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1 Introduction

Traffic congestion is a significant and pervasive problem in large cities, especially in developing coun-
tries, where the urban population and private vehicle ownership are growing rapidly. For example,
the fastest large city in India is slower than the slowest large city in the US (Akbar et al., 2021). Long
and unreliable travel times reduce the agglomeration benefits of large cities, whether for accessing
jobs, markets, services or amenities.

Commuters who drive in congested conditions impose externalities by increasing travel times for
the other commuters on the road. Since congestion is higher during rush hour, peak-hour traffic
jams may be particularly inefficient. Reflecting this concern, several urban road traffic policies focus
on reducing peak-hour congestion, either through pricing or quantity restrictions.1

However, while congestion pricing is the textbook policy response to traffic externalities, its
quantitative relevance to traffic congestion in developing countries is an empirical question. The
deadweight loss due to peak-hour congestion depends on how commuters substitute across departure
times, and on the magnitude of the externality and how it differs across departure times.

In this paper, I study the impact of peak-hour congestion pricing on driver behavior and on the
peak-hour traffic congestion equilibrium in Bangalore, India. I measure the following demand and
supply fundamentals that I will hold fixed in counterfactuals. First, I estimate commuter substitution
patterns across departure times, given by schedule costs and desired arrival times, using precise data
on urban travel behavior and experimental price variation. Second, I use within-day variation to
estimate the causal effect of traffic density on travel speed, thereby characterizing the road traffic
externality in Bangalore given the current road network, vehicle composition and driving styles.

I set up an equilibrium model of peak-hour congestion based on the classic trip scheduling model
(Vickrey, 1969). In my model, commuters face a distribution of travel times for each departure time
and choose an optimal trip departure time. (For model estimation, I also incorporate a dynamic
choice between two routes that differ in travel time profiles.) The key preference parameters are
the schedule costs of arriving early or late relative to an ideal arrival time, and the value of travel
time (VOTT). Commuters have rich heterogeneity given by an unobserved distribution of ideal
arrival times and logit or nested logit shocks. This heterogeneity covers a wide range of substitution
patterns over departure times. This ranges from highly elastic decisions when commuters share the
same ideal arrival time and logit and travel time uncertainty vanish, as in Arnott et al. (1993), to
the case where each commuter is highly inflexible around their ideal arrival times, and ideal arrival
times vary across commuters and days. To close off the model, the profile of congestion is determined
endogenously by aggregate departure rates. I also analyze an equilibrium model extension with two
routes that have different externalities (as in Walters 1961), and another extension with an extensive
margin decision.

I use a version of this model to design a field experiment with congestion charge policies to
estimate the preference parameters. I implement the experiment within a sample of 497 commuters

1The congestion charge policy in Stockholm and Singapore’s Electronic Road Pricing (ERP) policy have higher
fees during the morning and evening peak hours. Jakarta’s former “3-in-1” and the current “odd-even” policies are in
effect during morning and evening peak hours only. Similarly, Manila’s Unified Vehicular Volume Reduction Program
(UVVRP) only applies during peak hours in certain parts of the city.
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in Bangalore. I collected detailed travel behavior data using a smartphone app that passively logged
GPS location data from study participants. The two congestion pricing policies induce exogenous
cost variation along the departure time and travel time dimensions. The “peak-hour” pricing policy
gives some commuters marginal incentives to change their departure times. Under the “route” pricing
policy, commuters pay a flat fee for driving through a circular area located along their usual route.
The area is chosen individually for each commuter to induce a choice between a quick, expensive
route and a longer free detour route. I implement the experiment using a smartphone app and a
pre-paid account. To focus on intensive margin responses and to prevent gaming, participants were
charged on days when they did not make any trips. Intuitively, commuter departure time and route
choices with and without these two pricing policies help identify the departure time substitution
patterns (given by schedule costs and the distribution of ideal arrival times) and VOTT.

Commuters respond to the two treatments by changing departure times and routes to avoid
charges. Under “peak-hour” charges, in the morning before the peak-hour, commuters left around
3–4 minutes earlier on average, with an imprecise response after the peak-hour. My results for the
evening peak-hour are less precise, but consistent with commuters leaving later after the peak. Under
“route” charges, participants use the detour (free) route 27 percentage points more often. Higher
detour route usage persists after charges end, including among commuters who used a detour route
before the experiment. I find no impact on the number of trips for either treatment.2

I use moments that exploit the experimental price variation to estimate the travel demand model
of departure time and route choice for the morning commute.

The estimated value of travel time is 609 INR per hour (9.5 USD at market exchange rates or
29.5 USD PPP in 2017). This is significantly larger than the average self-reported hourly wage in
this sample, indicating that commuters significantly dislike driving in Bangalore. VOTT is identified
separately from a route switching cost included in the dynamic route choice model. Another reason
for large estimated VOTT is that my results are relative to time differences based on Google Maps,
while commuters in this sample overestimate differences in travel times.

The estimated schedule costs of early and late arrival are 552 INR per hour and 344 INR per
hour, showing that commuters are relatively schedule inflexible. The cost of early arrival is 91% of
VOTT, higher than previous estimates (Small, 1982). As a benchmark, this ratio would be 15% for
the median-length home to work trip in my sample if the steepest part of the travel time profile in
Bangalore reflected compensating differentials for schedule costs versus travel time. The cost of late
arrival to VOTT that I find is smaller than previous estimates.

On the supply side, I next measure the road traffic externality. To measure traffic density, I use
around 120,000 GPS trips collected using the smartphone app over six months in 2017. I use Google
Maps data to measure instantaneous travel delay (inverse speed). To identify the causal impact of
traffic density on travel delay, I use hour-of-day instruments that capture large shifts in demand,
including between peak- and off-peak-hours.

Citywide traffic density has a moderate and linear impact on travel delay. The linear relationship
is robust for all calendar dates and when zooming in to major arteries. I find no evidence of convexity

2As participants were charged on days when they did not make any trips, this should not be interpreted as the
extensive margin response to charges.
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for high levels of traffic. Quantitatively, a 7 km long peak-hour trip increases total driving time in
Bangalore by approximately 15 minutes. I discuss the validity of the instruments and additional
robustness results. The citywide relationship that I estimate is biased if commuters substitute to
higher-externality roads during the peak-hour (Walters, 1961). I use Google Maps route data to
show that this effect is small for Bangalore commuters.

In the final part of the paper, I simulate an equilibrium model where commuters decide when to
travel, and congestion is determined endogenously. Commuters are endowed with the preferences I
estimate from my field experiment, and congestion is determined by the road network technology I
estimate from GPS data. In the benchmark model, commuters have a single route. I compare the
unpriced Nash equilibrium to the social optimum implemented with equilibrium optimal departure
time by trip length Pigouvian congestion charges, assuming zero policy implementation costs and
lump-sum revenue redistribution.

Through the lens of the model, optimal departure time charges have a small effect on commuter
welfare. Under the social optimum, peak congestion is lower and the average trip duration goes
from 37.4 to 34.9 minutes on average, a 17.6% reduction in average travel time above free-flow.
Commuter welfare—which also includes schedule costs—increases by 9.4 INR (46 US cents PPP).
The deadweight loss due to peak-hour congestion is 2.3%, or 5.9% as a share of commuter costs
excluding free-flow costs. As a benchmark, the latter figure is 50% in the bottleneck model from
Arnott et al. (1993), where commuters are perfectly elastic across departure times.

Why is the deadweight loss due to peak-hour congestion so low in Bangalore? In a standard
model with a negative consumption externality over one good, deadweight loss is given by the Har-
berger triangle, whose area is increasing in the marginal external cost and in the demand elasticity.
In my model, each departure time imposes a different externality. Commuters have very “local”
substitution patterns over departure times, and the linear estimated road technology implies that
the marginal external cost of travel is very similar for nearby departure times. These two facts imply
that there is little room for efficiency gains by changing when commuters travel.

Deadweight loss depends significantly on the road technology. Welfare gains of optimal pricing are
almost five times larger if I assume that travel density is a power of traffic volume with exponent 1.5.
Since the shape of the road traffic externality may be different in other cities, measuring city-wide
road traffic externalities is of first-order importance. The welfare gain is higher in an equilibrium
model where commuters choose between two routes with different externalities (Walters, 1961).

Preferences also matter, although to a lesser extent. Holding the observed distribution of de-
parture times approximately fixed, if early schedule costs were four times smaller, welfare gains
from optimal pricing would be 3.7% (61% higher than in the baseline model). Adding preference
heterogeneity proportional to wages has a similar effect.

My simulations ignore longer-term margins of adjustment, such as commuter and firm location
choices (Tsivanidis, 2022; Herzog, 2022). Congestion pricing can have ambiguous effects on welfare
in such contexts (Brinkman, 2016). To provide some insight into other margins of behavior, I run
simulations where commuters can adjust along the extensive margin, a catch-all for using travel
modes with negligible externalities (such as public transportation) and for canceling trips. Welfare
gains remain low for reasonable values of the elasticity of trips with respect to total trip cost.
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2 Related Literature

This paper builds on an extensive theoretical literature analyzing optimal and second-best pricing
with peak-hour road traffic congestion (Vickrey, 1969; Small, 1982; Arnott et al., 1993; Noland and
Small, 1995; Hall, 2018, 2021). My model builds on the canonical trip scheduling model, adding and
estimating additional sources of heterogeneity to better match individual travel behavior data.

The dynamic model of traffic congestion I use here is related to the hydrodynamic or kinematic
model with the assumption of instantaneous propagation of traffic density in the entire city (Mah-
massani and Herman, 1984; Small et al., 2007). Other canonical models of peak-hour congestion are
the bottleneck model with fixed capacity (Vickrey, 1969; Arnott et al., 1993), and models without
propagation (Chu, 1995; Henderson, 1974). My approach to instrument for traffic density using
hour-of-day (demand) instruments is similar to Akbar and Duranton (2017), Hughes and Kaffine
(2018), and Anderson and Davis (2020).

The approach in this paper to design an experiment based on the model brings together two
previous literatures. First, some papers use discrete choice models to estimate the value of time,
of reliability, or of urgency from real-world driver decisions to use a faster tolled lane (Small et al.,
2005; Bento et al., 2020). A separate group of papers analyzes reduced form impacts of road pricing
experiments (Tillema et al., 2013), including using GPS and smartphone data collection (Martin
and Thornton, 2017; Hintermann et al., 2022). Here, the randomized experiment is designed to
transparently recover the key commuter preference parameters in the model.

A related empirical literature documents the impact of real-world traffic policies on traffic vol-
umes, travel times and air pollution, either for the aggregate impact of congestion pricing policies
in London, Stockholm and Milan (TfL, 2006; Prud’homme and Bocarejo, 2005; Raux, 2005; Gibson
and Carnovale, 2015; Karlström and Franklin, 2009), or for non-price, vehicle quantity restrictions
in developing countries (Davis, 2008; Kreindler, 2016; Hanna et al., 2017; Gu et al., 2017).

Akbar and Duranton (2017) reach a similar conclusion of low deadweight loss due to traffic
congestion for Bogotá, Colombia, using a representative household travel survey and Google Maps
travel time data to estimate the demand for trips and supply of travel by time of day. My paper’s
key contributions are to explicitly incorporate substitution between different times of the day in the
equilibrium model, and using an experiment to estimate demand.

3 Traffic Congestion and Travel Behavior in Bangalore, India

Similar to other large cities in developing countries, Bangalore’s fast growth put stress on its trans-
portation network. Akbar et al. (2021) rank Bangalore as the most congested city in India.

Figure 1 shows travel delay based on travel times collected using the Google Maps API. On
average between 7 am and 10 pm on weekdays and across all routes, it takes 3.6 minutes to advance
one kilometer (10.3 miles per hour). This is extremely slow, in line with speeds in other large cities
in developing countries (Hanna et al., 2017; Kreindler, 2016).

Figure 1 also shows strong predictable within day variation in traffic congestion. Between 7 am
and 9 am, travel delay increases by 1.38 minutes per kilometer. A trip that would take 40 minutes
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starting at 7 am would take more than an hour starting at 9 am. Most of the day to day variation
in traffic in Bangalore is explained by route-by-departure time cells.

These patterns suggest that commuters exert high externalities during the peak-hour, and that
a more efficient allocation might involve some of them leaving earlier or later. Individual-level travel
behavior data from GPS data (discussed in section 5.1) is consistent with high schedule flexibility.
Most commuters vary their departure times significantly from day to day. For the median person,
the standard deviation of the departure time for the first trip of the day from home to work is
29 minutes, which implies a 95% probability interval of almost two hours (Table SM1, panel C).
However, this daily variation does not automatically imply that commuters are schedule flexible.
It is possible that desired travel times change from day to day (based on changes in work or other
constraints) and commuters are inflexible around those times on any particular day. The model and
experiment will help clarify and quantify these issues.

Separately, the peak-hour congestion profile is not directly informative about the magnitude of
the traffic externality, which also depends on the underlying variation in traffic density.

4 Theoretical Framework

I set up an equilibrium model of peak-hour traffic congestion where commuters choose optimal
departure times based on the profile of traffic congestion and ideal arrival times. To study exper-
imental variation in travel time, I extend the model to include route choice in a dynamic setting.
I discuss how the elasticities identified in partial-equilibrium pricing experiments relate to the key
travel demand model parameters. On the supply side, the congestion profile is endogenous, given
by a dynamic model where instantaneous speed depends on traffic density.

4.1 Travel Demand: Departure Time Choice

A mass of atomistic commuters i decide when to travel from home to work on day t. The decision
to make a trip is inelastic. (I add an extensive margin decision in section 9.)

To begin, consider the case with a single route. Departure time h takes discrete values, for
example every minute. Utility at departure time h depends on realized travel time T and ideal
arrival time hA as

v(h, T, hA) = −αT − βE

∣∣h+ T − hA
∣∣
− − βL

∣∣h+ T − hA
∣∣
+ . (1)

Travel time cost is linear and α measures the marginal value of travel time (VOTT). The second
and third terms are the canonical way to measure scheduling preferences over arrival time h + T

(Arnott et al., 1993). Schedule heterogeneity is defined by an ideal arrival time hA, and schedule
costs by constant per-unit of time costs of arriving early βE and of arriving late βL.3

Travel time Tit(h) ∼ Ti(h) is random and realized after departure, drawn i.i.d. over days t. I
assume that the researcher observes the distributions Ti(h). For any travel time distribution T , I

3|x|− and |x|+ denote the negative and positive parts of x.
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denote expected utility
Ev(h, T , hA) = ET ∼T v(h, T, hA). (2)

This model captures the main forces that determine departure time decisions within the peak-
hour equilibrium, and it makes several parametric assumptions. Travel time costs are linear, and
schedule costs are piece-wise linear. However, uncertainty in travel time smooths out the profile of
schedule costs, and makes it more difficult to arrive close to the ideal arrival time. This implicitly
generates a value of travel time reliability. In the benchmark model, the parameters α, βE , βL are
the same for all commuters. I later estimate a model where these parameters scale with income.

Each morning, the commuter observes the ideal arrival time hA
it, idiosyncratic shocks (εit(h)),

and monetary charges pit(h), and chooses departure time to maximize expected utility,

uit(h, hA
it) = Ev(h, Ti(h), hA

it) − pit(h) + εit(h). (3)

The idiosyncratic shocks εit(h) are distributed according to a type-1 extreme value distribution with
scale σDT , and they capture daily factors that affect departure times, such as waking up earlier
or having to complete an unexpected task before leaving. This leads to multinomial logit choice
probabilities conditional on hA

it.
The ideal arrival time is a second source of individual heterogeneity in the model. As explained

below, this allows for more flexible substitution patterns between departure times. The ideal arrival
time hA

it is drawn i.i.d. over days t from an individual-specific distribution over a discrete grid,
with probability density function fA

i . The researcher does not observe fA
i . This distribution is not

affected by pricing experiments, and I hold it fixed in counterfactuals. The distribution of ideal
arrival times is individual-specific to help account for the variation of departure times both across
and within commuters in the data (Table SM1).

Model Identification. The goal of demand estimation in this setting is to separately identify the
value of travel time (α), schedule costs (parameters βE and βL), and schedule heterogeneity (ideal
arrival times distributions fA

i ). Assume temporarily that the VOTT parameter α is known.
Using only observational data on departure times, it is challenging to tease apart schedule costs

(βE and βL) from arrival time heterogeneity (fA
i ). However, these parameters can be separately

identified when there is data on how commuters respond to pricing based on departure times. I prove
these two model identification statements formally in a simplified model (Supplementary Material
SM.1). The model preserves the key elements of the peak-hour equilibrium, including an endogenous
congestion profile. I show using numerical simulation that for a wide range of parameters, the
deadweight loss due to peak-hour congestion is decreasing in schedule costs.

The key issue is that the same observed distribution of departure times may be consistent with
a concentrated ideal arrival time distribution fA

i and low schedule costs βE and βL (or high σDT ),
or with higher variance fA

i and large βE and βL (or low σDT ).
However, these scenarios have different implications for the cross-price elasticity of departure

time h′ with respect to the price of departure time h. When hA
it is a constant, we get the logit

model, which predicts that pricing at h leads to substitution toward all other departure times h′
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in proportion to observed baseline shares. On the other hand, when the distribution of hA
it has

high variance and βE and βL are consequently large, the response to pricing at h will be highly
local, decreasing quickly in |h − h′|. Emergency trips illustrate the idea of a wide distribution of
random ideal arrival times coupled with inflexibility in schedule costs around those times. Commuter
responses to peak-hour departure time pricing experiments generate useful variation because they
depend on a combination of cross-price elasticities.

4.2 Travel Demand: Dynamic Route Choice

To introduce random variation in travel time cost, in the second experimental treatment, participants
are charged for using their typical commute route, giving them the option to take (longer) detour
routes to avoid charges.

