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1 Introduction

Recently, advances in (generative) artificial intelligence (AI) have accelerated adoption across

many sectors.1 This rapid adoption has created calls for regulatory intervention over concerns

that there are potential harms from AI adoption (Acemoglu, 2021). In one prominent case,

those calls from computer scientists and AI innovators were for an immediate and quite

consequential intervention.

[W]e call on all AI labs to immediately pause for at least 6 months the training

of AI systems more powerful than GPT-4. This pause should be public and

verifiable, and include all key actors. If such a pause cannot be enacted quickly,

governments should step in and institute a moratorium.

AI labs and independent experts should use this pause to jointly develop and im-

plement a set of shared safety protocols for advanced AI design and development

that are rigorously audited and overseen by independent outside experts. These

protocols should ensure that systems adhering to them are safe beyond a reason-

able doubt. This does not mean a pause on AI development in general, merely

a stepping back from the dangerous race to ever-larger unpredictable black-box

models with emergent capabilities.2

This is a call for ex ante regulation of AI as well as advocating a policy-instrument: a pause

on AI adoption. In other words, with respect to AI, in contrast to the usual concerns that

arise in the economics of innovation that development and adoption may be too slow relative

to the social optimum (e.g., Arrow (1972) and Segal & Whinston (2007)), these calls claim

that AI adoption is happening too rapidly.

However, regulation that slows down the development and adoption of technology is not

new. In some cases, technologies have raised ethical dilemmas (e.g., stem-cell research,3

human cloning and eugenics), but also concerns regarding catastrophic risk (e.g., gain-of-

function research). While the concerns with regard to AI sometimes involve such high risks,4

the recent push is with respect to potential harms from AI that are not unprecedented in

recent history, including the job implications of automation, the production of misinforma-

tion and threats to cybersecurity. These harms are similar to those put forward by the

1OpenAI’s ChatGPT was the fastest technology to reach 100 million users in history achieving that goal
just two months after launch. https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-
user-base-analyst-note-2023-02-01/

2https://futureoflife.org/open-letter/pause-giant-ai-experiments/
3Furman et al. (2012)
4https://www.nytimes.com/2023/05/30/technology/ai-threat-warning.html
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information technology and Internet revolutions. Importantly, it is uncertain whether those

potential harms will become real or whether regulating AI alone would mitigate them.

In contrast to information regarding actual harms from AI, there is already important ev-

idence indicating that such technologies are generating substantial benefits. All of the recent

developments in AI are advances in machine learning, a subset of the broad field of compu-

tational statistics. AI today is not necessarily a new form of intelligence but what might be

called prediction machines that allow for cheaper and superior prediction by machines than

people could achieve (Agrawal et al., 2018). Numerous studies show that prediction can au-

tomate aspects of tasks and improve productivity, especially among workers with relatively

less skill or experience.5 Consequently, it is not at all clear that some of the more pessimistic

forecasts of the usefulness of AI are being borne out by current AI adoption.6

Given the relative weights of information regarding benefits and potential harms, there

is a real risk that regulation, and even the prospect of it, could delay AI adoption. As noted

above, that may be the intent of these regulations. However, it should be noted that such

uncertainty has had a chilling effect on innovation in other areas of innovation. Galasso &

Luo (2022) found that patenting on implants decreased by 35 percent following a potential

legal extension of product liability law in the class.

This paper aims to examine the optimal rate of AI adoption from a social welfare per-

spective, given that the potential harms from AI adoption are uncertain. This is not a new

question in the literature. Jones (2023) has examined the optimal timing for the use of AI

given the potential for existential risk.7 In relation to concerns with the current generation of

AI technologies, Acemoglu & Lensman (2023) examines the efficacy of delaying AI adoption

in order to allow for the resolution of uncertainty regarding potential harms. They identify

a precautionary motive for delaying AI adoption in order to become more confident that

such adoption will not result in harm.8 They also examine some other instruments, such as

regulatory sandboxes and Pigouvian taxation, as ways of implementing the social optimum.9

The contribution of this paper is to provide a simple model that demonstrates the impor-

5See Choi & Schwarcz (2023), Noy & Zhang (2023), Dell’Acqua et al. (2023), Kanazawa et al. (2022),
Brynjolfsson et al. (2023) and Agrawal et al. (2024).

6For discussions see, Gans & Leigh (2019) and Agrawal et al. (2023a).
7In the case of AI adoption, much of the concerns about catastrophic harm emerge not in relation to

AI as it is currently developed as prediction machines but instead through perceived threats from artificial
general intelligence (AGI). https://www.nytimes.com/2023/05/30/technology/ai-threat-warning.html

8This is work within a standard rationality framework. Other work on precautionary motives considers
bounded rationality (Grant & Quiggin (2013)) is not an approach considered here.

