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The shortages and spikes in prices of certain intermediate goods during the pan-
demic demonstrated the fragility of supply chains. Prominent examples include a
global shortage of semi-conductors leading to a dramatic rise in the price of second-
hand cars in the U.S.; and an unprecedented demand for hand sanitizers and per-
sonal protective gear triggering supply shortages in their respective, as well as inter-
linked, industries. Policymakers reacted strongly by taking industry-specific actions
to improve resilience and repair linkages. For example, the Biden-Harris Adminis-
tration worked in partnership with Congress to provide new legislation to alleviate
specific supply chain disruptions and promote greater resilience in future situations.
Moreover, while the large and small supply chain disruptions during Covid-19 had
propelled the issue into popular discourse, the cracks had been evident before the
pandemic. Hanjin Shipping, a world’s top ten container carrier, filed for bankruptcy
in September 2016 due to sluggish freight rates caused by weak demand and soar-
ing global capacity. The bankruptcy affected global supply chains, because half of
Hanjin’s container ships were denied access to ports. Major U.S. retailers, such as
J.C. Penney and Walmart, began to divert and switch carriers for their containers to
other suppliers. Similarly, the failure of Carillion in January 2018, once the second
largest construction company in the U.K., brought down many of its suppliers.1

These experiences with supply network disruptions left open the question: had
firms invested too little in resilience ex ante? The pandemic was an extreme event,
and in general firms should not be expected to anticipate and to plan for every pos-
sible contingency. Doing so would almost surely be inefficient, entailing excessive
focus on resilience. We show here however, that given market power and market
incompleteness, one should expect markets to under-invest in resilience relative to
a constrained efficient benchmark.

We formulate a tractable theoretical model whereby a collection of intermediate
and final good producers form supply linkages to meet uncertain consumer demand

1See FT: Car chip shortage shines light on fragility of US supply chain; CNN: Distilleries are
making hand sanitizers with their in-house alcohol and giving it out for free to combat coronavirus;
Bidden-Harris Supply Chain Disruption Task Force; DW: Bankrupt Hanjin sparks shipping crisis
and Guardian: Carillion collapse: two years on, the government has learned nothing". for detailed
coverage of these episodes. A more academic account can be found in Baqaee and Farhi (2022),
Guerrieri et al. (2022) and Di Giovanni et al. (2022).
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and accommodate supply shocks. Each final good producer (the downstream firm)
can source differentiated inputs from one or more suppliers of the intermediate good
(the upstream firms). Intermediate good producers engage in price (i.e. Bertrand)
competition with differentiated products, taking the prices set by competitors as
given. Lowering the price charged allows an intermediate good producer to in-
crease demand on the extensive margin (by attracting more final good producers).2

Intermediate good producers face uncertainty in demand and supply conditions.
They invest in non-scalable production capacity before the realization of shocks,
reflecting the fact that some factors of production cannot be readily adjusted at
short notice.3 Given the structural frictions in the economy, namely the lags in
production and the uncertainty around future market conditions, over-investment
in capacity can be just as inefficient as under-investment. A supply network that
is efficiently resilient strikes the optimal balance on resilience, taking into account
these structural frictions.

Using the model, we demonstrate the existence of a market failure in decen-
tralized supply networks, whereby upstream firms do not fully internalize the social
benefits of building production capacity. When upstream firms over-invest in capac-
ity, part of the cost savings are passed-on to downstream firms via lower prices; but
when firms under-invest, they can defend their profit margins in spite of mounting
costs by charging higher prices. The shortages that result from under-investments
enhance market power, which the upstream firms rationally anticipate. As a result,
upstream firms will always lean towards under-investment.

This pecuniary externality is not internalized by the decentralized market due to
a combination of (1) market power and (2) market incompleteness. First, upstream
intermediate good producers exhibit market power because: (a) there are only a
finite number of such firms; and (b) the intermediate goods they produce are im-
perfect substitutes of each other. Second, firms do not have access to the full set of
Arrow-Debreu securities, and instead must trade either on the pre-order market, or
on the spot market once the shocks have realized. The pre-order market offers par-

2In a more general case, lowering the price may also affect the intensive margin.
3Semiconductors is an example of an important intermediate good that requires significant ca-

pacity investment upfront. In the EU, The European Chips Act (2023) aims to provide additional
public and private investments of more than EUR 15 billion.
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tial insurance to both the upstream and downstream firms. For the upstream firms,
pre-orders establish a minimum level of demand for their outputs, and help with
their upfront non-scalable capacity investment decision. For the downstream final
good producers, a pre-order contract locks in an agreed price for the intermediary
inputs in their production, shielding them from cost shocks in the upstream sector.
If realized demand for final goods exceeds what can be fulfilled through pre-orders,
the downstream firm can then source the extra inputs required from the spot market.
As we observe in practice, the spot and pre-order markets are insufficient to deal
with the full spectrum of possible shocks, and thus unable to provide full insurance
against supply network disruptions.4

Taken together, we show that the market-based network invests too little in pro-
duction capacity (K∗) relative to a constrained optimal benchmark (KSP) with a
social planner facing the same informational and technological constraints as the
private market. Even under the constrained benchmark, it is not optimal to build
enough capacity to account for all contingencies. So there will be times when firms
ex post have considerable market power, which, obviously, the social planner would
not take advantage of but private firms would. In short, market based supply net-
works are inefficiently resilient: K∗ < KSP.

Remarkably, this wedge between the decentralized and centralized solution arises
even when rare large shocks are absent, and the economy operates in a “full produc-
tion” equilibrium whereby supply is sufficiently agile to accommodate all possible
demand. Our results do not depend on an arbitrary specification of the distribution
of shocks (e.g. we do not require a threshold for the probability of large negative
shocks). Nor do we need to impose a level of risk aversion on the part of private
agents or social planner. Capacity investment is sub-optimally low, even when ev-
ery agent – including the constrained social planner – is risk-neutral.

Extending the analysis to account for rare disasters (in the appendix), we show
that the response of market-based supply networks to shocks can be highly non-

4It is obvious that such full insurance does not exist. Given the range of shocks that could occur
– some of which are now not even really conceivable – the incompleteness of insurance markets is
inevitable. Theories of asymmetric information provide further explanations of the absence of a full
set of insurance markets. See Greenwald and Stiglitz (1986) and Stiglitz (1982).
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linear. Private supply networks are seemingly resilient5 during normal times and
can comfortably withstand small to moderate shocks, but are fragile to rare large
shocks, when real rigidities prevent suppliers from fully meeting the needs of the
market. With a large enough shock, there is a transition from a monopolistically
competitive regime to a local monopoly regime – whereby upstream firms are no
longer pricing to compete and each downstream firms will only receive one credible
offer for inputs. In other words, in a crisis, individual suppliers prioritize the needs
of their local market but with increased margins.6 Supply network fragility can lead
to an increase in market power (in our model, reflected in suboptimal retrenchment
in market coverage), especially when demand is at its greatest.

The size of the wedge between the decentralized and centralized solution de-
pends endogenously on firms’ reliance on the spot market, and exogenously on the
structural parameters of the economy. An economy exhibiting greater scalability
(production functions that rely less on non-scalable capacity investments), higher
substitutability (intermediate good inputs that are more inter-changeable) and more
competition (more upstream firms) will be more efficiently resilient.

Therefore, there are broadly three avenues for narrowing the wedge. First, a di-
rect governmental subsidy targeting investment in production capacity could serve
as the most pragmatic remedy. Second, enhancing incentives for the use of pre-
order markets can offer upstream firms the assurance of recouping initial costs. We
show that an over-reliance on the spot market contributes to fragility in the supply
network.7 Lastly, the government can promote structural changes in the economy
to enhance scalability, substitutability and competition. Enhancing competition is

5By “seemingly resilient”, we mean that demand can be fully met at some price. It is still the
case that there is too little capacity.

6The surge in demand for Covid vaccines in 2021 and the frantic pursuit of natural gas during
the European energy crisis in 2022 serve as illustrative examples. Global supply constraints often
lead to redirection towards wealthier nations, leaving less affluent developing markets economically
disadvantaged during challenging times. During the post-Covid recovery, there is evidence of a
marked increase in market power (markups) associated with the supply chain interruptions. See
Konczal and Lusiani (2022).

7For instance, in 2021 and 2022, more than 30 energy companies in the UK failed due to a
rapid increase in wholesale natural gas prices and inadequate hedging through futures/forward con-
tracts by the energy companies. See https://www.forbes.com/uk/advisor/energy/failed-uk-energy-
suppliers-update/ for details.
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good in its own right, and doubly so when making supply networks more efficiently
resilient.

1 Related Literature

The literature on the resilience of supply networks to shocks can be roughly cate-
gorized into two branches. The first focuses on analyzing the mechanisms through
which idiosyncratic shocks propagate and amplify within a fixed network of firms
with pre-specified relationships. Acemoglu and Tahbaz-Salehi (2020) examine the
impact of productivity shocks on the distribution of economic surplus, firm fail-
ures, and the amplification of shocks through disruptions. Acemoglu et al. (2012)
propose a model that explains how micro shocks can be magnified into macro fluc-
tuations through input-output linkages. Carvalho et al. (2021) use data from the
2011 Japanese earthquake to demonstrate the significant macroeconomic impli-
cations of idiosyncratic shocks. Barrot and Sauvagnat (2016) reveal evidence of
fragility caused by the propagation of firm-specific shocks, using data on natural
disasters. We refer to Carvalho (2014) and Carvalho and Tahbaz-Salehi (2019) for
a thorough review of such mechanisms.

That markets wouldn’t be prepared for every shock they confront is not a sur-
prise. The analytically interesting question is the normative one: relative to an
appropriate benchmark, do they adequately prepare for shocks? The failure of each
firm in a competitive environment to take account of how capacity decisions affect
the distribution of prices in the spot markets is one of the two central market failures
that we identify.

The second branch of literature focuses on firms’ strategic responses to mit-
igate the negative impacts of supply chain disruption. Birge et al. (2023) explore
how firms in a supply chain network strategically react post-disruption by optimally
switching demand and rerouting supply from defaulted firms. Amelkin and Vohra
(2020) examine the competing retailers’ decision-making process when selecting
suppliers, taking into account factors such as prices and suppliers’ reliability as
measured by yield uncertainty and congestion.8

8A few other studies from the operations management literature analyze the mechanisms through
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Our work is closely related to that by Elliot et al. (2022) and Grossman et al.
(2023) which (also) examine supply network formation and fragility. In their mod-
els, downstream firms source customized inputs from upstream firms. To insure
against possible supply disruptions, downstream firms strategically invest in rela-
tionships with multiple potential suppliers.9 One might infer from their analyses
that systemic fragility should be reduced if inputs were more (albeit still imper-
fectly) substitutable, and there existed a common spot market for such inputs. We
show that such a spot market would not only be insufficient to eliminate supply
network fragility, but an over-reliance on spot market transactions by market par-
ticipants would actually amplify the inherent externalities. In our model, fragility
within the supply network is not a consequence of a catastrophic break-down of up-
stream suppliers or a failure in supplier diversification, but due to a more structural
combination of market power and incomplete markets.

On the empirical side, Atalay et al. (2011) estimate a model of firms’ buyer-
supplier relationships using microdata on firms’ customers. Crosignani et al. (2019)
investigate the consequences of supply shocks resulting from NotPetya, one of the
most severe cyberattacks in history. They observe that the affected downstream cus-
tomers were more inclined to establish new relationships with alternative suppliers
while terminating existing relationships with the directly affected firms. Lastly,
Baldwin and Freeman (2022) examines the cross-border dimensions of resilience
in global supply chains.

The rest of the paper is organized as follows. Section 2 sets-up the model econ-
omy. Section 3 constructs the social planner benchmarks, and characterizes the
constrained-optimal level of capacity investment (KSP). Section 4 characterizes
the decentralized equilibrium and the market solution for capacity (K∗). Section 5
presents our core result that firms’ investment in capacity is insufficient: K∗ < KSP

and discusses potential policy interventions. Section 6 concludes with suggestions
for further research. Detailed derivations and proofs are found in the appendix,
along with an extension of the analysis to rare large shocks pushing the economy

which multi-sourcing strategies and supplier selection can help mitigate risk in supply chains. See
Anupindi and Akella (1993), Tomlin (2006), Babich et al. (2012) and Babich et al. (2007).

9See also Elliott and Golub (2022) for a survey on supply chain disruptions and their macroeco-
nomic implications.
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away from full production.

2 Model

Consider an economy with two types of goods: final goods (the consumption nu-
meraire) and intermediate goods used in the production of the final goods. There are
a continuum of final good producers (i.e., downstream firms, indexed i ∈ I = [0,1])
and n ≥ 2 intermediate good producers (i.e., upstream firms, indexed j ∈ J =

{0,1, . . . ,n−1}), all located around a circle with unit circumference. The posi-
tions of the intermediate good producers around the circle are represented by nodes,
which divide the continuum of final good producers into n “market segments”. Fig-
ure 2.1 illustrates a simplified example of such an economy with n = 3 intermediate
good producers. Distance is quantified along the circle’s circumference, ensuring
that the maximum distance separating any two points is 1

2 .