To analyze these choices, I extend the departure time model to include route choice. The dynamic
model features two routes that differ in travel time profiles. Agents face a route switching cost. These
features are motivated by two key experimental results that I preview here: first, route charges have
persistent effects after charges end, and second, this also applies among commuters who used a
detour route at baseline.4

Time is discrete, with discount factor δ. Route r = 0 is the shorter, direct route from home-
to-work, and r = 1 is the detour route. The within-period expected utility is defined similarly to
(3),

uit(h, r, hA
it, rit−1) = Ev(h, Ti(h, r), hA

it) − pit(h, r) − γ1(r ̸= rit−1) + εit(h, r). (4)

The Ev term captures travel time and schedule costs, after taking expectations over route-specific
travel time Tit(h, r) ∼ Ti(h, r). Charges pit(h, r) may now depend on route. γ ≥ 0 is a symmetric
cost that applies if the commuter switches routes. εit(h, r) follows an extreme value distribution
with correlation within each route, with scale parameters σDT and σR for within- and across-route
choice. Route-level nesting captures idiosyncratic factors such as the need to make a quick stop
along one of the routes. The ideal arrival time hA

it is distributed as in the model with a single route.
Within-period timing is unchanged. At the start of each period, the commuter observes the ideal

arrival time hA
it and shocks (εit(h, r))h,r, and then chooses a route and departure time. The value

function at the start of period t, before observing hA
it and the logit shocks, is:

Vit(rit−1) = EhA
it
Eε max

h,r

(
uit(h, r, hA

it, rit−1) + δVit+1(r)
)
. (5)

The model has two possible states, defined by route choice in the previous period, and rich
within-period heterogeneity given by the nested logit and the ideal departure time distributions.
In steady state, Vit(r) = Vit−1(r) and we can solve (5) by iteration. During the experiment, Vit

also depends on current and anticipated departure time and route charges. This model nests the
single-route departure time choice model conditional on route r (Supplementary Material SM.4.1).

To shed light on how the value of travel time is identified, I analyze a simplified model that

4I designed the experiment based on a static two-route choice model, and introduced the dynamic model with
switching costs after observing the experimental persistence results.
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abstracts from departure time choice and assumes a constant within-period utility difference between
the two routes. I later show that estimating this model yields very similar parameters. The utility
function is

uit(r, rt−1) = −αTi(r) − pit(r) − γ1(r ̸= rt−1) + εit(r),

where Ti(0) < Ti(1) denote expected travel times for the two routes, and εit(r) is extreme value
type-1 distributed. The value function satisfies

Vit(rit−1) = Eε max
r
uit(r, rit−1) + δVit+1(r).

This model has three key parameters: VOTT α, switching cost γ, and logit scale σR. This
model is identified based on data on detour route choice probabilities in three situations: in steady
state, with a route charge, and after a temporary route charge was lifted. The proof is sketched in
Supplementary Material SM.2.

4.3 Closing the Model: Road Technology Supply and Equilibrium

The key technological constraint inherent to road travel is that traffic density lowers speed. To
describe how a profile of trip departure time choices determines a profile of travel delays, I set up a
dynamic model with instantaneous citywide density propagation similar to Mahmassani and Herman
(1984). In the benchmark model, I focus on a single route with endogenous congestion. In section
9 I extend this to an equilibrium model with two routes with different externalities, similar to the
Pigou-Knight model (Walters, 1961).

The city has a mass of atomistic commuters with trips of different lengths. A profile of departure
time choices is defined by Q = (q(h,K))h,K , where q(h,K) is the mass of commuters with trip length
K who leave at h. At any time h′, let d(h′) denote traffic density, the endogenous mass of ongoing
trips, which I assume is homogenous in the entire city. All trips advance with the same instantaneous
travel delay x(h′). Travel delay (inverse speed) is a function of density, x(h′) = X(d(h′)), and I
assume it is bounded from above. Let S(h) denote the distance traveled by a hypothetical trip that
starts at the first departure time and that ends at h. Then, the distance traveled between times h
and h′ is

∫ h′

h
x(h′′)−1dh′′ = S(h′) − S(h).

Density d(h′) is described by a differential equation,

d

dh′ d(h′) =
∫

K

q(h′,K)dK︸ ︷︷ ︸
departures

−
∫

K

q(H(h′,K),K)dK︸ ︷︷ ︸
arrivals

, (6)

where H(h′,K) is the departure time for trips of length K that end at h′, defined by S(h′) −
S(H(h′,K)) = K. Thus, the profile of departures Q uniquely determines travel times ET (h,K;Q).

Commuters also face idiosyncratic travel time uncertainty. On day t, for commuter i with trip
length Ki, leaving at h, travel time is a random variable distributed according to ψihtET where
ET = ET (h,Ki;Qt) and ψiht ∼ Ψ(ET ) for a family of distributions Ψ(·). Travel time draws are
independent over t but may be correlated across commuters and departure times. I later assume
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that Ψ(ET ) is a log-normal distribution that I estimate from Google Maps data. This model for
uncertainty is an approximation for a model where shocks to instantaneous speed propagate to travel
times through equation (6).

This model has two forces for traffic congestion externalities. First, density has a direct effect
on speed. Second, lower speeds decrease trip completion rates and hence increase density later on.
The magnitude of the externality depends on the shape of the relationship X(d) between density
and travel delay, which I estimate for Bangalore in section 8.

Equilibrium. An equilibrium of the single-route model is defined by two types of endogenous
objects, the unconditional probability distributions over departure times (πi(h))h for each commuter
i (which determine the departure rates q(h,K) for every departure time h and trip length K), and the
citywide instantaneous travel delay profile (x(h))h. The model primitives are commuter preference
parameters, including their distributions of ideal arrival times fA

i , the road technology X, and the
family of travel time uncertainty distributions Ψ(·).

In equilibrium, the profile x(h) uniquely determines expected travel times for any departure time
and trip length. This profile is endogenous, determined by the commuter departure time choices and
the road technology, based on (6). Commuter i’s choices are optimal given their randomly drawn
ideal departure time and the travel time profile specific to i’s trip length, according to (3).

I compute the equilibrium using an iterative procedure (section 9). While a formal characteri-
zation of equilibrium uniqueness is beyond the scope of this paper, in these numerical simulations,
and for a range of starting conditions, I find a unique equilibrium.

The social optimum is implemented as a Nash equilibrium with Pigouvian charges p(h,K) equal
to the marginal social cost imposed by a commuter with trip length K who travels at time h. I
use the terms “deadweight loss of congestion” and “welfare gains from optimal congestion pricing”
interchangeably to refer to the difference in commuter welfare (average expected utility) between
the social optimum and the unpriced Nash equilibrium.

This paper’s empirical goal is to estimate the demand parameters and the road technology. The
partial equilibrium experiment identifies travel preferences holding the citywide travel time profile
fixed. The simulations in section 9 explicitly incorporate aggregate changes in the travel time profile
from a citywide congestion pricing policy.

5 Data Sources and Study Sample

The data backbone of the paper is a set of driving trips with precise GPS coordinates, collected
using a newly developed smartphone app. This data was used both for measuring detailed driving
behavior and for implementing the congestion charge policies in the experiment.

5.1 GPS Trip-level Data from Smartphone App and Other Data

Travel behavior data was collected using a smartphone app that runs on a GPS-enabled Android
smartphone and passively collects phone location data, without requiring any user input.
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The raw GPS data for each user-day was automatically cleaned and classified into trips, locations,
and missing-data segments. Consecutive trips with short stops of less than 15 minutes between them
are linked together. (89% of trips in the sample have no stops.) During the experiment, congestion
charges were automatically applied to trips classified according to the same procedure.5

Measuring travel behavior automatically using a smartphone-based app has several advantages
over surveys. Self-reported behavior is affected by recall bias, rounding of departure times and trip
duration, and tends to underestimate within-person temporal and route variation (Zhao et al., 2015).

I classify participants into regular and variable commuters, based on identifying home and regu-
lar daytime (work, school) locations. I identify these common locations using a clustering algorithm
applied to the set of all trip start and end locations, followed by manual review of the most fre-
quently visited clusters. Around 75% of participants are regular commuters, and the median regular
commuter visits work on 91% of weekdays (Table SM1, Panel B).

I collected three types of Google Maps data on travel times that include information on traffic
congestion. The first data set collected real-time travel time on 30 routes in the study area of South
Bangalore, every 20 minutes throughout the day, for 207 days in 2017. I use this data to calibrate
the distribution of travel times, and to measure the impact of traffic density on speeds. To measure
choice sets, for each regular commuter, I collected data on typical travel times between home and
work locations, at all departure times during the day. To measure the Pigou-Knight trade-off, I
collected the typical travel time profiles for all routes between home and work.

5.2 Study Sample, Survey Data, and the Congestion Charge Platform

Study participants were recruited in a random sample of gas stations in South Bangalore. Surveyors
approached private vehicle drivers (commuters) who were using a car, motorcycle or scooter, ex-
cluding professional drivers. Study participants who owned their vehicle and who traveled regularly
were eligible for the study. Respondents also had to own a GPS-enabled Android smartphone to
participate, and 76% of otherwise eligible drivers did. Respondents were invited to install the study
smartphone app and answer a short survey. Surveyors collected some data for all those approached:
perceived age, gender, and vehicle information. Out of 16,911 persons approached, 2,299 installed
the app, an estimated 27% of all eligible respondents (section A.4.1).

After recruitment, the app collected baseline travel behavior data from study participants. I
collected additional phone survey data from a random sub-sample of app users and all experiment
participants, including travel time beliefs and hypothetical choice questions that mapped to the two
main experiments (see section A.4.2).

497 (22% of all app participants) were enrolled in the experiment on a rolling basis, based on app
data quality. Surveyors met in person with each participant (including those in the control group)
to explain the experiment (Figure A2).

During the experiment, congestion charges were deducted from a pre-paid virtual account, and
transferred by bank transfer at the end of each week. Participants were charged a fee for severely

5The app sometimes did not collect GPS data, for either technical or human factors. The analysis sample is
restricted to days and trips labeled as high-quality. During the experiment, around 75% of days and 64% of trips are
good quality. See section A.2 for details.
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incomplete GPS data, and if they did not make any trips on a given weekday. The “no trip” fee was
designed to dissuade incentive gaming by leaving the smartphone at home.

During the initial meeting, surveyors framed the account balance as the “respondent’s money,”
and congestion charge as losses. During the experiment, charges were computed automatically and
participants received daily account balance updates through SMS and app notifications. In addition,
weekly phone calls reminded participants about their treatment group details. These features aimed
to ensure salient congestion charges, which affects demand elasticities (Finkelstein, 2009).

6 Congestion Charge Policies: Design and Impact

6.1 Experimental Design

Departure Time Congestion Charges. Participants in this treatment were charged for each
trip based on a per-km rate and the length of their trip. The rate followed a trapezoidal shape
over a 3-hour interval, one in the morning and another in the evening (Figure A2). The rate profile
has one-hour increasing and decreasing ramps around a one-hour flat peak period. The position
of the charged interval differed by at most ±30 minutes between commuters, and was designed to
maximize the overlap between the ramp periods and typical departure times for that commuter,
based on baseline data. This procedure was implemented for all commuters before randomization.

There were four sub-treatments: control, information, low rate, and high rate. Participants in
the control group were monitored for 5 weeks, received regular updates about their data quality, and
received a flat 300 INR payment per week for participation. Participants in the information group
received daily messages about the trips they had completed the previous day, and information about
how to reduce trip travel time by changing departure time. They also participated for 5 weeks.
This treatment helps separate the impact of prices from other features of the intervention, including
experimenter demand effects.

Charges lasted three weeks. The low and high rate groups had a maximum (peak) congestion
rate of 12 INR/Km and 24 INR/Km, respectively. They received daily messages about the trips
they had completed the previous day, how much each was charged, and information about how to
reduce trip charges by changing departure time.

Route Congestion Charges. Participants in this treatment were charged if they drove through
a congestion area. The area was a disc with radius 250m, 500m or 1000m positioned along a route
used frequently by the participant during the pre- period. The area induced an alternate non-
intersecting detour route, which was between 3 and 14 minutes longer than the original route, based
on Google Maps travel time data. Study participants never had a stable destination inside the
congestion area. This procedure was possible for 254 out of the 497 experiment participants; the
remaining 243 were not included in the route treatment. During the meeting, surveyors carefully
explained the area location, radius, boundaries, and one possible induced detour. This information
was repeated in each daily reminder SMS. Surveyors explained that only routes that intersect the
area will be charged, and that several detour routes may exist.

The route treatment did not include a pure control group. Participants were randomized between
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being treated in the first week in the experiment (early) or in the last week (late). The charge was
in effect between 7 am and 9 pm, and applied at most once for the morning interval (7 am–2 pm)
and at most once for the evening interval (2 pm – 9 pm).

Sub-treatments were designed to identify the effect of price and detour time variation on choices.
Low/high rate participants had a baseline charge of 80/160 INR. Long/short detour participants
had random variation in detour length (section A.5).6

The randomization was stratified based on route treatment eligibility, vehicle type, and baseline
daily travel length (Table SM2). The route treatment timing (early/late), the low/high rate, and
the long/short detour sub-treatments were cross-randomized, giving 8 equal-probability treatment
cells. Participants received the departure time treatment for three consecutive weeks, either the
first three or the last three, randomly chosen. When applicable, this was dictated by the timing of
the route treatment. The route and departure time treatments never occurred at the same time.
The four departure time sub-treatments and the eight route sub-treatments were cross-randomized
within each stratum (section A.6).

The different treatment groups are balanced along demographic and pre-period travel behavior
variables (Table SM4). The congestion charge treatments did not affect data quality (Table SM5).

6.2 Reduced-Form Responses to Congestion Charges

I first discuss the representativeness of the experimental sample. The 497 experiment participants
represent 6% of all eligible commuters approached by surveyors in gas stations (Table SM3). Almost
all commuters in this setting are men. Experiment participants appear 2 years younger and are
slightly less likely to use a car. Among survey respondents, experiment participants report similar
income, travel slightly more, and have slightly higher stated value of time and schedule flexibility.

In the GPS data, at baseline, commuters make around 3 trips per day on average, each around
25 minutes and 6 km long (Table SM1). Three quarters of the sample are regular commuters. Most
commuters in this sample have variable departure times.

The Impact of Departure Time Charges. In principle, commuters may respond to charges
by canceling trips with departure times during the charged period (extensive margin), as well as by
rescheduling trips to departure times with lower charges (intensive margin).

Figure 2 provides a first look at the causal impact of congestion charges on the number of trips
and on the distribution of trip departure times. It shows the difference-in-differences of the number
of trips by departure time bin, during vs before the experiment and in the treatment group vs
the control group. I pool the control and information sub-treatments, and the low- and high-rate
sub-treatments.

In the morning, there is no reduction in the total number of trips, as the integral of the curve
is non-negative.7 This suggests that any shifts in departure times capture intensive margin changes

6In a separate randomization not analyzed here, charges were 50% higher on two randomly chosen days.
7Recall that participants were charged if they did not make any trips in a given weekday, so the impact on the

number of trips does not measure a “pure” response to peak-hour charges.
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for existing trips, rather than selection in the types of trips that commuters cancel.
In the early morning, there is a strong shift in trips towards earlier departure times. In this

interval, charges create a marginal incentive to leave earlier. Commuters in this interval leave
around 4 minutes earlier on average due to the treatment (Table A4).8 In the evening, the figure
shows a decrease in the number of trips in the later part of the congestion charges ramp, consistent
with a combination of extensive and intensive margin responses.

I run the following difference-in-differences specification:
yit = γIT I

i × Postt + γLTL
i × Postt + γHTH

i × Postt + µt + αi + εit, (7)

where yit is an outcome of interest for commuter i on day t, Postt is a dummy for the experimental
period, T I

i , TL
i and TH

i are dummies for the information, low rate and high rate departure time
sub-treatments, αi and µt are commuter and time fixed effects. The coefficients of interest, γI , γL

and γH , respectively measure the impact of information, low rates and high rates relative to control,
during the experiment relative to the period before. For higher precision, in some analysis I pool low
rate or high rate sub-treatments together, as well as the control and information sub-treatments.

The sample is all non-holiday weekdays when the respondent does not travel outside Bangalore.
During the experiment, I include the three weeks when charges are in effect, with comparable timing
in the control and information groups.

Table 1 shows results on daily outcomes. The first three columns show impacts on the daily total
of trip hypothetical rates, which is a summary statistic for travel behavior that is charged more
(both intensive and extensive margin responses). To compute this outcome, I take the sum over all
trips in a given day of the congestion rate that the commuter would have incurred for that trip if
they were in the treatment group. This depends on the trip’s departure time and the commuter’s
own congestion rate profile (which is defined for all participants irrespective of treatment group). I
normalize the peak rate to 100, so this outcome is computed uniformly across commuters and across
time. The last three columns report results on the total number of trips.

In the high rate sub-treatment, the total daily hypothetical rate drops from a base of 96 to
around 84, a 13% decrease. The low rate sub-treatment coefficient is also negative but smaller in
magnitude and not significant. When disaggregating by morning and evening in the second and third
columns, results are similar but less precise. The information group does not have a statistically
significant effect. The daily SMS and app reminders did not, by themselves, affect departure time
travel behavior as summarized by hypothetical rates. Among regular commuters, charges fall more
early relative to late in the morning, and late relative to early in the evening (Table SM6).

Departure time charges have a small and often insignificant effect on the total number of trips.
The point estimate on high rate in the fourth column implies a 2% decrease in the number of trips,
and the point estimate on Charges in the same column implies a 4% decrease. However, there is a
marginally significant decrease in the evening of 7%. This result mirrors the findings from Figure

8There is an increase in trips around half an hour after the end of the congestion charges. The exact position of this
increase does not map cleanly to the predicted response given marginal incentives, as in the case of the early morning.
This increase is entirely concentrated among non-commuting trips; Figure SM1 shows that this effect disappears for
commuting trips of regular commuters. Instead, there is a slight substitution to later times during the decreasing
“ramp.” This result suggests the possibility of discrete scheduling changes for some non-commuting trips.
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2.9 Treatment effects do not vary over time during the experiment (Table A2).

