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The transformative potential of artificial intelligence (AI) is apparent from our daily
use of smartphones. We log in using AI-enabled facial recognition, issue commands with
AI-enabled speech recognition, conduct AI-enabled internet searches, buy from stores
pushing AI-enabled recommendations, and receive goods shipped with AI-enabled lo-
gistics systems. Not only has AI enabled the creation of new services, it has improved on
existing services and disrupted older services in a familiar process of creative destruction
(Schumpeter, 1942). All of these changes can be seen in the palm of our hand and are
meticulously tracked by corporations. This paper uses big data on international App
downloads and AI patents to track how AI is changing the pattern of trade in services,
the variety of services available in each country, and the process of creative destruction.

The early hype about AI has given way to more sober analysis showing that to date
AI has had limited effects on tasks (Brynjolfsson, Mitchell, and Rock, 2018), employment
and wages (Acemoglu, Autor, Hazell, and Restrepo, 2020). Less is know about AI’s
impact on international trade either theoretically or empirically. In this paper we explore
that impact on (a) bilateral trade flows, (b) the variety of goods imported, and (c) the
creation and destruction of varieties. The impact of AI on trade flows is of great interest,
but ultimately we care about welfare. We thus also calculate the welfare effects due to
AI-induced changes in the availability of varieties to consumers.

There is good reason to expect all three of the above impacts. (a) For bilateral
trade flows, McKinsey Global Institute (2019) predicts that AI will reduce outsourced
business process and IT services. It will also reduce goods trade by facilitating additive
manufacturing that moves production to the point of consumption. McKinsey predicts
that together these developments will reduce trade by a trillion dollars. Of course, this
reduction in trade tells us nothing about AI’s impact on welfare. Indeed, in McKinsey’s
scenario trade volumes and welfare likely move in opposite directions. (b) For product
variety, AI leads both to new services (horizontal differentiation) and to improvements
on existing services (vertical differentiation). These are known to affect the pattern of
trade and the welfare gains from trade, usually in positive ways. See Krugman (1979),
Helpman (1981), Feenstra (1994, 2010), Melitz (2003), Broda and Weinstein (2006), and
Hsieh, Li, Ossa, and Yang (2020) for analysis of horizontal differentiation. (c) For cre-
ative destruction, AI’s impact on vertical differentiation disrupts and displaces existing
services. On this process of creative destruction through endogenous innovation see
Aghion and Howitt (1992) and Akcigit and Kerr (2018) for closed-economy models and
Grossman and Helpman (1991a,b) for both closed- and open-economy models.

Despite intense public interest in AI, research on the impacts of AI on trade, product
variety and creative destruction is almost nonexistent. Goldfarb and Trefler (2019a)
review the theoretical issues for international trade raised by AI. They argue that key
features of AI are scale, local knowledge diffusion, and the degree of international knowl-
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edge diffusion. Scale and local knowledge diffusion/externalities have implications for
trade flows that have long been understood in the economic geography literature. As
well, the degree of local versus international diffusion is central to the endogenous
growth literature e.g., Rivera-Batiz and Romer (1991), Grossman and Helpman (1991b)
and Irwin and Klenow (1994). Goldfarb and Trefler (2019a,b) also argue that AI affects
trade costs in complex ways. For example, privacy concerns create additional trade costs
not usually considered by international trade economists. Further, interstate competition
can create national regulatory responses best characterized as a privacy race to the
bottom. Royal Society-National Academy of Sciences (2019) summarizes the proceedings
of a Washington D.C. symposium on international harmonization of AI regulations,
including a summary of Goldfarb’s and Trefler’s views.

The only empirical paper directly on AI and trade is by Brynjolfsson, Hui, and Liu
(2019). They show that eBay’s introduction of a machine translation system increased its
exports by 17.5%. This is the opposite of McKinsey Global Institute’s (2019) speculations.
Our work is closely related to Brynjolfsson et al.. The advantage of their approach is
that it carefully identifies the exact AI (machine translation) and the exact mechanism for
eBay. In contrast, we will work with a wide set of AIs, companies, and services. This
allows us to employ the standard gravity equation for examining impacts on trade as
well as product variety and creative destruction.

There are other more distantly related papers. Beraja, Yang, and Yuchtman (2020)
show how Chinese government security contracts for facial recognition software pro-
vided confidential security data to Chinese firms, data that improved these firms’ prod-
ucts. By implication, the paper shows how government subsidies in the AI sphere
can improve competitiveness. More tangential to our interests here, Bailey, Gupta,
Hillenbrand, Kuchler, Richmond, and Stroebel (2020) use Facebook data to construct
bilateral social connections between countries and show that these are a more powerful
determinant of bilateral trade flows in goods than are traditional determinants such as
distance and borders. Though tangential to our main results, we include their bilateral
social connections measure and find that it impacts App-based service trade as well.1

This review, even if missing some citations from the rapidly growing AI literature,
clearly demonstrates that the literature on AI and trade is very small. This is in part
because trade in AI-enabled services is hard to document. At the core of this paper is the
observation that there is actually a vast amount of data available.

Motivated by the tremendous amount of AI that underlies our smartphone Apps, this

1AI is part of a larger process of automation and is thus part of a larger literature on the impact of
trade and technology on employment, wages and inequality. A recent contribution to this literature with
an international dimension is Stapleton and Webb (2020) who consider the impact of robots on Spanish
multinationals during 1990–2016.
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paper is about international trade in mobile App services as well as its implication for
product variety and creative destruction. The core of our analysis is based on two types
of data. The first is data from a private data provider (SensorTower) on the number of
mobile App downloads by App, by producer country, and by user country for the period
2014–2020. The second data source is Bureau van Dijk’s Orbis Intellectual Property
patent database. We adopt the methodology behind the WIPO PATENTSCOPE Artificial
Intelligence Index to determine whether or not a patent in Orbis is an AI patent. We
review this complex methodology in section 2.3 below. A difficult part of building our
database is merging the App and patent databases. Each App in the SensorTower data
is identified with an ultimate owner. For example, Alphabet owns Google Chrome, Nest
Home, YouTube, Waze and Fitbit. We then match ultimate owners with those in Orbis.
We do the match by hand for the 834 ultimate owners with the most downloads globally.
We show below that the Apps and ultimate owners excluded from our analysis are mostly
small and obscure.

We use information about each ultimate owner’s Apps, AI patents, and assets to
develop a measure of ‘App-deployment’ by year, exporter, and App category. App
categories are defined as follows. The Apple App Store places Apps into 19 App
groups (e.g., social networking, productivity). We further refine each group by 19 2-digit
NACE industries (e.g., mining, finance). We refer to this cross of groups×industries
as ‘App categories.’ There are 292 categories. Aggregating up from Apps and ultimate
owners, we compute AI patent counts by category×exporter×year bins. This is our novel
measure of AI deployment by category×exporter×year bins. (We scale this measure by
the value of assets held by firms in the bin; however, our results are not sensitive to this
scaling.)

We can summarize our database handily by comparing it to COMTRADE, the stan-
dard international trade database used for gravity estimation. We have 53 exporters, 84

importers, seven years (2014–2020), and 292 App categories (App categories are like HS2

or HS4 codes in COMTRADE). Further, many studies of creative destruction and changes
in the number of traded varieties (e.g., Broda and Weinstein, 2006) define varieties as US
HS10 product lines. There are roughly 20,000 HS10 codes/varieties. In contrast, we have
82,850 Apps/varieties.

Our main results flow from regressions of various outcomes on our AI deployment
measure. An obvious concern is the endogeneity of AI deployment. We therefore need
an instrument that captures exogenous shocks to the cost of deployment. Heckscher-
Ohlin theory provides one. A country with deep AI expertise will have cheap and ready
access to the inputs used in deploying AI, which in turn provides a cost advantage
that is especially pronounced in App categories that use these inputs intensively. We
therefore instrument App deployment with the interaction of (1) a country’s AI expertise
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as measured by its AI research output and (2) an App category’s AI intensity. This serves
as an exogenous shifter of the costs of AI deployment.2

We have three main IV findings. All of them exploit within-App-category variation.