Figure 2.1: Illustrative Economy

Consider an illustrative economy with three intermediate good firms ( j ∈ {0,1,2}). The intermediate good firms are located
equi-distant from each other, separating the circle into three equal market segments {I0, I1, I2}. In a typical equilibrium, Firms
j = 0 and j = 1 compete over final good firms located in the market segment I0.

Intermediate good producers j ∈ J are price-setters. They set prices
{

p j
}

to
compete over final good producers in their two neighboring market segments.10 The

10It is possible for any particular intermediate good producer to price so aggressively as to capture
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mass of final good producers in each market segment are denoted as {mk}k=0,...,n−1.
To fulfill the endogenous demand for intermediate goods, each intermediate good
producer j operates a Cobb-Douglas production function with partial delay: Yj,t =

Lα j
j,tK

1−α j
j,t−1 , where L j denotes the scalable input factors in production with factor

price w j > 0 ; and K j the non-scalable capacity investments that must be installed
one period in advance at unit price r j > 0. The key distinction is that non-scalable
inputs K j cannot be adjusted in the short-run.11 The parameter α j ∈ (0,1), the
exponent of L, measures the scalability of each sector j. Crucially, intermediate
good producers j must decide on the level of non-scalable capacity investments
K j before the realization of shocks to the economy. As we will discuss in greater
detail below, the intermediate good producer’s capacity investment (K j), and pricing
decisions (on both the spot and future market) form the core of our model.

We model the final good producers in a more reduced-form fashion. Specifi-
cally, final good producers i ∈ I are price-takers. Each atomistic final good pro-
ducer i faces an exogenous demand Qi for their output, valued at unit price v.12

They convert intermediate goods into the final good using a linear production func-
tion Ỹi = ∑ j

1
f (d(i, j))qi j, where Ỹi denotes the final good output of firm i; qi j is the

quantity of intermediate good input firm i sources from firm j; and f (d (i, j)) is
a penalty function that depends on the distance (d (i, j) ∈

[
0, 1

2

]
) between the two

firms.

demand from market segments further afield. This corresponds to the “super-competitive” region
of the demand curve in a circular economy (see Salop (1979)). For the purpose of the present
analysis, our closed-form solutions focus on a symmetric equilibrium in which all intermediate good
producers find it optimal to set the same price, thus ruling out competition outside of the neighboring
market segments.

11For brevity we will henceforth drop the time subscripts, and note simply that K must be pre-
committed in advance of production.

12In our model, final good firms form expectations over the level of demand Qi taking the price
v as a fixed constant; whereas more generally, shocks to final good demand would affect both (their
desired) equilibrium quantity Qi and price vi. We simplify the analysis by taking the integral over
the distribution of Qi only, instead of the joint distribution over both Qi and vi. This simplifications
offers greater analytical tractability, highlights the critical market failures, whilst preserving the
essential economics of resilience. One can think of this either as: (1) a stylized portrayal of final
good demand - a demand curve with demand equal to Q for price equal or less than v, and zero
demand for price above v; or (2) a description of specific markets - like that for electricity - in which
all firms have signed contracts to deliver output at price v regardless of the level of demand that
materialize.
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One way to think about this distance-based penalty function is that for every
unit of intermediate good j purchased by i, only a fraction 1

f (d(i, j)) is usable. The

remainder,
(

1− 1
f (d(i, j))

)
, “perishes in transit”. Another interpretation of f (·) is a

valuation-based penalty function. For any given valuation v, the effective valuation
of the final good i that uses inputs j is given by v

f (d(i, j)) . Therefore, the function
f (·) can also account for heterogeneous valuations of final goods. Specifically, a
final good firm i producing outputs using more “distant” intermediate goods would
experience a diminished valuation for their output. A third interpretation (and the
one we focus upon in the discussion below) is that the different intermediate goods
are imperfect substitutes for each other. The production at any place in the circle
is designed for a certain type of intermediate good, but can use other intermediate
goods, though they yield less output per unit of input. (Think of an oil refinery
designed to refine oil of a specific gravity and sulfur content. It can refine oil with
other characteristics, but less efficiently). For ease of exposition, we will refer to
f (·) henceforth as the distance-based penalty function (distance, in this interpreta-
tion, refers to distance in the product space).13

We assume that f (·) is an increasing function, normalized such that f (0) =
1. This penalty function f (·), combined with the starting distance between firms
d (i, j), captures the extent of substitutability among intermediate goods. The greater
the distance d (i, j) between two firms, and the steeper the slope f ′ (x) of the penalty
function, the more inefficient it is for final good producer i to source inputs from in-
termediate good producer j. For brevity, let fi j := f (d (i, j)); and fi :=( fi0, . . . , fi,n−1)

′

be the corresponding n×1 column vector of penalties for final good producer i.
Figure 2.2 summarizes the timeline of the model. At period 0, there is un-

certainty around the demand and supply conditions that will prevail in period 1.
Specifically, the uncertainty around the demand for final goods produced by firm i

is captured by the random variable Qi. Qi is distributed between
[
Qi, Q̄i

]
, with cu-

mulative density function (c.d.f.) Gi (·) and associated probability density function
(p.d.f.) gi (·). There is also uncertainty around

{
w j
}

j∈J , the price of the scalable
input factor, which affects the supply of the intermediate good j. w j is distributed

13For a discussion of the measurement of distance in product space, see, e.g., Stiglitz (1986).
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Figure 2.2: Model Timeline

Timeline of events, decisions and actions undertaken by intermediate and final good producers.

between
[
w j, w̄ j

]
, with c.d.f. H j (·) and p.d.f. h j (·).14 Supply shocks are assumed

to be independent of demand shocks. In our formulation, there is no uncertainty
about the price of the final good - it is the numeraire.

In period 0, to hedge against these demand and supply shocks, each final good
producer i decides whether to enter into a supplier contract with each intermediate

good producer j, placing pre-orders qpre
i :=

[
qpre

i0 , . . . ,qpre
i j , . . . ,qpre

in−1

]′
. Each inter-

mediate good producer j sets pre-order price φ j. Concurrently, they make a cost-
minimizing decision on the level of non-scalable capacity K j, incurring associated
costs denoted by r jK j. The pre-order contracts between final good and intermediate
good producers define the endogenous network formed in period 0.

In period 1, firms observe the realization of the demand and supply shocks. Fi-

nal good producer i submits spot-market orders qspot
i :=

[
qspot

i0 , . . . ,qspot
i j , . . . ,qspot

in−1

]′
.

The total cost of pre-orders and spot-market orders for firm i is given by
[
φ ·qpre

i +p ·qspot
i
]
,

where φ :=
[
φ0, . . . ,φ j, . . .φn−1

]′
denote the vector of pre-order prices, and p the

vector of spot-market prices. At period 1, intermediate good producer j takes pre-
committed capacity K j as given, solves for the cost-minimizing scalable input L j ,
and sets prices p j to maximize profits. Production occurs and contracts are settled.
The excess of production over the contracted pre-orders is sold on the spot market.

In our model, the final good producers can buy from any intermediate good

14Without loss of generality, let ∞ > Q̄i > Qi > 0, ∀i ∈ [0,1]; and ∞ > w̄ j > w j > 0, ∀ j ∈ J.
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producer at the posted price. This stands in contrast to much of the network litera-
ture discussed in the previous section (e.g. Elliot et al. (2022)), where final goods
producers can only buy from the firms with whom they have previous relations, so
shocks to those firms obviously get passed on strongly through the network. Here,
in effect, the ex ante and ex post networks can be different. We assume that there
are no costs to establishing a new link ex post.15

For analytical tractability, we impose symmetry on the primitives of the model
and derive closed form solutions for the resulting symmetric equilibrium.

Assumption A1 [Symmetry]: α j = α and r j = r, ∀ j ∈ J; Qi = Q, ∀i ∈ I; w j =

w, ∀ j ∈ J ; mk =
1
n , ∀k ∈ {0, . . . ,n−1}

By assumption, all intermediate good producers share a common Cobb-Douglas
production function: α j = α,∀ j ∈ J; and face the same non-scalable input costs
in period 0: r j = r, ∀ j ∈ J. We also assume that the shocks to the economy are
symmetric and identical. The realization of final good demand is the same for all
final good firms: Qi = Q, ∀i ∈ I; and the realization of scalable input cost is also the
same for all intermediate good firms: w j = w, ∀ j ∈ J .16 This symmetry captures an
economy which is subject to systemic, correlated shocks. For instance, a symmetric
demand shock might resemble the surge in demand for vaccines amid a pandemic,
while a symmetric supply shock could be akin to a military conflict causing a spike
in energy prices that impacts all manufacturing sectors. Lastly, mk =

1
n , ∀k implies

that the sizes of each market segment are equal. The intermediate good producers
are uniformly distributed around the unit circle at equidistant intervals.

It is important to note that fully symmetric shocks to final good demand (Q)
and intermediate good supply (w) do not immediately imply fully symmetric equi-
librium outcomes. For instance, final good producers that are further away from
intermediate good supplier nodes (i.e. those with less substitutable inputs) will
need to order more of a given input - compared to another final good firm that is

15Our result may be generalized by assuming either that there is a fixed cost to going to the market
or to buying from any specific firm with whom one does not have a previous relation. The problem
would become analytically more challenging, but the main insights would stay qualitatively the same

16This is a slight abuse of notation. We use Qi and w j to represent both the random variable and
its realized value. The intended meaning should be clear within the given context.
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closer - to meet the same level of final good demand. In practice, perfectly corre-
lated shocks are the most challenging for resilience, which makes them a key “test
case” to examine.

Before diving into the formal equations that define the decentralized equilib-
rium, it is useful to first explore the more straightforward problems of an uncon-
strained and constrained social planner. These will serve as our benchmarks for
comparison.

3 The social planner benchmarks

We characterize the symmetric equilibrium outcomes for two separate benchmarks.
In the first, the social planner can perfectly observe the realization of the state vari-
ables (Q,w) before committing to intermediate goods production across the net-
work. The planner can therefore perfectly adjust both input factors (L,K) in line
with market conditions. We call this the first-best perfect foresight benchmark. We
re-introduce the informational and technological constraints faced by private agents
in the second - constrained optimal - social planner’s benchmark. Of the two, the
constrained optimal benchmark provides a more accurate benchmark. However,
the perfect foresight benchmark serves a valuable role in isolating the effects of
real-world frictions—such as uncertainties around states and limitations in produc-
tion technology—from those associated with the distortions that arise due to market
externalities and other imperfections.

There are two key distinctions between the social planner (under both bench-
marks) and the decentralized market. First, a social planner can directly allocate
order flows

{
qi j
}

without the need to use price signals (p,φ) as a coordinating
mechanism. Second, a social planner maximizes the welfare of the economy as a
whole, whereas individual private agents maximize their own profit/utilities. Thus
the social planner internalizes any externalities that may arise.

We restrict attention to a "full production equilibrium", where the total demand
for final goods can be met in a socially profitable way (i.e. where, at the margin, the
value of the final good exceeds the marginal cost of production). This setting further
underscores that our core findings are not contingent on the occurrence of rare,
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large-scale shocks. Formally, a symmetric economy E = { f (·) ,α,w,r,Q;v} admits
a full production equilibrium if there exists an equilibrium whereby Ỹi (Q,w) = Q,
∀i ∈ [0,1] and for all states of the world (Q,w)⊂ R2

+.