9This paper is also related to a literature on regulatory learning. The closest relevant work is Spitzer &
Talley (2014), which examines how regulators assess new regulatory interventions when current interventions
are already in place. While their focus is not on delay or accelerated adoption, some of the trade-offs here
have similarities in their model. That said, their paper is focused on drawing out judicial versus regulatory
preferences for different learning approaches.

3



tance of alternative assumptions regarding the learning process and how these impact on the

rate of AI adoption. Section 2 develops a simple framework that starts from the assumption

that regulators can learn about the potential harms of AI by learning by doing – that is,

by allowing or promoting the rapid adoption of AI to provide the conditions under which

potential harms may surface. If such harms do not occur, the adoption of AI can continue.

However, if they do arise, then the regulator can engage in ex post policy implementations

to curtail adoption and potential harm. Of course, in a case where adoption is difficult (or

impossible) to reverse, the learning effect is counter-balanced by the precautionary effect

identified by Acemoglu & Lensman (2023). Importantly, it is demonstrated that the notion

that AI adoption may be accelerated for learning reasons arises precisely because of the

assumption that learning requires real-world adoption. By contrast, Acemoglu & Lensman

(2023) assume that learning is exogenous and takes time, something I term “lab learning,”

which is why they recommend delay as a mechanism for learning, especially when adoption

may be irreversible.10 Consequently, the framework here highlights the roles of alternative

learning assumptions, the role of irreversibilities, and the differences in socially optimal adop-

tion rates depending upon whether the planner is optimistic or pessimistic about the net

social value of AI ex ante.

The paper then highlights policies that might be complementary depending on whether

the social planner wants to accelerate AI adoption. These include policies that will enable

ex post mitigation of potential harms that emerge from AI and those that ensure that, if

delay is used, the required learning takes place. Finally, the role of having a more diverse

pool of potential architectures to develop AI is explored.

2 A Simple Framework

The basic trade-offs involved regarding the rate of AI adoption can be captured in a simple

model. Consider a two-period model where the social planner has a discount factor of

δ ∈ (0, 1). Let xt, assumed to be in (0, 1), be the rate of AI adoption in t ∈ {1, 2}, where
xt could stand for the scale and/or scope of that adoption. The (flow) benefits from such

adoption are b > 0 per unit of adoption. AI adoption may not only create benefits. There

may be damage from AI. Damage, d, results in harm to social welfare that scales at the rate

of AI adoption. Thus, total damage in each period could be as high as xtd. It is assumed

that b < d in what follows; that is, if the damage is known to occur, it is not optimal to

10In a recent paper, Guerreiro et al. (2023) explore the difference between private and social returns to
testing under various regulatory regimes. They do not examine the rate of adoption explicitly, although
interpretations of their model may relate to the lab-learning conclusions reached below.
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adopt AI.

An important element of the model is how the social planner learns about potential

harms. It is assumed that the planner has a prior probability that damage occurs of µ.

Harm may occur but be unobserved prior to adoption choices being made in either period –

for notational convenience, if there is harm, that fact is revealed to the planner at the end of

the second-period. A key assumption here is that actual adoption, x1, is required for a signal

of harm to be generated to inform adoption decisions. Thus, it is assumed, for simplicity,

that if AI is actually harmful, the probability that the planner receives a signal indicating

harm is x1. Otherwise, with probability 1 − x1, there is no signal of harm. Thus, at the

beginning of the second period, the planner’s posterior probability, µ̃, that AI adoption may

result in damage in t = 2, conditional on it not having risen in t = 1, is given by:

µ̃ =
µ(1− x1)

µ(1− x1) + (1− µ)

The learning process assumed here is that unless damage is observed during a period, the

planner updates the likelihood that damage will arise by lowering their posterior probability

that damage will arise. This is essentially an assumption that “no news is good news.” More

precisely, it is an assumption that a signal of damage reveals the state perfectly, while a

signal there is no damage during a period involves the possibility of a false positive.

Importantly, the rate of learning is driven by the rate of AI adoption – a form of learning

by doing. This stands in contrast to the learning process considered by Acemoglu & Lensman

(2023).11 In their formulation, the rate of learning is exogenous, and learning occurs with

time, independent of the level of AI adoption. That is, damage can be signalled without

adopting any AI at all. Below, the criticality of this assumption is explored as well as

what happens when there are other imperfections in signals, including the possibility of false

negatives.

In what follows, two broad cases of AI adoption are considered. In the first, adoption,

should it occur, is reversible, while in the second, it is irreversible. It is demonstrated that

this creates distinct rationales for learning and also impacts the optimal rate of AI adoption.

2.1 Reversible Adoption

Consider first the case where AI adoption is reversible; therefore, if damage is known to

arise, it can be scaled back. By our earlier assumption that b < d, the social planner will

11Similarly, Guerreiro et al. (2023) examine a form of learning termed ‘beta testing’ an important feature
of which is that it does not require actual adoption to generate a signal.
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want to de-adopt AI if it is known to result in damage.12 Thus, if the planner learns that

AI adoption results in damage at the end of period 1, it is optimal to set x∗
2 = 0 and not

continue to use the AI.