1. Bilateral Trade: We estimate a gravity model of App downloads whose dimensions
are importer-exporter dyads, App categories, and years. Using IV, we find that AI
deployment causes a sixfold increase in App downloads.

Beyond the Brynjolfsson et al. study of eBay’s use of machine translation, this is the first
and most systematic evidence of the impact of AI on trade.

2. Varieties: AI deployment doubles the number of bilaterally traded Apps/varieties.

3. Creative Destruction and Welfare:

(a) Entry and Exit: AI deployment causes high levels of entry into and exit out of
the Apps/varieties available in the importer country. That is, it causes creative
destruction.

(b) Welfare: We calculate the welfare implications of entry and exit using Feenstra’s
(1994, 2010) technique. We find that in 2020, welfare from Apps was between
2.5% and 10.6% higher than it would have been under the counterfactual of no
AI deployment. Both are large numbers and the range depends on whether
the elasticity of substitution between Apps is high (5) or low (2). An important
caveat is that in the Feenstra formula we use download shares rather than
expenditure shares.

These three results demonstrate that AI deployment in the mobile App space has already
had tangible effects on trade, product variety, creative destruction and welfare.

One might wonder whether our conclusions are the result of a spurious correlation
between AI patenting and other unobservables. To examine this, we consider non-AI
patents and find that their effects are modest and their inclusion in the analysis does not
affect our results.

Section 1 provides background on mobile Apps and AI. Section 2 describes the
database. Section 3 uses bilateral gravity equations to estimate the impact of AI de-
ployment on trade. Section 4 estimates the impact of AI deployment on the extensive
margin, that is, on the number of Apps/varieties. Section 5 examines the impact of AI
deployment on entry, exit, creative destruction and welfare.

2More specifically, AI intensity is measured as total global AI patents associated with the App category.
AI expertise is measured as the number of papers presented at AI conferences by researchers affiliated with
the country’s universities and other research institutions. Data on AI expertise are from Zhang, Mishra,
Brynjolfsson, Etchemendy, Ganguli, Grosz, Lyons, Manyika, Niebles, Sellitto et al. (2021).
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1. A Brief Overview of Apps and AI

As wireless internet technology and personal portable devices have come down in cost
and risen in accessibility, mobile applications have become a fixture of daily life. In 2020,
the number of mobile internet users hit 4.3 billion globally or 92% of all internet users.3

Each and every day we use mobile applications to read our mail, browse the internet,
post to our social network, shop, bank, take photos, play games, watch videos and more.
The mobile application industry has been fast-growing and will continue to expand at
a significant pace. It currently generates upwards of $700 billion in revenues and is
growing rapidly.4

The biggest two application marketplaces, App Store (for iOS) and Google Play (for
Android), launched in 2008 alongside the release of the first smartphones (iPhone 3G
and T-mobile G1). At the time, these two application marketplaces had about 500 Apps.
Today the App Store has 1.82 billion Apps and Google Play has 2.8 billion Apps.

Turning from Apps to AI, Agrawal, Gans, and Goldfarb (2018) define AI as a collection
of complementary technologies involving algorithms, data, and computing power that
allow predictive programs to automatically improve their performance through experi-
ence. The authors date the commercial introduction of AI to 2012. Since then, some of the
companies that have pushed the frontiers of AI have grown to be among the biggest in
the world. Table 1 lists the eight largest companies in the world by market capitalization.
Column 2 is 2020 market capitalization in millions USD. Every one of these companies
uses AI to improve its services and expand its service offerings. One, albeit limited,
indication of this is the number of AI patents held by these companies. These companies
have a large number of such patents. (We do not have data for Tesla, which is not in our
dataset.)

Two things stand out in the table. For one, with the exception of Apple and Microsoft,
these companies had relatively little presence in the 2011 list of the largest companies
in the world. Indeed, Facebook, Tesla and Alibaba were not even in the top-500. This
illustrates just how dynamic these companies are and, by implication, how dynamic are
the effects of AI likely to be. For another, all of these companies are based either in the
United States or China. This has led Kai-Fu Lee (2018), former CEO of Google China,
to argue that in the future these two countries will produce all AI-enabled services and
the rest of the world will be stuck paying hefty royalties. This potentially has dramatic
implications for the pattern of international service trade flows.

3https://www.statista.com/statistics/617136/digital-population-worldwide
4https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast.
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Table 1: The World’s Largest Companies: AI, Growth, Location and Internationalization
Total Downloads

Worldwide

(millions)

Foreign

Share

(2) (3) (4) (5) (6) (7)

1. Apple $2,254 1,071 3 USA 151 76%

2. Microsoft $1,682 7,088 10 USA 4,023 81%

3. Amazon $1,634 509 77 USA 3,015 69%

4. Alphabet $1,185 5,675 28 USA 16,155 81%

5. Facebook $777 1,243 < 500 USA 21,913 91%

6. Tencent $683 2,930 178 China 7,160 22%

7. Tesla $668 - < 500 USA - -

8. Alibaba $629 1,767 < 500 China 5,065 52%

(1)

Company

Market Cap

($B) AI Patents 2011 Rank Nationality

Notes: Data for 2011 and 2020 are as of December 31. See https://en.wikipedia.org/wiki/List_

of_public_corporations_by_market_capitalization#2020. Market capitalization is in millions USD.
2011 ranks are from the Financial Times FT500 as of March 31, 2011 (http://media.ft.com/cms/
33558890-98d4-11e0-bd66-00144feab49a.pdf). AI patents are computed by the authors as described
below. ‘< 500’ means the company is not on the list. Data on Tesla’s AI patents are not part of our database,
but the company is at the frontier of AI algorithms for autonomous vehicles. Google Play is not available
in China and so Android App downloads in China are imputed in this table. We estimate China’s total
downloads as China’s iOS downloads divided by the market share of Apple devices in China (21.8% in
2020).

Table 1 makes two other points about these companies. Column 6 shows that these
firms all have heavily downloaded Apps, an average of 8 billion per firm. Column 7

shows that these Apps are heavily downloaded internationally. On average, 61% of
these firms’ downloads are done outside of the firms’ home countries. This fact is not
unique to our top-tier companies: The median value of foreign download shares is 64%
in our sample of 834 firms. This is quite remarkable compared to the goods economy
where all but a few of the largest multinationals earn most of their revenue in their home
markets. Thus, App services are much more internationalized than say manufacturing.
Interestingly, the Chinese companies in 1 table are much less internationalized than their
US counterparts.

2. The Data

2.1. Mobile Application Data

Our primary database is the App download data purchased from SensorTower. Sensor-
Tower is the largest and most reliable company providing App-level metadata. The data
track App-level downloads by user country from 2014 to 2020 for the Apps available in
the Apple App Store and Google Play, which are the biggest application marketplaces
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for the iOS and Android operating systems.5 Each App in the Apple App Store and
Google Play has a unique, time-invariant product ID and is accompanied by the name
of the developer, the name of the selling publisher (App terminology for ‘firm’), and the
selling publisher’s website. SensorTower consolidates App IDs to deal with the fact that
an App may have different IDs in different countries e.g., TikTok in the US and Douyin in
China. We use consolidated IDs to avoid overstating the number of Apps. SensorTower
also creates a ‘unified’ firm name that keeps track of the fact that publishers often have
different names in different countries and sometimes have different names across wholly
owned subsidiaries. We use the unified firm name to link with patent and financial data.

The App Store and Google Play place Apps into groups.6 These are displayed in
table 2 along with the top-3 Apps in the group. For each App, the table also shows the
company and its headquarters country. Most of the top Apps are owned by large digital
platforms located in the US and China.