The Impact of Route Charges. Figure 3 shows the average detour usage rate among home-to-
work trips by route treatment group over time. Before the experiment, the detour route usage is
between 8 and 12%, and 39% of commuters use a detour route at least once at baseline.

When charges first go into effect, the detour usage rate jumps to 40% for the participants who
are charged in week 1, relative to 12% for those who expect that they will receive charges in week 4.
When the latter group experiences charges, their detour route usage rate goes up to around 35%.

Charges have a persistent effect on route choice. Focusing on the early group, the detour rate
is around 20% in weeks 2, 3 and 4, after route charges are no longer applicable. This persistence
is consistent with switching costs (i.e. habit) or a fixed cost of learning about the detour route
(Larcom et al., 2017).

Commuters who used a detour route at least once at baseline also see persistence after charges
end. I show this in Panel B of Table SM7. The table shows the regression counterpart of Figure 3
(see also section SM.3). This finding suggests that persistence is due to switching costs rather than
due to learning about a new route, motivating the use of switching costs in the dynamic route choice
model in section 4.2.

Effects from randomly higher route charge amount and from randomly shorter detour duration
point in the expected direction but are imprecise (Table SM8). When I analyze all variation in
detour duration, I find that the impact of charges and persistence are higher for commuters with
shorter detours (Figure A4). The main treatment effects do not vary statistically significantly over
the five days during the experiment (Table A2).

7 Travel Demand Estimation

I now use the data and the experimental variation to estimate the key parameters in the travel
demand model. This will provide monetary measures of individual preferences over schedule inflex-
ibility and the marginal value of travel time (VOTT).

7.1 Estimation Overview and Experimental Moments

The benchmark model for estimation is the dynamic route choice and departure time choice model
from section 4.2. To explore robustness to model assumptions, I also estimate several simpler
models, including varying how route choice is modeled, using calibrated VOTT, and abstracting
from departure time choice.

I use the generalized method of moments (GMM), with moments chosen to leverage the experi-
mental variation in costs of departure time and route choice (Supplementary Material SM.4.2).

The first set of moments measures how departure time “market shares” shift in response to peak-
hour pricing, as shown in Panel A of Figure SM1. There is a moment for each 5-minute departure

9The results are broadly similar when using total daily hypothetical charges (hypothetical rate multiplied by the
trip length) or when using trips as observations, with stronger effects in the morning than in the evening.
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time bin in [−2,+2] hours around the departure time charge profile midpoint (49 moments). For
each commuter and each bin, I compute the average fraction of trips starting in that bin. For each
bin, I then average this value across commuters, within four cells given by period (before or during
the experiment) and treatment group (control or charges). Finally, I compute the difference-in-
differences for each departure time bin.10

The second set of 10 moments measures detour route choice probabilities across time (before
the experiment, and four weeks during the experiment) and treatment group (early and late route
charges), corresponding to Figure 3.

Intuitively, the departure time moments are informative about schedule costs and the departure
time logit parameter, while the dynamic route choice moments help pin down VOTT, the switching
cost, and the route logit parameter. I explore the mapping between data and estimated parameters
formally in Section 7.4.

7.2 Data, Travel Time Distributions, and Estimation Sample

I use two types of Google Maps data to construct choice sets. For average driving times ETit(h, r = 0)
and short route length Ki, for each study participant, I collected Google Maps predicted driving
times on their home-to-work route at all departure times throughout the day. To calibrate travel
time uncertainty, I use the real-time Google Maps data.

I assume that driving time follows a log-normal distribution around the measured Google Maps
average driving time. Within route by departure time cells, driving time is approximately log-linearly
distributed across the 145 weekdays in the data, with the standard deviation well explained by a
quadratic in the average driving time (Figures A6 and A7).

For route treatment participants, I calibrate ETit(h, r = 1) = λiETit(h, r = 0), that is, the
travel time profile on the detour route (r = 1) is proportional to short route travel time profile,
with an individual-specific factor λi. I compute λi using pre-experiment Google Maps data on the
detour route driving time at 9 AM. Specifically, I use the quickest route that does not intersect the
congestion area. Note that travel time uncertainty is also higher on the detour route.

Commuters face known monetary charges pit(h, r) exactly as in the experiment. The trip sample
is all morning home-to-work trips. Out of 378 regular commuters, the estimation sample consists
of 304 commuters who have at least one sample trip during the experiment for either the route
treatment or the departure time treatment.

7.3 Solving the Model and Inverting Ideal Departure Time Distributions

Model Setup. The benchmark estimation model is described in section 4.2. To bring the model to
the data, I assume that departure times take values every 5 minutes from −2.5 to +4 hours relative
to the departure time charge profile midpoint. Ideal arrival times take values on an equally-sized
grid between −2 to +4.5 hours relative to the same point. The time period in the dynamic route

10While not directly targeted as a moment, for each commuter, I also use the smoothed distribution of departure
times before the experiment to invert the ideal departure time distribution (section 7.3).
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choice model is one week. This choice is motivated by computational considerations and the fact
that in the data, 75% of the time, route choice is constant within week.

I modify equation (4) to include (and estimate) a fixed effect ηearly that enters the detour route
utility (r = 1). This term is switched on for all commuters in the early route treatment, for all time
periods. (Results without ηearly are similar.)

I normalize the nested logit parameters to be proportional to a commuter’s pre-experiment short
route length Ki. Commuter i has σDT

i = Ki

K
σDT and σR

i = Ki

K
σR where K is average trip length in

the sample. Since costs in the utility function scale approximately linearly with route length, this
normalization prevents commuters who travel far from having mechanically more precise choices, as
would be implied by constant σDT and σR.

The discount factor is typically difficult to estimate in discrete choice models (Abbring and
Daljord, 2020). In the benchmark model I calibrate δ = 0.9 and I later show robustness to different
values and to estimating δ.

The preference parameter vector to estimate is θ = (α, βE , βL, γ, σ
DT , σR, ηearly). α measures

VOTT, βE and βL are early and late schedule costs, γ is the route switching cost, σDT and σR are
the logit parameters, and ηearly is the early group detour route fixed effect. For each commuter i, I
will invert the probability distribution function of ideal arrival times, fA

i .

Computing Choice Probabilities. Given a parameter vector θ, solving the model consists of
computing choice probabilities over departure times and routes, for each participant and for each
time period before and during the experiment. I do this in two steps. I first compute choice
probabilities taking the distribution of ideal arrival times as given, and then I invert this distribution
from observed pre-experiment departure times (Supplementary Material SM.4.1).

To begin, assume that the distribution fA
i (hA

it) of ideal arrival times is known for commuter i.
Conditional on an ideal arrival time hA

it, I derive a closed form expression for expected utility in
equation (2) when travel time is log-normally distributed. This yields departure time probabilities
conditional on route, πit(h|hA

it, r, θ). (Whenever applicable, this expression implicitly depends on
pricing.) In particular, route switching costs 1(r ̸= rit−1) and future period valuations δVit+1(r)
drop out. For the 99 commuters who are not in the route experiment, I use the single route
model, and hence these expressions fully describe choice probabilities. I also derive expected utility
Euit(h|hA

it, r, θ).
I find the steady state of the dynamic route choice model by iterating the Bellman equation (5) to

find the two values Vi(r = 0|θ) and Vi(r = 1|θ). At each step, I integrate within-period heterogeneity
given by ideal arrival times. For each commuter, I assume steady state per-period utilities before and
after the experiment. I solve backward for utility for weeks during the experiment and I compute
the choice probabilities for route and departure times moving forward period by period, starting
with steady state probabilities before the experiment. This yields route choice and departure time
probabilities for each commuter, integrated over the distribution of ideal arrival times.

Inverting the Ideal Departure Time Distribution. The remaining step is to estimate the
ideal arrival time probability distribution function fA

i for each commuter. I do this in three steps.
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First, I fit a normal distribution on pre-experiment departure times, separately for each com-
muter. (I do this only once, before estimation.) Second, at each estimation step, I compute
departure time choice probabilities πit(h|hA

it, r, θ) conditional on ideal departure time and route,
as described above. This expression assumes no pricing, corresponding to the period before the
experiment. This allows me to express the vector of departure time probabilities for route r

as a known linear transformation of the vector probabilities of all ideal arrival times, namely
πit(h|r) =

∑
hA πit(h|hA, r, θ)fA

i (hA). I weight by observed route choice frequencies before the exper-
iment and write the distribution of pre-experiment departure times in matrix form as πi = Pi(θ, r)fA

i ,
where πi and fA

i are viewed as vectors over departure time and arrival time. The final step
is inverting this relationship to obtain the vector fA

i . I use non-negative least squares to solve
minfA

i
||πi − Pi(θ, r)fA

i ||2 such that fA
i ≥ 0 and 1 · fA

i = 1 (Lawson and Hanson, 1974). This pro-
cedure does not introduce an incidental parameters problem because we are integrating over ideal
arrival times drawn randomly from a distribution (Kiefer and Wolfowitz, 1956).

GMM Estimation. I use two-step GMM with an optimal weighting matrix. Each stage is re-
peated with 120 random parameter starting conditions, to make convergence to a global minimum
more likely. To account for the ideal arrival time inversion step in the estimation, I report 95%
confidence intervals based on 120 bootstrap iterations, each estimated using 10 random starting
conditions.

7.4 Travel Demand Estimation Results

Schedule Cost Estimates. Commuters substitute towards nearby departure times (Table 2).
In the benchmark specification in column 1, early and late schedule costs are given by βE = 552
INR per hour (26.8 USD PPP) and βL = 344 INR per hour (16.7 USD PPP). These numbers are
estimated using the full model with departure time and dynamic route choice, using experimental
moments from the peak-hour pricing and route charges treatments.

To explain what these numbers imply in terms of behavior, I use the estimated model to simulate
the individual response to a linearly increasing departure time charge pD(h) = ph. When p is the
average wage (165 INR per hour), commuters leave 3.9 minutes earlier on average, a detectable but
localized response. When p is double the wage, commuters leave 8.7 minutes earlier on average.
This response rises steeply as p approaches βE . In the estimated model, commuters take advantage
of travel time savings, arriving on average up to 2 minutes early (before the ideal arrival time) when
they travel before the peak, and up to 5 minutes late when they travel after the peak.

There are few estimates of schedule costs in the transportation economics literature to compare
with. The canonical reference is Small (1982), who finds βE/α = 0.61 and βL/α = 2.4. (See also
Bento et al. (2020).) My estimates in Table 2 are 0.91 (bootstrapped 95% CI [0.37, 2.52]) and 0.56
(95% CI [0.31, 2.0]) and I cannot reject equality (βE > βL in 62% of bootstrap runs).11 As a second

11This symmetry may reflect preference heterogeneity. In a richer model where commuters differ in schedule costs,
my experiment may capture early costs βE for commuters who already travel early (who are more likely to travel
during the early “ramp” of the congestion charge profile), and late costs βL for late travelers. Given my focus on
policies that incentivize traveling away from the peak-hour, these parameters are still policy-relevant.
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benchmark, consider the model from Arnott et al. (1993), where travel time and schedule costs are
compensating differentials. For the median length home to work trip in my sample, the steepest
part of the morning travel time profile from Figure 1 implies βE/α = 0.15 in this model. Even for
the home to work trip at the 95th percentile (27.8km), the implied ratio is βE/α = 0.41.

Estimated schedule costs are robust to a range of assumptions on the value of travel time. In
columns 2 and 3 of Table 2 I estimate a model of departure time with a single short route (r = 0),
and I calibrate VOTT to either 50% or 100% of the average wage. Estimated schedule costs are very
similar. Conversely, the estimated VOTT is very similar in the dynamic route choice model without
departure time described at the end of section 4.2. Overall, the interaction between the departure
time and route choice model components is negligible numerically.

Schedule costs depend primarily on commuter departure time responses to peak-hour charges
(Figure SM3). In panel A, I compute the Jacobian, showing that the early schedule cost βE most
strongly affects moments m(h) for departure times around the early ramp, and late cost βL most
strongly affects moments around the late ramp. In panel B, I use the scaled sensitivity measure from
Andrews et al. (2017), which measures how an estimated parameter depends on changes in the value
of one of the moments (Supplementary Material SM.5). The same picture emerges: the moments
m(h) that affect β̂E the most are around h = −1.5 hours, while those that affect β̂L the are around
h = +1.5 hours. A higher logit scale parameter σDT means noisier departure time choices, which
leads to a more dispersed response to pricing around pricing kink points at ±1.5 hours (not shown).

The model propagates reduced form moment uncertainty to parameter estimates in a relative
transparent manner. To see this, consider the departure time substitution patterns shown in panel
A of Figure SM1 and panel A of Figure SM2. If this profile were uniformly attenuated by a factor
of two, estimated schedule costs would be βE = 788 and βL = 446, which are respectively 43% and
30% higher than the benchmark estimates.

The model does a good job of matching the experimental changes in volume of trips, notably at
the ±1.5 hour kink points (Figure SM2, panel A). It also matches well the control distribution of
departure times (panel B).

Value of Travel Time (VOTT) Estimates. The estimated value of travel time is 609 INR per
hour (29.5 USD PPP) or 369% of the average hourly wage reported in the survey (Table 2). This
means that commuters in Bangalore view additional driving time as highly undesirable.

The transportation economics conventional consensus for rich countries is that VOTT lies be-
tween 50% and 100% of the wage (Wardman, 1998). While many estimates are based on stated
preferences, a method that underestimates VOTT (Small et al., 2005), recent experimental and
quasi-experimental estimates of the value of wait time in ride-share settings find estimates in a sim-
ilar range (Goldszmidt et al., 2020; Buchholz et al., 2020). Experimental estimates of the value of
travel time in urban contexts in developing countries are not readily available.

The value of travel time is estimated separately from the cost of switching routes, which is
γ = 80 INR, or around half the hourly wage.12 If I estimate a static route choice model with

12The model also already accounts for the fact that travel time on the detour route is more uncertain – and hence
schedule costs may be higher – in addition to having a higher mean.
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the switching cost set to zero, using route choice probabilities with and without charges, VOTT
increases significantly to 2, 200 INR per hour (column 1 in Table SM9). This model is rejected by
the data, because it predicts no route choice persistence. In the benchmark model, switching costs
are symmetric. If, instead, I assume that switching away from the short route (r = 0) is twice as
costly (γ01 = 2γ10 = 2γ), VOTT is estimated at 1, 486 INR per hour.

Three key route choice moments help to jointly estimate VOTT α, the route switching cost γ,
and the logit parameter σR. These moments correspond to detour route choice probabilities before
the experiment (control), while charges are in effect (treatment), and after charges end (persistence).
Table SM11 shows the Jacobian of the three moments with respect to the three parameters. The
key point is that a higher VOTT lowers detour choice during and after the experiment roughly
similarly, while a higher switching cost affects the third moment (that measures persistence) much
less. Increasing the logit parameter increases all three moments uniformly, because it increases the
importance of idiosyncratic factors. The same pattern holds in the benchmark model, in the model
without departure time, and in a simple version of the dynamic route choice model.

Note that α is denominated using travel time as measured by Google Maps, and study participant
perceptions of travel time differences are larger. Hence, the value of subjective time will be lower.
The average detour is 6.5 minutes according to Google Maps. In a phone survey conducted during
the experiment, the median and average self-reported detour durations were 11.7 and 13.6 minutes.

Inattention to the experiment may affect these estimates. In a phone survey, around half of
treatment group respondents do not remember features of their treatment (Table A1). Re-estimating
the benchmark model assuming that each participant is independently inattentive to congestion
charges with probability 50% leads to lower VOTT, 330 INR per hour (Table SM9 column 4). It is
difficult to disentangle inattention specific to this experiment from large VOTT and schedule costs.

The value of travel time estimated here can be most naturally applied to short-term commuter
responses to similar congestion area policies that induce a detour option. It is also relevant for
assessing the disutility induced by temporary road closures, for example due to construction. In the
rest of this paper, I will use the estimated VOTT (as well as a wide range of robustness values) to
value improvements in travel time due to a less crowded peak-hour.

The benchmark model matches well the dynamic path of detour route choice in the two route
treatment groups (Figure SM2, panel C). I also show that the model matches well the route choice
heterogeneity by detour duration, which is not targeted in estimation (panel D).

Model Identification Check, Finite Sample Estimation, and Robustness As a numerical
analogue of model identification, I show that the estimation procedure recovers true parameters using
simulated data. For this exercise, for each random vector of model parameters, I simulate model
choice data for the same set of study participants, assuming that individual choice probabilities are
perfectly observed. I then estimate the model using this synthetic data. Estimated parameters track
true parameters almost perfectly (Figure SM4, red circles).13

To study the finite sample properties of the estimation procedure, I repeat the exercise simulating

13For computational reasons, I only use one random starting condition for GMM estimation. This is a likely reason
for a very small number of cases where the estimated parameter is slightly different from the true value.
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random choices, holding the number of observations per participant exactly the same as in the real
data. For every parameter, estimated parameters are positively correlated with true parameters,
with slope most often close to 1 (Figure SM4 blue triangles, and Table SM12)).

The results are robust to a wide range of assumptions on the discount factor (Table SM10). The
key parameters are very similar for δ ∈ [0.5, 0.99]. I also estimate δ using an additional moment
that captures the average transition probability from route 0 to route 1.14

In order to focus on experimental variation in the route choice moments, I include time fixed
effects that enter the detour route utility (r = 1) in equation (4). The terms ηt are switched on for
weeks t = 1, 2, 3, 4 during the experiment, for all commuters. (For departure times, the model already
includes rich individual-level heterogeneity through the ideal arrival time distribution.) Estimates
are similar to the benchmarks results, but the VOTT estimate is significantly less precise.