As an illustration of the trade-offs involved in adopting AI, assume, for the moment,

that b > µd. When this condition holds, the planner is pre-disposed to adopt AI absent

any information regarding the possibility of damage. Let Vt be the present discounted social

payoff in period t. Under this assumption, in period 1, the planner chooses x1 to maximise:

E[V1] = x1(b− µd) + (1− µx1)δE[V2]

That is, with probability, µx1, the planner receives a signal that AI adoption leads to damage

and should not be used further, while with probability 1 − µx1, they receive no signal. As

b > µd, then it is optimal to set x∗
1 = 1 in the first period and every period thereafter if

damage is not observed in that period. Setting x∗
1 = 1 improves the quality of decision-

making in the second-period while increasing the first-period expected payoff.

The following proposition characterises the optimal outcome for all b < d.

Proposition 1 Suppose AI adoption is reversible. It is socially optimal to set x∗
1 = 1 if

µ ≤ (1+δ)b
d−δb

. Otherwise, it is not socially optimal to adopt AI at all.

Proof. The case where b ≥ µd is shown in the text. Assume now that b < µd. In this case,

conditional on no signal being received at t = 1, E[V2] = x2(b− µ̃d) = x2(b− µ(1−x1)
µ(1−x1)+1−µ

d).

Note that it is only optimal to set x2 > 0 if b ≥ µ(1−x1)
µ(1−x1)+1−µ

d) or x1 ≥ b−dµ
(b−d)µ

in which case,

x∗
2 = 1. Otherwise, x∗

2 = 0. Thus, x1 is chosen to maximise:

E[V1] = x1(b− µd) +

δ ((1− µx1)b− µ(1− x1)d) x1 ≥ b−dµ
(b−d)µ

0 x1 <
b−dµ
(b−d)µ

This objective function is linear and decreasing in x1 up to where x1 >
b−dµ
(b−d)µ

(> 0) beyond

which, it is increasing in x1. Therefore, setting x1 = 0 or x1 = 1 is optimal.

Setting x1 = 0 maximises short-run welfare but involves no learning as to the likelihood

of damage. Alternatively, by setting x1 = 1 the planner receives a perfect signal of whether

there will be damage from continued AI adoption in period 2. Thus, if no signal of damage

is received, period 2 welfare is V2 = b (recalling that it is optimal to set x2 = 1), while if

12If, alternatively, b > d, regardless of whether the planner learns if there is damage of d, it is still optimal
to continue large-scale AI adoption.
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there is a signal of damage, V2 = 0. Therefore:

E[V2|x1 = 1] = (1− µ)b

Given this, at t = 1:

E[V1] = b− µd+ δ(1− µ)b

This is positive if and only if µ < (1+δ)b
d−δb

. Thus, for a sufficiently low prior, µ, it is optimal to

accept a short-run expected loss to learn the level of damage associated with AI adoption.

Note that (1+δ)b
d−δb

> b
d
⇔ b+ d > 0. This completes the proof.

This proposition characterises when it is optimal to accelerate the adoption of AI. When the

planner is optimistic about AI prospects (i.e., when µ < b
d
), acceleration allows for learning

that can mitigate harm earlier should be observed. Importantly, acceleration can be optimal

even if the planner is pessimistic (but not too pessimistic) about AI prospects (i.e., when
b
d
< µ < (1+δ)b

d−δb
). AI adoption affords the opportunity to learn about potential harm and

become more confident that continued adoption will not result in harm. A key assumption

here, however, is that uncertainty is fully resolved by setting x1 = 1. However, so long

as sufficient uncertainty is resolved that would cause the planner to continue to adopt AI

if there were no adverse signals, even a pessimistic planner would choose to accelerate AI

adoption.

2.2 Irreversible Adoption

Consider now the case where the adoption of AI is irreversible. That is, if x1 is the rate

of adoption in period 1, then x2 is constrained to be no less than x1 even if that results

in damage, d. This assumption is consistent with the notion that AI adoption may make

switching back to an older technology difficult. As in Acemoglu & Lensman (2023), the

precise reason for irreversibility is left unmodelled.13

Working backwards, consider the planner’s problem in period 2. The planner is con-

strained to choose x2 ≥ x1. If AI is known to result in damage, then the second-period social

value is V2(d) = x2(b − d), and it is optimal to set x∗
2 = x1. On the other hand, if damage

has not emerged in period 1, then

E[V2|0] = x2(b− µ̃d)

13Acemoglu & Lensman (2023) also assume that irreversibility is probabilistic whereas, in this paper, the
two extreme cases of reversible and irreversible adoption are considered separately.
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where E[V2|0] is the expected value of second-period social welfare conditional on a signal of

no damage. Thus, if b ≥ µ̃d, x∗
2 = 1, otherwise x∗

2 = x1.