One obvious issue with groups is that they are not fine enough to be useful. For
example, the ‘Utilities’ group includes Google’s Chrome and Toyota’s DV, an application
for real-time video display. To deal with this we interact the 19 App groups with the 19

2-digit NACE industries to define 292 App categories at the level of App group × NACE
industry.7

There are billions of Apps in the App Store and Google Play, many of which have no
downloads or just one or two. It is not computationally feasible to deal with terabytes
of such data. We therefore initially restrict the sample by selecting the 1,000 most
downloaded unified firms. Over our 2014–2020 sample period these unified firms had
223 billion downloads of 82,850 Apps.

We are using download data whereas revenue data would be better. To show that
the two are correlated, we divide our table 3 subsample into two bins, one for Apps
with revenues and one for Apps without revenues. In figure 1 we plot the kernels
of log downloads separately for the two bins. The kernel for revenue-generating App
downloads is substantially right-shifted relative to the kernel for free App downloads.
This illustrates that more-downloaded Apps tend to be revenue-generating Apps.

5This database does not cover downloads from the remaining application marketplaces. The largest of
these are Huawei App Gallery, Xiaomi App Store, Amazon App Store and Samsung Galaxy Store. Nor do
we track downloads done directly from web pages.

6The two marketplaces define groups slightly differently, but it is easy to convert the Google Play groups
into Apple Store groups.

7Some of the 19 × 19 potential App categories have no Apps, leaving us with 292 App categories.
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Table 2: App Categories

Group AI Patents
Single-category

AI Patents
Top 3 Apps by Download in 2020

Games 5,560 1,270
Garena Free Fire (Garena, Singapore), PUBG MOBILE (PUBG, Singapore), Subway

Surfers (Sybo Game, Denmark)

Photo and Video 4,357 295 Instagram (Facebook, US), Snapchat (Snap, US), Likee (Bigo, US)

Utilities 14,193 632
UC-broswer (Alibaba, China) ,Truecaller (True Software, Sweden), Chrome (Google,

US)

Social Networking 1,448 16 Whatsapp (Facebook, US), Facebook (Facebook, US), Messenger (Facebook, US)

Entertainment 6,417 307 TikTok (ByteDance, China), Netflix (Netflix, US), Youtube (Google, US)

Shopping 3,442 412 Amazon (Amazon, US), Wish (ContextLogic, US), Shopee (Shopee, Singapore)

Music 1,601 528 Spotify (Spotify, Sweden), Youtube Music (Google, US), Shazam (Apple, US)

Finance 11,791 2,608
Google Pay (Google, US), Paypal (Paypal, US), Caixa Tem (Caixa Econômica Federal,

Brazil)

Education 13 12
Google Classroom (Google, US), YouTube Kids (Google, US), Duolingo (Duolingo,

US)

Productivity 7,621 59
Shareit (SHAREit, China), Gmail (Google, US), Microsoft Word (Microsoft), Word

(Microsoft, US)

Business 3,225 2,861 Zoom (Zoom, US), Google Meet (Google, US), Microsoft Team (Microsoft, US)

Lifestyle 20,133 2,871 Pinterest (Pinterest, US), Tinder (IAC, US), Airtel Thanks (Bharti Airtel, Indian)

Sports, Health and Fitness 1,608 1,569
Aarogya Setu (NIC, India), HomeWorkout (ABISHKKING, Singapore), Mi Fit

(Xiaomi, China)

Books, News and References 183 175 Wattpad (Wattpad, Canada), Amazon Kindle (Amazon, US), Audible (Audible, US)

Travel 1,892 160
Uber (Uber, US), Google Earth (Google, US), Booking.com (Booking.com,

Netherlands)

Food and Drink 52 22
McDonald's (McDonald's, US), Uber Eat (Uber, US), Domino's Pizza (Domino's Pizza,

US)

Navigation 6,991 4,041 Google Map (Google, US), Waze (Google, US), Gaode Map (Alibaba, China)

Weather 12,280 10,747
Whether&Radio (WetterOnline, German), The Weather Channel (IBM, US), Whether

Forcast (Smart-Pro, Indian)

Medical 303 251
NHS COVID-19(GOV, UK), COCOA(GOV, Japan), Pregnancy + (Health&Parenting,

UK)

Total 103,110 28,836

Notes: Groups are ordered by downloads with the most downloaded group on top. Some firms have patents
in multiple categories. Since we cannot assign all patents to groups (see below) and since we want to avoid
double counting patents in the “AI Patents” column, we assign all of a firm’s patents to its largest (most
downloaded) group. We do this for this table only.
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Figure 1: Distributions of log Downloads: Free vs. For-Pay Apps

Notes: The figure displays kernels of the distribution of log downloads. The data are the ‘subsample’
described in table 3. The red and blue lines are for Apps with and without revenues, respectively.

2.2. Linkage to Patent and Financial Data

Our core analysis is about the impact of AI on a variety of trade and welfare outcomes.
We will be measuring AI using patent data. We use SensorTower’s unified firm names
to link with the Bureau Van Dijk Orbis Intellectual Property database. This provides us
with patent and financial data. We were unable to reliably match firm names across the
two data sets using machine learning tools. We therefore select the largest 1,000 unified
firms in the world (as measured by global downloads) and then find by hand their global
ultimate owners in the Orbis database. We match 834 of the 1,000 firms. Unlike many
studies, there is no linkage error here.8

To investigate the representativeness of our sample we also looked at the 100,000

unified firms with the most downloads – these are not matched to patent and financial
data – and call this the ‘full sample.’ Table 3 displays summary statistics for the full
sample and our subsample.9 Two things stand out. First, our sample is skewed towards
unified firms with large downloads (see the 90th percentile column). Second, both
samples have 10th percentile downloads that equal 2 so that our sample differs from

8We initially used the Python-based FuzzyWuzzy matching algorithm. However, even after extensive
pre-cleaning of firm names, a visual inspection of the matching results showed that it was of insufficient
accuracy for our comfort. We therefore verify each match by hand. This verification is what constrains us
to working with 834 ultimate owners.

9Apps that have zero downloads are excluded from this table and from all of our analysis. We re-
introduce zeros whenever we do PPML.
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Table 3: Summary Statistics of Downloads: Full Sample and Subsample

Percentiles
Sample N Mean Std. Dev. 10th 50th 90th

Full Sample 78,042,301 7,819 231,443 2 35 3,514

Subsample 4,733,652 47,204 841,535 2 107 22,496

Notes: This table reports statistics on the number of Apps and their downloads. An observation
refers to a unique App×importer×year triplet where importer is the country downloading the
App. N is the number of observations. The columns report moments of the distribution of
downloads across App-importer-year observations.

the full sample primarily in dropping Apps with extremely small download numbers.
This vividly illustrates that our sample selection criteria do not drop any major apps

or firms. One would be hard pressed to recognize any of the Apps excluded from our
analysis. The highest-ranked App excluded from our data is slither.io, an obscure action
game from Kooapps. The highest-ranked firm not in our data is SayGames, an obscure
game startup from Belarus whose most popular App is Twist Hit!. In short, we do not
think that our subsample excludes any important Apps or that conclusions drawn from
it are biased for our set of questions.

2.3. AI Patent Data

To estimate the impact of AI on trade and welfare we need to be precise about what
we mean by AI and how we measure it. We use AI-related patents as the basis of our
measure. From the Orbis data we know the 10,144,089 patents assigned to our 834 firms.
We categorize each of these patents as AI or non-AI patents following the WIPO (2018,
2019) methodology. For each patent we check if it meets one of three criteria.

1. The main and/or minor CPC codes are on a list of CPC codes that WIPO uses to
identify specific AI technologies. For example, CPC subclass G10L-015 is speech
recognition.

2. The title and/or abstract contains a phrase that is on a keyword list that WIPO uses
to identify specific AI technologies. The list includes phrases such as ‘machine
learning’ and ‘neural network’ along with extensions of these phrases such as
‘neural networks’ and ‘neural-network’.