Assumption A2 [Full production]: We provide conditions on the model primi-
tives which ensure that a symmetric economy can achieve a full production
equilibrium. More specifically, we assume that at every point around the cir-
cle (i.e. ∀i ∈ I = [0,1]), the marginal benefits of producing final goods will at
least match or exceed the marginal costs in all possible scenarios:

v
f
( 1

2n

) ≥ ( w̄
α

)α( r
1−α

)1−α

 w̄Q̄
1
α

E
[
wQ

1
α

]
1−α

for n ≥ 2 (3.1)

Assumption A2 states that, the marginal benefit of delivering intermediate goods
to the final good producer located furthest to the nearest node (at a distance of
1
2n ) is weakly greater than the marginal cost of producing the intermediate good( w̄

α

)α ( r
1−α

)1−α

(
w̄Q̄

1
α

E
[
wQ

1
α

]
)1−α

, even when the negative supply shock is at its most

extreme (w = w̄), and demand is at its upper bound (Q = Q̄). For any given v, this
assumption is equivalent to a restriction on the range of the demand and supply
shocks. The assumption guarantees full production under the constrained optimal
benchmark, where the social planner faces the same informational and technolog-
ical constraints as the decentralized market.17 The corresponding condition for
the perfect foresight benchmark is v

f( 1
2n)

≥
( w̄

α

)α ( r
1−α

)1−α for n ≥ 2, where the
marginal cost of production is lower because the social planner can fully adjust both
inputs of production (K as well as L) in response to shocks (i.e. w̄Q̄

1
α > E

[
wQ

1
α

]
by construction). Assumption A2 is therefore a sufficient condition for full produc-
tion under both social planner benchmarks. On a technical note, the full production
assumption also enables us to avoid problems of non-differentiability in the demand
function.18

17See Appendix C.2 for details.
18See Appendix D for a more detailed discussion.
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Relaxing Assumption A2 leads to cases where some segment of the economy
(furthest away from the intermediate good producers) might become shut out from
the final good market under adverse supply conditions. In such instances, interme-
diate goods suppliers operate as localized monopolies rather than as direct competi-
tors, each prioritizing the needs of their local markets (at higher margins) and leav-
ing demand from more “distant” firms unfulfilled. The emergence of local monop-
olies introduces an extra layer of distortion to the decentralizedm market solution,
which further strengthens our core argument that there is insufficient investment in
non-scalable production capacity.19

3.1 The Perfect Foresight (PF) benchmark

Consider the first-best problem for a social planner with a fully scalable produc-
tion function and perfect foresight. The social planner operates a standard Cobb-
Douglas production function for intermediate goods: Yj,t = Lα

j,tK
1−α

j,t .20 The plan-
ner can also dictate input choices

{
K j,L j

}
j∈J and order flows

{
qi j
}

i∈I, j∈J for all
firms after observing the realization of final good demand Q and the scalable input
cost w. Although production is delayed until period 1, there is no uncertainty. At
period 0, firms know the realization of the shocks that arrive at period 1. Mathemat-
ically, this is equivalent to all decisions being made in a single period optimization
problem, where the objective is to maximize the value of production net of its costs.

19We discuss the consequences of relaxing this assumption in greater detail in Appendix G.
20We suppress the t subscript henceforth to simplify notation.
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[Optimization Problem PF]:

W (Q,w) = max
{K j} j∈J ,{L j} j∈J ,{qi j}i∈I, j∈J

{
v
∫ 1

0

[
min

{
Q,Ỹi

}]
di− ∑

j∈J

[
rK j +wL j

]}
(3.2)

s.t. Ỹi =∑
j∈J

1
fi j

qi j [Production function for final good i] (3.3)

Yj =Lα
j K1−α

j ∀ j ∈ J [Production function for intermediate good j]

(3.4)∫ 1

0
qi jdi ≤Yj ∀ j ∈ J [Feasibility of intermediate goods order flow] (3.5)

qi j ≥0 ∀i ∈ [0,1] ,∀ j ∈ J [Non-negative inputs] (3.6)

The solution is simple and intuitive. In the perfect foresight benchmark, the
planner would meet final good demand by sourcing intermediate good inputs from
the cheapest supplier, and produce the required intermediate goods at minimal cost
by optimizing the ratio between scalable and non-scalable inputs in every state.

Proposition 1. [Full production symmetric equilibrium under perfect foresight]:

1. The social planner allocates sufficient intermediate goods j to each final

good firm i to meet consumer demand Q, accounting for any imperfect substi-

tutability fi j. The required intermediate good inputs will be sourced from the

lowest effective-cost supplier(s) for each i, whenever the value of production

v exceeds the marginal cost of production:

qPF
i j (Q,w) =

 fi jQ if j ∈ J (i) and v ≥ fi j
(w

α

)α ( r
1−α

)1−α

0 otherwise
(3.7)

where J (i) :=
{

j̃ ∈ J| fi j̃
(w

α

)α ( r
1−α

)1−α ≤ fi j
(w

α

)α ( r
1−α

)1−α ∀ j ∈ J
}

is

the set of lowest effective-cost supplier(s).

2. The planner’s input choices in intermediate good production satisfy the opti-

16



mality condition:

αrKPF (Q,w) = (1−α)wLPF (Q,w) (3.8)

which yields the explicit solution:

KPF (Q,w) =
(

w
r
(1−α)

α

)α
(

2Q
∫ 1

2n

0
f (i)di

)
(3.9)

LPF (Q,w) =
(

r
w

α

1−α

)1−α
(

2Q
∫ 1

2n

0
f (i)di

)
(3.10)

where f (i) = fi0 := f (d (i,0)) is the short-hand for the distance penalty

between final good firm i and intermediate good firm 0; and by symmetry

KPF
j = KPF and LPF

j = LPF for all j ∈ J.

3.2 The Constrained Optimal Social Planner (SP) Benchmark

Next, we consider the constrained optimal problem, whereby a social planner can
dictate production choices

{
L j,K j

}
and order flow

{
qi j
}

i∈I, j∈J; but is subject to
the same informational and technological limitations as the private sector. We solve
the constrained optimal problem through backward induction.

In period 1, the social planner takes the pre-committed non-scalable capacity
K j = K, ∀ j ∈ J as given, and chooses the scalable input factor

{
L j
}

j∈J and or-
der flows

{
qi j
}

i∈I, j∈J to maximize aggregate welfare for given realization of de-
mand and supply conditions (Q,w). For given intermediate good output Yj =∫ 1

0 qi jdi, we can express the cost-minimizing level of the scalable factor as L j =(∫ 1
0 qi jdi

) 1
α j K

−(
1−α j)

α j
j . Substituting out L j, and imposing symmetry (Assumption

A1), we can express the optimization problem [SP1] in terms of the order flows{
qi j
}

i∈I, j∈J only:
[Optimization problem SP1]:
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W SP (K|Q,w) = max
{qi j}i∈I, j∈J

{
v
∫ 1

0

(
∑
j∈J

1
fi j

qi j

)
di− ∑

j∈J

[
rK +w

((∫ 1

0
qi jdi

) 1
α

K− (1−α)
α

)]}
(3.11)

s.t. Q ≥ ∑
j∈J

1
fi j

qi j ∀i ∈ [0,1] [Demand cap] (3.12)

qi j ≥ 0 ∀i ∈ [0,1] , j ∈ J [Non-negative inputs] (3.13)

where v
∫ 1

0

(
∑ j∈J

1
fi j

qi j

)
di is the aggregate value derived from the production of

final goods, and ∑ j∈J

[
rK +w

((∫ 1
0 qi jdi

) 1
α

K− (1−α)
α

)]
the aggregate cost of pro-

ducing the necessary intermediate inputs. The demand cap reflects that any produc-
tion in excess of the realized demand Q will be wasted.21

Back in period 0, the social planner chooses non-scalable inputs
{

K j
}

j∈J to
maximize expected welfare in period 1, accounting for the probability distribution
of demand and supply shocks (Q,w).

[Optimization problem SP0]:

W SP = max
K

E
[
W SP (K|Q,w)

]
The solution resembles that of the perfect foresight scenario, but with important

distinctions, arising from the necessity of committing to a specific level of capacity
investment in period 0, prior to the realization of states in period 1.

Proposition 2. [Full production symmetric equilibrium in the constrained opti-
mal benchmark]

1. In period 1, the social planner allocates sufficient intermediate goods to each

final good firm i to meet consumer demand Q, accounting for imperfect sub-

stitutability. The required intermediate good inputs will be sourced from the

lowest effective-cost supplier(s) for each i, whenever the value of production

21In this analysis, we deliberately exclude the impact of inventory management due to the frame-
work’s static, one-shot nature. See Ferrari (2022) for a network model with inventories.
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v exceeds the marginal cost of production:

qSP
i j (Q,w) =

 fi jQ if j ∈ J (i) and v ≥ fi jM̃C

0 otherwise
(3.14)

where M̃C :=
(w

α

)α ( r
1−α

)1−α

(
wQ

1
α

E
[
wQ

1
α

]
)1−α

is the marginal cost of pro-

ducing the intermediate good in the symmetric equilibrium; and J (i) :={
j̃ ∈ J| fi j̃M̃C ≤ fi jM̃C ∀ j ∈ J

}
is the set of lowest effective-cost supplier(s).

The optimal level of scalable input is given by:

LSP (Q,w) =
(∫ 1

0
qSP

i j (Q,w)di
) 1

α (
KSP

)− (1−α)
α (3.15)

2. In period 0, the optimal level of non-scalable production capacity KSP satis-

fies the optimality condition:

αrKSP = (1−α)E
[
wLSP

]
(3.16)

which can be solved explicitly to give:

KSP =

(
1
r

1−α

α

)α
(

2
∫ 1

2n

0
f (i)di

)(
E
[
wQ

1
α

])α

(3.17)

3. The relationship between capacity investment across the two benchmark sce-

narios can be summarized as follows:

KSP = KPF (Q,w)

E
[
wQ

1
α

]
wQ

1
α

α

(3.18)

and by Jensen’s inequality we have:

KSP ≥ E
[
KPF (Q,w)

]
(3.19)
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The first part of the proposition relating to the optimal order flow (qSP
i j ) and the

level of scalable capacity (LSP) is straight-forward. Here we will focus discussions
on the intuition behind the constrained optimal solution for capacity investment
KSP. The choice of non-scalable capacity at period 0, KSP, influences aggregate
welfare in period 1 through two primary mechanisms. First, any increase in KSP

generates a direct cost given by r. This cost, however, is partly offset by the re-
sultant decrease in the scalable input LSP needed to achieve a given output Y —
thus offering a direct benefit. Second, an increase in capacity KSP may increase
aggregate intermediate good production Y , and indirectly improve welfare through
this output channel dY

dK . However, in a full-production equilibrium where the de-
mand for final goods is always met (i.e., the demand cap is binding), there can be
no further welfare gains from increasing aggregate intermediate good production.
Therefore, the indirect impact of K on welfare is exactly zero.22 This leaves us with
the familiar optimality condition that is typical for Cobb-Douglas production func-
tions, αrKSP = (1−α)E

[
wLSP], albeit with an expectation function to account for

the ex-ante uncertainty.
Finally, equation 3.18 illustrates the relationship between the level of capacity

investment across the two benchmarks. Under the constrained optimal benchmark,
the social planner must commit to a given level of capacity KSP before observing
the shocks. Hence, capacity investment is lower than the perfect foresight case,
KSP < KPF (Q,w), in states where marginal costs exceed expectations (when w

and/or Q are higher than expected). Conversely, KSP > KPF (Q,w) when marginal
costs fall below expectations. Importantly, this implies that the constrained so-
cial planner recognizes that investing in a level of production capacity that ac-
commodates all contingencies (KPF (Q̄, w̄

)
) would give rise to a supply network

which is inefficiently resilient. Nevertheless, the constrained social planner in-

22In the formal proof (see appendix C.2), we show that the optimality condition for non-scalable
production capacity KSP (equation 3.16) remains unchanged when we relax the full production as-
sumption. We can safely ignore the indirect effects of K on welfare through changes in output Y , be-
cause these indirect effects are multiplied by the difference between the marginal cost and marginal
benefit of production for the threshold buyer, which is equal to zero by construction. This result
bears resemblance to the Envelope Theorem, in which the total derivative of the value function with
respect to the parameters of the model is equal to its partial derivative. Here K is the choice variable,
but the total derivative of W SP (K|Q,w) with respect to K is also equal to its partial derivative.
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vests in more capacity than its counterpart with perfect foresight does on average,
KSP ≥ E

[
KPF (Q,w)

]
, as a way to insure against uncertainty. A formal exposition

of these results can be found in appendix C.3.

4 The decentralized solution: equilibrium in the spot
and pre-order markets

In the decentralized market equilibrium, firms adjust production in response to
prices in both the pre-order and spot market. We solve the model through back-
ward induction.