Given these second-period choices, under what conditions will the planner choose to

adopt AI in the first period when such adoption cannot be reversed, even if harm is known

to occur? The following proposition characterises the optimal outcome.

Proposition 2 Suppose AI adoption is irreversible. The socially optimal level of x1 is:

x∗
1 =


1 µ ≤ b

(1+δ)d−δb

b−µd+b(1−δµ)
2δµ(d−b)

µ ∈ [ b
(1+δ)d−δb

, (1+2δ)b
(1+δ)d+δb

]

0 µ ≥ (1+2δ)b
(1+δ)d+δb

Proof. There are several cases to consider. First, suppose that b > µd. Note that this

implies that b ≥ µ̃d, so it is optimal to set x2 = 1 so long as no adverse signal of harm is

received. Otherwise, the optimal x2 = x1. Taking this into account, in period 1, the planner

chooses x1 to maximise:

E[V1] = x1(b− µd) + (1− µx1)δ(b− µ̃d) + µδx2
1(b− d)

= (x1 + δ)(b− µd)− µδx1(1− x1)(b− d)

Maximising this with respect to x1 gives:

x∗
1 = max{min{ b−µd+b(1−δµ)

2δµ(d−b)
, 1}, 0}

Observe that x∗
1 ∈ (0, 1) if µ ∈ ( b

(1+δ)d−δb
, b
(1−δ)d+δb

). It is easy to check that this interval is

non-empty. Note that when x∗
1 =

b−µd+b(1−δµ)
2δµ(d−b)

, b ≥ µ̃d requires that:

µ ≤ (1 + 2δ)b

(1 + δ)d+ δb

The RHS is strictly less than b
(1−δ)d+δb

and strictly greater than b
(1+δ)d−δb

.

Second, suppose that b < µd. If b > µ̃d, the analysis for b ≥ µd applies and x∗
1 can be

positive. However, unlike where b ≥ µd, when b < µd, it is possible that µ > µ̄ so that

b < µ̃d for all x1. If this is the case, then x∗
2 = x∗

1. Thus, the planner chooses x1 to maximise:

E[V1] = x1(b− µd) + (1− µx1)δx1(b− µ̃d) + µδx2
1(b− d)

The derivative of this objective with respect to x1 is (1+δ)(b−µd), which is always negative.
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Thus, x∗
1 = 0.

In contrast to the reversible adoption case, while setting x1 = 1 resolves the uncertainty

by period 2, it involves a cost in terms of having to continue to incur some social loss if

AI turns out to be harmful. Thus, for a planner with optimistic beliefs (i.e., b ≥ µd), this

creates a precautionary motive potentially slowing the adoption of AI in the expectation

that sufficient “good news” may be delivered to be confident of full adoption in period 2.

When the planner is pessimistic (i.e., b < µd), absent any learning, it is not optimal to adopt

AI. However, Proposition 2 shows that, even with irreversibilities, it can be optimal to set

x∗
1 > 0, therefore accelerating AI adoption relative to the case without any learning.

Interestingly, in a model that extended beyond period 2, the set-up here has an interesting

implication about the broader dynamics of adoption and learning. It suggests that it may

be optimal when b < µd to choose a positive level of x1 initially, with the expectation that

a sufficient number of periods (or rounds) of observation may arise to eventually given the

planner confidence to increase adoption. Thus, an initial level of adoption may be regarded

as the ‘cost’ of engaging in learning similar to the lab-learning model to be discussed next if

such learning involved per period costs.14

2.3 Lab Learning

Thusfar, the model has considered learning by doing whereby uncertainty regarding damage

is only resolved if AI is adopted and that a greater scale of adoption is more likely to

surface the possibility of damage if such damage is possible. By contrast, Acemoglu &

Lensman (2023) examines a model whereby time alone – independent of adoption – resolves

uncertainty regarding any harms of AI. In particular, translating their assumption into the

structure of the present model, they assume that:

µ̃ =
µ(1− λ)

µ(1− λ) + (1− µ)

where λ < 1 is a constant. In other words, the safety of AI can be evaluated in a lab instead

of requiring any AI adoption in the market. Hence, this is termed “lab learning.”15 The

process for such lab learning is that if AI involves harm, then there is a probability, λ, that

a lab will discover evidence of that harm. A higher λ implies that if there is no evidence of

14Guerreiro et al. (2023) do consider such costs but also allow them to be minimised by setting what
would be in the model here, x1, as close to zero as possible.

15Spitzer & Talley (2014) in examining financial regulation examine a similar dichotomy. Their “analytical
learning” is similar to “lab learning” while their “field experimentation” is similar to “learning by doing.”
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harm found during a period in the lab, then a more precise inference can be drawn that AI

is, in fact, safe. Of course, in contrast to learning by doing, the precision of the signal from

lab learning is exogenous.