3. Some patents are about AI, but not about a specific AI technology. Here WIPO
combines a CPC code with a keyword to identify an AI patent. For example, GTL-
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Table 4: Examples for AI Patents

Current 

Onwner Patent Number

CPC 

Classification 

Criterion Specific AI Technology Keywords Portion of Abstract

Method 1: Patent Class

Facebook US20190012697A1 G06Q30/0242 G06Q - Data processing 

sustems; 30 - Commerce; 

0242 - Determination of 

advertisement effectiveness

N/A A client relationship management (CRM) application can 

generate a ranked list of client engagement tools by 

computing a rank score for available client engagement tools 

and determining an order among the available client 

engagement tools based on the rank scores. The CRM 

application can use one or more trained prediction models 

and business rules to compute a prediction for success for 

client engagement tools. 

Method 2: Keywords

Microsoft EP3424044A1 N/A N/A deep learning The technology described herein uses a modular model to 

process speech. A deep learning based acoustic model 

comprises a stack of different types of neural network 

layers. 

Method 3: Patent Class plus Keywords

Microsoft KR1020130110565A G06Q10/109 G06N - Computer sustems

based on specific 

computational models; 10 -

Administration; 

Management; 109 - Time 

management

predictive models The present invention relates to a system and methodology 

to facilitate collaboration and communications between 

entities such as between automated applications, parties to a 

communication and/or combinations thereof. The systems 

and methods of the present invention include a service that 

supports collaboration and communication by learning 

predictive models that provide forecasts of one or more 

aspects of a users' presence and availability. 

013 is speech synthesis (text to speech), which may or may not involve AI. However,
if a patent in CPC subclass GTL-013 has a title or abstract with keywords such as
‘backpropagation’ or ‘self learning’ then WIPO identifies it as an AI patent.

Table 4 gives examples of AI patents identified through each of the above three methods.
We have duplicated the WIPO methodology with one exception. Their keyword search
is over the English title, English abstract, English claims and English object of invention.
Our keyword search is over the English title and English abstract.

Our procedure identifies 103,110 patents as AI patents and the remaining 10,038,168

patents as non-AI patents. Column 2 of table 2 above displays the number of AI patents
by App group. Among the 834 firms, 309 firms own at least one AI patent. Finally, our
AI patents grow rapidly from 1990 to 2020.

When we speak of a firm’s AI patents in year t we will mean its cumulative AI patent
applications from 1990 to year t. That is, our AI patents are a stock of patent applications.
Using applications rather than grants avoids the worst of the right-truncation problem
associated with delays in granting patents.
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2.4. AI Deployment in Apps

We require a measure of the AI deployed in each App category. If each firm’s Apps were
in a single App category this would be an easy matter of counting the AI patents of all
firms producing Apps in the category. Unfortunately, a large number of firms (ultimate
owners) have Apps in multiple categories. For example, the ultimate owner Alphabet
controls Google, Nest, YouTube, Waze and Fitbit, all of which operate in different App
categories. We therefore purify our measure of the AI deployed in App categories by
adapting to our setting the approach of De Loecker, Goldberg, Khandelwal, and Pavcnik
(2016). In estimating production-function parameters they only include single-product
firms. We define a single-category firm as a firm whose primary category accounts for
over 85% of its total downloads.10 Column 3 of table 2 above shows the AI patents owned
by single-category firms. There are 28,836 such patents and they account for a substantial
28% of all AI patents in our sample. There are 549 single-category firms (including some
with zero patents) among the 834 firms in our sample. Together they account for 42% of
all downloads in our sample.

We construct our measure of the AI deployment of an App category only from the
patents of single-category firms. Let Patentcxt and Kcxt be AI patent application stocks
and total assets summed across all single-category firms in country x in year t that
produce Apps only in category c. AIcxt = Patentcxt/Kcxt will be our key measure of
AI deployment.11

It is of independent interest to know about the AI patents of multi-category firms.
In every specification reported below we have also examined the same specification but
with the addition of a variable that captures the AI deployment of multi-category firms.
To this end, we define multipleAIcxt as the total AI patent application stocks over total
assets for multi-category firms from country x with Apps in category c in year t.12 To
control for the general effects of patenting, we also construct nonAIcxt as the total non-AI
patent application stocks over total assets for all firms in category c, country x and year
t. In our regressions, adding these two variables never affects the magnitude or statistical
significance of the coefficients on our AI deployment variable AIcxt.

10Using 95%, 90% or 80% as the threshold does not affect our main results.
11We are grateful to an anonymous referee for suggesting that we scale patents to control for the size of

firms in the cxt bin. We choose assets because, relative to other variables in Orbis that we could use for
scaling such as employment, assets have few missing values. An earlier version of this paper which did
not scale reported similar results.

12In constructing multipleAIcxt, a multi-category firm’s AI patents are given to each of its categories
e.g., if a firm has 10 patents and operates in two categories we do not know which patent applies to which
category (indeed, some AI patents may apply to both) so we assume that the firm has 10 patents in each
category.
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Table 5: Summary Statistics

N mean sd

App Downloads:
Total downloads: ln(ycmxt) 469,879 6.45 3.95
Number of Apps: ln(Ncmxt) 469,879 1.05 1.19
Average downloads: ln(ȳcmxt) 469,879 5.40

Patent Variables:
AI Patents: ln(1 +AIcxt) 469,879 0.13 0.60
AI Multiple: ln(1 +multipleAIcxt) 469,879 0.60 0.90
Non-AI patents: ln(1 + nonAIcxt) 469,879 2.96 2.78

Notes: The table presents summary statistics of variables used in the
gravity equations of Section 3. Each of the 469,879 observations is
uniquely identified by an App category c, a downloading user coun-
try or importer m, a producing country or exporter x, and a year t =
2014,...,2020. To be included, the cmxt observation must have strictly
positive downloads.

2.5. Summary Statistics

Table 5 reports summary statistics of our data. Each observation is uniquely identified
by an App category (292), an exporter (53), an importer (84) and a year (2014–2020). We
have 469,879 observations with positive levels of downloads. There are several points
to note about the sample size. First, we do not work at the firm level and this requires
an explanation. We do not know whether any given App uses AI so we cannot work
at the level of a firm’s Apps. What we do know is the extent to which AI is deployed
in an App category in an exporter country. So we must aggregate up from firms to
App-categories and exporters. Second, we exclude zero downloads, but return to this
below using PPML. Third, Google Play is banned in China so that we only have Apple
App Store data for Chinese downloads. We thus exclude observations for which China is
the importer. Note however that we keep China as an exporter and that including China
as an importer makes no difference to our results.

Table 5 reports the dimensions of each variable. These are App category c, importer
m, exporter x, and year t. We winsorize the top 1% of observations for the download
and patent variables. From the first line of the table, the mean downloads of a cmxt

observation is 633 (= e6.45), the mean number of Apps is 2.85 (= e1.05), and the mean
downloads per App is 221 (= e5.40). The latter illustrates that when we report results
within App category, the analysis is at a very fine level.
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3. AI and Trade: Bilateral Gravity

We estimate the following gravity equation:

ln(ycmxt) = β ln(1 +AIcxt) + θXcmxt + αmxt + αcm + εcmxt . (1)

In this regression ycmxt is downloads by consumers in country m of Apps in category
c produced by firms headquartered in country x. We are interested in international
trade in this section so we exclude domestic observations i.e., observations for which the
importer is the exporter. Including these observations does not affect our conclusions.
Since we only include non-zero trade flows, ycmxt ≥ 1. Our key independent variable is
ln(1 + AIcxt) and our hypothesis is that AI deployment increases trade (β > 0). Xcmxt

is a set of gravity variables. αmxt and αcm are the fixed effects. The only other fixed
effect that we can add while still identifying β is αcx. Adding these weakens our results
because ln(1 + AIcxt) has relatively limited variation across time. Aside from this, our
results are not at all sensitive to the choice of fixed effects.