Finally, I consider a more restrictive model where all commuters have the same, time-invariant
ideal arrival time hA. Schedule costs are higher and very imprecisely estimated. This model offers
a poor fit for the distribution of departure times in the control group (not shown).

Overall, the travel demand model does a good job fitting how commuters responded to the con-
gestion charge experiments. The results indicate that commuters are moderately inflexible changing
their schedules by leaving earlier or later locally around their departure times. The value of travel
time estimates in Bangalore are higher than the typical 50 − 100% of the average wage. In order
to quantify the welfare impacts of congestion mitigating policies, it is also necessary to know how
travel times respond to aggregate changes in driving patterns.

Income Heterogeneity Many previous studies in other countries find that travel preferences
scale with income (Wardman, 1998). This is important because heterogeneity in travel preferences
has both efficiency and distributional consequences. In my experiment, heterogeneous effects by
self-reported wage are not statistically significant in either treatment (Tables A6 and A7), although
this exercise is likely under-powered given sample sizes. With a similar caveat, I do not find evidence
of differences in attention to the experiment between low- and high-wage participants (Table A1). I
re-estimate the demand model imposing that travel preference parameters are proportional to self-
reported wage, and I find similar but less precisely estimated mean parameters (Table SM9, column
5). I return to income heterogeneity in policy simulation.

8 Supply Estimation: The Road Congestion Technology

Each additional vehicle on the road leads to slower road speeds. I now quantify this external cost in
Banglaore using all the GPS trip data collected during the study and real-time Google Maps driving
time data from the same period.15 The main empirical strategy is to use the predictable within-

14In theory, the identification of the discount factor leverages the variation in future expected utility, but not current
utility, for participants who are informed that they will be charged in the last week in the experiment (Abbring and
Daljord, 2020). In practice, the experiment did not include a pure control group, and the simulated anticipatory
response is small for a wide range of values of δ.

15Driving also imposes other external costs: pollution emissions, pollution exposure, accidents, etc. Here I focus on
the impact on higher (and less reliable) driving times.
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day demand variation in city-wide traffic density to estimate the causal impact of traffic density on
speeds. I will argue that, to a first approximation, the large shifts in demand for travel at different
times of the day trace out the supply curve for road speed, which I call road technology.

The supply relationship of interest between travel delay and traffic density is

Xth = λ0 + λ1D̃th + εth, (8)

where Xth is instantaneous travel delay (inverse speed, measured in minutes per kilometer) on day t
at hour h, D̃th = Dth

N(T /24)
is citywide traffic density Dth normalized by the average number of daily

trips N and average trip duration, which I set to T/24 = 0.5/24, and εth is an error term.16

To measure the quantity of driving, I use 117,527 trips coded from GPS data from 1,747 app
users, covering 185 calendar dates and 44,034 user-days with travel information. (This sample
includes but is not restricted to the experimental sample.) I use this to construct DS

tm, the number
of in-sample trips ongoing at minute m on day t, which I then average at the hour level to get DS

th.
I normalize DS

th by the number of app users active that week. I assume that in-sample density D̃S
th

is a representative, possibly noisy, measure of citywide density D̃th.17

The main data source for travel delay is real-time Google Maps travel delay data collected every
20 minutes on a fixed set of 30 routes in the study area (in both directions) over the same calendar
period. This is a proxy for instantaneous speed because the routes are short (2.8km on average). I
also report results using travel delay computed from trip-level GPS data.

I instrument for traffic density D̃S
th using hour-of-day dummies to capture shifts in demand.

My approach follows recent transportation economics papers that use similar strategies (Akbar
et al., 2021; Hughes and Kaffine, 2018; Russo et al., 2021), and I discuss instrument validity below.
Instrumenting helps address simultaneity concerns in equation (8) and attenuation bias due to
classical measurement error.

Travel delay is well explained by a linear function of traffic density (Figure 4). To create this
figure, I compute travel delay Xh and traffic inflow D̃S

h at the hourly level h, averaging over days
t. The linear functional form is visible throughout the range of density, including at close to zero
traffic. An increase in density of 10% of the mean is associated with an increase of 0.1 minutes
per kilometer (column 3 in Table 3). Results are almost identical when weighting by the inverse
probability that a respondent is in the smartphone app sample (not shown). There is no evidence of
convexity during peak-hours, and an exponent of ν = 1.06 on density is outside the 95% confidence
interval (column 4).18 Severe traffic jams are not disproportionately more likely during peak-hours,
as the 90th percentile of travel delay, computed using data from GPS trips, scales sub-linearly with
traffic density (Figure SM5, Panel A).

16When I study the impact of additional trips, I hold the normalizing term N fixed at its original value.
17I cannot separate the impact of motorcycles and cars, and cannot account for vehicle occupancy. My results

should be interpreted as the average effect along these dimensions. In the study sample, the share of trips made by
car stays very close to 33.3%, with a standard deviation across hours between 6 am and 10 pm of only 1.3%. In the
GPS data, cars are 2.5% faster outside peak-hours, and have the same speed during peak-hours.

18The slope estimated based on variation across calendar dates is shallower (column 5), although comparing Sundays
to all other weekdays suggests a similar slope (Figure A5).
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Using hour-of-day instruments for traffic density in equation (8) yields a coefficient λ1 = 0.95, or
λ1 = 0.88 when restricting to daytime hours 6am-10pm (columns 1 and 2 in Table 3). The effective
first-stage F statistic, adjusted for heteroscedasticity and autocorrelation following Olea and Pflueger
(2013), greatly exceeds the critical value for rejecting a worst-case bias of 5% at significance level
5%, assuaging concerns of weak instruments.

The exclusion restriction for hour-of-day instruments states that the relationship between in-
stantaneous speed and traffic density does not vary by time of the day. I discuss two classes of
possible threats to this assumption. First, the composition of road traffic may differ at peak-hours.
Peak-hour trips may be longer and hence faster, as shown in Couture et al. (2018), or peak-hour
drivers may drive faster. Trip-level quantile regressions of trip delay on the traffic density measure
used above, controlling for trip length and with commuter fixed effects, yield similar and shallower
results (Table A9).

The slope λ1 would be under-estimated if vehicle types not included in my sample, such as trucks
or buses, were systematically under-represented during peak-hours. Heavy trucks were not allowed
to enter Bangalore between 6am and 10pm during the study, although the level of enforcement is
unclear. I find similar results restricting to this time interval (column 2 in Table 3), and I show
using independent data from 2017 on four roads in Bangalore that, within day, the volume of bus
and trucks closely tracks the volume of cars and motorcycles (section A.8).

A related concern is that my sample of trips may over-represent peak-hour traffic volumes (and
hence underestimate the slope), for example due to recruitment times in gas stations. Recruitment
time barely predicts trip departure time from GPS data.19

A second threat to the exclusion restriction is that the same composition of vehicles may affect
delay differently at different times of the day. However, compelling examples are not obvious for
Bangalore. The study period was dry and mild, so systematic within-day precipitation differences
are unlikely. Another example would be if traffic police disproportionately alleviates traffic during
peak-hours. (However, this may also be considered an inherent component of the road technology.)
Higher pedestrian flows during peak-hours might slow traffic, biasing the relationship upward.

My approach may be biased if the true supply relationship is convex, but averaging over time
or over space linearizes it. For example, the exact moment of the peak-hour may vary slightly on
different days, leading to attenuation bias in traffic density. Figure SM6 shows virtually identical
results day by day, including on Sundays, when traffic volume is lower. These results bolster the
case that the results trace out a technological relationship. In Figure SM7, I count the number of
ongoing trips by road artery and direction (arteries are shown in Figure A1). Even for individual
arteries, instantaneous travel delay appears linear in this measure of density.

Measuring a citywide supply relationship may underestimate externalities if commuters switch
to lower externality routes during the peak hour, as in the Pigou-Knight two-route model (Walters
1961).20 To quantify this type of bias in Bangalore, I proceed in two steps. First, I show that the
travel time change between 6 am and 9 am is a good proxy for a route’s externality λ1 from equation

19The R2 of the regression of trip departure time in the morning on morning recruiting time is below 0.05, and
below 0.02 for the evening (Figure SM5, panel C).

20I thank an anonymous referee for this point.
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(8). In the artery-level data these two measures have R2 = 0.76. This is useful because I can measure
travel time profiles more widely. Second, for each frequent commuter in the experimental sample,
I obtain all routes that are optimal for at least one departure hour. I then collect Google Maps
travel time data along each route for all hours of the day.21 44% of commuters have a unique route,
meaning all other routes are slower for all departure times. Even when more routes exist, the time
profile slopes are similar (Figure SM5, panel E). Denote ri(h) the optimal route for commuter i at
time h, r∗

i the route with the steepest 6:30-9:30 slope, and slope(r) the slope of route r. Usage
of the steepest route ri(h) = r∗

i falls by 30% during peak-hours, showing that commuters indeed
substitute away from high-externality routes. However, this effect is small, as slope(ri(h)) falls by
14% at most. To account for this bias, I later analyze policy counterfactuals in an equilibrium model
with two routes.

Equipped with the estimated road technology, I can calculate the partial equilibrium impact
of an additional trip on total driving times in Bangalore. I solve the road technology model from
equation (6) using the estimated equation (8) and my data on trips, and compute the total driving
time summing up over all commuters. I solve the model again after adding an additional trip.22 I
use the estimates from column 3 in Table 3, the specification with the largest slope.

An additional 7 km long trip increases the total driving time in Bangalore by 1.3 minutes if the
trip starts at 7 am, and by 14.6 minutes if it starts at 9 am. This is not the same as the trip’s marginal
social cost, which includes schedule costs and is calculated allowing other drivers to adjust (Arnott
et al., 1993). A 7 km long trip starting at 9 am takes 26 minutes, hence this congestion externality
estimate is non-trivial. However, it is small relative to many previous estimates, including the
bottleneck model, where the partial-equilibrium impact on travel times can be several times larger
than the private cost (Vickrey, 1969; Arnott et al., 1993).23

At some higher level of traffic, citywide travel delay in Bangalore would likely become convex
in additional traffic density, as streets overflow and vehicles block intersections. My results suggest
that these levels are not typically reached in the current equilibrium, even during peak-hours.

9 Policy Simulations

Equipped with preference estimates from the experiment and the calibrated road traffic congestion
externality in Bangalore, I now simulate and compare the Nash equilibrium and social optimum in
the model of peak-hour equilibrium from section 4.3. Supplementary Material SM.7 has technical

21I made these queries in 2021. Despite overall lower traffic levels due to Covid 19, trip-level travel time and travel
delay at 9 am correlate strongly with 2017 data (R2 = 0.93 and R2 = 0.5).

22This calculation is independent of the number of trips in the sample. Intuitively, this is because equation (8)
depends on density divided by the number of trips. See Supplementary Material SM.6 for the full proof.

23The results in Bangalore are broadly similar to those reported by Akbar and Duranton (2017) in Bogotá, Colombia
(Figure SM5, panel D). Akbar and Duranton (2017) construct traffic density using entire trips using a representative
transportation household survey. The slope in Bangalore is several times shallower than the slope identified based
on taxi trips in Geroliminis and Daganzo (2008) in Yokohama, Japan. Russo et al. (2021) use variation from public
transit strikes to estimate the road supply curve in Rome and find a ratio of the marginal external cost to the average
user cost of 0.66. In Yang et al. (2020), which estimates the supply curve on highways in Beijing, this ratio is higher,
on average approximately equal to 1.6.
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details.
Agents choose departure times based on equation (3), taking the travel time profile as given.

They have preference parameters α, βE , βL, σ
DT estimated in section 7. Each agent is a copy of a

real study participant, with the same short route length and a fixed ideal arrival time drawn from
the estimated distribution for that participant. In the benchmark model, departure time is the only
choice. I later introduce model extensions with route choice and with an extensive margin decision.

Travel times are determined endogenously as a function of the pattern of departures, using the
linear relationship between density and instantaneous travel delay estimated in Table 3, column 3,
based on equation (8). Recall that this specification induces a non-linear effect: higher density at
one moment lowers instantaneous speed, which increases density later on. Travel time uncertainty
is log-normally distributed with a standard deviation that is quadratic in the mean (Figure A7). I
assume that other traffic participants, such as trucks, buses, and pedestrians, have fixed departure
rates that do not change in congestion pricing counterfactuals.

The simulation focuses on morning peak-hour commuting trips. I assume these represent 20% of
all trips in a given day in Bangalore. This factor is calibrated so that the unpriced Nash equilibrium
peak travel delay is approximately 4 min/km, similar to Figure 1. It also matches half the share
of trips that are between home and work (Table SM1). As I explain below, this parameter is an
important factor for the deadweight loss of congestion (Figure SM8, panel D).

In a Nash equilibrium, the distribution of agent departure probabilities and the profile of in-
stantaneous travel delay are consistent. Welfare is defined as average expected utility. Externalities
are defined around a certain equilibrium and allowing the other commuters to adjust (Arnott et al.,
1993), and depend on departure time and trip length. The externality for agent i of making a trip
at departure time h is the difference between equilibrium welfare assuming i makes a trip starting
at h, and equilibrium welfare when i does not travel (both welfare terms exclude i). Because a
trip affects traffic density for its entire duration, longer trips tend to have larger externalities. The
social optimum is an equilibrium with Pigouvian charges p(h,K) equal to the externality of a trip of
length K leaving at h. I assume no implementation costs and lump-sum redistribution of the entire
revenue. This setup favors finding welfare benefits from optimal pricing.

I use an iterative procedure to compute a Nash equilibrium. At each step, a small fraction of
commuters choose optimal departure times, and travel times adjust to the new pattern of departures.
Convergence to equilibrium takes around 10 revisions per capita, and in practice the procedure
identifies the same equilibrium for any starting conditions. This dynamic has a natural interpretation
in terms of commuters revising their actions periodically.

To find the social optimum, I use a nesting iterative procedure to compute a series of Nash
equilibria and update congestion charges. At each step, I update charges toward the externality
at the current equilibrium. For computational reasons, I compute partial-equilibrium externalities
(other commuters do not adjust). At the social optimum, I check that these coincide with full-
equilibrium externalities, as implied by the envelope theorem. Even around the Nash equilibrium,
the partial- and full-equilibrium externalities are highly correlated (R2 = 0.96).
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Main Results. Figure 5 shows the profiles of average travel delay for the Nash equilibrium
and for the social optimum. To construct it, for each departure time, I take the average over all
commuters of the travel delay they would experience if they left at that time.

Optimal congestion charges lead to small but notable travel time reductions (Table 4, panel A).
Peak travel delay falls by around 0.4 minutes per kilometer and average travel time falls by 2.5
minutes per commuter. More commuters are induced to leave before and after the peak (Figure
SM8, panel B). For each simulation agent and their ideal arrival time draw, I compute the change
in average departure time under the social optimum relative to the Nash equilibrium. The 10th and
90th percentiles are leaving 2.2 minutes earlier, and 9.6 minutes later. Intuitively, more commuters
are induced to leave later because a trip has to either end before the peak hour or begin after in
order to not contribute to peak hour congestion. These numbers are in the range of experimental
responses to the departure time policy. Hence, these counterfactual results do not rely significantly
on functional form extrapolations.

The Pigouvian charges that implement the social optimum follow the shape of the peak-hour,
and are approximately proportional to trip length (Figure SM8, panel A). The maximum per-Km
rate is around 25 INR/Km.

The social optimum has smaller commuter welfare gains, because larger schedule costs offset
around two thirds of the travel time gains. Welfare is 9.4 INR higher per commuter under the
optimum (0.46 USD PPP), compared to total trip cost of 397 INR in the Nash equilibrium. The
welfare gain from optimal pricing—i.e., the deadweight loss of congestion—amounts to 2.3% of
the welfare in the Nash equilibrium. The 95% confidence interval of (0.7%, 4.5%) is calculated by
bootstrapping estimated preferences and independently drawing from the variance covariance matrix
of the estimated road technology relationship.

Welfare gains are 5.9% relative to trip cost above free-flow conditions. As a benchmark, in a
model with homogeneous commuters and bottleneck road technology (Arnott et al., 1993), optimal
pricing reduces trip costs above free-flow conditions by 50%, more than eight times what I find.

How are these gains distributed? Commuters who typically travel during the peak-hour gain the
most in terms of travel time and schedule cost changes. For each commuter, let their “typical” de-
parture time be the expected departure time in the Nash equilibrium. The change in expected travel
time utility −αET (h) in the social optimum relative to the Nash equilibrium is generally positive
and follows the shape of the peak-hour (Figure SM9, panel A). The change in expected schedule util-
ity E

(
−βE |h+ T − hA

i |− − βL|h+ T − hA
i |+

)
is generally negative, and has local minima midway

before the peak, and right after the peak.
However, peak-hour commuters also pay the highest congestion changes, over 25 INR/Km (0.34

USD/Km). On net, they are worse off under the social optimum, both with a flat rebate, and with
a rebate proportional to trip length (Figure SM9, panel B).

These results suggest that real-world, more forceful policies that attempt to cap peak-hour con-
gestion may lower commuter welfare. Indeed, real-world policies are likely to include implementation
costs, may not fully recycle the revenue, and are unlikely to charge the optimal time-varying fees.

The simulation model makes several strong assumptions. I do not take into account longer term
preferences and adjustments, which may be different from the short-term responses measured in the
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experiment. As in the road technology estimation, I do not distinguish between the externalities
generated by motorcycles and cars. Finally, this analysis ignores other traffic, including trips that
are not between home and work, and bus passengers who would also benefit from reductions in
travel times.24 The simulations also ignore bus and truck traffic, which may respond differently to
similar congestion charges and may affect traffic differently. These calculations also do not account
for other important social costs of congestion, such as pollution.

When commuter travel preferences are heterogeneous and proportional to the self-reported wage
(as estimated in Table SM9, column 5), the deadweight loss of congestion increases to 4.5% (Table
4, panel B). The distributional consequences depend on the rebate scheme, because low-wage com-
muters make trips that are 25% shorter on average. The low-wage group has similar net change in
expected utility with a rebate proportional to trip length, and on average they gain more than the
high-wage group with a flat rebate.