Under this assumption, there is no separate reason to engage in AI adoption for the

purposes of learning. If the signal from lab learning is precise enough (that is, if b ≥ µ̃d ⇔
λ > b−µd

µ(b−d)
so that it is optimal to adopt AI in period 2 if there is no signal of harm), then

the expected social value under lab learning when AI adoption is reversible is:

E[V1] = x1(b− µd) + δ(1− µλ)(b− µ̃d)

When adoption is reversible, the first-period adoption decision does not impact second-period

outcomes, so AI is adopted then if b > µd and delayed one period if b < µd. When adoption

is irreversible, the expected social value under lab learning is:

E[V1] =

x1(b− µd) + δ(1− µλ)(b− µ̃d) + δµλx1(b− d) µ ≤ b
d+λ(b−d)

x1(b− µd) + δ(1− µλ)x1(b− µ̃d) + δµλx2
1(b− d) µ > b

d+λ(b−d)

In this case, the precautionary motive (as discussed above) limits AI adoption in period 1,

even if b > µd.

2.4 Comparing Learning Modes

It is instructive to compare what different learning modes – learning by doing versus lab

learning – imply for whether AI adoption should be accelerated or delayed relative to a

counterfactual where there is no learning mode available. When there is no learning mode

then E[V1] = x1(b−µd)+maxx2 δx2(b−µd). Adoption in the first period is driven solely by

the impact of adoption on x1(b − µd). If b ≤ µd, there is no adoption in either period and

E[V1] = 0, otherwise if b > µd, then adoption in each period is 1 and E[V1] = (1+ δ)(b−µd).

Learning is said to “accelerate” (“delay”) AI adoption if the marginal return to x1 is

higher (lower) when learning is available compared to when it is not. Thus, with learning

by doing, in the reversible case, the marginal return to x1 is b − µd − δµ(b − d) compared

with b − µd when there is no learning. The difference is −δµ(b − d) > 0, so optimal AI

adoption is accelerated by learning. By contrast, with lab learning, in the reversible case,

with or without learning, the marginal return to x1 is b− µd and so there is no impact from

learning on the rate of AI adoption in the first period.

When AI adoption is irreversible, beliefs, in terms of the level of µ, factor into the

calculation. Note that, because of irreversibility, without learning, the marginal return to

10



Reversible Irreversible

Learning by Doing Accelerate
Delay if optimistic

Accelerate if pessimistic

Lab Learning Same
Delay if optimistic
Same if pessimistic

Table 1: Impact of Learning on AI Adoption in the First Period

x1 is (1 + δ)(b − µd). Under learning by doing with irreversible AI adoption, the marginal

return to x1 is: b− µd− δµ(1− 2x1)(b− d) so long as µ ≤ (1+2δ)b
(1+δ)d+δb

(that is, b ≥ µ̃d). Here,

the difference in marginal returns is:

−δ(b− µd+ µ(1− 2x1)(b− d))

The sign of this depends on the value of x1 chosen under learning. From Proposition 2, it is

easy to see this is negative if x∗
1 = 1 (as this also requires b > µd). While, if x∗

1 =
b−µd+b(1−δµ)

2δµ(d−b)

it is negative only if b > µd. Otherwise, for b < µd, if µ < (1+2δ)b
(1+δ)d+δb

, the difference in marginal

returns is positive. However, µ > (1+2δ)b
(1+δ)d+δb

, the difference in marginal returns is unchanged.

Thus, if b > µd, adoption is delayed under learning compared with no learning, while if

b < µd, adoption may be accelerated or the same depending on µ.

For lab learning, when AI adoption is irreversible, the marginal return to x1 is:b− µd+ δµλ(b− d) µ ≤ d
d+λ(b−d)

(1 + δ)(b− µd) µ > d
d+λ(b−d)

Subtracting (1+ δ)(b−µd) gives, for µ low, δ((1−λ)d− (1−µλ)b) which is always negative

and 0 for µ high. Thus, learning (weakly) causes delay.

Given this, the impact of learning on the rate of AI adoption is summarised in Table

1. When adoption is reversible, learning by doing accelerates the rate of adoption in the

first period, regardless of whether the planner is optimistic or pessimistic. By contrast, lab

learning does not alter behaviour at all and adoption in the first period will be determined

by other factors. When AI adoption is irreversible, the Acemoglu & Lensman (2023) result

that adoption should be (weakly) delayed emerges – again, regardless of beliefs. However,

under learning by doing, the adoption decisions of optimistic versus pessimistic planners are

tempered. An optimistic planner becomes more cautious, while a pessimistic planner has

an incentive to accelerate adoption in order to learn if such learning could lead to further

adoption in the future.
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3 Interaction with other Policies

Given this simple framework, it is useful to consider how this impacts other policy interven-

tions beyond simply accelerating or delaying AI adoption. This section explores those options

that potentially complement learning and the consequent acceleration or delay, respectively.