Table 6 reports the OLS results. In column 1, we examine whether standard gravity
covariates from CEPII behave the same way for App trade as they do for goods trade.13

To this end we consider the full sample, that is, before restricting it by linking to Orbis
data. (See section 2.2.) We include an importer fixed effect, an exporter fixed effect, a
year fixed effect and a category fixed effect. Log distance between m and x matters, but
is much smaller than the median estimate of -0.85 reported in Head and Mayer’s (2014)
meta-analysis of gravity studies. That distance plays less of a role in digital trade will
come as no surprise. The coefficient on contiguity is a little smaller than in Head and
Mayer and the coefficient on common language is just a little larger. We also include
dummies for whether m and x were ever in a colonial relationship and whether they
are in the same regional trade agreement. These covariates are less significant and much
smaller than in Head and Mayer. The importer GDP and exporter GDP coefficients are
very small, but this is not surprising given that they do not vary much over our period
2014-2020 and so are largely soaked up by the fixed effects. We do not include the
populations of either m or x because these are also largely soaked up by fixed effects.

In column 2, we use our subsample matched with patent and financial data to estimate
equation 1. The coefficients on the gravity covariates do not change, which provides
evidence that our sample is representative in dimensions familiar to trade economists.
Crucially, the estimate of β is positive and significant. In OLS, AI deployment is corre-
lated with downloading.

13See Head and Mayer (2014) and Head, Mayer, and Ries (2010). Since the CEPII data end in 2019 we
linearly extrapolate the time-varying variables by one year to 2020.
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Table 6: Gravity Equation: Independent Variable is ln(ycmxt)
OLS

(1) (2) (3) (4) (5) (6) (7)

ln(1 + AI cxt ) 1.21*** 1.33*** 1.20*** 1.13*** 1.04*** 1.04***

(0.194) (0.225) (0.203) (0.210) (0.200) (0.197)

ln(1 + multipleAI cxt ) 1.02*** 0.80*** 0.80***

(0.239) (0.252) (0.246)

ln(1 + nonAI cxt ) 0.14*** 0.14***

(0.042) (0.041)

ln (Distancemx ) -0.39*** -0.37*** -0.23***

(0.036) (0.058) (0.038)

Contiguousmx 0.38*** 0.35*** 0.31***

(0.073) (0.105) (0.106)

Common Languagemx 0.76*** 0.53*** 0.39***

(0.106) (0.097) (0.105)

Colonial Dependencemx 0.08 0.39*** 0.31***

(0.138) (0.122) (0.115)

Regional Trade Agreementmxt 0.11** 0.03 -0.10

(0.054) (0.067) (0.066)

ln (GDPxt ) 0.04 0.18 -0.01

(0.336) (0.335) (0.302)

ln (GDPmt ) -0.11 -0.01 -0.06

(0.630) (0.321) (0.340)

Social Connectedness Indexmx 0.18***

(0.055)

Constant 12.43 5.53 8.29 6.29*** 5.69*** 5.42*** 5.43***

(13.964) (9.253) (9.021) (0.022) (0.144) (0.168) (0.168)

Observations 774,414 468,679 399,873 465,955 465,955 465,955 464,567

Fixed effects t, m, x, c t, m, x, c t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

R
2 

0.559 0.386 0.396 0.429 0.448 0.451 0.486

Within R
2 

0.033 0.040 0.044 0.027 0.059 0.063 0.065

Notes: Each observation is an App category (c), a downloading country or importer (m), an App producing
country or exporter (x) and a year (t = 2014, . . . ,2020). The dependent variable is the log of the number of
downloads, ln(ycmxt). In column 1 we use the full sample covering all Apps (we do not restrict the sample
to firms that can be linked to Orbis). In columns 2–7, we use our subsample of 834 firms to construct a panel
of 292 App categories, 53 exporters, 84 importers, and 7 years. In the fixed effect rows, t-m-x and m-c refer
to year-importer-exporter and importer-category fixed effects, respectively. The number of observations
is degrees-of-freedom corrected as calculated by Stata’s reghdfe command and so declines as more fixed
effects are added. Standard errors are based on two-way clustering by importer and by exporter. ***, ** and
* indicate statistical significance at the 1%, 5% and 10% levels, respectively.

15



In column 3 we include the Bailey et al. (2020) index of pairwise social connectedness.
Their index is based on an anonymized snapshot of all friendship links on Facebook. It
is the log of the relative probability of a friendship link between a Facebook user in m

and a Facebook user in x. The coefficient on social connectedness of 0.18 is significant
at the 1% level though smaller than in Bailey et al.. However, when we use the full
sample of column 1 the coefficient rises to 0.25, which is close to what they report.
More importantly, the introduction of social connectedness does not affect the estimated
coefficient on our key AIcxt variable and indicates that what we are finding is very
different from the channel identified by Bailey et al..14

In columns 4, we introduce year-importer-exporter and category fixed effects. It makes
little difference to our estimates of the coefficient on ln(1 +AIcxt).

In columns 5–7 of table 6 we add two additional covariates, ln(1 +multipleAIcxt) and
ln(1 + nonAIcxt). In column 5, AI deployment for multiple category firms is significant.
More importantly, its inclusion does not affect the coefficient on our key AI variable
ln(1+AIcxt). In column 6, non-AI patents ln(1+ nonAIcxt) is significant, but as we shall
see its economic magnitude is half that of ln(1 + AIcxt). If these patents are correlated
with AI patents then it is possible that our AI results are just proxying for the effects
of patenting in general; however, inclusion of ln(1 + nonAIcxt) has little effect on the
coefficient on our key AI deployment variable.

In column 7, we introduce importer-category fixed effects. The coefficient on ln(1 +

AIcxt) does not change.

3.1. IV

Our OLS results potentially suffer from the endogeneity of AI deployment. There are
two obvious sources of bias. The first is reverse causality and/or omitted variables: firms
with high levels of downloads may have other characteristics such as size that justify
investing in AI. See Lileeva and Trefler (2010) for a discussion. In this case we expect
IV to be smaller than OLS. The second is heterogeneous impacts of the type addressed
by Imbens and Angrist’s (1994) LATE estimator. We expect that the returns to AI are
higher for firms that invest then for firms that do not. If so, IV will overestimate the
mean impact of AI deployment (Card, 2001, eq. 11) and, by implication, IV may be larger
than OLS.

An ideal instrument is an exogenous cost shock to the deployment of AI i.e., a
shock that exogenously drives AI deployment. The comparative advantage logic of

14The coefficient is 1.21 in column 2 and 1.33 in column 3. However, this difference is entirely due to the
difference in samples rather than to the inclusion of social connectedness. If we redo column 2 with the
smaller sample of column 3, the coefficient in column 2 rises to exactly 1.33.
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Heckscher-Ohlin (HO) provides such a shock. The cost of AI deployment by produc-
ers of product c in country x is low if (1) the country is abundant in AI and (2) the
product is AI intensive. We measure a country’s AI abundance using the number of AI
conference papers presented by scholars from exporter country x in year t. Denote this
by ConfPaperxt. This is a commonly used measure of a country’s AI capacity. See for
example Goldfarb and Trefler (2019a). Data are from Zhang et al. (2021). We measure
the AI intensity of a product or App category as the sum of all single-category-firm AI
patents for firms in category c divided by the sum of all single-category-firm assets for
firms in category c. This is calculated at the global level, meaning we sum across firms
in all countries. Further, it is calculated separately for each year. Denote this by AIct

and note that as in the HO literature, it is a global variable rather than an exporter-level
variable. Our instrument for ln(1 +AIcxt) is then ln(1 +AIct) · (ConfPaperxt). Note the
interaction of country (x) and product (c) characteristics, which is the fundamental core
of all comparative advantage theories. More specifically, our first stage will look a lot
like the test of HO comparative advantage in Romalis (2004).