4.1 Period 1 equilibrium in the spot market

In period 1, each final goods producer can turn to the spot market to acquire ad-
ditional intermediate goods beyond those which have been pre-ordered. Formally,
each final good producer i takes realized demand for final goods Qi, prior com-
mitments qpre

i , pre-order and spot intermediate good prices (φ ,p) as given23; and
purchases intermediate goods qspot

i from intermediate good producers on the spot
market in order to maximize profit:

Πi
(
qpre

i ,φ ,p
)
= max

qspot
i

{
vmin

{
Qi,Ỹi

}
−C̃i

(
qpre

i ,qi,φ ,p
)}

(4.1)

s.t. qspot
i ≥ 0 [No-default constraint] (4.2)

where final good production and total costs are given by:

Ỹi = ∑
j∈J

1
fi j

(
qspot

i j +qpre
i j

)
(4.3)

C̃i
(
qpre

i ,qi,φ ,p
)
= φ ·qpre

i +p ·qspot
i (4.4)

23As is conventional in the literature on Bertrand equilibria, each firm assumes he can buy as
much on the spot market as he wishes. This assumption is particularly important for the analysis of
firm’s decision-making at time 0.
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We interpret qspot
i ≥ 0 as a “no-default constraint” because it implies that the

total volume of intermediate good orders will never fall below the pre-ordered
amount: qi := qspot

i +qpre
i ≥ qpre

i . The final good producers cannot renege on the
promises made in period 0. In principle, a firm could also resell his pre-order to
some other firm, so that the level of input could be less than the pre-ordered level.
But in a symmetric equilibrium that never occurs.24

If the spot market were perfectly competitive, each intermediate supplier would
produce up to the point where the price of the intermediate good (on the spot mar-
ket) were equal to the marginal cost of production, and the demand for intermediate
goods would be determined in the usual way, with equilibrium in the spot market
occurring at the price where demand equals supply. But this is instead a highly
differentiated market for intermediate goods, and each intermediate good producer
acts in a monopolistically competitive way, setting a spot price p j, taking its non-
scalable production capacity K j, and the price of its competitors p− j as given. Pre-
order contracts

{
qpre

i j

}
i∈I

are honored at the agreed price φ j. The profit of firm j

is given by its pre-order revenue plus spot market revenue, minus the total costs of
production:

Π j

(
K j,
(

φ j,q
pre
j

)
,p− j

)
= max

p j

{[
φ jY

pre
j

]
+
[

p jY
spot
j

]
−
[
w jL∗

j + r jK j
]}

(4.5)

where

Y pre
j :=

∫ 1

0
qpre

i j di (4.6)

Y spot
j :=

∫ 1

0
qspot

i j di (4.7)

are the level of intermediate good production required to meet pre-order demands
and spot market demands respectively.

24Conceptually, we could imagine an equilibrium where say in some states, those in one set of
locations sold excess pre-orders to those in another set of locations. Our assumption of perfectly
correlated shocks is what rules this out. Alternatively, even with imperfectly correlated shocks,
reselling excess orders can be assumed away, e.g., because there are some (not fully specified here)
adaptations of production to each producer, which make such sales impossible. In practice resale of
pre-ordered inputs do occur, though they are likely limited in scale.
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Similar to our treatment of the social planner benchmarks, we restrict attention
to a full production symmetric equilibrium for analytical tractability. In a symmetric
setting all intermediate good firms j ∈ J share the same characteristics α j = α ,
r j = r and w j = w; and every final good firm i ∈ [0,1] will face the same exogenous
demand Qi = Q. In equilibrium, input choices will be the same across intermediate
good firms: K j = K and L j = L, ∀ j ∈ J; and final good firms will fulfill the same
proportion of the realized demand for final goods through the pre-order market:
Qpre

i := ∑ j
1
fi j

qpre
i j = Qpre ∀i ∈ [0,1].

It is important to note that Qpre
i denotes the level of final good demand that is

fulfilled through pre-orders, and not the quantity of intermediate goods pre-ordered
qpre

i . The link between the two is given by Qpre
i := ∑ j

1
fi j

qpre
i j , where 1

fi j
accounts for

imperfect substitutability. Later, in Section 4.2, we show that Qpre
i = Qpre ∀i ∈ [0,1]

is indeed an optimal equilibrium strategy in period 0, but this implies pre-orders for
intermediate goods qpre

i j are not be equalized across i’s.

Proposition 3. [Full Production Symmetric Equilibrium in the spot market] In

period 1, taking period 0 choices
({

qpre,∗
i

}
,K∗,φ∗) as given:

1. Final good firms order intermediate goods on the spot market from the sup-

plier offering the lowest effective-prices j ∈ J (i;p) :=
{

j̃ ∈ J : fi j̃ p j̃ = min{fi ◦p}
}

:

qspot,∗
i j =

 fi j
(
Q−Qpre

i
)

if Q ≥ Qpre
i , j ∈ J (i;p) , and v ≥ fi j p j

0 otherwise
∀i∈ [0,1]

(4.8)

2. Intermediate good firms:

• purchase the cost minimizing level of scalable inputs:

L∗
j = L∗ =

(
Y pre,∗+Y spot,∗) 1

α (K∗)−
1−α

α ∀ j ∈ J (4.9)

• set spot-market prices at a mark-up over marginal costs:

p∗j = p∗ = (1+µ)︸ ︷︷ ︸
mark-up≥1

MC ∀ j ∈ J (4.10)
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where

– Y pre,∗ :=
∫ 1

0 qpre,∗
i j di and Y spot,∗ :=

∫ 1
0 qspot,∗

i j di are the level of in-

termediate good production required to meet equilibrium pre-order

demand and spot market demand respectively;

– µ is the proportional mark-up over marginal costs given by:

µ :=
2 f ′
( 1

2n

)∫ 1
2n

0 f (i)di(
f
( 1

2n

))2 −2 f ′
( 1

2n

)∫ 1
2n

0 f (i)di
(4.11)

– MC is the marginal cost faced by intermediate good suppliers:

MC =
w
α

(
Y pre,∗+Y spot,∗

K∗

) 1−α

α

(4.12)

In the period 1 equilibrium, each final good producer first evaluates whether
their pre-committed orders for intermediate goods will be adequate to satisfy the
existing demand for final goods (i.e., whether Qpre

i := ∑ j
1
fi j

qpre
i j ≥ Qi). Should the

pre-orders prove sufficient, the final good producer i will eschew the spot market,
setting qspot

i = 0. Otherwise, additional intermediate goods will be purchased on
the spot market to meet realized demand, provided that the cost of doing so is less
than the value of the output v. Spot market purchases are made from the cheapest
intermediate good producer, adjusting for the distance-based penalties (eqn 4.8).

For intermediate good producers, L∗ is the cost-minimizing choice for given
capacity investment K∗ (eqn 4.9). Equation 4.10 characterizes the optimal spot
market pricing. Intermediate good producers engage in monopolistic competition
and charge a mark-up over marginal costs. This mark-up is higher when substi-
tutability is poor for the marginal buyer (i.e. when f

′ ( 1
2n

)
is high); and lower when

competition is fierce (i.e. when n is large). In the limit, as n approaches infinity
- such that the distance between nodes shrinks to zero and intermediate goods be-
come perfect substitutes - equation 4.10 simplifies down to price equals marginal
cost (perfect competition). We explicitly assume that intermediate goods producers
cannot engage in price discrimination, charging those at a greater distance less than
those nearby. This is a natural assumption in this context: intermediate goods pro-
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ducers may not fully observe the characteristics of the firms who seek to buy from
them.

From equations 4.10 and 4.12 we see that non-scalable capacity K plays a key
role through the marginal cost function. Higher capacity investments by any firm j

in period 0 reduces its marginal cost of production in every state in period 1 (though
more so in some states than others). However, this decrease in marginal cost does
not directly translate into proportionate increases in profit, especially if competing
firms also expand their capacities, which would drive down the equilibrium spot
price and pass on gains to final good producers. This has important implications for
investment in capacity, as the next section shows.

4.2 Period 0 equilibrium in the pre-order market

In period 0, the final good producers take pre-order prices φ as given, form expec-
tations over the state contingent distribution of spot prices at period 1, and submit
pre-orders for intermediate goods qpre

i to maximize their expected profit:

max
qpre

i

E
[
Πi
(
qpre

i ;φ ,p∗)]
=vE [Q]−Pr

(
Q > Qpre

i
)

E
[
p∗ (Q,w) ·qspot,∗

i (Q,w) |Q > Qpre
i
]
−φ ·qpre

i (4.13)

where Πi is the profit of firm i in period 1 (eqn. 4.1); qpre
i :=

(
qpre

i0 ,qpre
i1 , . . . ,qpre

i,n−1

)′

is the vector of pre-orders for intermediate goods; φ := (φ0,φ1, . . . ,φn−1)
′
the menu

of pre-order prices, and Qpre
i := ∑ j

1
fi j

qpre
i j the volume of final good demand that

can be met given the pre-orders and the linear production function for final goods.
The final good producer anticipates that the realized demand for final goods Q

may fall short of what could be produced from pre-orders Qpre
i with probability(

1−Pr
(
Q > Qpre

i
))

. In such a scenario, the final good producer will eschew the
spot market in period 1, and not incur any additional costs beyond those associated
with the pre-orders.25 With complement probability Pr

(
Q > Qpre

i
)
, the final good

producer will need to purchase additional intermediate inputs on the spot market, at

25As discussed in the previous section, we have imposed a constraint qspot
i ≥ 0 ruling out the

resale of pre-ordered intermediate goods.

25



expected cost E
[
p∗ (Q,w) ·qspot,∗

i (Q,w) |Q > Qpre
i
]
.

Simultaneously, each intermediate good producer j sets pre-order price φ j tak-
ing its competitors’ prices φ− j as given; and commits to a level of non-scalable
input factor K j in order to maximize expected profit in period 1,

max
K j,φ j

E
[
Π j

(
K j,
{

φ j,φ− j

}
,qpre,∗

j

)]
=
[
φ jY

pre,∗
j − rK j

]
+E

[
p∗jY

spot,∗
j −wL∗

j

]
(4.14)

where Y pre,∗
j and Y spot,∗

j are the intermediate good output required to meet equi-
librium pre-orders and spot-market orders respectively (defined in eqns 4.6, 4.7).

We show that in a full production symmetric equilibrium, the optimal pre-order
price is equal to the unconditional expectation of spot market prices. Without a
discount over expected spot market prices, final good firms pre-order only what is
necessary to cover the lowest realization of demand. The restrained demand for pre-
orders affects the intermediate good producer’s incentive to invest in non-scalable
production capacity.

Proposition 4. [Full Production Symmetric Equilibrium in the pre-order market]
In period 0:

1. Each final good producer i pre-orders only what is necessary to cover the

lowest realization of final good demand from its nearest intermediate good

supplier:

qpre,∗
i j =

 fi jQ if j ∈ J (i;φ) , and v ≥ fi jφ j

0 otherwise
∀i ∈ [0,1] (4.15)

where J (i;φ) :=
{

j̃ ∈ J : fi j̃φ j̃ = min{ fi ◦φ}
}

denote the set of suppliers

that provides the lowest effective pre-order price for i (which is equivalent

under symmetry to the set of the nearest suppliers).

2. Each intermediate good producer j:

(a) sets pre-order prices to the unconditional expectation of spot-market
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prices

φ
∗ = E [p∗ (Q,w)] (4.16)

(b) invests in a level of non-scalable capacity K∗ given by the optimality

condition:

αrK∗ = (1−α)E [wL∗]+E

∂ p∗

∂K︸︷︷︸
<0

Y spot

 (4.17)

There is an important intermediate step to show why final good firms find it
optimal in equilibrium to pre-order only what is sufficient to meet the lowest real-
ization of final good demand. In Appendix F (Lemma 2) we characterize final good
firms’ demand for pre-orders (Qpre,∗

i := ∑ j
1
fi j

qpre,∗
i j ) in terms of the equation:

φ = Pr
(
Q > Qpre,∗

i
)

E
[
p∗ (Q,w) |Q > Qpre,∗

i
]

(4.18)

where
{

Q > Qpre,∗
i

}
is the set of states in which the final good firms need to pur-

chase additional intermediate goods from the spot market in period 1. For every
(effective) unit of intermediate goods that is pre-ordered in period 0, the final good
firm will need to order one fewer unit on the spot market - but only in states where
Q > Qpre,∗

i . Thus, for a given pre-order price φ , final good firms will pre-order just
enough intermediate goods such that the φ is equal to the expected marginal sav-
ings on the spot market, accounting for the fact that larger pre-orders reduces the
probability that spot market purchases will be required.

The demand function for pre-orders (characterized by eqn 4.18) has two imme-
diate implications: (1) aggregate pre-orders must be equalized across i in equilib-
rium (Qpre,∗

i = Qpre,∗ for all i); and (2) the maximum sustainable pre-order price is
the unconditional expectation of the spot market price φ = E [p∗]. Since final good
firms are risk neutral, they will not pre-order if φ > E [p∗]. Likewise, intermediate
good firms do not have incentives to offer a discount on pre-orders (i.e. pay a pre-
mium for insurance) by setting φ <E [p∗]. Intermediate good producers do not have
incentive to reduce φ below E [p∗] to attract more pre-orders because they expect to
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make more marginal profit on the spot market. Critically, any extra marginal costs
incurred from lower capacity investments can also be passed on to final good firms
on the spot market along with a mark-up. In fact, because the spot market mark-up
is proportional to marginal costs, and aggregate output remain unchanged in a full
production equilibrium, final good firms’ profits measured in dollar terms is actu-
ally higher when there are symmetric and correlated negative supply shocks. With
market power on the spot market, intermediate good firms see no need to promote
pre-orders to insure against correlated adverse supply shocks.