3.1 Improving Learning

While this paper has distinguished between learning by doing and lab learning in terms of

the implication for the optimal rate of AI adoption, it is instructive to consider what factors

may improve learning in terms of lowering learning costs or raising the quality of learning.

For learning by doing, the precision of the signal comes from the rate of AI adoption in

the first period, x1. Choosing a higher x1, only involves costs if the planner is pessimistic

(creating a marginal cost per unit of adoption of −(b−µd) and/or AI adoption is irreversible

(leading to a marginal cost per unit of adoption of −δµ(b − d)). By comparison, for lab

learning, the precision of the signal is exogenous (i.e., λ) but otherwise only has a cost in

terms of time. While, in the model, the potential precision of the signal from learning by

doing is higher than lab learning, a careful ranking of the two on this dimension is likely to

be subtle and difficult to consider within the theoretical scope of this paper.

Some factors that determine the efficacy of each learning mode can be identified. Learning

by doing involves real-world learning that, while potentially imperfect, has the advantage that

the harms identified are clearly real and applicable, motivating a strong ex post regulatory

response. Lab learning translates when there is model stability between the underlying

processes being studied and real-world adoption. Such pre-screening of products is common

in many domains, including pharmaceutical drugs, medical treatments, building codes and

broad areas of product safety, especially regarding physical products. Such lab learning could

apply where AI is used in those existing domains, and these would be covered by existing

regulations.16

Learning issues are more challenging when AI is interacting with human behaviour.

Model stability may be an issue because of heterogeneous behavioural responses in this

case. However, lab learning can potentially only identify direct, and not equilibrium, ef-

fects of AI adoption. In an educational setting, generative AI may make assessment more

difficult and, hence, could demotivate students. Still, over the longer term, such AI allows

for new and personalised sources of learning. This may lead to delays in the deployment of

non-harmful AI. Similarly, it may be that a new social media algorithm’s short-term effects

are innocuous but have broader effects on behaviour when deployed. In these cases, learning

16See, for instance, the series of papers in Agrawal et al. (2023b).
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itself can be accelerated by accelerating AI adoption, and ex post interventions can be put

into play quicker than if such AI had been pre-cleared.17 Nonetheless, because it has the

potential to be a least-cost method of learning, finding ways to improve the precision of lab

learning (λ) would be a potentially fruitful policy direction.18

3.2 Investment in Harm Mitigation

In the analysis thusfar, if AI turns out to be harmful, if possible, the policy response is to

reduce the adoption of AI. Learning provides a means of enabling that policy response to

occur and, in this respect, reduces the expected harm from AI adoption. However, there are

also policies that can pre-emptively reduce the magnitude of AI harm should it be identified.

For instance, investments could be made in the capacity to mitigate harms that arise. This

is a form of insurance.19

There are numerous examples of policies that could mitigate harm; in the model, reducing

d. The concerns with respect to AI involve the automation and replacement of jobs, the use

of AI to spread misinformation and the potential issues that might arise if bad actors utilise

AI. In each of these cases, there are ex post policies that can be implemented to mitigate

the adverse consequences of AI should these harms arise. This would involve, inter alia,

investments in social security and education, tools to counter misinformation and develop

trusted information sources, and general investments in cyber-security.20

Other policies are potentially broader in their potential scope. For instance, there may

be institutional changes that increase the speed by which policymakers can react to mitigate

harm. Hadfield & Clark (2023) propose the establishment of an independent sector of licensed

private regulators to manage potential harms from AI, serving as an investment in mitigating

unforeseen risks. In their conception, governments define the required outcomes for AI

regulation, which could be either metrics-based, like the frequency of fraudulent transactions,

or principles-based, such as maintaining a low incidence of accidents in autonomous vehicles.

Private regulators, licensed by governments, are evaluated based on their ability to achieve

these government-defined objectives, like non-discrimination in AI hiring practices. Entities

subject to regulation, such as social media platforms and banks, are mandated to procure

17Agrawal et al. (2022) argue that there may be both private and public motivations for an FDA-like
pre-clearance assessment for AI in terms of its safety. The idea here is to establish the capacity to give AI
adopters assurances of safety before deployment.

18A recent paper by Guerreiro et al. (2023) explores some of the potential policy implications that arise
when the cost of lab learning is reduced.

19Ehrlich & Becker (1972) define insurance as investments that can be made to reduce the losses from
adverse outcomes.

20Research in other domains has shown that when concerns regarding harms surface, there can be a
substantial industry response in developing risk-mitigating technologies; see Galasso & Luo (2021).
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the services of these licensed private regulators. The government also sets rules for private

regulators to foster competition and maintain the integrity of regulation.