Table 7 reports our IV estimates. Panel B reports the first-stage, that is, a regression of
our endogenous variable ln(1+AIcxt) on our instrument ln(1+AIct) · ln(ConfPaperxt).
Only the coefficients on the instrument are reported. These coefficients are all positive
and statistically significant. Further, the Kleibergen-Paap weak-instruments F -statistic
hovers around the Stock-Yogo significance threshold of 20.

The IV estimates of the coefficient on AI deployment appear in Panel A of table
7. Columns 1–6 correspond to columns 2–7 of table 6, respectively. The remaining
regressors are included but not reported. The IV results are somewhat bigger than
the OLS results, which suggests that heterogenous impacts are more important than
reverse causality and/or omitted variables. While the IV results are larger than OLS, the
difference is small relative to the IV standard error.

3.2. Economic Magnitudes when Patents are Right Skewed

In this section we explore an alternative specification that makes it easier to interpret the
size of the impact of AI deployment on exports of Apps. The specification also addresses
a major concern that arises in the patent literature. A small number of firms hold a large
fraction of all patents and of all patent citations, leading to a concern that the impacts of
AI deployment are significant only for a small number of large firms and insignificant
for all other firms. See Aghion, Bergeaud, Lequien, and Melitz (2018) and Lim, Trefler,
and Yu (2019) for a discussion. In this section we investigate an alternative specification

17



Table 7: Gravity Equation: Instrumental Variables
Panel A. IV

(1) (2) (3) (4) (5) (6)

ln(1 + AI cxt ) 1.75*** 1.47*** 1.70*** 1.46*** 1.54*** 1.56***

(0.415) (0.332) (0.427) (0.433) (0.460) (0.474)

ln(1 + multipleAI cxt ) 1.01*** 0.82*** 0.82***

(0.244) (0.235) (0.230)

ln(1 + nonAI cxt ) 0.11*** 0.11***

(0.040) (0.040)

Observations 468,679 399,873 465,955 465,955 465,955 464,567

Gravity covariates yes yes no no no no

Social Connectedness no yes no no no no

Fixed effects t, m, x, c t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

Panel B. First Stage

(1) (2) (3) (4) (5) (6)

Instrument 0.613*** 0.720*** 0.602*** 0.598*** 0.622*** 0.612***

(0.138) (0.0835) (0.143) (0.142) (0.135) (0.133)

K-P F -value 19.78 74.45 17.65 17.71 21.16 21.33

Fixed effects t, m, x, c t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

Notes: This table reports the IV counterparts to the OLS results of table 6. Columns 1–6 correspond
respectively to columns 2–7 of table 6. We suppress the estimates of the gravity and social connectedness
coefficients. Panel A displays the IV estimates and panel B displays the first stage. In the first stage
the dependent variable is ln(1 + AIcxt) and the independent variable is the Heckscher-Ohlin instrument
ln(1 +AIct) · ConfPaperxt. All other first-stage coefficients are suppressed. Standard errors are based on
two-way clustering by importer and by exporter. ***, ** and * indicate statistical significance at the 1%, 5%
and 10% levels, respectively. See the notes to table 6 for details.
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Table 8: Gravity Equation: Nonparametrics and Magnitudes
Panel A. OLS

(1) (2) (3) (4) (5)

ln(1 + AI cxt )

First positive tercile 2.12*** 2.14*** 2.14*** 1.98*** 1.97***

(0.289) (0.299) (0.306) (0.271) (0.275)

Second positive tercile 1.81*** 1.81*** 1.94*** 1.69*** 1.67***

(0.237) (0.237) (0.255) (0.259) (0.253)

Third positive tercile 1.63*** 1.61*** 1.70*** 1.37*** 1.37***

(0.335) (0.346) (0.301) (0.304) (0.303)

ln(1 + multipleAI cxt )

First positive tercile 0.37 0.19 0.20

(0.331) (0.345) (0.334)

Second positive tercile 0.97*** 0.62** 0.63**

(0.296) (0.301) (0.288)

Third positive tercile 1.99*** 1.39*** 1.40***

(0.436) (0.457) (0.441)

ln(1 + nonAI cxt )

First positive tercile -0.14 -0.14

(0.309) (0.310)

Second positive tercile 0.16 0.15

(0.212) (0.218)

Third positive tercile 0.84*** 0.83***

(0.288) (0.283)

Observations 468,679 465,955 465,955 465,955 464,567

Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

R
2 

0.384 0.428 0.442 0.446 0.482

Within R
2 

0.037 0.025 0.048 0.054 0.057

Panel B. IV

(1) (2) (3) (4) (5)

ln(1 + AI cxt )

First positive tercile 2.13*** 2.09*** 1.97*** 1.86*** 1.87***

(0.301) (0.312) (0.299) (0.267) (0.274)

Second positive tercile 2.27*** 2.21*** 2.15*** 2.05*** 2.08***

(0.352) (0.350) (0.374) (0.357) (0.362)

Third positive tercile 1.91*** 1.84*** 1.87*** 1.71*** 1.75***

(0.197) (0.198) (0.185) (0.162) (0.171)

K-P F- value 40.91 39.20 39.57 42.49 40.99

Notes: The dependent variable is the log number of downloads (ln(ycmxt)). An observation is
uniquely identified by the App category (c), the exporter (x), the importer (m), and the year
(t). We break AI deployment AIcxt into four dummies. The omitted dummy is for observations
with AIcxt = 0. The remaining three dummies are for the terciles of the distribution of AIcxt
conditional on AIcxt > 0. Likewise for ln(1 +multipleAIcxt) and ln(1 + nonAIcxt). Note that
the specification in column 1 includes all the same gravity equation regressors as appear in
column 1 of table 6, but these are not reported. The first-stage results appear in table A1. See the
notes to table 6 for details.
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that is more robust to the right skew of the patent distribution and that yields easily
interpreted coefficient magnitudes.

We divide AIcxt into four groups. The first is all observations with AIcxt = 0. We
then take the remaining observations and divide them into terciles of the distribution of
strictly positive AIcxt. Table 8 reports the results. Consider column 1 of Panel A which
reports our OLS results for each of the three tercile dummies of AIcxt. The omitted
category is observations with AIcxt = 0. There is no evidence that impacts vary across
terciles: The F -statistic for the test of equality of the three tercile coefficients is tiny across
all specifications (F ≈ 1.2, p ≈ 0.30). This is useful because it shows that our results are
not driven by the upper end of the distribution of patents; rather, our estimates are
homogeneous across the distribution of patents.

Turning to coefficient magnitudes, consider two exporters of category-c Apps, one
exporter having AIcxt = 0 and the other having AIcxt in the first tercile. From column 1,
the latter has downloads that are 2.12 log points higher or 8.3 times higher (8.3 = e2.12).

Adding additional covariates, as in columns 3–5, does not alter this conclusion. In
columns 3–4 we add terciles of multiple-category AI and non-AI patents. For non-AI
patents we see that the results are driven entirely by the high-patenting observations, as
we have come to expect from the patent literature. It is reassuring to see this for non-AI
patents where we expect them, but not for our AI deployment measure. Also note that
the three non-AI tercile coefficients are jointly insignificant at the 1% level in columns 4–5

(F ≈ 4, p ≈ 0.012). In columns 2 and 5 we add finer fixed effects and this has no impact.
IV results appear in panel B of table 8. There are now three endogenous variables (the

terciles of ln(1 + AIcxt) so that we must be very cautious in lending too much weight
to the results. We create three instruments by interacting our single instrument ln(1 +

AIct) · ConfPaperxt with tercile dummies. The first-stage results are reported in table
A1 and are very strong. This is apparent from the K-P weak instruments F -statistic of
approximately 40 reported at the bottom of panel B. It is well above the threshold of
20. What is remarkable about the IV results is that they are almost identical to the OLS
results. This raises our confidence in the causal interpretation of our results.