Which model components drive the low welfare gains from optimal pricing? I first consider
preferences. Deadweight loss is increasing in VOTT (panel C), yet these differences are small, and
it is below 1% if we assume that VOTT equals the average wage. Deadweight loss (as a fraction
of welfare in the Nash equilibrium) is decreasing in schedule costs, whereas it is always one half in
Arnott et al. (1993).25

Welfare gains from optimal pricing are very sensitive to the road technology, especially its slope
at the peak. Recall that I assume that simulation trips account for 20% of all trips in a typical day
in Bangalore, in order to match the peak travel delay of 4 min/Km. The elasticity of deadweight
loss with respect to equilibrium peak excess travel delay is 2.3 (Figure SM8, panel D). This means
that if the total volume of trips were larger such that the Nash equilibrium peak travel delay were
4.5 min/km instead of 4 min/km, deadweight loss would be 4.2% instead of 2.4%. If peak travel
delay were 3.5 min/km, deadweight loss would be 1.2%.

In panel D, I replace the linear technology with a power with exponent of 0.5 or 1.5. I use the
estimated λ0 and λ1 from the benchmark linear equation 8 and only vary the exponent ν. This leads
to slopes of 0.35 and 2.2 at relative density of 2.13, the highest level in the data (Figure SM8, panel
C). Deadweight losses become 0.1% and 11.6%. This and the previous finding highlight the key role
played by the density-based road technology in determining deadweight losses.

Model Extension. So far, traffic conditions were assumed homogeneous within the city. I next
consider an equilibrium model with two routes of equal length and with different road technologies.
Route r = 0 has the benchmark technology. Based on Figure SM5, panel E, I assume that route

24As a back of the envelope calculation, census data shows that in 2011 roughly the same fraction of workers used
buses as private vehicles in Bangalore. Assuming a value of time twice as small for bus users, and assuming a similar
distribution of departure times and distances, the 2.5 minute improvement in average travel time for bus users is
worth approximately 13.9 INR on average per driver, i.e. 31% more than welfare gains among drivers.

25In my model, higher inflexibility makes it more difficult to induce drivers to change their departure times. This
leads to departure times that are dictated more by ideal arrival times rather than travel time savings of leaving
earlier or later. Overall, this limits the gains from optimal pricing (see Supplementary Material SM.1.5). Equilibrium
feedback forces are stronger in (Arnott et al., 1993) because commuters are homogeneous. The slope of the travel time
profile is βE/α and βL/α before and after the peak, and the deadweight loss of congestion (in levels) is increasing in
schedule costs.
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r = 1 has a 15% or 30% steeper slope and hence higher externality. Commuters now choose route
and departure time, as in section 4.2. Given my focus on steady state equilibrium, and computa-
tional considerations, I use the static route choice model with zero route switching cost. Note that
externalities (and hence optimal charges) depend on route, departure time and trip length. This
setup is related to the Pigou-Knight model (Walters 1961). Figure SM10 shows results. Throughout
the peak-hour of the Nash equilibrium, the high-externality route 1 has slightly higher delay and
is used slightly less.26 Under the social optimum, route 1 delay falls below the delay of route 0.
Overall, the welfare gain from optimal pricing is 35% or 70% higher than in the benchmark case,
when the high-externality route has a 15% or 30% steeper slope, respectively.

So far, trip decisions were inelastic. Because I showed that the total volume of traffic affects
deadweight loss, I next consider a model with an extensive margin decision (and a single route).
Commuters choose whether to make a trip, and their departure time, based on a nested logit model
with scale parameter η. The cost of not making the trip is ω > 0 (Supplementary Material SM.7).

In Table 5, I simulate this model for six chosen combinations of (ω, η).27 To assess which
parameters are reasonable, each time I compute the percent reduction in traffic (number of trips)
due to a flat 100 INR (4.8 USD PPP) fee imposed at the Nash equilibrium, and the implied elasticity
with respect to total travel costs. (As a point of reference, in these simulations, average congestion
charges at the social optimum vary between 95 INR and 190 INR.)

Commuter welfare gains are increasing in the extensive margin elasticity. For small elasticities
of around 0.10, welfare gains are around 2.3%. Achieving welfare gains over 4% requires elasticities
above 1, or a 27% reduction in traffic volume from the flat 100 INR fee.

The linear road technology also limits potential gains from reducing the total volume of road
traffic, for plausible values of the extensive margin elasticity.

10 Discussion

This paper shows that in cities with road networks similar to Bangalore, optimal time-varying peak-
hour congestion pricing and similar quantity-based restrictions are unlikely to significantly improve
commuter welfare as defined here.

A classic view in urban transportation holds that in the absence of road congestion pricing,
increases in the stock of roads have small returns due to highly elastic demand (Duranton and
Turner, 2009). This paper suggests that in places like Bangalore, the return to such investments
may be higher than previously understood.

26In the classic Pigou-Knight model travel times on the two routes are equalized in equilibrium. Here, this is not
the case because of nested logit preferences. Simulating the model with σR four times smaller yields similar results.
The two route have similar usage primarily because of sufficiently similar externalities, not because of idiosyncratic
route preferences.

27The congestion pricing experiment was not designed to estimate the extensive margin trip elasticity, because of
the concern that commuters would game incentives by not taking their smartphones with them when traveling, and
because this margin plausibly requires more time (see Martin and Thornton (2017) for extensive margin results over
several months).
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Peak-hour pricing may help correct other externalities, for example relieving prolonged exposure
to air pollution from vehicle exhaust. A detailed measurement of those localized externalities, and
data on awareness of and willingness to pay to avoid these harms is necessary to study these issues.

Peak-hour pricing may also be highly beneficial in other settings, such as where differentiated
pricing is feasible, e.g. tolling only certain lanes (Hall, 2018, 2021), or where the externality is highly
non-linear, such as on highways, where the road technology is well approximated by the standard
bottleneck model (Anderson and Davis, 2020).

An interesting possibility is that certain urban road transport investments and congestion pricing
are complements. For example, new highways, flyovers and synchronized traffic lights are popular
policies in large cities in developing countries. These policies are designed to speed up travel in the
absence of congestion, but they could also lead to more non-linear externalities and hence higher
welfare gains from pricing.
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Figures

Figure 1: Average Travel Delay in the Study Region in Bangalore
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Notes: This graphs plots average travel delay as a function of departure time, on 30 major routes (in both
directions) across the study area of South Bangalore, by day of the week. Travel delay is the number
of minutes to cover one kilometer, i.e. the inverse of speed. (A travel delay of 2 minutes per kilometer
corresponds to 18.6 miles per hour.) The travel time and route length data is obtained from the Google
Maps API. For each route, I queried the “real-time” travel time (with traffic) as predicted by Google, every
20 minutes between February 21st and September 14th, 2017. The sample excludes major holidays.
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Figure 2: Impact of Departure Time Charges on the Distribution of Departure Times
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Notes: These graphs plot the impact of departure time charges on the number of trips and distribution
of departure times. The sample is all non-holiday weekdays with good quality GPS data, excluding days
outside Bangalore. In the post period, the sample is restricted to the departure time treatment period,
either the first or the last three weeks. To construct each figure, I consider four groups, each combination
of before or during the experiment and the control or treatment group, pooling together the information
and control sub-treatments, and the high- and low-rate groups. Within each group, I compute the kernel
density of trip departure times (relative to the midpoint of the congestion charge for each commuter) and
multiply it by the average number of trips per day in that group. I then plot the difference-in-differences of
these four curves, as well as point-wise 95% confidence intervals based on 1,000 commuter-level bootstraps.
The Y axis measures the change in the number of trips per day in a one hour departure time window. This
exercise does not take into account randomization strata. Figure SM1 repeats the exercise restricting to
commuting trips of regular commuters. 33



Figure 3: Impact of Route Charges on Average Detour Route Usage
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Notes: This graph shows average detour route usage among commuting trips for frequent commuters in the
route treatment sample (N=222). The sample is all trips between a commuter’s home and work locations
in either direction, and the key outcome is a dummy for whether the trip does not intersect the congestion
area for that commuter. I average this outcome within for each commuter and time period. I then run
a regression with time period and commuter fixed effects. The graph shows the coefficients for each week
during the experiment, relative to before the experiment, separately for the “early” (charges in week 1) and
“late” (charges in week 4) groups. The 95% confidence intervals are based on standard errors clustered at
the commuter level.
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Figure 4: Road Technology Supply Estimation: Travel Delay Linear in Traffic Density
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Notes: This graph shows that instantaneous travel delay is approximately linear in traffic density at the level
of departure times. The traffic density measure uses GPS data for 117,527 trips from 1,747 app users on 185
weekdays. To compute traffic density, I count the total number of ongoing trips at any given minute of the
day (on any day in the sample), on weekdays. I normalize by the number of trips and by 0.5 · 24 because
the average trip duration is close to 30 minutes. Travel delay is derived from Google Maps data collected
over 30 routes in South Bangalore (in both directions), every 20 minutes daily for 185 weekdays. I compute
the average delay over all weekdays and routes for each departure time. I plot the linear fit together with
confidence intervals based on Newey-West inference with 3 hours lag, for the entire sample (gray, solid line)
as well as for daytime hours only (blue, dashed line). Table 3 reports corresponding regressions. Figures
SM6 and SM7 repeat this exercise separately for specific calendar dates, and for specific road arteries. Figure
A5 repeats this exercise at the level of calendar dates instead of departure times.
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Figure 5: Policy Simulation: Unpriced Nash Equilibrium and Social Optimum

Notes: This graph shows the profile of average travel delay under the simulated Nash equilibrium (black,
dashed line) and under the social optimum (red, solid line). The social optimum is a Nash equilibrium
implemented with Pigouvian (equilibrium-consistent) charges given by marginal social cost, which depends
on trip length and departure time (Figure SM8, panel A). To construct this figure, for each trip length K,
I compute the trip travel time for each departure time, and divide it by K to obtain travel delay. I then
integrate over the trip length K distribution.
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Tables

Table 1: Impact of Departure Time Charges on Daily Outcomes

(1) (2) (3) (4) (5) (6)
Outcome Total Hypothetical Rates Today Number of Trips Today
Time of Day AM & PM AM PM AM & PM AM PM
Commuter FE X X X X X X

Panel A. All Departure Time Sub-Treatments
High Rate × Post -12.29** -6.92* -5.36 -0.07 -0.02 -0.04

(6.04) (3.77) (3.41) (0.14) (0.07) (0.07)
Low Rate × Post -8.30 -3.30 -5.00 -0.08 -0.01 -0.08

(6.14) (3.58) (3.80) (0.14) (0.07) (0.07)
Information × Post 0.45 0.29 0.16 0.10 0.06 0.04

(5.41) (3.27) (3.33) (0.13) (0.06) (0.07)
Post 0.39 -1.36 1.76 0.02 -0.02 0.05

(4.87) (2.85) (3.06) (0.11) (0.05) (0.06)
Observations 15,585 15,585 15,585 15,585 15,585 15,585
Control Mean 96.33 48.08 48.25 3.04 1.15 1.29

Panel B. Any Departure Time Charge vs. Control or Information
Charges × Post -10.55** -5.28** -5.27** -0.12 -0.04 -0.08*

(4.18) (2.51) (2.57) (0.10) (0.04) (0.04)
Post 0.65 -1.19 1.84 0.07 -0.01 0.04

(3.94) (2.38) (2.54) (0.09) (0.04) (0.04)
Observations 15,585 15,585 15,585 15,585 15,585 15,585
Control Mean 95.74 46.89 48.85 2.95 1.04 1.12

Notes: This table reports difference-in-differences impacts of the departure time sub-treatments on daily
total hypothetical rates and the total number of trips. In the first three columns, the outcome is the sum
over trips that day of the trip hypothetical rate. The hypothetical rate for a given trip is between 0 and 100
and is computed based on the trip departure time, the respondent’s rate profile, and a peak rate of 100 for
all respondents. (See Figure A2 for an example of rate profile.) In the last three columns, the outcome is the
number of trips that day. The sample is all non-holiday weekdays with good quality GPS data, excluding
days outside Bangalore. Only good quality trips are included (section A.3). In the post period, the sample
is restricted to the departure time treatment period, either the first or the last three weeks. Columns (2),
(4) and (3), (6) restrict to trips in the morning interval (7am–1pm) and the evening interval (4–10pm),
respectively. “Charges” is a dummy for either low rate or high rate. All specifications include respondent
and study cycle fixed effects, and P ost is an indicator for the experiment period. The mean of the outcome
variable in the control group during the experiment is reported for each specification. Standard errors in
parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 2: Travel Demand Parameter Estimates

(1) (2) (3) (4)

Model: Benchmark Only Departure Time
Calibrated VOTT

Only
Route Choice

βE : Schedule cost early (INR/hour) 552 488 530
[301, 1539] [214, 956] [250, 1628]

βL: Schedule cost late (INR/hour) 344 331 329
[245, 1262] [223, 2229] [191, 932]

α: Value of travel time (INR/hour) 609 82 165 562
[365, 1210] [357, 1213]

γ: Route switching cost (INR) 80.3 86.4
[43.2, 112.2] [42.2, 106.0]

σDT : Logit departure time 19.5 17.0 15.5
[1.3, 68.0] [1.0, 73.9] [1.2, 89.9]

σR: Logit route (upper nest) 57.9 57.6
[41.8, 76.4] [44.4, 73.5]

Model Components:
Route choice model Dynamic - - Dynamic
Calibrated VOTT α - 50% wage 100% wage -
Departure time model Yes Yes Yes -

Moments:
Departure time (49) Yes Yes Yes -
Dynamic route choice (10) Yes - - Yes

Notes: This table reports two-step GMM estimates of discrete choice travel demand models. The estimating
equation, moments, data and procedure are described in section 7. Column 1 corresponds to the full model
with departure time and dynamic route choice. Columns 2 and 3 use a departure time model with a single
route (the short route, r = 0) and calibrate VOTT to 50% and 100% of the average wage in the sample. The
parameters (βE , βL, σDT ) are estimated using the set of 49 departure time moments. Column 4 corresponds
to a model of dynamic route choice without departure time choice, estimated using the set of 10 dynamic
route choice moments. For each model, I use 120 random initial conditions to find the minimum of the
objective function. 95% confidence intervals from 120 bootstrap iterations are reported in parentheses.
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Table 3: Road Technology Supply Estimation: Travel Delay Linear in Traffic Density

(1) (2) (3) (4) (5)
Dependent Variable: Travel Delay Google Maps (min/km)
Sample: Date × Dep Time (th) Dep Hour (h) Date (t)

6am-10pm
Specification: 2SLS 2SLS OLS NLS OLS

Traffic Density 0.95*** 0.88*** 1.01*** 1.16*** 0.47***
(0.02) (0.02) (0.04) (0.10) (0.04)

Traffic Density Exponent ν 0.82***
(0.11)

Constant 2.29*** 2.47*** 2.09*** 2.00*** 2.60***
(0.03) (0.03) (0.04) (0.05) (0.04)

Observations 3,474 2,461 24 24 185
Effective F-Stat 605.0 330.6
Critical value 5% 33.0 30.1
Traffic Density Std. Dev. 0.86 0.86 0.76 0.76 0.24
Adj.R2 0.97 0.98 0.54

Notes: This table estimates the supply relationship between travel delay and traffic density in Bangalore.
Columns 1 and 2 report 2SLS results where normalized density is instrumented with hour-of-day dummies,
restricting to daytime 6am-10pm in column 2. I compute traffic density separately for each date, normalizing
by the number of app users active in the same week. I report HAC standard errors with Newey-West kernel
with a lag of 144 hours, and the effective F-stat and critical value with threshold 5% (for worst-case relative
bias) and significance level 5%, from (Olea and Pflueger, 2013). Columns 3 and 4 report results at the hour-
of-day level (see notes for Figure 4). In column 4 I run the nonlinear regression Xh = λ0 + λ1(D̃S

h )ν + εh.
Columns 3 and 4 report HAC standard errors with Newey-West kernel and three-hour lag. In column 5,
I compute total traffic density on each date, and the regression reports HAC standard errors with Newey-
West kernel and a 14-day lag. Table A10 repeats the analysis using travel delay computed from GPS data.
∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 4: Policy Simulations: Commuter Welfare Gains from Optimal Peak-Hour Pricing

(1) (2) (3) (4)

Nash Social
Optimum Improvement Improvement

(% of Nash)

Panel A. Benchmark Model: Travel Time and Commuter Welfare
Travel Time (minutes) 37.4 34.9 2.5 6.7%

(33.1,41.2) (30.7,38.1) (0.7,4.4) (2.3,11.3)
Travel Time above Free Flow 14.3 11.7 2.5 17.6%

(11.2,17.5) (8.8,14.2) (0.7,4.4) (6.2,29.6)
Welfare (INR) -397 -388 9.4 2.3%

(-803,-207) (-785,-205) (2.3,32.4) (0.7,4.5)
Welfare above Free Flow (INR) -160 -150 9.4 5.9%

(-313,-81) (-284,-79) (2.3,32.4) (2.1,10.3)

Panel B. Preference Heterogeneity (Commuter Welfare, INR)
Preferences ∝ wage -535 -517 18.3 3.4%

(-1407,-132) (-1321,-129) (3.6,86.4) (1.0,7.1)

Panel C. Varying Preferences (Commuter Welfare, INR)
VOTT≈ 100% wage (4× smaller α) -111 -110 1.1 1.0%
VOTT≈ 1, 600% wage (4× larger α) -1431 -1380 50.9 3.5%
High schedule cost (4× larger βE) -424 -414 9.9 2.3%
Low schedule cost (4× smaller βE) -351 -337 13.0 3.7%

Panel D. Varying Road Technology (Commuter Welfare, INR)
Concave Road Technology (ν = 0.5) -369 -369 0.3 0.1%
Convex Road Technology (ν = 1.5) -445 -394 51.0 11.4%

