(
Y SP

K

) (1−α)
α

︸ ︷︷ ︸
=0

 dY SP

dK
|s ∈ M

− r+E

w
1−α

α

(
Y SP

K

) 1
α



⇔ r = E

w
1−α

α

(
LSP

K

) 1
α

 (given Cobb-Douglas production fn.)

⇔ αrKSP = (1−α)E
[
wLSP

]
.

The equality v
f (ī0)

− w
α

(
Y SP

K

) (1−α)
α

= 0 comes from the definition of the threshold buyer ī0 for j = 0,
for whom the marginal benefit from producing the final good v

f (ī0)
is equal to the marginal cost

w
α

(
Y SP

K

) (1−α)
α . This completes the proof for the result in the main body, for the case where the full

production assumption is relaxed.

G Partial production and local monopolies in the decentralized
solution

In this appendix, we discuss the implications of relaxing the full production assumption. Relaxing
the assumption allows for shocks that are severe enough to shut out some market segments of final
goods producers from the spot market. Final goods producers that are further away from interme-
diate goods suppliers (i.e., those with less substitutable inputs) will experience greater difficulty
adjusting to the shocks.

To see this, note that the period 1 equilibrium is governed by two indifference thresholds (which
may or may not be binding). First, for given price vector (p0, p−0), where p j = p−0 ∀ j ̸= 0, the
participation threshold ī0 is defined as the final goods firm that is indifferent between buying inputs

48



from intermediate goods firm j = 0 and not producing at all:

f (ī0) p0 = v, ∀p0 ∈

[
v

f
(1

2

) ,v] (G.1)

Second, the competitive threshold ī0,1 is the marginal final goods producer that is indifferent
between buying from supplier node j = 0 and j = 1:

f (d (ī0,1,0)) p0 = f (d (ī0,1,1)) p−0 (G.2)

As Figure G.1 illustrates, the participation threshold ī0 (and its counterparts for j ̸= 0) can be
visualized as the arms that reaches out from each supplier node. The participation threshold there-
fore represents the potential market reach for each intermediate goods supplier. As long as the
market reach from two nearby supplier nodes overlap, the two suppliers engage in competition and
the competitive threshold ī0,1 is the binding threshold for computing demand. Under this compet-

itive regime, the intermediate goods suppliers’ market reach covers every market segment on the
circle. The aggregate demand for final goods is met and we see “full shelves”. The competitive
regime always prevails under the full production assumption.

We can show further that the market reach of each intermediate goods supplier is increasing in
the level of non-scalable capacity installed (K), and decreasing in the cost of the scalable input (w).
For given level of non-scalable capacity K, the market reach of each supplier node gets shorter as
the size of the negative cost shock increases, until eventually the participation thresholds ī0 and
ī1 no longer overlap and the two neighboring suppliers ( j = 0,1) behave like local monopolies.
Under this local monopolies regime, there is a gap in market coverage between the two supplier
nodes, and we see “empty shelves” in some segments of the market.34

The optimal pricing strategy of intermediate goods suppliers therefore depend on whether they
are operating under the competitive or the local monopolies regime, which in turn depends on
the realization of demand and supply shocks in period 1. We formally characterize the symmet-
ric equilibrium spot-market pricing strategy under the assumption that the distance-based penalty
function f (x) takes the form of an exponential function, with parameter β .

Assumption A3 Exponential distance-based penalty function: f (d) = exp(βd), where β ∈ (0,1]
governs the degree of substitutability between different intermediate goods.

34A third possible regime arises when the market reach of one intermediate goods supplier goes past the node of
another. This is the “super-competitive” regime, whereby one supplier prices so aggressively as to capture the home
market of their neighboring competitor. Allowing for this possibility would lead to a discontinuous jump in the demand
function for intermediate goods. In the interest of tractability, we can rule out the possibility of a super-competitive
regime by making the distance-based penalty function f (·) sufficiently punishing.
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Figure G.1: Regime switching: competition vs local monopolies

Lemma 7. [Optimal spot-market pricing under symmetric equilibrium]

1. Under the competitive regime, we have ī0,1 = 1
2n ≤ ī0 and the equilibrium price for the

intermediate goods is given by:

p∗c = MCc ·
exp
(

β

2n

)
2− exp

(
β

2n

) (G.3)

where MCc is the marginal cost faced by intermediate goods suppliers

MCc =
w
α

(
Y pre +Y spot

c

K

) 1−α

α

(G.4)