Looking at the IV coefficients on the tercile dummies for ln(1 + AIcxt), the smallest
value is 1.71. We use this as a conservative guide to our headline number: AI deployment
leads to a sixfold increase in downloads (5.52 = e1.71). This is a very large effect.

4. Product Variety: The Extensive Margin of Trade

We now examine the number of varieties traded in a bilateral relationship. This is called
the extensive margin of trade. Let Ncmxt be the number of category-c Apps from country
x available to consumers in country m in year t. We view each App within an App
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category as a variety. For example, Chrome (Google), Baidu (Baidu), Internet Explorer
(Microsoft), and Safari (Apple) are varieties of browsers. Following Eaton, Kortum, and
Kramarz (2011) we decompose total downloads into average downloads per App times
the number of Apps. Mathematically,

ln ycmxt = ln ycmxt + lnNcmxt where ycmxt ≡ ycmxt/Ncmxt . (2)

ln ycmxt corresponds to the intensive margin and lnNcmxt corresponds to the extensive
margin or number of varieties. We estimate

ln(Ncmxt) = β ln(1 +AIcxt) + αmxt + αcm + εcmxt .

That is, we estimate the same equations as before, but with a different dependent
variable.

Table 9 reports the results. From panel A, AI deployment is associated with greater
numbers of bilaterally traded Apps and this result is robust across specifications. The
coefficient is about half the size of the coefficient when then dependent variable is total
downloads. Panel B reports IV results. These are larger than the OLS results, but not
statistically so.

When looking at the extensive margin, the issue of zero trade flows looms large. To
investigate, instead of omitting observations with zero downloads, we change the depen-
dent variable from lnNcmxt to Ncmxt and keep zero-download observations (Ncmxt = 0).
This doubles the number of observations. We then use PPML estimation. The results
appear in panel C of table 9 and are very similar to the OLS results, indeed identical in
columns 4–5.

To get a clearer sense of magnitudes and to ensure that our specifications are robust
to firms with very large numbers of patents, we return to our analysis of terciles. In table
10 we repeat table 8 with just a single change: the dependent variable is now the log of
the number of varieties lnNcmxt. There is evidence of modest coefficient heterogeneity
across terciles, but otherwise the conclusions here about the impact of AI deployment
on varieties are very similar to those about impacts on downloads. Since the IV and
OLS results are very similar, we do not report the former. Averaging across the tercile
coefficients in column 5 we get 0.81, which drives our headline number that AI deployment
doubles the number of imported varieties (2.25 = e0.81).15

15For the intensive margin (ln ȳcmxt), these results are very similar to the results for ln(Ncmt) that we
reported in table 9. Restated, the intensive-margin effects are very significant and half the size of the total
effects. This is true for OLS, IV and PPML. We do not report these results.
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Table 9: Product Variety and the Extensive Margin

Panel A. OLS ln( N cmxt )

(1) (2) (3) (4) (5)

ln(1 + AI cxt ) 0.49*** 0.50*** 0.47*** 0.47*** 0.47***

(0.064) (0.065) (0.067) (0.069) (0.069)

ln(1 + multipleAI cxt ) 0.37*** 0.35*** 0.35***

(0.090) (0.098) (0.097)

ln(1 + nonAI cxt ) 0.01 0.01

(0.019) (0.019)

Observations 468,679 465,955 465,955 465,955 464,567

Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

R
2 

0.461 0.478 0.504 0.504 0.525

Within R
2

0.056 0.053 0.100 0.100 0.103

(1) (3) (4) (5) (6)

ln(1 + AI cxt ) 0.69*** 0.70*** 0.62*** 0.62*** 0.63***

(0.108) (0.119) (0.111) (0.108) (0.113)

ln(1 + multipleAI cxt ) 0.36*** 0.35*** 0.36***

(0.089) (0.093) (0.091)

ln(1 + nonAI cxt ) 0.00 0.00

(0.018) (0.018)

Observations 468,679 465,955 465,955 465,955 464,567

Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

Panel C. PPML N cmxt 

(1) (2) (3) (4) (5)

ln(1 + AI cxt ) 0.53*** 0.55*** 0.51*** 0.47*** 0.47***

(0.132) (0.137) (0.103) (0.095) (0.095)

ln(1 + multipleAI cxt ) 0.77*** 0.59*** 0.59***

(0.173) (0.173) (0.173)

ln(1 + nonAI cxt ) 0.13* 0.13*

(0.070) (0.069)

Observations 958,974 944,599 944,599 944,599 914,186

Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

Panel B. IV ln( N cmxt )

Notes: Each observation is an App category (c), a downloading country or importer (m),
an App-producing country or exporter (x) and a year (t = 2014, . . . ,2020). We use a panel
of 292 App categories, 53 exporters, 84 importers, and 7 years. The dependent variable
is the number of imported Apps in category c: ln(Ncmxt) in panel A (OLS), ln(Ncmxt)
in panel B (IV), and Ncmxt in panel C (PPML). For PPML we keep observations with
Ncmxt = 0. For IV, the first stage already appears in panel B of table 7 and so is not
repeated here. The specification in column 1 includes the same gravity regressors as in
column 1 of table 6, but these are not reported. In the fixed effect rows, t-m-x and m-c
refer to year-importer-exporter and importer-category fixed effects, respectively. Standard
errors are based on two-way clustering by importer and by exporter. ***, ** and * indicates
statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 10: Extensive Margin ln(Ncmxt): Nonparametric and Magnitudes

OLS

(1) (2) (3) (4) (5)

ln(1 + AI cxt )

First positive tercile 0.95*** 0.96*** 0.95*** 0.91*** 0.91***

(0.082) (0.081) (0.073) (0.074) (0.074)

Second positive tercile 0.94*** 0.95*** 1.00*** 0.95*** 0.95***

(0.129) (0.131) (0.142) (0.151) (0.149)

Third positive tercile 0.60*** 0.61*** 0.64*** 0.56*** 0.58***

(0.116) (0.122) (0.109) (0.123) (0.121)

ln(1 + multipleAI cxt )

First positive tercile 0.10 0.06 0.07

(0.115) (0.128) (0.126)

Second positive tercile 0.31*** 0.23** 0.24**

(0.099) (0.107) (0.104)

Third positive tercile 0.81*** 0.67*** 0.68***

(0.151) (0.169) (0.163)

ln(1 + nonAI cxt )

First positive tercile 0.02 0.02

(0.118) (0.121)

Second positive tercile 0.04 0.03

(0.116) (0.118)

Third positive tercile 0.22* 0.22*

(0.124) (0.124)

Observations 468,679 465,955 465,955 465,955 464,567

Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

R
2 

0.465 0.482 0.508 0.510 0.531

Within R
2 

0.063 0.061 0.107 0.111 0.115

Notes: This table is identical to Panel A of table 9. The only difference is in the treatment of the patent
variables. We break AIcxt into four dummies. The omitted dummy is for observations with AIcxt = 0. The
remaining three dummies are for the terciles of the distribution of AIcxt conditional on AIcxt > 0. Likewise
for the multi-category patents and the non-AI patents. The specification in column 1 includes all the same
gravity equation regressors as in column 1 of table 6, but these are not reported. See the notes to table 6 for
details.
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5. Creative Destruction

We start by reviewing the literature on estimating the welfare gains from new products
and product churning. This will motivate the empirics. We then turn to a brief review of
the literature on creative destruction.

5.1. The Welfare Gains from New Products

Feenstra (1994) considers a consumer having CES preferences with an elasticity of sub-
stitution σ. He explains how to construct expenditure functions and how to do welfare
analysis in the presence of a changing set of varieties induced by an arbitrary shock
such as the introduction of AI or a trade-liberalizing event. Let Et−1 and Et be the
expenditure functions pre- and post-shock. His now famous formulation is that the
impact of changing sets of varieties on welfare is captured by an extra multiplicative
term in the expression for Et/Et−1. This extra term is constructed as follows. Define

λt = 1− year t expenditures on new varieties (varieties available in t but not t− 1)
year t expenditures on all varieties that are available in t

.