Hadfield & Clark (2023) provide several examples that relate to industries where the

adoption of AI may be ex post irreversible. For instance,

A private regulator in the banking industry might require a bank using ML to

analyze customer data and develop new products to implement differential pri-

vacy techniques (Dwork & Roth 2014) to minimize the likelihood that a customer

is harmed by the use of their data. The regulator could prescribe the specific

techniques/algorithms to use; or it could establish a procedure for the banks that

it regulates to propose techniques that survive tests conducted by the regulator.

(Hadfield & Clark (2023), p.16)

Note that the goal here is not to supplant what a regulator might want but to provide

incentives to build up the capacity to implement regulations and do so in a timely manner.

While there can be issues associated with regulatory capture that emerge with such a model,

if effective, its existence can play an insurance role that can be triggered ex post after the

extent of potential harm is revealed.

While the above example considers regulatory capabilities that can be built up to mit-

igate realised AI harms, it is also possible to consider infrastructure investments that can

be provided as ways of actually protecting against hypothesised avenues for harm. As an

example, consider one of the implications of generative AI being able to produce images,

documents or audio/video recordings that are distortions of historical events.21 The concern

is that sometime in the future, a bad actor may distort the historical record for their own

purposes. It may not be able to distinguish whether the AI-doctored images were accurate

or not. Potentially, this could lead to a wholesale re-writing of the written record.

One possible way to counter this is to establish a record of the truth pre-emptively.

One option is to create a digital library that stores these records that would be the trusted

authority on these matters. However, the problem is that such trust would require that a

bad actor could not alter the library records or otherwise censor them. To provide some

infrastructure that is immune from such challenges will likely require a more active response

today. One possibility would be to register the library records with a timestamp that could

not be adjusted. A technique for achieving this was developed by Haber & Stornetta (1991)

and was the foundation for the modern blockchain. The idea is that today, a library could

be created with digital assets time-stamped on a decentralised blockchain. It would not be

21This is not a new phenomenon and was extensively used in the former Soviet Union;
https://www.history.com/news/josef-stalin-great-purge-photo-retouching
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possible to alter those time stamps; hence, if someone claimed a record was, at the very least,

from pre-2024, without that time stamp, that claim would not be trusted. By contrast, the

library records could easily pass that verification check.22

In summary, these investments that either allow policy-makers to more effectively miti-

gate AI harms ex-post or to reduce the probability of those harms arising in the first place, all

raise the returns for AI adoption, in general, and in the case where learning by doing is being

utilised by regulators, lowering the cost of associated with such learning. However, there is

an interesting question of how policies for harm mitigation, as described here, interact with

the use of learning to drive AI adoption levels.

To examine this, consider the complementarity between harm mitigation and the use

of learning to adjust AI adoption rates. Intuitively, reducing d reduces the direct cost of

learning by doing, but it also reduces the benefit from additional learning as the value of such

learning, the ability to avoid incurring d, is lowered. Thus, the nature of the relationship

between these policies is not necessarily straightforward. However, for lab learning, learning

costs are not a factor. In that case, when adoption is reversible, the rate of AI adoption is not

driven by learning and so there is no policy interaction. However, if adoption is irreversible, as

noted earlier, the marginal return to first-period adoption as a result of learning is decreasing

in d. Therefore, policies that reduce d will increase the amount of learning-driven adoption.

For learning by doing, when AI adoption is reversible, the marginal return to first-period

adoption as a result of learning is −δµ(b − d); increasing in d. In this case, reducing d

will reduce the return from such learning and hence, lower the rate of AI adoption. When

AI adoption is irreversible, that marginal return is −δ(b − µd + µ(1 − 2x1)(b − d)). It is

decreasing (increasing) in d if x1 is high (low). Recall that high x1 is associated with delayed

adoption as a result of learning while low x1 is associated with accelerated adoption as a

result of learning. What this demonstrates is that when the policy approach to learning-

based AI adoption favours acceleration (delay), this decreases (increases) the return to harm

mitigation investments.

This analysis suggests that, in the simple model, harm mitigation and learning-based

acceleration of AI adoption are substitute policies for learning by doing and complements

for lab learning. More broadly, this analysis indicates that the more a planner intends to

invest in mitigating harm, the less it needs to learn to avoid such harm by either adopting

AI at an accelerated rate or by waiting for some other resolution of uncertainty.

22Catalini & Gans (2020) provide other examples of how blockchain technologies can be used to provide
verifiable information integrity.
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3.3 Diversity in Research Trajectories

While the theme in this paper has been that learning regarding the potential harms of AI

is complicated and that blunt regulatory instruments are unlikely to have a large effect on

learning, it has also been noted that the ability to make use of learning involves there being

more ways of implementing AI in a safe manner. In other words, regulatory learning is

complemented by a greater variety of regulatory options.