2. Under the local monopolies regime, we have ī0 < ī0,1 = 1
2n and the equilibrium price for the

intermediate goods is given by:

p∗m =
√

v ·MCm (G.5)

where MCm is the marginal cost faced by intermediate goods suppliers

MCm =
w
α

(
Y pre +Y spot

m

K

) 1−α

α

(G.6)

Intuitively, the first part of Proposition 7 shows that under a competitive regime, intermediate goods
suppliers charge a mark-up over marginal costs.35 The mark-up is higher when substitutability is
lower (i.e., when β , the parameter governing the distance-based penalty function, is closer to 1),
and lower when competition is fiercer (i.e., when n is large). In the limit, as n approaches infinity
- and the distance between nodes shrinks to zero such that intermediate goods become perfectly
substitutable - equation G.3 simplifies down to the familiar condition of price equals marginal cost.

35This part of the proposition is just a re-writing of our earlier results for this specific parameterization.
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The second part of Proposition 7 shows that when intermediate goods suppliers operate as local
monopolies, the price they charge is equal to the geometric average between their marginal costs
(MCm) and the highest possible price (v, the valuation of the final goods output by end consumers).
Unsurprisingly, whilst intermediate goods suppliers operates as local monopolies, the number of
other firms n is irrelevant to their pricing decision. Any changes in n instead influences whether the
economy switches between the local monopolies regime and the competitive regime (i.e. whether
ī0 is less or greater than ī0,1 = 1

2n ).36

Other factors that influence the market pricing regime that prevails in equilibrium include the
level of non-scalable production capacity in place K, and the cost of the scalable input w.

Proposition 3. [Regime switching] ī0, the participation threshold (i.e market reach) of firm j = 0,

is increasing in K and decreasing in w:

dī0
dK

> 0 (G.7)

dī0
dw

< 0 (G.8)

Proposition 3 formalizes our earlier discussion that, for given non-scalable capacity K, larger

negative supply shocks (larger w) increases the likelihood that the economy will end up in the

local monopolies regime. Under the local monopolies regime, the market segment (i ∈ (ī0, ī1))
that lies in-between the market-reach of the two nearby supplier nodes will not be able to fulfill
their realized demand for final goods, and we observe “empty shelves”. Intuitively, the proposition
holds because a higher K, and a lower w, reduces the marginal cost of production, which increases
the market reach of the intermediate goods supplier.37

A key implication of Proposition 3 is that the response of final goods outputs to shocks is
non-linear. Under normal or benign market conditions, the economy might be operating under the
competitive regime which ensures that demand from every market segment is met. Market reach
of neighboring suppliers overlap, and continues to overlap for small perturbations in supply and
demand. Under these benign conditions, the supply network appears robust. But when negative
supply shocks becomes sufficiently large, the economy suddenly switches from the competitive
regime to the local monopolies regime. The critical role capacity plays, therefore, is that it prevents
empty shelves for a larger range of shocks. A larger K allows for a larger market-reach overlap for

36Clearly, this neat characterization of the monopoly price as a geometric average won’t hold in general (e.g. without
the exponential functional form for f (d)). But the other part of the proposition, that in the local monopolies regime
the number of other firms is irrelevant, is more general. Even if other firms exist, they simply aren’t selling in each
other’s “submarket”.

37Note that this analysis is not comparative statics in the strict sense: w is an exogenous variable, but K is an
endogenous variable. With regard to the latter, we are asking how firms’ endogenous choice of capacity investment in
period 0 affects market reach and the nature of competition on the spot market in period 1.
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any given input cost w, making the entire network more robust. But since the degree of overlap is
in of itself irrelevant, surplus capacity is “wasted” in the absence of large negative supply shocks.

Relaxing the full production assumption therefore reinforces our central message that K∗ <

KSP. This is intuitive, because the possibility of a large shock shifting the economy to a local
monopolies regime adds another distortion to the system. Ex ante capacity investment K increases
network resilience by ensuring full production for a wider range of shocks, but is undervalued
by market participants under business-as-usual scenarios. Robustness becomes an externality that
may not be fully internalized by individual intermediate goods suppliers in their capacity decisions
in period 0. Worse still, in imperfectly competitive economies, some firms may profit from the
artificial scarcity that arises from a lack of resilience.
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