Panel E.Equilibrium with Two Routes (Commuter Welfare, INR)
One route 15% steeper -357 -346 11.3 3.1%
One route 30% steeper -359 -345 14.2 3.9%

Notes: This table compares the unpriced Nash equilibrium and the social optimum under different assump-
tions. Columns 3 and 4 report the improvement from the unpriced Nash to the social optimum, in levels
and as a percentage of the baseline (Nash) value. Panel A describes the benchmark model with preferences
as estimated from the experiment and the calibrated road technology. Travel times are calculated taking
individual route length into account, and welfare is average expected utility, assuming charges are transferred
lump-sum back to commuters, and no implementation costs. In rows 2 and 4 travel time and welfare are
computed relative to “free-flow” benchmark, where travel delay is 2.09 min/km and does not increase with
traffic density. Agent preferences in Panel B correspond to those estimated in column 5 in Table SM9. In
Panel C, I vary the VOTT or early schedule cost parameters. In Panel D, I vary the exponent on traffic
density in the road technology relationship (Figure SM8, panel C). In panel E, I simulate a model with
two routes that have different road technologies. Route r = 0 has the benchmark road technology, while
r = 1 has 15% or 30% steeper slope and 7.5% or 15% lower intercept. In panels A and B, 95% confidence
intervals are bootstrapped based on bootstrapped parameter vector estimates, and random draws from the
road technology variance covariance matrix (Table 3, column 1).
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Table 5: Policy Simulations: Equilibrium with Extensive Margin Decision

Trip value
ω

Logit trip
parameter

η

% Traffic Reduction
from flat 100 INR fee

Implied elasticity
at flat 100 INR fee

Nash
Welfare (INR)

Improvement
at Social Optimum

(% of Nash)

600 INR 20 -0.31 1.26 -394.2 4.4%
800 INR 20 -0.08 0.24 -394.3 2.2%
1000 INR 20 -0.01 0.02 -394.4 2.2%
600 INR 100 -0.25 1.0 -359.7 4.3%
800 INR 100 -0.12 0.4 -387.7 3.4%
1000 INR 100 -0.04 0.1 -393.4 2.5%

Notes: This table reports commuter welfare gains from optimal congestion pricing and extensive margin
elasticities for the model with an extensive margin trip decision (Supplementary Material SM.7). The implied
elasticity is computed with respect to total travel costs (equal to negative commuter expected welfare) at
the Nash equilibrium. The average trip probability is ≥ 97% at the Nash equilibrium for all parameter
combinations except for ω = 600 INR and η = 100, when it is 89%. In these simulations, average congestion
charges at the social optimum vary between 95 INR and 190 INR.
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SM.1 Departure Time Model Identification

In this section, I formally prove how identification of schedule costs and schedule heterogeneity
in a departure time model depends on observing commuter reactions to congestion pricing. For
analytical tractability, I proceed in a simplified model that maintains the key features of the full
model: schedule preferences and a peak-hour (inverse U shaped) travel time profile. These results
continue to hold when the travel time profile is endogenously determined in equilibrium. I use
simulations to check a conjecture that the deadweight loss of peak-hour congetion in this model is
decreasing in the schedule costs.

For intuition for the identification results, consider a commuter that we observe to leave at very
different times on different days (as I document in Table SM1). There are two ways this could arise.
In the first scenario, the commuter has a unique ideal arrival time and high schedule flexibility. In
this case, small idiosyncratic shocks have a large effect on departure times. In the second scenario,
each day, the commuter draws an ideal arrival time from a dispersed distribution, but does not have
much flexibility around that time.

These two cases are observationally equivalent for departure times, but they have different im-
plications for how substitutable two departure times are to each other, on any given day. The key
intuition for how congestion pricing leads to identification is that we can measure cross-price elastic-
ities: how the probability of choosing departure time h depends on infinitesimal pricing of departure
time h′.
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SM.1.1 Simplified Departure Time Model

I assume that commuters have preferences directly over (continuous) departure times h ∈ R. Unlike
the main model where commuters have ideal arrival times, this assumption eliminates expectations
over travel time uncertainty and greatly simplify the algebra.

Travel time is a (possibly degenerate) quadratic function of departure time. This captures the
key shape of how travel time varies across the peak hour.28 In most of the results below, schedule
costs are quadratic and the ideal departure time is normally distributed. These assumptions rule
out asymmetric (early/late) schedule costs yet deliver analytical tractability.

Given the focus on identification, I drop individual i and time t subscripts and assume that
infinite data for a single individual is available. The utility for departure time h is

−αT (h) − v(h− hD)︸ ︷︷ ︸
u(h|hD)

+ϵD(h).

Here v(·) is the schedule penalty as a function of the deviation between departure time and the
ideal departure time hD. ϵD(h) are idiosyncratic shocks with scale β−1 that give rise to continuous
logit choice probabilities. The ideal departure time hD is distributed according to a cumulative
distribution function F .

I assume that the value of travel time α is known and normalize it to α = 1. Note, if travel time
is not constant, this rules out a trivial source of non-identification due to scale.

The conditional probability density of choosing departure time h is given by the continuous logit
density, and the unconditional density is given by integrating over F ,

π(h|hD) = exp(βu(h|hD))∫
h′ exp(βu(h′|hD))dh′ , and π(h) =

∫
π(h|hD)dF (hD).

SM.1.2 Two Non-Identification Results with Observational Data

Before outlining the main results, I prove a general non-identification result in a simple setting where
travel time is a constant (later, I will assume quadratic) and the ideal departure time distribution
is unrestricted.

In this case, we can write the observed departure time as the sum of two independent random
variables, corresponding to the ideal departure time, and the optimal departure time conditional on
the ideal departure time. This exact decomposition helps clarify the source of non-identification.

Proposition 1. Assume that travel time T is a constant (does not depend on departure time h).
Normalize β = 1. Consider any family V of schedule delay functions v ∈ V , with at least two
elements v1, v2 ∈ V that differ on a non-zero measure set. Then, the schedule delay cost function
v(·) is not identified given data on π(h).

Proof. If T does not depend on h, then u(h|hD) is only a function of the difference h−hD. Hence, the

28The quadratic shape implies unrealistic negative travel time for very early or very late departure time. I later
assume that schedule costs rise faster so that, on net, these departure times are unattractive.

43



optimal departure time random variable h∗ can be written as the sum of two independent random
variables, h∗ = hD + h∗ − hD︸ ︷︷ ︸

hE

, where the pdf of hE is

G(hE) = exp(−v(hE))∫
h

exp(−v(h))dh.

(Note: if v is quadratic then hE is normally distributed.)
Consider two different schedule delay functions v1(·) and v2(·) and let hE

1 and hE
2 denote two

independent random variables that have the corresponding pdfs G1 and G2.
Setting the ideal departure time distributions hD

1 ∼ G2 and hD
2 ∼ G1 (note that indices are

switched) implies that the observed optimal departure time random variables hD
1 +hE

1 and hD
2 +hE

2

have the same distribution. Hence, the schedule cost function v(·) is not identified.

The identification failure does not depend on constant travel time. I next prove the main non-
identification result, in a model that is more strongly parametrized and where travel time is hump-
shaped, which captures the peak-hour travel time profile. I make three functional form assumptions.

Assumption 1. T (h) is quadratic, T (h) = Tmax − ah2 with a > 0. Without loss of generality
and for convenience I will set Tmax = 0.

Assumption 2. Schedule costs are quadratic, v(h− hD) = s(h− hD)2 with s > a.
(s > a means that schedule cost dominate, and it implies that the commuter chooses departure

times with negative travel time–very early or very late departure time–with very low probability.)
Assumption 3. The ideal departure time is normally distributed, hD ∼ N(µ, σ).

Proposition 2. Fix the shape of the travel time profile a and maintain the VOTT normalization
α = 1. Under assumptions 1–3, the demand model parameters (β, s, µ, σ) are not identified with
data on observed departure times.

This is not a trivial non-identification result due to scale, because VOTT α is normalized to 1,
and travel time is not constant.

The proof will show that it is possible to explain the same observed distribution of departure
times by increasing schedule costs and increasing the position and the spread of the ideal departure
time distribution.

Proof of Propostion 2. I show that π(h) is a normal distribution. Its mean and variance depend on
four variables (β, s, µ, σ). Hence, the model is under-identified with two degrees of freedom.

The utility functions is (recall that the value of time spent driving α is normalized to 1)

u(h|hD) = ah2 − s(h− hD)2 + ϵD(h).
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Choice probabilities are given by

π(h) =
∫
π(h|hD)dF (hD)

=
∫

e−β(−ah2+s(h−hD)2)∫∞
−∞ e−β(−a(h′)2+s(h′−hD)2) dh′ · 1√

2πσ
e

− 1
2

(
hD−µ

σ

)2

dhD

= 1
√

2π
√

s2σ2

(s−a)2 + 1
2β(s−a)

exp

−1
2

(
h− sµ

s−a

)2

s2σ2

(s−a)2 + 1
2β(s−a)

 .

This is a normal distribution with mean sµ
s−a and variance s2σ2

(s−a)2 + 1
2β(s−a) .

SM.1.3 Identification with Congestion Pricing Variation

I now study identification when we also observe choice probability distributions π(·|p(·)) in response
to any possible pricing function p(h).

Observing responses to pricing helps identify the cross-price elasticities for different departure
times. This helps resolve the ambiguity discussed in the previous section, because different combina-
tions of departure time distributions and conditional choice probabilities have different implications
for cross-price elasticities.

The key object of interest is the impact of an “impulse” price function on choice probabilities.
Slightly abusing notation (skipping a formal limit argument), we study “Kronecker delta” impulse
pricing functions at h given by p(x;h, λ) = λ1(x = h) and study the effect of increasing λ around
λ = 0 for given h ̸= h′:

dπ(h′|p(·;h, λ))
dλ

∣∣∣∣
λ=0

= d

dλ

∫ exp(βu(h′|hD))∫
h′′ exp(βu(h′′|hD) − βp(h′′;h, λ))dF (hD).

For h ̸= h′ and evaluating at λ = 0 this simplifies to

β

∫
π(h′|hD)π(h|hD)dF (hD),

where π(·|hD) denotes the conditional probabilities in the absence of pricing (λ = 0).
This expression shows that, for fixed h−h′, when conditional probabilities are concentrated (e.g.

when β is high and/or the schedule cost function is steep around the ideal departure time), the
cross-elasticities are close to zero. Intuitively, this suggests that knowing cross-elasticities for all h
and h′ solves the identification problem.

I now formally prove identification in the particular case considered in Result 2.

Proposition 3. Fix the shape of the travel time profile a. Under assumptions 1–3, the model
parameters (β, s, µ, σ) are identified with data on observed departure times and cross-elasticities for
h ̸= h′.

Proof. Substituting the utility function and normal distribution for hD in the expression for cross-
elasticity, and computing integrals using Mathematica, yields
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β

∫
π(h′|hD)π(h|hD)dF (hD) = β2(s− a) 1

2
(
s− a+ 4βs2σ2)− 1

2

exp
(

(s− a)
(
2βsσ2(h′ + h) + µ

)2

2σ2 (s− a+ 4βs2σ2) − (s− a)β
(
(h′)2 + h2)− µ2

2σ2

)
.

Taking log and grouping terms in a polynomial of h and h′ gives

log
(
β

∫
π(h′|hD)π(h|hD)dF (hD)

)
= − 2β(s− a)((h′)2 + h2)+

4β2s2σ2(s− a)
s− a+ 4βs2σ2 (h′ + h)2+

4βµs(s− a)
s− a+ 4βs2σ2 (h′ + h)−

Ln
(
s− a+ 4βs2σ2)+3Ln(s− a) + µ2(s− a)

σ2 (s− a+ 4βs2σ2) − µ2

σ2 + 4Ln(β).

We have four coefficients and four unknowns (β, s, µ and σ). It is algebraically tedious but
conceptually straightforward to check that this system of equations has a unique solution.

SM.1.4 Equilibrium with Endogenous Congestion

I now show that the quadratic travel time profile assumed so far is consistent with equilibrium.
Assume that the travel time T (h) is given by

T (h) = λ log(V (h)), (9)

where V (h) a measure of volume of travel around h. To construct V , assume that any trip at h
affects the travel times of all other departure times (trips leaving both before and after h), with a
weight given by a normal distribution pdf with standard deviation σV . That is, V is given by

V (h) =
∫ ∞

−∞
π(h′)ϕ(h′;h, σV )dh′,

where ϕ(a;µ, σ) is the normal pdf with mean µ and standard deviation σ, evaluated at a.
Given that π is a normal pdf, so will V , and hence travel time given by (9) will be quadratic.

Proposition 4. This model has a unique equilibrium, where travel time is quadratic and choice
probabilities follow a normal pdf. The model parameters satisfy:

s2σ2

(s− a)2 + 1
2β(s− a) + σ2

E = λ

2a.
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SM.1.5 The Deadweight Loss of Congestion is Decreasing in Schedule Costs

Consider an equilibrium as described above. Based on Proposition 2, the observed choice probabili-
ties and travel time profile are consistent with various combinations of schedule cost s and dispersion
of ideal departure times σ.

Conjecture 1. Holding fixed the equilibrium choice probabilities π(h) and the profile of travel time
T (h), the deadweight loss of congestion (in absolute terms) is decreasing in schedule costs s.

The deadweight loss does not appear to have a closed form solution. I use numerical simulations
for 1,000 randomly chosen parameter vectors, independently drawn according to σ ∈ [0.1, 1.1],
s ∈ [1, 2], β ∈ [0.1, 1.1], σV ∈ [0.5, 1.5], and λ ∈ [1, 2]. In all cases, the conjecture is satisfied.

Figure 6: Example deadweight loss versus schedule cost (holding observed equilibrium fixed)

SM.2 Route Choice Model Identification

To provide intuition for how VOTT and the route switching cost are separately identified using data
from the route choice experiment, I analyze a version of the dynamic route choice model without
departure time from section 4.2. I further assume no time discounting (δ = 0).

Consider three time periods. At t = 0 the model is in steady state. At t = 1 the short route
(r = 0) is unexpectedly charged p. At t = 2 the route is no longer charged. Denote πt(rt−1 → r)
the probability to use route r at time t if the t − 1 route was rt−1 when there is no pricing, and
πt(rt−1 → r|p) with pricing p. Because there is no discounting, we have the following expressions
for relative transition probabilities:

π0(0 → 0)
1 − π0(0 → 0) = exp(0)

exp( −γ−α∆T
µ )

π0(1 → 0)
1 − π0(1 → 0) =

exp( −γ
µ )

exp( −α∆T
µ )

π1(0 → 0|p)
1 − π1(0 → 0|p) =

exp( −p
µ )

exp( −γ−α∆T
µ )

π1(1 → 0|p)
1 − π1(1 → 0|p) =

exp( −p−γ
µ )

exp( −α∆T
µ )

.

It is easy to solve for the parameters α, γ, µ if these transition probabilities are known. Next, I show
that these parameters are also unique determined by the detour route usage rates St in periods
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t = 0, 1, 2. These numbers satisfy the following equations (note that t = 0 and t = 2 have the same
transition probabilities)

S0π0(0 → 1) = (1 − S0)π0(1 → 0)

S1 = S0π1(0 → 0|p) + (1 − S0)π1(1 → 0|p)

S2 = S1π0(0 → 0) + (1 − S1)π0(1 → 0).

It is tedious but straightforward to show that these three equations uniquely determine α, γ, µ.

SM.3 Route Charge Treatment Regression Analysis

For the regression analysis of the route experiment, I focus on the early treatment group and the
period before the experiment and the first two weeks during the experiment. I use the following
specification:

yit = γA · TEarly
i W 1

t + γA,P · TEarly
i W 2

t + µt + αi + εit. (10)

The coefficients of interest are γA and γA,P , which measure the impact of route congestion
charges in the early charges group, and the persistence effect one week later, relative to similar
commuters who anticipate that they will be treated in the fourth week of the experiment.

Panel A of Table SM7 shows the impact of route charges on detour usage at the trip level. The
sample is all trips between home and work. The results show a large increase of 27 percentage points
during the first week in the experiment among the early treatment group, who faced charges that
week. By comparison, only 11% of participants in the late group chose the detour that week. The
second column shows that more than a third of this effect size persists one week later. Charges do
not have a significant effect on the number of trips per day (columns 3 and 4). This means that
there is no evidence that commuters reduce the number of trips to avoid route congestion charges,
and the previous effects are driven by route switching.

I next analyze how baseline experience with detour routes affects the impact of charges. In Panel
B, I restrict to commuters who use a detour route between home and work (or between work and
home) at least once before the experiment. In general, the results from Panel A are amplified in
this sample. Baseline usage is higher, as are the impact of charges (41 percentage points) and the
persistence effect.

SM.4 Travel Demand Estimation

SM.4.1 Choice Probabilities

In the benchmark model with dynamic route choice and departure time choice, the departure time
choice probabilities conditional on the chosen route (with pit(h, r) = 0) is given by

πi(h|r, hA
it) = exp((σDT )−1Ev(h, Ti(h, r), hA

it))∑
h′ exp((σDT )−1Ev(h′, Ti(h′, r), hA

it))
. (11)
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These expressions show that the full model collapses to the single-route departure time choice model
given by (3) when we condition on route and ideal arrival time. Similar expressions apply when we
include pricing pit(h, r).

In the full model, the expected utility of choosing route r is

Euit(r|hA
it, rit−1) = σDT log

(∑
h

exp
(
(σDT )−1Ev(h, Ti(h, r), hA

it)
))

− γ1(r ̸= rit−1) + δVit+1(r).

This includes the “logsum” or ‘inclusive value” term over departure times. In the upper nest, this
leads to route choice probabilities (conditional on hA

it)

πit(r|hA
it, rit−1) = exp((σR)−1Euit(r|hA

it, rit−1))
exp((σR)−1Euit(0|hA

it, rit−1)) + exp((σR)−1Euit(1|hA
it, rit−1))

.