If AI harm surfaces, one of the issues that can make it difficult to mitigate that harm

is that there are no viable, productive options that a regulator can incentivise ex post. For

instance, even within machine learning, AI is being developed on the basis of distinct archi-

tectures based on predictive versus generative capabilities, interpretability, bias, automation

and the extent of data required. These alternative architectures represented, at times, poten-

tially viable trajectories of AI development, but pressures from both the market and scientist

incentives to exceed established benchmarks can cause development efforts to be focussed

on relatively few architectures.

This has happened in the economics of technology previously. For instance, Bryan (2017)

documents the path dependence that arose from nuclear power choices driven by military

criteria rather than those that might have promoted power safety and efficiency. Several

models demonstrate that market forces create incentives for too few research architectures

to be explored and developed. This includes Acemoglu (2011) and Bryan & Lemus (2017).

The former paper shows how the incentives of scientists can be distorted by the salience of

rewards towards more recent advances along a technological trajectory.

The implication here is that there may be other architectures associated with AI that

may turn out to have lower harmful effects than the ones being pursued prior to those harms

being surfaced. The regulatory challenge is that by the time those harms have emerged,

the current architecture has progressed so far that it is difficult or impossible to switch to

alternative options with lower damage prospects.

To counter this, there is value in policy interventions that are directed at promoting a

diverse set of architectures being developed, even though one may be dominant in adoption.

The tools to promote this are familiar to the economics of basic science but, broadly speaking,

range from funding for basic science to an allocation of those funds to support architectures

that are not being developed at present.

Some of these interventions may also be directed at some of the potential equilibrium

harms from the adoption of AI. For instance, large language models are trained on the

writing of people while, at the same time, themselves reduce incentives for people to provide

16



that writing.23 To counter this, there may be interventions to generate the data that would

allow future LLMs to be trained.

4 Conclusion

This paper has demonstrated that whether AI adoption should be delayed or accelerated from

a social perspective is highly sensitive to the nature of assumptions regarding how regulators

learn about the adverse consequences of AI adoption. When learning about potential harms

from AI requires real-world AI deployment, learning generally favours accelerated adoption,

while if learning can be achieved away from real-world deployment, i.e., in the lab, this

favours delaying or slowing down AI adoption. Of course, these conclusions are tempered

by what policymakers would do in the absence of being able to learn about harm. For

instance, an optimistic policymaker facing an irreversible adoption decision may adopt AI

with some precaution, while a pessimistic one may be pushed to accelerate adoption in

order to facilitate learning. This suggests that policies that may improve learning outcomes

or allow more options for policy-makers to respond to what they learn will be important.

Interestingly, insurance-like policies such as harm mitigation may reduce rather than increase

the returns to learning by doing.

The paper here is a normative one. It discusses what a planner might do in the face of

uncertainty regarding AI harm and the ability to learn about that harm through the actual

adoption of AI. The motivation was calls for a pause in AI adoption as a precautionary

manner. The analysis here implies that this conclusion is sensitive to the way in which

policy-makers and others might learn about the harms of AI. When such learning requires

doing, this implies that a pause or delay is not necessarily a cautious approach to learning

about AI harms and that being more proactive can surface harms more readily. Policymakers

need to consider the types of learning outcomes they are trying to encourage and whether

real-world adoption may be the most efficient way in which learning, even about harms, can

be achieved.

That said, this paper does not consider the operation of more decentralised actors, such as

firms and other agents, in this type of environment. There is, indeed, a very rich literature

on how social learning impacts the diffusion and adoption of new technologies (Foster &

Rosenzweig, 2010). In that regard, the analysis is aimed at addressing what the goal of

AI adoption policy should be rather than whether there is a case for intervention per se

and so sidesteps the research questions of that literature.24 Moreover, it considers a single

23https://medium.com/@duanevalz/the-paradoxes-of-generative-ai-alignment-48de8135714b
24Guerreiro et al. (2023) do, however, examine the difference between private and social incentives to
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planner or policy-maker. At best, in today’s economy, policy-makers exist at a national level,

and, therefore, some of the learning that could arise could come from AI adoption policies

pursued elsewhere. This creates a positive spillover in learning that, in most contexts, tends

to generate an undersupply of such learning (e.g., King (1995)).

Finally, while the paper here encompasses many potential harms of AI, it has not ex-

amined concerns that AI adoption will lead to an increased concentration of power – both

market and politically. Acemoglu & Johnson (2023) have put forward the thesis that many

technologies have proven to increase power concentration and, in their view, AI will follow

their thesis’s lines. This is a set of issues where it is not at all clear whether there are learn-

ing mechanisms that can play a role in guiding policy towards the impact of technologies

on power concentration. Instead, this is likely to require a broader institutional intervention

in society to address power inequities rather than something that can be evaluated by a

deeper exploration of a technological class – whether in lab or market settings. Hence, this

particular potential consequence of AI is outside the scope of the present paper, although

addressing these institutional issues may turn out to impact the efficacy of learning about

potential AI harm in other domains.

learn about AI harms finding that private incentives are generally lower than social incentives.
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