In equilibrium, therefore, we have a corner solution with φ =E [p∗], and Qpre,∗=

Q. Intermediate good firms set pre-order prices at the level that makes final good
firms indifferent between no pre-orders at all and pre-ordering only what is neces-
sary to cover the lowest realization of demand Q. In short, intermediate good firms
sets the highest possible pre-order price that drives the final good firms to their
participation constraint.26

Having characterized the equilibrium quantity and price of pre-orders, the inter-
mediate good suppliers determine the amount of production required to meet pre-
orders (Y pre,∗); and forecast expected prices (p∗) and production on the spot market
(Y spot,∗). The intermediate good suppliers then invest in a level of non-scalable
capacity K∗ that minimizes expected costs for the anticipated level of production
(equation 4.17). This optimality condition for K∗ is similar to its analogues under
the social planner benchmarks (equations 3.8 and 3.16 for the unconstrained and
constrained cases, respectively); except for the addition of a final term E

[
∂ p∗
∂K Y spot

]
.

This final term captures the pecuniary externality that arise from enhanced market
power, and the over-reliance on spot markets. It plays an important role in explain-
ing the wedge between decentralized market solution and the constrained optimal
benchmark.

26Both the full production and the symmetry assumption play an important role here. We no
longer have φ = E [p∗] as an equilibrium condition when these assumptions are relaxed. Likewise,
we will also move away from this corner solution if agents are risk-averse, though the presence and
qualitative properties of the market failures we identify are likely to be same. That is, while with risk
aversion there is likely to be more investment in capacity (greater resilience) in the market equilib-
rium, with more risk averse agents, (constrained) Pareto optimality also requires greater resilience,
and there will remain a gap between the two.
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5 Decentralized solution vs constrained optimal bench-
mark

We can now prove the core proposition of the paper. The level of investment in the
non-scalable capacity in a decentralized market setting (K∗) is suboptimally low
when compared to the level in the constrained optimal benchmark (KSP).

Proposition 5. [Sub-optimal non-scalable capacity investment] K∗ < KSP.

Proof. We prove K∗ < KSP by contradiction. This proof is instructive because it
highlights the importance of the pecuniary externality d p∗

dK and the over-reliance on
the spot market Y spot as the main drivers behind the under-investment in capacity.

First, by the full-production assumption we know that the level of intermediate
good production is the same under both the decentralized solution and the con-
strained benchmark: Y ∗ (Q,w) = Y SP (Q,w), in all states of the world (Q,w).

This implies that if K∗ =KSP, then L∗ (Q,w) = LSP (Q,w) in every state, leading
to a contradiction:

αrKSP = (1−α)E
[
wLSP

]
= (1−α)E [wL∗]

> (1−α)E [wL∗]+E

d p∗

dK︸︷︷︸
<0

Y spot

= arK∗

If instead K∗ > KSP, then L∗ (Q,w)< LSP (Q,w) in every state, again giving rise
to a contradiction:

αrK∗ = E

 d p∗

dK∗︸︷︷︸
<0

Y spot

+(1−α)E [wL∗]

< (1−α)E [wL∗]< (1−α)E
[
wLSP

]
= αrKSP
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The proposition reveals that intermediate goods producers under-invest in ca-
pacity upfront because they are unable to fully capture the cost savings generated by
increased investment. Specifically, each dollar saved through efficiency gains from
capacity investment does not yield a corresponding one-dollar increase in profits.
This is because a part of these gains is transferred to final goods producers through
lower spot market prices. The key term of interest is E

[
d p∗
dK Y spot

]
, which captures

the interaction between the pecuniary externality (d p∗
dK the sensitivity of spot market

prices to capacity investment) and the degree of reliance on the spot market (Y spot).
Focusing first on the price sensitivity term d p∗

dK , recall that equilibrium spot
prices can be expressed as a proportional mark-up over marginal costs: p∗=(1+µ)MC.
All else equal, higher capacity investment K, lowers the marginal cost (MC =

w
α

(
Y ∗

K∗

) 1−α

α ) in every possible state and thus lowers spot prices. The extent to which
K matters depends on the scalability of the economy (α). As scalability improves
and α → 1, the less important is K in production, and the externality shrinks.

The impact of K on marginal costs is amplified by the mark-up (µ =
2 f

′
( 1

2n)
∫ 1

2n
0 f (i)di

f( 1
2n)−2 f ′( 1

2n)
∫ 1

2n
0 f (i)di

).

The size of the mark-up dependends on the substitutability between sectors, as mea-
sured by the distanced-based penalty function f (evaluated at the marginal buyer
i = 1

2n). Higher substitutability between sectors lowers mark-up and reduces the
wedge between the decentralized solution and the constrained optimal benchmark
in equilibrium. Lastly, another important way to reduce the wedge is through
enhanced competition (i.e. a larger n), which also reduces the amplification of
marginal cost changes by reducing mark-ups.

Equally as important, the wedge results from an over-reliance on the spot mar-
ket. Unlike an Arrow-Debreu economy, where agents can trade contingent claims
for every conceivable state of the world, in our model - much like real-world con-
ditions - the set of contracts that can feasibly be written and traded is much smaller
than the set of possible states. As a result, the pre-order, forwards, and futures
markets will fall short of providing adequate risk insurance for intermediate goods
producers. Downstream final goods producers fail to sufficiently compensate their
suppliers for the pecuniary externality arising from the benefits of increased capital
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investment.27

5.1 Policy Interventions

Using our model, it is possible to identify a number of ways to narrow the wedge
between the supply network delivered by unfettered markets and the efficiently re-
silient network characterized under a constrained optimal benchmark.

The most straightforward strategy to address the externality in the model is to
offer subsidies for capacity investments, thereby lowering the effective cost r in-
curred by intermediate goods producers for non-scalable capacity. Second, the gov-
ernment might extend tax benefits to downstream firms that engage in pre-orders or
transact in the futures market, or alternatively, levy additional taxes on spot market
transactions. Futures markets facilitate greater risk sharing between upstream and
downstream entities, and diminish dependency on spot markets. A third avenue is
to reduce the sensitivity of spot prices to changes in capacity investments. This
could entail structural economic reforms such as lowering entry barriers (includ-
ing trade barriers), stronger competition policies, and enhancing the substitutability
of intermediate products, all of which could reduce supplier mark-ups. Similarly,
technological advancements in production scalability could shift the focus towards
other input factors that can be more readily adjusted on short notice.

In practice, it may be harder to device practical, implementable interventions.
Directly subsidizing capacity investments offers a straightforward strategy, yet dis-
tinguishing such investments from other types of capital expenditure can be diffi-
cult, particularly in certain sectors. The government may want to intervene only
in certain critical industries - e.g. computer chip production, where downstream
externalities are especially significant and resilience is more important - by for in-
stance, offering a lower taxes for firms operating with excess capacity. While tax
incentives for spot and pre-order markets can be effective in sectors like electricity,
with its well-defined spot and futures markets, this approach becomes less straight-
forward in industries where market boundaries are more blurred.

27In a sense, this pecuniary externality is a special case of the general pecuniary externality arising
in economies without a complete set of AD securities analyzed by Greenwald and Stiglitz (1986)
and first discussed in Stiglitz (1982).
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6 Concluding Remarks

Especially since the pandemic and post-pandemic supply chain interruptions, the
question of resilience has moved to the fore. Of course, we don’t expect markets
to be prepared for every shock, regardless of size: doing so would be extraordinar-
ily expensive. The question is, do they make appropriate preparations, measured
against an appropriate benchmark? There are many reasons to think that they might
not: critics of the market, for instance, complain about short-termism.

We examine the normative question of resilience, however, in a world with fully
rational expectations and in which firms do not suffer from short-termism, show-
ing that nonetheless, there is a bias towards excessive vulnerability due to insuffi-
cient ex-ante capacity investments by upstream intermediate goods producers. This
shortfall arises because these producers cannot fully capture the returns on their ca-
pacity investments: a portion of the economic gains is transferred downstream to
final goods producers through reduced spot market prices.

We believe that our study is the first to incorporate interactions in both the spot
and futures market in such a normative analysis of supply networks, essential for
addressing the question at hand. Doing this in the context of differentiated compe-
tition necessarily entails a certain degree of complexity. For tractability and ease
of exposition, we have introduced a number of simplifications; but in the online
appendix G, we show how the results hold under significantly more general condi-
tions. Most notably, we show that if there are very large shocks, such that the cost
of meeting the market demand is so high that there are “unserved” customers (i.e.
Assumption A2 Full Production is not satisfied), then the analysis still holds.

Finally, we note that in certain industries there may be forces pushing in the
other direction: some firms may choose to hold excess production capacity purely
as a way to deter prospective entrants, thereby reducing competition. Risk aver-
sion on the part of intermediate and final goods producers (and consumers, trans-
lated into more profitable contracts signed with firms that have greater resilience)
may also result in greater resilience than suggested by this model. Moreover, we
have assumed that market power resides in the upstream firms. Especially in more
oligopolistic contexts, downstream firms may engage in supply chain diversification
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and higher levels of pre-ordering, generating higher levels of capital investment in
the upstream industries and greater market resilience, explicitly to limit the ability
of the upstream firms to exercise market power in the manner illustrated here. The
one result that we believe is resilient is that there is likely to be a disparity between
the market and the constrained optimal level of resilience.

The events of the last few years has made it clear that economists have paid
insufficient attention to resilience. This paper is intended as a contribution to the
nascent literature attempting to understand better why markets may have underin-
vested in resilience.
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For Online Publication: Appendix

A Cost functions for Cobb-Douglas production func-
tion

A.1 Standard Cobb-Douglas Production

The standard cost minimization problem with a Cobb-Douglas production function
is given by:

min
L,K

C = wL− rK (A.1)

s.t. LαK1−α ≥ Y

Setting up the Lagrangian and computing the necessary first order conditions yields
the familiar optimality condition:

(1−α)wL = αrK (A.2)

Substituting the optimality condition into the production function yields the optimal
input choices K =Y

(w
r

)α (1−α

α

)α
, and L =Y

( r
w

)1−α ( α

1−α

)1−α . The cost function
is therefore given by:

C (Y ) = Y
(w

α

)α
(

r
1−α

)1−α

(A.3)

with constant marginal cost:

MC :=C
′
(Y ) =

(w
α

)α
(

r
1−α

)1−α

(A.4)
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A.2 Cobb-Douglas Production with Partial Delay

With partial delay, the intermediate good producer takes K as given in its period 1
cost minimization problem:

min
L

C̃ (K) = wL+ rK

s.t.LαK1−α ≥ Y

The optimal L is given simply by the minimum amount necessary to produce Y :

L = Y
1
α K− (1−α)

α (A.5)

The cost function therefore depends on both the desired output Y and the capac-
ity K reserved ex ante:

C̃ (Y ;K) = wY
1
α K− (1−α)

α + rK (A.6)

with a marginal cost of production that depends on the output-capacity ratio
(Y

K

)
:

M̃C :=
dC̃ (Y ;K)

dY
=

w
α

(
Y
K

) 1−α

α

(A.7)

Note that the impact of capacity on total cost is given by:

dC̃ (Y ;K)

dK
=−w

(1−α)

α

(
Y
K

) 1
α

+ r

= r− (1−α)

(
Y
K

)
M̃C (A.8)

which is lower than r, because of the additional indirect cost savings on scalable
input capacity.
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B Proof for Proposition 1 - Perfect Foresight bench-
mark

We start with the optimization problem for the perfect foresight benchmark [PF]
characterized in the main text (eqns 3.2 to 3.6). With perfect foresight, both L and
K can be set as a function of the realized state (Q,w) in period 1. This is equivalent
to saying that both L and K can be adjusted flexibly and simultaneously as the
need arise. We thus have a standard Cobb-Douglas production for intermediate
goods, with: optimal input choices characterized by (1−α)wL = αrK (eqn A.2);
cost function C

(
Yj
)
= Yj

(w
α

)α ( r
1−α

)1−α (eqn A.3); and constant marginal cost of
production ∂C

∂Y j
= ∂C

∂qi j
=
(w

α

)α ( r
1−α

)1−α (eqn A.4).28

Substituting the optimal input choices and the associated cost function into the
original optimization problem [PF] reduces the dimension of the problem to one in
order flows

{
qi j
}

only:
[Optimization Problem PF*]

W (Q,w) = max
{qi j}i∈I, j∈J

{
v
∫ 1

0

[
∑
j∈J

1
fi j

qi j

]
di− ∑

j∈J

[(∫ 1

0
qi jdi

)(w
α

)α
(

r
1−α

)1−α
]}

s.t. ∑
j∈J

1
fi j

qi j ≤ Qi ∀i ∈ [0,1] [Demand cap]

qi j ≥ 0 ∀i ∈ [0,1] , j ∈ J [Non-negative inputs]

We can set up the Kuhn Tucker Lagrangian for Problem PF* as:

L PF = v
∫ 1

0

[
∑
j∈J

1
fi j

qi j

]
di− ∑

j∈J

[(∫ 1

0
qi jdi

)(w
α

)α
(

r
1−α

)1−α
]
−∑

i∈I
λi

[
∑
j∈J

1
fi j

qi j −Q

]

where by symmetry we have Qi = Q, ∀i ∈ [0,1].
The first-order conditions (FOCs) with the corresponding complementary slack-

ness conditions are given by:

28The first equality ∂C
∂Y j

= ∂C
∂qi j

holds when the “feasibility of intermediate goods order flow” binds
with equality in equilibrium.
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qPF
i j

∂L PF

∂qi j
= qi j

(
v
fi j

−
(w

α

)α
(

r
1−α

)1−α

− λi

fi j

)
= 0 ∀i ∈ I, j ∈ J (B.1)

λi
∂L PF

∂λi
= λi

[
∑
j∈J

1
fi j

qi j −Q

]
= 0 ∀i ∈ I (B.2)

We observe from the FOCs that for each final good i, the corresponding La-
grangian multiplier λi, when strictly positive, is determined by the supplier j ∈ J

that can provide the inputs most cheaply to i:

λi = v−min
j∈J

{
fi j

(w
α

)α
(

r
1−α

)1−α
}

= v− fi j

(w
α

)α
(

r
1−α

)1−α

(B.3)

where j (i) ∈ J (i) :=
{

j̃ ∈ J| fi j̃
(w

α

)α ( r
1−α

)1−α ≤ fi j
(w

α

)α ( r
1−α

)1−α ∀ j ∈ J
}

.