Unconditional probabilities follow by integrating over the ideal arrival time distribution fA
i .

SM.4.2 GMM Moments That Exploit Experimental Variation

The two-step optimal GMM estimation finds the parameter vector θ = (α, βE , βL, γ, σ
DT , σR, ηearly)

that solves minθ ĝ(θ)′Ŵ ĝ(θ) where the moment function g(θ) is described below, and Ŵ is the
estimated optimal weighting matrix from the second step. (For the first step I use Ŵ = I.)

Departure Time Moments. The first 49 moments match the difference in difference in de-
parture time market shares, between the departure time treatment and control groups, during the
experiment relative to before. Let k index the 5-minute-step departure time grid between −120 and
+120 minutes relative to the rate profile peak. Denote PDT

ik (θ, pit) the probability that the kth de-
parture time is optimal when departure time and route pricing is pit. In the data, define P̃DT

ik (pre)
and P̃DT

ik (post) the fractions of trips starting in a 5-minute bin around the kth departure time for
i in pre- and post- periods, respectively. The k-th moment is:

gk
i (θ, pit) = (−1)1−T DT

i

[(
P̃DT

ik (post) − P̃DT
ik (pre)

)
−
(
PDT

ik (θ, pit) − PDT
ik (θ, 0)

)]
,

where TDT
i is an indicator for departure time charges.

Route Moments. Ten moments match route choice market shares during five periods (before
the experiment, and four weeks during the experiment) indexed by t = 1, . . . , 5 and in two treatment
groups (early and late charges).

Denote PA
it (θ, pit) the probability to take the detour route (not intersect the congestion area)

in time period t when pricing is pit. In the data, define P̃A
it the fraction of days when commuter

home-work trips do not intersect the congestion area for individual i, which depends on i’s treatment
group. For t = 1, . . . , 5, the route moments are:

g49+t
i (θ, pit) = TEarly

i ·
[
P̃A

it − PA
it (θ, pit)

]
g54+t

i (θ, pit) = (1 − TEarly
i ) ·

[
P̃A

it − PA
it (θ, pit)

]
.
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SM.5 Parameter Sensitivity Measure

Table SM3 reports the estimated sensitivity measure Λ from Andrews et al. (2017), scaled by the
standard deviation of each moment. Each entry Λpj measures the change in estimated parameter θp

due to a one standard deviation change in moment mj . The measure is Λ̂ =
(
Ŝ

′
Ŵ Ŝ

)−1
Ŝ

′
Ŵdiag (σ̂)

where Ŝ is the Jacobian evaluated at the estimated parameters, Ŵ is the optimal weighting matrix,
and σ̂ is the vector of bootstrap standard deviation of moment j.

SM.6 Road Technology Invariance Result

Conditional on the relationship (8) estimated on a representative sample, the impact of an additional
trip on total driving time in Bangalore is invariant to the aggregate volume of traffic in Banglore,
and it is invariant to the sample size used to estimate the road technology relationship.

The key intuition is that equation (8) depends on normalized density, so it is invariant to the true
aggregate volume of traffic. Then, imagine that the aggregate volume is twice as large as initially
believed. Then the impact of a single trip on travel delay will be twice as small. However, it will
affect twice as many other commuters, so the impact on total time is not affected.

Using the notation from section 4.3, let Q = (q(h,K))h,k denote the pattern of departures, where
q(h,K) is the mass of trips of length K starting at h, based on a sample of N trips. Let x = (x(h))h

denote the instantaneous travel delay profile, and d = (d(h))h the density profile. Similar to equation
(8), assume that instantaneous delay satisfies x(h) = λ0 +λ1d(h)/N where N is the number of trips
in the sample.

Proposition 5. The marginal effect of an additional trip on total travel time does not depend on
the sample size used to construct Q.

Proof. Let d(h′, Q) denote density at time h′ as a function of the pattern of departures, and d(Q) =
(d(h′, Q))h′ .

Travel times are uniquely determined by the instantaneous travel delay profile, which depends
on normalized density. Hence, we can write average travel times as a function T

(
d(Q)

N

)
. Note that

total travel time in the city is NT .
For every h′, d(h′, Q) is homogeneous of degree 1 in Q. Consequently, the partial derivative

dh,K(h′, Q) with respect to the mass of trips with length K starting at h is degree 0 in Q, i.e. it
does not depend on the sample size used to compute Q.

Consider adding a trip of length K that starts at h and denote the pattern of departures by
Q+ 1(h,K). The change in total travel time is

N

(
T

(
d(Q+ 1(h,K))

N

)
− T

(
d(Q)
N

))
≈ N

∂T

∂1(h,K) = N
∑
h′

∂T

∂h′
dh,K(h′, Q)

N

The last term does not depend on N because neither ∂T
∂h′ nor dh,K(h′, Q) depend on N .
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SM.7 Policy Simulations

For policy simulations I use a 5-minute departure time grid from 5am to 2pm. Each simulation
has 3040 agents, with each real study participant replicated with 10 independent random draws
of ideal arrival times from the distribution recovered with non-negative least squares (section 7.3).
The vector of ideal arrival times is re-sampled during bootstrapping. Thus, the confidence intervals
include uncertainty due to numerical simulation. Benchmark results are robust to using 10× more
agents.

For the two-route equilibrium model, I assume double the volume of trips, so that on average
the volume of trips per route remains the same.

I use a nested logit model for the equilibrium model with an extensive margin decision. The outer
nest has two options, taking the trip (z = 1) and not taking the trip (z = 0). Trips are valuable:
a commuter not making a trip incurs a cost proportional to trip length ωi = ω · Ki/K. Expected
utility is given by:

Eui(x, h, hA
i ) =

Ev(h, Ti(h), hA
it) − pit(h) + εit(1, h) z = 1

−ωi + εi(0, h) z = 0
(12)

where εi(z, h) follow a type-1 extreme value distribution with correlation within each value of z,
with logit scale parameter η for the trip (upper) nest. The congestion pricing experiment was not
designed to estimate the extensive margin trip elasticity.

SM.8 Supplementary Material: Figures

Figure SM1: Impact of Departure Time Charges on Departure Times (Commuting Trips)
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Notes: Version of Figure 2 restricting to regular commuters and trips between home and work (both ways).
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Figure SM2: Travel Demand Model Fit

Panel (A) Departure Time Difference in Differences Panel (B) Departure Time Control Post

Panel (C) Detour Route Usage Panel (D) Detour Route Usage Heterogeneity

Notes: This figure shows in- an out-of-sample fit for the estimated travel demand model. Panel A plots
the departure time moments that correspond to the difference-in-differences (treated vs. control, during vs.
before), the analogue of Figure SM1. Panel B shows the probability density of departure time in the control
group during the experiment (Post). These moments are not directly targeted in the estimation (however,
the ideal departure time distribution inversion routine depends on the distribution of departure time before
the experiment). Panel C shows the dynamic route choice moments, the analogue of Figure 3. Panel D
shows detour route choice heterogeneity by the amount of detour (in minutes), for the “early” treatment
group, which receives charges in week 1. This is the analogue of Figure A4, and these moments are not
targeted in estimation. For all graphs, the model is indicated by thicker, red lines.
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Figure SM3: Travel Demand Model: Understanding Identification

Panel (A) Jacobian: d moment/d parameter Panel (B) Sensitivity: d parameter/d moment
Notes: Moments are defined as gj(θ) = sj(θ) − sj,data. Panel A plots the partial derivatives dg(h, θ)/dβE

and dg(h, θ)/dβL for each departure time moment g(h, θ). Panel B plots the scaled sensitivity measure from
Andrews et al. (2017) quantifying the change in the estimated early and late schedule cost parameters β̂E

and β̂L given by one standard deviation change in each of the 49 departure time moments, as well as the
LOESS fit. See Supplementary Material SM.5 for definitions.

Figure SM4: Travel Demand Model Numerical Identification Check and Finite Sample Properties

Notes: This figure compares true random parameters and the estimated parameters from simulated data,
under two scenarios. In the “asymptotic” scenario (red circles) the simulated data has exact (route and
departure time) choice probabilities. In the “finite sample” scenario (blue triangles) the simulated data has
random choices and I use exactly the same data set size as in the real data (the number of observations
per commuter). Simulations are based on 100 random parameters independently drawn between 25% and
175% of the benchmark estimated values. For each set of parameters, I first invert the fA

i distributions
from pre-experiment (real) data, then use it to simulate data. I then estimate the model on the simulated
data using one random starting condition that is independent of the parameters used to simulate the model.
Each graph shows the estimated parameter on the Y axis, and the true parameter on the X axis. Outlier
values are censored. The diagonal line is identity. See also Table SM12.
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Figure SM5: Road Technology Estimation Robustness Checks

.

.

.

.

.

.

..
.
....

.
0:00
.

. . .

7:00

23:00.
. . 8:00

.15:00
21:00

. .
.
. ......

. . . 11:00
.
. .. .

.
.
.

9:00

. .

19:00

2
3

4
5

6
Tr

av
el

 D
el

ay
 (m

in
ut

es
 / 

km
)

0 .5 1 1.5 2
Traffic Density (normalized)

GPS 90th p'tile
GPS average
Google Maps average
GPS 10th p'tile

0:00

23:00

7:00

21:00
15:00

11:00

8:00

19:00

9:00

2
2.

5
3

3.
5

4
4.

5
Tr

av
el

 D
el

ay
 (m

in
ut

es
 / 

km
)

0 .5 1 1.5 2
Traffic Volume (normalized)

Panel (A) Travel Delay from GPS Data and Google Maps Panel (B) Travel Delay and Traffic Volume

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Departure Time

Recruit time Traffic Volume

0
.2

.4
.6

.8
Lo

g 
Tr

av
el

 D
el

ay
 (m

in
=0

)

0 1 2 3 4 5 6
Log Traffic Volume (Normalized, min=0)

Bangalore Bogota

Panel (C) Recruitment Time and Trip Time Distributions Panel (D) Comparison with (Akbar and Duranton, 2017)

0

.2

.4

.6

.8

1

Use
route
with

highest
slope

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

Route
slope

(min/km
/3hr)

0 2 4 6 8 10 12 14 16 18 20 22 24
Departure time

Use highest slope route
Slope of optimal route

Panel (E) Peak-hour Use of Lower Externality Routes

Notes: Panel A uses travel delay from GPS trips to replicate
Figure 4, including percentiles. See notes for Table A10. Panel B
replicates Figure 4 with “volume,” the normalized number of trips
starting each hour on the X axis. Panel C plots the distribution
of participant recruitment times (histogram in solid gray) and the
distribution of trip departure times (kernel density plot in solid
blue line). Both Y axes start at zero. Panel D compares log-log
road technology estimates from this paper (gray dots, dashed blue
line) with those from Akbar and Duranton (2017) in Bogotá (red
solid line). (Their estimate is computed from Figure 4 panel C.)
Panel E describes peak-hour substitution towards routes with less
steep travel time profiles. For each commuter in the experimental
sample, I query from Google Maps the entire travel time profile
for every route that is optimal at some departure time. For each
route I compute its slope, the change in travel delay between 6:30
and 9:30 am. The right axis (black dashed line) plots the fraction
of commuters for whom their highest slope route is fastest at
departure time h. The left axis (blue solid line) plots the average
slope of the optimal route at h.
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Figure SM6: Road Technology at the Daily Level
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Notes. These graphs replicate Figure 4 panel A by date. The first 7 panels show the relationship between hourly GPS traffic volume and Google Maps
travel delay for 7 randomly chosen calendar dates (one for each day of the week). The last panel overlays the predicted fit for all calendar dates in the
sample. The sample is calendar dates with above-median number of GPS trips (at least 571 trips per day). Travel delay and traffic density at the day d
and hour h level correspond to column 3 in Table 3. Each fit is a power fit as in column 2 in Table 3.
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Figure SM7: Road Technology on Major Arteries

Notes. These graphs replicate Figure 4 for major arteries depicted in Figure A1, separately by direction. The Y axis is average Google Maps travel delay
for that road segment. To compute traffic density at the artery level, I define a buffer area around each artery. I then count the number of GPS trips
that travel along the artery in each direction for each time of day, excluding short trips that intersect the artery for less than 200 meters (which I assume
correspond to cross-traffic). I obtain 268,292 trip segments on the 46 arteries. 95% confidence intervals based on Newey-West standard errors with a
3-hour lag also reported.
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Figure SM8: Policy Counterfactual Additional Results

Panel (A) Optimal Congestion Charges Panel (B) Departure Volume
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Notes. Panel A plots percentiles of the optimal charges (equal to marginal social cost) around the social
optimum. For comparison, I plot the average trip delay (red, solid line) as in Figure 5, and the instantaneous
travel delay (blue, dashed line). Panel B plots the rates of trip departure rates in the Nash equilibrium and
in the social optimum. Panel C overlays the alternate road technologies used in panel D of Table 4, over the
benchmark road technology (Figure 4). I use the estimated λ0 and λ1 from the benchmark linear equation
8 and only vary ν. Panel D shows equilibrium peak average travel delay (X axis) and welfare gain from
optimal pricing (Y axis) when varying the total volume of trips used in the simulation.

57



Figure SM9: Decomposing Gains and Losses in the Social Optimum

Panel (A) Real Changes: Travel Time and Schedule Costs Panel (B) Net of Charges and Rebates

Notes. For each commuter and ideal arrival time hA
i , the X axis is the average departure time hi = Eh(hA

i )
in Nash. Panel A plots the Nash–social optimum difference in −EαT (hi) vs hi (black, solid line) and in
−EβE |hi + T (hi) − hA

i |− + βL|hi + T (hi) − hA
i |+ vs hi (green, dashed line). Panel B plots average expected

utility change vs hi when commuters receive a rebate that is proportional to trip length (black, solid line)
or constant (green, dashed line).

Figure SM10: Policy Counterfactual in Two Route Equilibrium Model
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Notes: This Figure describes the two-route equilibrium
(panel E of Table 4). Panel A overlays the alternate high-
externality route road technologies over the benchmark road
technology (Figure 4). Panel B plots the probability of tak-
ing the high-externality route by departure time, in the
Nash equilibrium and in the social optimum, in the two-
route model where one route has 15% higher slope. Panel
C replicates Figure 5 by route for the two-route model where
one route has 15% higher slope.
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SM.9 Supplementary Material: Tables
Table SM1: Descriptive Statistics about Travel Behavior

Panel A. Trip Characteristics
Median Mean Std. Dev. 10 Perc. 90 Perc. Obs.

Total Number of Trips 51,473
Number of Trips per Day 2.86 3.15 [1.16] 1.90 4.86 497
Median trip duration (minutes) 24.50 27.43 [12.83] 15.20 42.60 497
Median trip length (Km.) 5.91 7.17 [4.67] 2.92 13.36 497
Panel B. Commute Destination Variability

Regular Commuter 1.00 0.76 [0.43] 0.00 1.00 497
Frac. trips Home-Work, Work-Home 0.38 0.39 [0.21] 0.13 0.67 378
Frac. of trips Work-Work 0.03 0.06 [0.08] 0.00 0.15 378
Frac. of days present at Work 0.92 0.86 [0.16] 0.60 1.00 378
Panel C. Departure Time Variability
(Standard Deviation of the Departure Time in hours)

First Trip (AM) 1.28 1.24 [0.50] 0.54 1.83 496
Last Trip (PM) 1.72 1.71 [0.50] 1.04 2.36 497
First Home to Work Trip (AM) 0.48 0.62 [0.52] 0.15 1.28 332
Last Work to Home Trip (PM) 0.80 0.95 [0.63] 0.28 1.78 322

Notes: This table reports summary travel behavior statistics for the experimental sample of 497 commuters.
See section 5.1 for the definition of home and work locations and of regular commuter. In panel C, I compute
the within-commuter variation in departure times for different classes of trips.