Alternatively, if v < min j∈J

{
fi j

(
w j
α j

)α j
(

r j
1−α j

)1−α j
}

, then qi j = 0 for all j ∈ J,

Ỹi = 0 and λi = 0 (i.e. it is not efficient for firm i to produce at all). This latter case
is ruled out by the full production assumption (A2).

Thus, combining equations (B.2, B.3), when λi > 0 final firm i will be allocated
sufficient intermediate goods from its cheapest supplier to meet final demand Q:

qPF
i j =

 1
n(J(i)) fi jQ for j ∈ J (i)

0 for j ̸= J (i)

where n(J (i)) is the cardinality of the set J (i). In a symmetric equilibrium, the
cheapest supplier(s) coincides with the closest supplier(s). With intermediate good
firms located equidistant around the circle, there are at most two closest suppliers
for each i (e.g. nodes 0 and 1 for i = 1

2n ). In such cases when there are two closest
suppliers, instead of tie-breaking by dividing order volumes in half, we assume each
intermediate good node j wins the tie-break to its right on the circle, but loses the
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tie-break to its left. This is loosely equivalent to imposing n(J (i)) = 1, ∀i ∈ [0,1];
a convention we will adopt to simplify exposition without loss of generality.

Having solved for the optimal order flow
{

qPF
i j

}
, we can now derive the aggre-

gate output of intermediate goods. By symmetry every intermediate good firm j

will produce the same amount Yj = Y PF , ∀ j ∈ J. So we can compute Y PF from the
perspective of firm j = 0, who is able to capture the two equal market segments to
its left and right-hand side, i ∈

[
0, 1

2n

]
and

[
1− 1

2n ,1
]

:

Y PF (Q,w) =
∫ 1

0
qPF

i0 di = 2Q
∫ 1

2n

0
fi0di (B.4)

Finally, we can substitute the equilibrium intermediate good production Y PF

into the Cobb-Douglas production function, combined with the optimality condition
for inputs (eqn A.2) to derive explicit solutions for KPF and LPF :

KPF (Q,w) =
(

w
r
(1−α)

α

)α
[

2Q
∫ 1

2n

0
fi0di

]

LPF (Q,w) =
(

r
w

α

1−α

)1−α
[

2Q
∫ 1

2n

0
fi0di

]

This completes the proof for Proposition 1.

C Proof for Proposition 2 - Social Planner’s Constrained
Optimal problem

C.1 Period 1 optimization

Taking a similar approach to the Perfect Foresight benchmark, we start by form-
ing the corresponding Kuhn Tucker Lagrangian for the social planner’s constrained
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optimal problem in period 1 [SP1]:

L = max
{qi j∈R+}i, j

v
∫ 1

0

(
∑
j∈J

1
fi j

qi j

)
di− ∑

j∈J

[
rK +w j

(∫ 1

0
qi jdi

) 1
α

K− (1−α)
α

]
. . .

−
∫ 1

0
λi

(
∑
j∈J

1
fi j

qi j −Q

)
di

From the Lagrangian we obtain the first-order derivatives with complementary
slackness conditions:

qi j
∂L

∂qi j
= qi j

 v
fi j

− w
α

(∫ 1
0 qi jdi

K

) 1−α

α

− λi

fi j

= 0 ∀i ∈ [0,1] ,∀ j ∈ J

λi
∂L

∂λi
= λi

(
∑
j∈J

1
fi j

qi j −Q

)
= 0 ∀i ∈ [0,1]

where v
fi j

is the marginal benefit from supplying i from j (i.e., qi j), and w
α

( ∫ 1
0 qi jdi

K

) 1−α

α

is the marginal cost. Later, in the final step of this proof, we will substitute out the

endogenously determined K and qi j to show that w
α

( ∫ 1
0 qi jdi

K

) 1−α

α

=
(w

α

)α ( r
1−α

)1−α

(
wQ

1
α

E
[
wQ

1
α

]
)1−α

.

By the full-production assumption, we know that the marginal benefit will al-
ways weakly exceed the marginal cost, so the Lagrangian multiplier for final good
firm i, λi, is given by the intermediate good firm j that offers the lowest effective
cost:

λi = v−min
j∈J

 fi j
w
α

(∫ 1
0 qi jdi

K

) 1−α

α


= v− fi j

w
α

(
Y
K

) 1−α

α
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Defining the set of lowest effective cost suppliers as:

J (i) :=

 j̃ ∈ J| fi j̃
w
α

(∫ 1
0 qi jdi

K

) 1−α

α

≤ fi j
w
α

(∫ 1
0 qi jdi

K

) 1−α

α

∀ j ∈ J


we arrive at the first part of the proposition (eqn 3.14):

qSP
i j (Q,w) =

 fi jQ if j ∈ J (i) and v ≥ fi j
w
α

(
Y SP

KSP

) 1−α

α

0 otherwise

where Y SP =
∫ 1

0 qSP
i j di

Next, from the cost-minimization problem for the Cobb-Douglas production
with partial delay (eqn A.5) we have the next part of the proposition for the optimal
choice of the scalable input factor in period 1:

LSP (Q,w) = Y
1
α K− (1−α)

α =

(∫ 1

0
qSP

i j di
) 1

α (
KSP

)− (1−α)
α

C.2 Period 0 Optimization

As discussed in the main body, we can show that the optimality condition for non-
scalable production capacity KSP (equation 3.16) holds with or without the full
production assumption. To elucidate this point, note that when the full produc-
tion assumption is relaxed, there may exist states of the world (Q,w) where some
final good firms situated far from intermediate good production firms do not find
it optimal to produce at all. In other words, let īSP

0
(
Q̃, w̃

)
represent a “thresh-

old” firm in the final goods sector. This firm is indifferent between sourcing in-
puts from intermediate good firm j = 0 and opting out of production altogether

in state
(
Q̃, w̃

)
: v

f(īSP
0 )

=
( w̃

α

)α ( r
1−α

)1−α

(
w̃Q̃

1
α

E
[
wQ

1
α

]
)1−α

. Hence there may exist

states
(
Q̃, w̃

)
whereby īSP

0
(
Q̃, w̃

)
< 1

2n , and the market segment
[
īSP
0
(
Q̃, w̃

)
, 1

2n

]
on

the circle produces no final good outputs and experiences “empty shelves”. At first
glance, one might expect that an ex-ante increase in non-scalable capacity K would
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positively impact welfare. This expectation arises from the fact that an increase in
K would endogenously boost the production of intermediate goods, Y . However,
the indirect effects captured by dY

dK are zero in equilibrium. We can safely ignore the
indirect effects of K on Y , because the indirect effects are multiplied by the differ-
ence between the marginal cost and marginal benefit of production for the threshold
buyer, which is equal to zero by construction.29 Therefore, irrespective of whether
the full-production assumption holds, only the direct effects of K matter.

Formally, recall that the period 1 value function for given K and realization of Q

and w can be expressed as the difference between the value of final goods produced
and the cost of the required intermediary goods:

W SP (K|Q,w) = v

(
2n
∫ min{ 1

2n ,ī
SP
0 }

0
Qdi

)
−n
(

rK +wY
1
α K− (1−α)

α

)
(C.1)

where iSP
0 is the threshold buyer for intermediate good 0, (implicitly) defined as the

final good firm i for which the marginal benefit of sourcing inputs from j = 0 equals
the marginal cost:

v
fīSP

0 ,0
=

w
α

(
Y
K

) 1−α

α

(C.2)

The upper limit of integration, min
{ 1

2n , ī
SP
0
}

, reflects the possibility of “regime
switching” when the full production assumption is relaxed. When the economy
operates at a full-production equilibrium, the relevant threshold buyer for interme-
diate good firm j = 0 is given by i = 1

2n , the final good firm located at the half way
point between j = 0 and j = 1. This is a competitive regime, where intermediate
good firms engage in monopolistic competition. But without the full-production as-
sumption, there may arise states of the world whereby the threshold buyer for j = 0
is closer: i.e. īSP

0 < 1
2n . This is a local monopolies regime, characterized by a gap in

market coverage between two supplier nodes (e.g. between j = 0 and j = 1). The

29This result bears resemblance to the Envelope Theorem, in which the total derivative of the
value function with respect to the parameters of the model is equal to its partial derivative. Here K
is the choice variable, but the total derivative of W SP (K|Q,w) with respect to K is also equal to its
partial derivative.
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demand for final goods is not fully met for firms located in this gap, and we see
“empty shelves” in some segments of the market. We account for the possibility
of “regime switching” between the competitive regime and the local monopolies
regime in the analyses that follows.

Totally differentiating the expectation of W SP with respect to K will yield the
desired first-order optimality condition for non-scalable capacity in period 0. For
ease of exposition, we proceed with the differentiation in parts. In particular, note
that the change in the final output in each market segment with respect to K is given
by:

d
dK

∫ min{ 1
2n ,ī

SP
0 }

0
Qdi =

d min
{ 1

2n , ī
SP
0
}

dK
Q

which depends on the derivative of the threshold buyer īSP
0 with respect to K.

Strictly speaking, the function min
{ 1

2n , ī
SP
0
}

is not continuously differentiable w.r.t.
K due to the kink where 1

2n = īSP
0 . Without loss of generality, we will loosely define

d min{ 1
2n ,ī

SP
0 }

dK using its right-hand side derivative:

d min
{ 1

2n , ī
SP
0
}

dK
=

0 when min
{ 1

2n , ī
SP
0
}
= 1

2n
dīSP

0
dK > 0 when min

{ 1
2n , ī

SP
0
}
< 1

2n

to account for the fact that when īSP
0 ≥ 1

2n , the presence of demand caps in over-
lapping market segments means that any further increases in capacity would not
increase aggregate output.

Next, the increase in scalable input costs (wL) from changes in K can be broken
down into two components: the indirect costs of requiring more scalable inputs
when total output increase following a rise in K; minus the direct cost savings of
needing less L when K increases for given output Y :

d
dK

(
wY

1
α K− (1−α)

α

)
= w

[
1
α

(
Y
K

) 1−α

α dY
dK

− 1−α

α

(
Y
K

) 1
α

]

Since Y = 2Q
∫min{ 1

2n ,ī
SP
0 }

0 fi0di, the endogenous increase in increase in output Y
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when K increase is:

dY
dK

= 2Q

[
d min

{ 1
2n , ī

SP
0
}

dK
fmin{ 1

2n ,ī
SP
0 },0

]

= 2Q

[
d min

{ 1
2n , ī

SP
0
}

dK
fīSP

0 ,0

]

The second equality simplifies the first by noting that
d min{ 1

2n ,ī
SP
0 }

dK = 0⇔min
{ 1

2n , ī
SPS
0
}
=

1
2n .

Taken together, we have the following first-order optimality condition for the
period 0 problem:

dE
[
W SP]

dK
= 2nvE

[
d min

{ 1
2n , ī0

}
dK

Q

]
−nr−nE

[
w

(
1
α

(
Y
K

) 1−α

α dY
dK

− 1−α

α

(
Y
K

) 1
α

)]
= 0

⇔ 0 = 2vE

[
d min

{ 1
2n , ī0

}
dK

Q

]
− r−E

[
w

(
1
α

(
Y
K

) 1−α

α dY
dK

− 1−α

α

(
Y
K

) 1
α

)]

⇔ 0 = vE

[
1

fīSP,0

dY
dK

]
− r−E

[
w
α

(
Y
K

) 1−α

α dY
dK

]
+

1−α

α
E

[
w
(

Y
K

) 1
α

]

⇔ r = E

[(
v

fīSP
0 ,0

− w
α

(
Y
K

) 1−α

α

)
dY
dK

]
+

1−α

α
E

[
w
(

Y
K

) 1
α

]

⇔ r = E
[

0× dY
dK

]
+

1−α

α
E
[

wL
K

]
⇔ αrKSP = (1−α)E

[
wLSP

]
where the penultimate line holds because v

fīSP
0 ,0

= w
α

(Y
K

) 1−α

α (marginal benefit

= marginal cost) is the definition of īSP
0 , and from the Cobb-Douglas production

function, we have
(Y

K

) 1
α = L

K . In other words, the indirect effects of raising K on
aggregate output Y neatly cancels out, leaving us with the familiar Cobb-Douglas
inputs optimality condition in the final line.
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Using the production function to substitute out LSP = Y
1

α j K
−(

1−α j)
α j and re-

arranging yields the explicit solution for KSP:

KSP =

(
1−α

α

1
r

)α

E

w

(
2Q
∫ min{ 1

2n ,ī
SP
0 }

0
fi0di

) 1
α

α

as required for part 2 of the proposition.
Finally, to complete the proof, we want to show that this level of KSP indeed

leads to a full production equilibrium under assumption A2. We do this by substi-
tuting out the explicit expression for KSP in the marginal cost function to show that
in equilibrium the marginal cost of production is always below the valuation for the
final good (adjusted for the distance-based penalty):

M̃C (Q,w) :=
w
α

(
Y SP

KSP

) 1−α

α

=
w
α

(
r

α

(1−α)

)1−α

 Y SP

E
[
w(Y SP)

1
α

]α


1−α

α

=
(w

α

)α
(

r
1−α

)1−α

 wQ
1
α

E
[
wQ

1
α

]
1−α

≤
(

w̄
α

)α( r
1−α

)1−α

 w̄Q̄
1
α

E
[
wQ

1
α

]
1−α

∀w,Q

≤ v
f
( 1

2n

) by assumption A2

where Y SP (Q,w) = 2Q
∫ 1

2n
0 f (i)di.

This completes the proof for Proposition 2.
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C.3 Relationship between KPF and KSP

Recall from equations 3.9, 3.17 that we have:

KPF (Q,w) =
(

w
r
(1−α)

α

)α
(

2Q
∫ 1

2n

0
f (i)di

)

KSP =

(
1
r

1−α

α

)α
(

2
∫ 1

2n

0
f (i)di

)(
E
[
wQ

1
α

])α

Some straight-forward algebra shows that:

KSP = KPF (Q,w)

E
[
wQ

1
α

]
wQ

1
α

α

Furthermore, taking the expectation of KPF over (Q,w), we have

E
[
KPF (Q,w)

]
=

(
1
r
(1−α)

α

)α
(

2
∫ 1

2n

0
f (i)di

)
E [wαQ]

Taken together with the expression for KSP, we can show:

KSP

E [KPF (Q,w)]
=

(
E
[
wQ

1
α

])α

E [wαQ]

such that, by Jensen’s inequality and given g(x) := xα is concave for α ∈ (0,1), we
have:

KSP ≥ E
[
KPF (Q,w)

]
as required.

47



D Sufficient condition for full production symmetric
equilibrium in the decentralized solution

First, we establish the sufficient conditions for the existence of a full-production
symmetric equilibrium.

Lemma 1. [Existence of Full Production Symmetric Equilibrium]: For every

configuration of the primitives of the model with the exception of v, E−v = { f (·) ,α,w,r,Q},

there exist a v̄ ∈ R++ such that the economies E (v) = { f (·) ,α,w,r,Q,v ≥ v̄} ad-

mits a full production symmetric equilibrium.

Intuitively, the marginal benefit of production is increasing in the valuation of
the final good v, but the marginal cost is non-increasing in v. So, for every param-
eterization of the model, we can find a large enough v̄ to guarantee full production
in a symmetric equilibrium.

Formally, while assumption A2 establishes the sufficient conditions for full pro-
duction under the social planner benchmarks, the corresponding full-production
condition for the decentralized case is given by:

v ≥ f
(

1
2n

)
p∗ = f

(
1

2n

)
µ (n)M̃C = f

(
1

2n

)
µ (n)

w̄
α

Q̄
∫ 1

2n
0 f (i)di

K∗

 1−α

α

where p∗ is the equilibrium price for intermediate goods, µ (n) :=
f( 1

2n)

f( 1
2n)−2

f ′( 1
2n)

f( 1
2n)

∫ 1
2n

0 f (i)di

is the mark-up over marginal costs, and K∗ is the equilibrium level of non-scalable
capacity. We argue that for every possible parameterization of the other primitives,
there exists a v̄ ∈ R++ that guarantees full production.

Consider an arbitrary economy E (ṽ) = { f (·) ,α,w,r,Q; ṽ} with valuation ṽ.
We want to show that by varying ṽ we can always construct an economy E (v̄) =

{ f (·) ,α,w,r,Q; v̄} that supports a full production symmetric equilibrium holding
all other primitives the same. To do this, we compute K∗ (ṽ), the associated equi-
librium level of capacity investment assuming full production; and the correspond-
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ing MC (ṽ) = f
( 1

2n

)
µ (n) w̄

α

(
Q̄
∫ 1

2n
0 f (i)di
K∗(ṽ)

) 1−α

α

, the highest possible realization of

marginal costs in that economy. Note that K∗ (v) is a non-decreasing function of v

and therefore MC (v) is a non-increasing function of v (i.e. the marginal cost of pro-
duction in any full production equilibrium does not increase when the valuation in-
creases). Then if ṽ ≥ MC (ṽ), then the economy E (ṽ) admits a full production sym-
metric equilibrium characterized by K∗ (ṽ). If instead ṽ < MC (ṽ), let v̄ = MC (ṽ)>

ṽ. Then v̄ = MC (ṽ)≥ MC (v̄). And every economy E (v) = { f (·) ,α,w,r,Q;v ≥ v̄}
admits a full production symmetric equilibrium as required.

Second, we remark that the full production assumption also enables us to avoid
problems of non-differentiability in the demand function. In a classical treatment of
the circular economy, Salop (1979) segments the demand function for intermediate
goods into three sections: a “monopoly” regime (whereby the firm acts as if it is a
monopoly); a “competitive” regime (where it engages in Bertrand competition with
its neighbors); and a “super-competitive” regime (where it prices so aggressively as
to take over its neighbor’s native market). The demand function exhibits a kink at
the intersection between the monopoly and competitive regime, and makes a discon-
tinuous jump between the competitive and super-competitive regime. We can rule
out equilibria falling under the super-competitive regime by setting a sufficiently
steep distance-based penalty function; and for the purpose of the main analyses in
section 3 and 4, the full production assumption ensures the demand function is con-
tinuously differentiable. In Appendix G we relax the full production assumption to
examine the interplay between the competitive and monopoly regime.

E Proof of Proposition 3: Full production symmetric
equilibrium in the spot market

In period 1, the equilibrium spot market orders qspot,∗
i j by final good firms, and the

purchase of scalable inputs L∗ by intermediate good firms, take a similar form to
their corresponding expressions under the constrained optimal benchmark. We skip
their derivations to avoid repetition, and concentrate instead on the solution for the
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spot market price p∗, given by equation 4.10.
To solve for p∗, we will first need to derive the demand function facing the

intermediate good firm j = 0 on the spot market. For now, we will also need to
conjecture that the aggregate volume of pre-orders must be equalized across all
final good firms in equilibrium: Qpre

i = Qpre, ∀i ∈ I, a result that we will prove
formally later in appendix F.

E.1 Finding the slope of the demand curve

The demand curve facing each intermediate good firm is piece-wise linear (when
plotted against p j, for given p− j). To see this, note that the period 1 equilibrium
is governed by two indifference thresholds. First, for given price vector (p0,p−0),
the participation threshold for firm j = 0, ī0, is defined as the final good firm that
is indifferent between buying inputs from intermediate good firm j = 0 and not
producing at all:

f (ī0) p0 = v, ∀p0 ∈

[
v

f
(1

2

) ,v] (E.1)

Second, the competitive threshold ī0,1 is the marginal final good producer that
is indifferent from buying from supplier node j = 0 and j = 1:

f (d (ī0,1,0)) p0 = f (d (ī0,1,1)) p−0 (E.2)

Hence the demand curve facing firm j = 0 depends on the lower envelope of the
participation and competitive threshold functions:

Y spot
0 = 2

∫ ī∗0

0
f (i) · (Q−Qpre)di (E.3)

where
ī∗0 := min

{
ī0 (p0) , ī0,1 (p0, p−0)

}
(E.4)

When the slope of the demand curve is well-defined (i.e., away from the knife-
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edge case when ī0 (p0) = ī0,1 (p0, p−0)), it is given by:

dY spot
0

d p0
= 2

[
dī∗0
d p0

f (ī∗0)(Q−Qpre)

]
(E.5)

Under a full production symmetric equilibrium we have ī∗0 = ī0,1 (p∗, p∗) = 1
2n ,

and

dī∗0 (p0 = p∗, p−0 = p∗)
d p0

=
dī0,1 (p∗, p∗)

d p0
=−

∂

(
f(ī0,1)

f( 1
n−ī0,1)

p0

)
/∂ p0

∂

(
f(ī0,1)

f( 1
n−ī0,1)

p0

)
/∂ ī0,1

=− 1(
f ′(ī0,1)
f(ī0,1)

+
f ′( 1

n−ī0,1)
f( 1

n−ī0,1)

)
p0

=−
f
( 1

2n

)
2 f ′
( 1

2n

)
p0

(E.6)

E.2 Solving for the optimal spot market price

We can derive the following first-order condition with respect to p0 from the inter-
mediate good producer j = 0’s optimization problem (equation 4.5):(

p∗− w
α

(
Y
K

) 1−α

α

)
= Y spot/

(
−dY spot

d p∗

)
(E.7)

where w
α

(Y
K

) 1−α

α is the marginal cost of production for intermediate goods; Y :=
Y spot +Y pre is the total amount of intermediate good production; and dY spot

d p∗ is the
slope of the demand curve in the spot market. By imposing symmetry we get p∗ =

p∗0 = p∗j for all j ∈ J.
Substituting equations E.5 and E.6 into equation E.7 gives the optimal spot-
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market price as required:

(p∗−MC) =
2
∫ 1

2n
0 f (i)(Q−Qpre)di

−2
[
− f( 1

2n)
2 f ′( 1

2n)p∗
f
( 1

2n

)
(Q−Qpre)

]

⇒ p∗ =

1+
2 f ′
( 1

2n

)∫ 1
2n

0 f (i)di(
f
( 1

2n

))2 −2 f ′
( 1

2n

)∫ 1
2n

0 f (i)di

MC

F Proof of proposition 4: Full Production Symmetric
Equilibrium in the pre-order market

F.1 Final good producers in period 0

We will start by verifying that the conjecture Qpre
i = Qpre, ∀i ∈ I is indeed an equi-

librium solution.

Lemma 2. [Optimal Pre-orders] In a full-production symmetric equilibrium, each

final good producer i will:

1. pre-order from the intermediate good producers that sets the lowest effective-

price for i.

qpre,∗
i j =

 fi jQ
pre,∗
i if j ∈ J (i;φ) , and fi jφ j ≤ v

0 otherwise
(F.1)

where J (i;φ) :=
{

j̃ ∈ J : fi j̃φ j̃ = min{fi ◦φ}
}

denote the set of suppliers that

provides the lowest effective price for i.

2. set the aggregate quantity of pre-orders Qpre,∗
i such that the marginal cost of

pre-orders is equal to its expected marginal benefit.

fi j̃φ j̃ =Pr
(
Q > Qpre,∗

i
)

E
[

fi ĵ p
∗
ĵ (Q,w) |Q > Qpre,∗

i

]
, for j̃ ∈ J (i;φ) , ĵ ∈ J (i;p)

(F.2)
where J (i;p) :=

{
ĵ ∈ J : fi ĵ p ĵ = min{fi ◦p}

}
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Furthermore, imposing symmetry implies

φ = Pr
(
Q > Qpre,∗

i
)

E
[
p∗ (Q,w) |Q > Qpre,∗

i
]

∀i ∈ [0,1] (F.3)

so that the aggregate volume of pre-orders must be equalized across all final good

firms:

Qpre,∗
i = Qpre,∗ ∀i ∈ [0,1] (F.4)

Equation F.2 is the first-order condition of final good producer i’s period 0 op-
timization problem. It gives an implicit expression for the equilibrium aggregate
volume of pre-orders Qpre,∗

i as a function of spot and pre-order prices (p∗,φ).
On the left hand side of the equation, fi j̃φ j̃ is the effective marginal cost of pre-
orders. On the right hand side is the expected marginal benefit of pre-orders, which
is equal to the probability that the spot market order of i will be strictly positive
Pr
(
Q > Qpre,∗

i
)
, multiplied by the conditional expectation of the lowest effective

spot price, given i’s spot-market order is strictly positive E
[

fi ĵ p
∗ (Q,w) |Q > Qpre,∗

i

]
.