59



Table SM2: Experimental Design

Panel A. Treatment Strata

Strata Departure Time
Sub-treatment

Route
Eligibility

Car or
Moto Daily KM High

Rate
Low
Rate Info Control

Eligible Car Low 3/8 1/8 2/8 2/8
Eligible Car High 1/8 3/8 2/8 2/8
Eligible Moto Low 3/8 1/8 2/8 2/8
Eligible Moto High 1/8 3/8 2/8 2/8
Ineligible Car Low 1/12 3/12 4/12 4/12
Ineligible Car High 3/12 1/12 4/12 4/12
Ineligible Moto Low 1/12 3/12 4/12 4/12
Ineligible Moto High 3/12 1/12 4/12 4/12

Panel B. Treatment Timing

Treatment by
Week in Experiment

Route
Eligibility

Dep. Time
Timing

Dep. Time
Sub-Treatment 1 2 3 4

Eligible Late

High rate R H H H
Low rate R L L L
Information R I I I
Control R C C C

Eligible Early

High rate H H H R
Low rate L L L R
Information I I I R
Control C C C R

Ineligible Late

High rate I H H H
Low rate I L L L
Information I I I I
Control C C C C

Ineligible Early

High rate H H H I
Low rate L L L I
Information I I I I
Control C C C C

Notes. There were eight strata in the experiment, all combinations of participants eligible or ineligible for
the route charge, car or non-car (motorcycle or scooter) users, and participants with high or low daily travel
distance in the baseline period. Departure time sub-treatment probabilities are given in panel A. There
are eight route sub-treatments: all combinations of high/low charges, short/long detour, and early/late.
All have equal probabilities. Sub-treatment are cross-randomized (see section A.6). Treatment timing is
presented in panel B. The letter R corresponds to the route treatment. The letters H, L, I and C respectively
correspond to high-rate, low-rate, information and control in the departure time treatment.
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Table SM3: Experimental Participant Sample Representativeness

(1) (2) (3) (4) (5) (6)
In Experiment Not in Experiment Difference
Mean [SD] Mean [SD] in SD units N

Panel A. All Respondents Approached
Male respondent 0.98 [0.13] 0.97 [0.17] 0.09** 8,231
Age 33.3 [8.2] 35.2 [8.7] -0.21*** 8,231
Car driver 0.30 [0.46] 0.41 [0.49] -0.24*** 8,227
Log vehicle price (residual) 10.5 [0.4] 10.5 [0.4] -0.00 7,188

Panel B. Survey Respondents
Log income 9.96 [0.71] 9.91 [0.73] 0.07 2,656
Stated Daily Travel (Km/day) 47.1 [24.0] 45.1 [25.1] 0.08* 4,427
Stated Value of Time (Rs/hr) 206.0 [138.9] 189.0 [151.3] 0.11* 1,001
Stated Schedule Flexibility (min) 20.0 [10.9] 18.7 [12.0] 0.11* 952

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Business owner
or manager

Accountant,
Teacher,
Doctor

Software
and IT

Engineers,
Technical

Office
staff

Manual
jobs

Mobile
professions Student Others,

Retired Total

Panel C. Survey Respondents
In Experiment 16.7 7.5 10.3 14.3 15.4 8.4 15.6 9.0 2.9 455
Not in Experiment 15.6 6.2 10.1 11.2 18.1 9.5 12.0 13.4 3.9 2,458

Notes. These results describe respondent selection into experiment by comparing the experimental sample
(497 respondents) to the entire sample of eligible commuters approached in gas stations by the survey
team (panel A) and to the full survey sample (panels B and C). The sample in Panel A is all respondents
approached in gas stations, excluding ineligible respondents. Weights are used to (a) account for missing data
for each variable, and (b) to adjust for the estimated ∼ 52% ineligible respondents among survey refusals
(for refusals, 7, 218 respondents did not complete the eligibility filter, and I assume the same proportion were
ineligible). Gender, age and car driver variables are visually assessed by the surveyor for all respondents.
Vehicle value (residual) is imputed based on vehicle type (car/motorcycle), make and model, using pricing
data scrapped from a used-vehicles website in Bangalore, residualized on a “car” dummy. Monthly income
is self-reported during the recruitment survey (the respondent is handed the tablet to enter the amount
confidentially – the surveyor never sees the amount), truncated at 100, 000 INR (∼ 1, 300 USD). Occupation
is self-reported during the recruitment survey. Value of time and schedule flexibility are based on choices
in hypothetical scenarios in a follow-up phone survey; for details, see section A.4.2. The difference in SD
units includes significance levels from a (weighted) regression of the row outcome variable on an indicator
for being in the experiment. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table SM4: Experimental Balance Checks

Departure Time Treatments Route Treatment

Information Low Rate High Rate Obs. Control
Mean Route Early Obs. Control

Mean

(S.E.) (S.E.) (S.E.) (S.E.)

(1) Car user 0.01 (0.02) 0.01 (0.01) 0.01 (0.02) 497 0.28 -0.01 (0.01) 254 0.28
(2) Regular destination -0.05 (0.05) 0.00 (0.05) -0.09∗ (0.05) 497 0.77 -0.05 (0.03) 254 0.95
(3) Age -0.93 (0.93) 1.26 (1.01) -0.09 (1.07) 497 33.20 -1.35 (0.94) 254 34.30
(4) Log vehicle price 0.11∗∗ (0.05) 0.09 (0.05) 0.03 (0.06) 453 11.06 0.00 (0.05) 231 11.17
(5) Log income 0.01 (0.10) -0.02 (0.14) -0.07 (0.14) 411 10.11 -0.09 (0.12) 211 10.24
(6) Frac days with good GPS data -0.01 (0.03) -0.02 (0.03) -0.00 (0.03) 497 0.41 0.00 (0.03) 254 0.42
(7) Frac days present at work 0.01 (0.03) 0.00 (0.03) -0.03 (0.04) 497 0.70 -0.03 (0.03) 254 0.79
(8) Number of trips per day -0.12 (0.11) -0.05 (0.13) -0.00 (0.14) 497 1.25 -0.00 (0.12) 254 1.15
(9) Total distance per day (Km.) -0.46 (0.69) -0.22 (0.83) 0.32 (0.88) 497 8.29 0.19 (0.83) 254 8.79
(10) Total duration per day (min) -2.99 (3.04) -1.51 (3.55) 1.23 (3.84) 497 35.52 0.49 (3.50) 254 35.49
(11) Total D.T. hypothetical rate per day -0.84 (3.82) -0.83 (3.90) -0.32 (4.20) 497 38.82 -0.51 (3.79) 254 37.92
(12) Total Route hypothetical rate per day -2.27 (3.18) -2.85 (4.23) -0.40 (4.88) 497 23.83 0.69 (5.61) 254 50.73

(13) Joint Significance Test F-stat 0.26 0.02
(14) Joint Significance Test P-value 0.86 0.90

Notes. This table shows experimental balance checks for the departure time and route treatments. Variables 1,3,4, and 5 are from the recruitment
survey, while the remaining eight variables are calculated from the GPS trips data before the experiment. Each row and group of columns combination
reports coefficients from a regressions with the row header as outcome. In the “Route Treatment” columns, the sample is restricted to 254 participants
who receive the route treatment, and the dependent variable is whether the respondent was assigned to the “early” route sub-treatment (to receive the
route charges in week 1 as opposed to week 4). All regressions include randomization strata dummies. Rows 13 and 14 report the F-statistic and p-value
from column-wise joint significance tests. Robust standard errors are shown in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table SM5: GPS Data Quality at Daily Level (Attrition Check)

(1) (2)
Treatment Departure Time Route
Commuter FE X X

High Rate × Post 0.02
(0.05)

Low Rate × Post -0.00
(0.05)

Information × Post -0.00
(0.04)

Route Charges 0.02
(0.04)

Post 0.08** 0.14***
(0.03) (0.04)

Observations 24,779 9,809
Control Mean 0.76 0.76

Notes. This table shows experimental impacts on the quality of the GPS data received from study partici-
pants. The outcome is a dummy for good quality GPS data on a given day (see section A.3). The sample
covers all non-holiday weekdays for all experiment participants, excluding days outside Bangalore. In the
post period, the sample in column 1 is restricted to the departure time treatment period, either the first or
the last three weeks. The sample in column 2 is restricted to the first week in the experiment. All speci-
fications include respondent and study cycle fixed effects. Standard errors are clustered at the respondent
level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01

Table SM6: Impact of Departure Time Charges on Daily Total Hypothetical Rate: Commuting
Trips

(1) (2) (3) (4) (5) (6) (7)
Time of Day AM & PM AM PM

all pre
peak

post
peak all pre

peak
post
peak

Commuter FE X X X X X X X
Sample: Regular Commuters, Home-Work and Work-Home Trips

Charges × Post -7.94*** -3.76** -3.00* -0.76 -4.18** -0.88 -3.30***
(2.89) (1.90) (1.56) (1.20) (1.67) (1.23) (1.08)

Post -1.74 -0.74 -1.29 0.55 -1.00 -0.69 -0.31
(2.65) (1.74) (1.30) (1.36) (1.61) (1.18) (1.06)

Observations 12,115 12,115 12,115 12,115 12,115 12,115 12,115
Control Mean 40.80 23.37 14.27 9.10 17.44 9.15 8.29

Notes: This table reports the impact of departure time charges on daily total hypothetical rates for regular
commuters and commuting trips, separately by time interval. The sample of users and days, and the
specifications, are the same as in Table 1, panel B, further restricted to regular commuters and direct trips
between their home and work locations (in either direction). Columns (3) and (6) restrict to trips before the
peak, i.e. the mid-point of the rate profile. Columns (4) and (7) restrict to trips after the peak. Table A3
reports these results for variable commuters. Standard errors in parentheses are clustered at the respondent
level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table SM7: Impact of Route Charges on Detour Route Usage

(1) (2) (3) (4)
Outcome Use Detour Route Number of Trips Today
Commuter FE X X X X

Panel A. All Commuters

Treatment: Early × week 1 0.27*** 0.26*** 0.02 0.02
(0.05) (0.05) (0.07) (0.07)

Persistence: Early × week 2 0.09** -0.09
(0.04) (0.08)

Observations 5,235 6,038 9,809 11,016
Control Mean (week 1) 0.11 0.11 0.73 0.73

Panel B. Commuters Who Used Detour at Baseline

Treatment: Early × week 1 0.41*** 0.41*** 0.03 0.02
(0.08) (0.08) (0.13) (0.13)

Persistence: Early × week 2 0.13* -0.01
(0.07) (0.13)

Observations 2,369 2,718 3,508 3,940
Control Mean (week 1) 0.18 0.18 0.87 0.87

Notes: This table reports difference-in-differences impacts of the route treatment on trip and daily outcomes.
In the first two columns, an observation is a commuting trip between home and work, and the outcome is
whether the commuting trip used a detour route (defined as any route that avoids the congestion area). The
last two columns, an observation is a commuter, day combination, and the outcome is the total number of
trips that day. The sample is all non-holiday weekdays with good quality GPS data, excluding days outside
Bangalore. In the post period, all days except trial days are included. The sample is restricted to 243
participants in the route treatment. In the first two columns, only frequent commuters are included. In
panel B, the sample is restricted to commuters who used a detour route between home and work at least once
before the experiment. All specifications include respondent and study cycle fixed effects. The mean of the
outcome variable in the control (late) group in week 1 of the experiment is reported for each specification.
Standard errors in parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table SM8: Impact of Route Charge Sub-Treatments on Daily Outcomes

Hypothetical Route Charges
(1) (2)

Treated × High Rate -41.1***
(13.1)

Treated × Low Rate -21.5
(13.3)

Treated × Short Detour -43.0***
(15.4)

Treated × Long Detour -26.2
(17.8)

Observations 6,129 3,693
Commuters 243 148
Control Mean 117.1 122.7
P-val Equal Sub-treatment Effects 0.30 0.48

Notes: This table reports difference-in-differences impacts of route sub-treatments on daily total hypothetical
route charges. The sample in column 1 is the same as in Table SM7, covering the period before and during
the first week in the experiment. In column 2 the sample is restricted to 148 route treatment participants
for whom candidate areas included at least one with short detour (3-7 minutes) and at least one with long
detour (7-14 minutes). The outcome is total daily hypothetical route charges; higher values indicate lower
detour usage. Standard errors in parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01
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Table SM9: Travel Demand Estimates: Additional Results
(1) (2) (3) (4) (5) (6)

Static
Route Choice

Asymmetric
switching cost Time FE Half

attention

Parameters
prop. to

wage

Single ideal
arrival time

βE : Schedule cost early (INR/hour) 659 570 489 307 423 1267
[432, 1359] [333, 1450] [262, 1122] [201, 1581] [212, 3138] [372, 22567]

βL: Schedule cost late (INR/hour) 522 410 365 268 599 642
[257, 1363] [233, 2009] [259, 1199] [168, 1859] [237, 2809] [92, 1388]

α: Value of travel time (INR/hour) 2200 1486 526 330 405 710
[1666, 2389] [639, 2745] [94, 1611] [165, 677] [131, 1039] [459, 1480]

γ: Route switching cost (INR) 16.6 106.1 52.3 82.8 75.5
[0.0, 45.1] [42.4, 168.3] [28.4, 77.2] [29.1, 135.7] [35.5, 102.1]

σDT : Logit departure time 19.2 19.7 21.2 15.4 33.5 102.4
[1.0, 87.8] [1.0, 121.2] [1.9, 92.7] [1.0, 82.8] [1.5, 188.5] [3.2, 357.9]

σR: Logit route nest 95.8 69.5 57.2 33.6 46.3 59.2
[63.0, 115.8] [33.8, 90.4] [30.5, 97.9] [22.9, 45.4] [23.6, 68.8] [42.6, 78.0]

Model Components:
Route choice model Static Dynamic Dynamic Dynamic Dynamic Dynamic
Fixed discount factor (δ) - 0.90 0.90 0.90 0.90 0.90
Asymmetric switch cost (γ01 = 2γ10) - Yes - - - -
Route Choice Time FE - - Yes - - -

Moments:
Departure Time (49) Yes Yes Yes Yes Yes Yes
Dynamic route choice (10) - Yes Yes Yes Yes Yes
Static route choice (2) Yes - - - - -

Notes: Column 1 fits a model with static route choice (δ = γ = 0) using only two route choice moments:
the fraction using route 1 when not charged during the experiment, and when charged. Column 2 modifies
the benchmark model to include asymmetric switching costs parametrized by γ01 = γ10 = 2γ. Column
3 estimates time fixed effects η1, η2, η3, η4 that enter route 1 utility on the corresponding weeks during
the experiment. Column 4 imposes that each commuter ignores experimental congestion charges with
independent probability p = 0.5. In column 5, all preference parameters are proportional to wi, commuter
i’s self-reported hourly wage. (Note that logit parameters are proportional to wi and to normalized trip
length, i.e. σDT

i = σ wi
w

Ki

K
). In column 6, I assume that all commuters have the same ideal arrival time that

does not vary over time, hA
it = hA.
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Table SM10: Travel Demand Estimation: Discount Factor Robustness
(1) (2) (3) (4) (5)

Varying Discount Factor δ Estimate δ

βE : Schedule cost early (INR/hour) 570 509 552 553 548
[299, 1358] [294, 1062] [301, 1539] [307, 1156] [270, 1375]

βL: Schedule cost late (INR/hour) 381 367 344 352 350
[200, 613] [254, 2119] [245, 1262] [244, 1317] [244, 1450]

α: Value of travel time (INR/hour) 1180 709 609 594 624
[549, 1501] [323, 1142] [365, 1210] [390, 1252] [234, 1048]

γ: Route switching cost (INR) 78.4 89.2 80.3 87.0 79.7
[58.6, 122.9] [55.4, 114.9] [43.2, 112.2] [44.1, 114.7] [62.9, 121.6]

σDT : Logit departure time 22.5 21.4 19.5 20.4 20.6
[1.8, 78.5] [1.1, 73.9] [1.3, 68.0] [1.9, 74.3] [1.4, 82.3]

σR: Logit route (upper nest) 62.0 57.6 57.9 50.6 58.6
[34.2, 63.6] [37.9, 64.6] [41.8, 76.4] [34.1, 67.7] [40.1, 68.5]

δ: discount factor 0.00 0.50 0.90 0.99 0.88
[0.36, 0.98]

Model:
Dynamic route choice model Dynamic Dynamic Dynamic Dynamic Dynamic
Fixed discount factor (δ) 0.0 0.50 0.90 0.99 -

Moments:
Dynamic route choice (10) Yes Yes Yes Yes Yes
Route choice transition (1) - - - - Yes

Notes: Columns 1-4 replicate column 1 in Table 2 with different assumptions on δ. In column 5 I estimate δ,
using an additional moment. This moment measures the transition probability between route 0 and route 1,
on average, between weeks 1-2, 2-3, and 3-4 during the experiment. In the data, I define that the commuter
uses route 0 if the average weekly route choice of route 0 is strictly below 0.5.
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Table SM11: Dynamic Route Choice Model Identification

(1) (2) (3)
Full Model No departure time Simple Model (δ = 0)

α γ σR α γ σR α γ σR

Estimated values 609.1 80.2 57.8 561.7 86.4 57.6 808.8 98.9 62.8

Jacobian: Change in Route 1 take-up Due to Change in Parameter
Before Experiment -0.1 -0.09 0.24 -0.08 -0.09 0.26 -0.19 -0.06 0.24
Week 1 (Charges) -0.24 -0.39 0.22 -0.26 -0.41 0.26 -0.4 -0.35 0.25
Week 2 (After Charges) -0.19 -0.12 0.29 -0.22 -0.14 0.31 -0.38 -0.06 0.19

Notes: This table reports the Jacobian matrix for three moments with respect to three route choice parame-
ters (VOTT α, switch cost γ and logit scale σR). The three moments are the route treatment “early” group
average detour route usage (1) before the experiment, (2) during week 1 in the experiment (when charges
were in effect), and (3) in week 2 (after charges had ended). The first group of columns uses the benchmark
model, and the next group uses the dynamic route choice model without departure time (column 4 in Table
2). In the last group of columns, I estimate a simple model where a single agent faces the average detour
(6.4 minutes) and the average route charge (144 INR), and I assume δ = 0 (see Supplementary Material
SM.2). Jacobian entries are divided by the value of the parameter, so they represent the semi-elasticity of
the moment with respect to a proportional change in the parameter.

Table SM12: Travel Demand Model Finite Sample Properties Check

(1) (2) (3) (4) (5) (6)
Estimated Parameter

α̂ β̂E β̂L γ̂ σ̂DT σ̂R

(True) Value of time α 1.09*** 0.15*** 0.04 -0.01* 0.00 -0.00**
(0.07) (0.06) (0.04) (0.00) (0.00) (0.00)

(True) Penalty early βE 0.01 0.55*** 0.03 -0.00 -0.00 0.00*
(0.06) (0.07) (0.04) (0.01) (0.01) (0.00)

(True) Penalty late βL -0.08 0.12 0.90*** 0.00 -0.01 0.00
(0.09) (0.07) (0.12) (0.01) (0.01) (0.00)

(True) Switch Cost γ 0.53 0.60 0.47 0.90*** -0.02 -0.02
(0.47) (0.43) (0.31) (0.04) (0.03) (0.02)

(True) Logit departure time σDT -0.23 -1.42 0.37 0.00 0.81*** -0.00
(1.59) (1.65) (1.58) (0.15) (0.15) (0.06)

(True) Logit route σR 0.43 0.53 0.20 0.05 -0.05 1.03***
(0.57) (0.53) (0.46) (0.06) (0.04) (0.02)

Observations 120 120 120 120 120 120

Notes: This table uses simulated data of exactly the same size as the data used in estimation to describe
the finite sample properties of the estimation procedure. See notes for Figure SM4. Each column reports
results from a quantile (median) regression of the estimated parameter on the vector of true parameters.
∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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