Under symmetry, p∗j = p∗ and φ j = φ for all j ∈ J; so the nearest intermediate
good node to i will always provide the lowest effective price on both the pre-order
and spot markets: fi j̃= fi ĵ. Equation F.2 can thus be simplified to equation F.3,
which we can also interpret as the demand function for pre-orders Qpre,∗

i for given
pre-order price φ . Equation F.3 has two immediate implications: (1) aggregate pre-
orders must be equalized across i (equation F.4); and (2) the highest sustainable
pre-order price is φ = E [p∗], in which case the final good producers will only pre-
order to satisfy the minimal possible realization of demand Qpre,∗ = Q. For any
pre-order price greater than the unconditional expectation of the spot market price,
the aggregate quantity of pre-order will be zero. So we can view equation F.3 also
as a participation constraint for final good firms on the pre-order market.

F.2 Intermediate good producers in period 0

Recall the expected profit function for intermediate good producers:
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max
φ ,K

E
[
Π j
]
=E
[
p∗Y spot −wL∗]+φY pre − rK

=
∫ Q̄

Qpre

∫
w

(
p∗Y spot)h(w)g(Q)dwdQ . . .

−
(∫ Qpre

Q

∫
w
(wL∗)h(w)g(Q)dwdQ+

∫ Q̄

Qpre

∫
w
(wL∗)h(w)g(Q)dwdQ

)
. . .

+φY pre − rK (F.5)

We note that in a symmetric full production equilibrium, the aggregate production

of intermediate goods Y := Y pre +Y spot = 2Q
∫ 1

2n
0 f (i)di is exogenously pinned

down by the realization of final good demand Q, and the distance-based penalty
function f . But the relative importance of the spot market and the pre-order mar-
ket (Y pre and Y spot) depends on the aggregate volume of pre-orders Qpre, which
is determined by the choice of the pre-order price φ . On the other hand, the level
of non-scalable capacity investment K affects the period 1 equilibrium spot mar-
ket price p∗ (Q,w) and scalable input demand L∗ (Q,w) in each possible state. We
examine the optimality conditions for φ and K in turn.

First we take the derivative of expected profits with respect to φ . With some
algebra, we can show that

dE
[
Π j

(
K j,φ j,q

pre
j

)]
dφ

=φ

(
−dY pre

dφ

)
−Pr(Q ≤ Qpre)E

[
w

∂L∗

∂Y
|Q ≤ Qpre

]
dY pre

dφ
. . .

+

(
Y pre +φ

dY pre

dφ

)
(F.6)

=−Pr(Q ≤ Qpre)E
[

w
∂L∗

∂Y
|Q ≤ Qpre

]
dY pre

dφ
+Y pre

=Pr(Q ≤ Qpre)E
[

w
∂L∗

∂Y
|Q ≤ Qpre

](
−dY pre

dφ

)
+Y pre > 0

(F.7)

This imply that the equilibrium must be a corner solution. Intermediate good pro-
ducers would like to set the highest possible pre-order price subject to the participa-
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tion constraint of final good producers (eqn F.3). Thus, from Lemma 2, equilibrium
pre-orders will equal to the lowest possible realization of final good demand, and
the equilibrium pre-order price will equal the unconditional expectation of the spot
market price:

Qpre,∗ = Q (F.8)

φ
∗ = E [p∗ (Q,w)] (F.9)

Next we take the derivative of the expected profit with respect to K:

E
[

∂ p∗

∂K
Y spot

]
−E

[
w

∂L∗

∂K

]
− r = 0 (F.10)

where L∗ = (Y pre +Y spot)
1
α (K)−

1−α

α , so

∂L∗

∂K
=−

(
1−α

α

)(
Y pre +Y spot) 1

α K− 1
α

=−
(

1−α

α

)
L∗

K

Substituting ∂L∗

∂K back into the first-order condition to give

E
[

∂ p∗

∂K
Y spot

]
+(1−α)E [wL∗] = αrK∗ (F.11)

as required.

G Partial Production and Local Monopolies

In this appendix, we discuss the implications of relaxing the full production assump-
tion. Relaxing the assumption allows for shocks that are severe enough to shut out
some market segments of final good producers from the spot market. Final good
producers that are further away from intermediate good suppliers (i.e., those with
less substitutable inputs) will experience greater difficulty adjusting to the shocks.
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To see this, note that the period 1 equilibrium is governed by two indiffer-
ence thresholds (which may or may not be binding). First, for given price vector
(p0, p−0), where p j = p−0 ∀ j ̸= 0, the participation threshold ī0 is defined as the
final good firm that is indifferent between buying inputs from intermediate good
firm j = 0 and not producing at all:

f (ī0) p0 = v, ∀p0 ∈

[
v

f
(1

2

) ,v] (G.1)

Second, the competitive threshold ī0,1 is the marginal final good producer that
is indifferent between buying from supplier node j = 0 and j = 1:

f (d (ī0,1,0)) p0 = f (d (ī0,1,1)) p−0 (G.2)

As Figure G.1 illustrates, the participation threshold ī0 (and its counterparts for
j ̸= 0) can be visualized as the arms that reaches out from each supplier node. The
participation threshold therefore represents the potential market reach for each in-
termediate good supplier. As long as the market reach from two nearby supplier
nodes overlap, the two suppliers engage in competition and the competitive thresh-
old ī0,1 is the binding threshold for computing demand. Under this competitive

regime, the intermediate good suppliers’ market reach covers every market segment
on the circle. The aggregate demand for final goods is met and we see “full shelves”.
The competitive regime always prevails under the full production assumption.

We can show further that the market reach of each intermediate good supplier
is increasing in the level of non-scalable capacity installed (K), and decreasing in
the cost of the scalable input (w). For given level of non-scalable capacity K, the
market reach of each supplier node gets shorter as the size of the negative cost shock
increases, until eventually the participation thresholds ī0 and ī1 no longer overlap
and the two neighboring suppliers ( j = 0,1) behave like local monopolies. Under
this local monopolies regime, there is a gap in market coverage between the two
supplier nodes, and we see “empty shelves” in some segments of the market.30

30A third possible regime arises when the market reach of one intermediate good supplier goes
past the node of another. This is the “super-competitive” regime, whereby one supplier prices so
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Figure G.1: Regime switching: competition vs local monopolies

The optimal pricing strategy of intermediate good suppliers therefore depend on
whether they are operating under the competitive or the local monopolies regime,
which in turn depends on the realization of demand and supply shocks in period 1.
We formally characterize the symmetric equilibrium spot-market pricing strategy
under the assumption that the distance-based penalty function f (x) takes the form
of an exponential function, with parameter β .

Assumption A3 Exponential distance-based penalty function: f (d) = exp(βd),
where β ∈ (0,1] governs the degree of substitutability between different in-
termediate goods.

Proposition 6. [Optimal spot-market pricing under symmetric equilibrium]

1. Under the competitive regime, we have ī0,1 = 1
2n ≤ ī0 and the equilibrium

price for the intermediate good is given by:

p∗c = MCc ·
exp
(

β

2n

)
2− exp

(
β

2n

) (G.3)

aggressively as to capture the home market of their neighboring competitor. Allowing for this pos-
sibility would lead to a discontinuous jump in the demand function for intermediate goods. In the
interest of tractability, we can rule out the possibility of a super-competitive regime by making the
distance-based penalty function f (·) sufficiently punishing.
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where MCc is the marginal cost faced by intermediate good suppliers

MCc =
w
α

(
Y pre +Y spot

c

K

) 1−α

α

(G.4)

2. Under the local monopolies regime, we have ī0 < ī0,1 = 1
2n and the equilib-

rium price for the intermediate good is given by:

p∗m =
√

v ·MCm (G.5)

where MCm is the marginal cost faced by intermediate good suppliers

MCm =
w
α

(
Y pre +Y spot

m

K

) 1−α

α

(G.6)

Intuitively, the first part of Proposition 6 shows that under a competitive regime,
intermediate goods suppliers charge a mark-up over marginal costs.31 The mark-
up is higher when substitutability is lower (i.e., when β , the parameter governing
the distance-based penalty function, is closer to 1), and lower when competition is
fiercer (i.e., when n is large). In the limit, as n approaches infinity - and the distance
between nodes shrinks to zero such that intermediate goods become perfectly sub-
stitutable - equation G.3 simplifies down to the familiar condition of price equals
marginal cost.

The second part of Proposition 6 shows that when intermediate good suppli-
ers operate as local monopolies, the price they charge is equal to the geometric
average between their marginal costs (MCm) and the highest possible price (v, the
valuation of the final good output by end consumers). Unsurprisingly, whilst inter-
mediate good suppliers operates as local monopolies, the number of other firms n

is irrelevant to their pricing decision. Any changes in n instead influences whether
the economy switches between the local monopolies regime and the competitive
regime (i.e. whether ī0 is less or greater than ī0,1 = 1

2n ).32

31This part of the proposition is just a re-writing of our earlier results for this specific parameteri-
zation.

32Clearly, this neat characterization of the monopoly price as a geometric average won’t hold in
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Other factors that influence the market pricing regime that prevails in equilib-
rium include the level of non-scalable production capacity in place K, and the cost
of the scalable input w.

Proposition 7. [Regime switching] ī0, the participation threshold (i.e market reach)

of firm j = 0, is increasing in K and decreasing in w:

dī0
dK

> 0 (G.7)

dī0
dw

< 0 (G.8)

Proposition 7 formalizes our earlier discussion that, for given non-scalable ca-

pacity K, larger negative supply shocks (larger w) increases the likelihood that the

economy will end up in the local monopolies regime. Under the local monopolies
regime, the market segment (i ∈ (ī0, ī1)) that lies in-between the market-reach of the
two nearby supplier nodes will not be able to fulfill their realized demand for final
goods, and we observe “empty shelves”. Intuitively, the proposition holds because
a higher K, and a lower w, reduces the marginal cost of production, which increases
the market reach of the intermediate good supplier.33

A key implication of Proposition 7 is that the response of final good outputs
to shocks is non-linear. Under normal or benign market conditions, the economy
might be operating under the competitive regime which ensures that demand from
every market segment is met. Market reach of neighboring suppliers overlap, and
continues to overlap for small perturbations in supply and demand. Under these
benign conditions, the supply network appears robust. But when negative supply
shocks becomes sufficiently large, the economy suddenly switches from the com-
petitive regime to the local monopolies regime. The critical role capacity plays,
therefore, is that it prevents empty shelves for a larger range of shocks. A larger

general (e.g. without the exponential functional form for f (d)). But the other part of the proposition,
that in the local monopolies regime the number of other firms is irrelevant, is more general. Even if
other firms exist, they simply aren’t selling in each other’s “submarket”.

33Note that this analysis is not comparative statics in the strict sense: w is an exogenous variable,
but K is an endogenous variable. With regard to the latter, we are asking how firms’ endogenous
choice of capacity investment in period 0 affects market reach and the nature of competition on the
spot market in period 1.
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K allows for a larger market-reach overlap for any given input cost w, making the
entire network more robust. But since the degree of overlap is in of itself irrelevant,
surplus capacity is “wasted” in the absence of large negative supply shocks.

Relaxing the full production assumption therefore reinforces our central mes-
sage that K∗ < KSP. This is intuitive, because the possibility of a large shock shift-
ing the economy to a local monopolies regime adds another distortion to the system.
Ex ante capacity investment K increases network resilience by ensuring full produc-
tion for a wider range of shocks, but is undervalued by market participants under
business-as-usual scenarios. Robustness becomes an externality that may not be
fully internalized by individual intermediate good suppliers in their capacity deci-
sions in period 0. Worse still, in imperfectly competitive economies, some firms
may profit from the artificial scarcity that arises from a lack of resilience.

60


	Related Literature
	Model
	The social planner benchmarks
	The Perfect Foresight (PF) benchmark
	The Constrained Optimal Social Planner (SP) Benchmark

	The decentralized solution: equilibrium in the spot and pre-order markets
	Period 1 equilibrium in the spot market
	Period 0 equilibrium in the pre-order market

	Decentralized solution vs constrained optimal benchmark
	Policy Interventions

	Concluding Remarks
	Cost functions for Cobb-Douglas production function
	Standard Cobb-Douglas Production
	Cobb-Douglas Production with Partial Delay

	Proof for Proposition 1 - Perfect Foresight benchmark
	Proof for Proposition 2 - Social Planner's Constrained Optimal problem
	Period 1 optimization
	Period 0 Optimization
	Relationship between KPF and KSP

	Sufficient condition for full production symmetric equilibrium in the decentralized solution
	Proof of Proposition 3: Full production symmetric equilibrium in the spot market
	Finding the slope of the demand curve
	Solving for the optimal spot market price

	Proof of proposition 4: Full Production Symmetric Equilibrium in the pre-order market
	Final good producers in period 0
	Intermediate good producers in period 0

	Partial Production and Local Monopolies