(3)
Then the extra multiplicative term is(

λt
λt−1

)−1/(σ−1)

. (4)

Feenstra (2010, ch. 2) offers a nice review of this result.
In this formula one can also interpret λt and λt−1 as actual data and counterfactual

data, respectively. For example, equation (4) can be related to a familiar result in Arko-
lakis, Costinot, and Rodriguez-Clare (2012). Reinterpreting new varieties as imported
goods, λt is the share of expenditures on domestic varieties using actual data. Letting
λt−1 = 1 be expenditure shares on domestic data in the counterfactual of autarky,
equation (4) reduces to (λt)−1/(σ−1). This is the familiar Arkolakis et al. (2012) formula
for the gains from trade when moving from autarky to the existing level of period-t trade
restrictions. In similar fashion, we will interpret λt as actual data in a world with AI and
λt−1 as a counterfactual in a world in which there is no AI.

Broda and Weinstein (2006) is an important empirical application of equation (4) to
international trade. They find that the number of new varieties made available to US
consumers through imports tripled between 1972 and 2001 and this resulted in welfare
gains valued at 2.6% of GDP. Feenstra (2010, table 2.1) finds that if all countries in the
world moved from autarky to their 1996 levels of trade, welfare gains would be valued
at 12.5% of world GDP. See Melitz and Trefler (2012) for further discussion. The Melitz
(2003) model adds firm-level selection to the discussion of why varieties are created and
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destroyed by international trade. Trade reduces the number of domestic varieties and
increases the number of foreign varieties. The net effect is ambiguous. Hsieh et al. (2020)
revisits the above Broda and Weinstein (2006) analysis and the Trefler (2004) analysis
of the Canada-US Free Trade Agreement and shows that the net effect of changes in
varieties was negative.

5.2. The Welfare Gains from Creative Destruction

The previous subsection dealt with CES-based models. Because CES goods are com-
plements, more varieties are preferred to fewer varieties. An alternative approach em-
phasizes vertically differentiated goods, that is, goods differentiated by quality. Vertical
differentiation underpins models of growth through creative destruction. By innovating,
a firm can generate a profit by displacing an existing lower-quality good with its own
higher-quality good. This process has come to be known as creative destruction. See
Aghion and Howitt (1992) and Akcigit and Kerr (2018) for closed-economy models and
Grossman and Helpman (1991a,b) for both closed- and open-economy models. Aghion,
Bergeaud, Boppart, Klenow, and Li (2019) explore the role of creative destruction for
measuring US growth. While their primarily empirical paper treats innovation as ex-
ogenous, they provide formulas related to equation (4). We now turn to estimating the
impact of AI on creative destruction and plug the estimates into equation (4) to generate
welfare calculations.

5.3. AI and Creative Destruction in the Global Economy: A First Look

In this subsection we look at the raw data on AI and creative destruction, that is, on how
the download shares of new and exiting Apps are impacted by AI. Consider an App in
App category c that is downloaded by country m. The App is ‘new’ in year t if it was
downloaded in t, but not t− 1. The App is ‘exiting’ in year t if it was downloaded in
t− 1 and t, but not t+ 1. The App is ‘continuing’ in year t if it was downloaded in t− 1,
t and t+ 1. For each cmt triplet, let Ωn

cmt, Ω
e
cmt, and Ωc

cmt be the sets of new, exiting and
continuuing Apps, respectively.

Let ω index Apps and let ycmt(ω) be downloads of App ω in category c by country m

in year t. For each cmt triplet let ykcmt ≡ ∑ω∈Ωk
m
ycmt(ω) be type-k downloads where k

indexes new Apps (k = n), exiting Apps (k = e), or continuing Apps (k = c). All Apps
fall into one and only one of these three types. The share of type-k App downloads is

θkcmt =
ykcmt

∑k′ y
k′
cmt

=
country m’s downloads of type-k Apps in category c and year t

country m’s downloads of all Apps in category c and year t
.

(5)
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The denominator is total downloads for cmt (including downloads of domestically pro-
duced Apps). Since these shares are calculated using data for t− 1 and/or t+ 1 we drop
the θkcmt for the first and last years and work with t = 2015, . . . , 2019.

We are interested in how AI impacts the entry of Apps (θncmt) and the exit of Apps
(θecmt). While our interest is in what is consumed at the cmt level, our AI deployment
measure is about what is produced at the cxt level. Therefore, for each importer m and
App category c we take the average of the AIcxt across exporters x that export to m. We
use a weighted average with weights proportional to importer m’s downloads of c. As
is common in international trade regressions we will be exploiting how the composition
of exporters of c Apps varies across importers m e.g., Vietnam imports social networking
from China (WeChat) while Canada imports it from the US (Facebook). Mathematically,
let wcmxt ≡ ycmxt/ ∑x′ ycmx′t be the share of m’s downloads originating from producer
country x. (Again, we include domestic downloads m = x.) Then our key importer-level
independent variable is

AIcmt = ∑x
wcmxt ·AIcxt . (6)

Table 11 reports some basic sample statistics on creative destruction. There are 78,741

category-importer-year (cmt) observations in our data, which includes zero-download
observations. The left panel of table 11 reports cross-tabulations for whether there was
entry (θncmt > 0) and whether there was AI deployment (AIcmt > 0). Among observations
with positive AI deployment, 91% have some entry. In contrast, among observations with
no AI deployment, only 66% have some entry. Thus, AI is (non-causally) correlated with
the entry of new varieties. The right panel of table 11 repeats the exercise using exits.
Among observations with positive AI deployment, 83% have some exit. In contrast,
among observations with no AI deployment, only 49% have some exit. AI is correlated
with the exit of varieties. Taken together, these two results point to the role of AI deployment
for entry and exit i.e., for creative destruction.

5.4. The Welfare Gains from AI: New Empirics

We saw in equation (4) that the welfare gains from AI deployment can be expressed as

∆Wt = (λt/λno AI
t )−1/(σ−1)

where λt equals one minus the share of new Apps in total downloads and λno AI
t is

its counterfactual value in a world with no AI deployment. Before explaining how we
estimates ∆Wt we make two observations. The first is the major caveat that we are using
download data whereas the welfare calculation should be based on expenditure data.
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Table 11: Creative Destruction

AI Deploy > 0 AI Deploy = 0 AI Deploy > 0 AI Deploy = 0

No entry 1,644 20,467 No exit 3,072 30,887

(9%) (34%) (17%) (51%)

Entry 16,973 39,657 Exit 15,545 29,237

(91%) (66%) (83%) (49%)

EXIT Status

Number of Category-Importer-Year Pairs by AI-Deployment Status and

ENTRY Status

Notes: Each observation is an App category (c), a downloading country or importer (m), and a year
(t = 2015, . . . ,2019). We use a panel of 292 App categories, 84 importers, and 5 years and have
78,741 observations. The numbers are counts of observations. Numbers in parentheses are counts as
a percentage of the total observations in the table (78,741).

Second, this is a welfare calculation for the mobile App category. It ignores all other
goods.

To estimate ∆Wt, we first need an empirical counterpart to λt. From equations (3) and
(5), it is natural to equate λt with 1− θncmt, that is, with one minus the new downloads
share for category-c Apps downloaded by users in country m in year t. Since we do
not want to get bogged down in reporting welfare for each App category and importer,
we take λt to be the download-weighted average of the 1− θncmt.16 This is the obvious
empirical counterpart to λt.

Our next challenge is to calculate the counterfactual λno AI
t . To this end, we regress

1− θncmt on AI deployment ln(1 + AIcmt). We interact this with year dummies so that
we can do counterfactuals separately by year. θncmt is not defined for 2014 so we omit
the year. Table 12 reports the regressions. The first three columns are OLS. The negative
coefficients mean that high AI deployment is associated with low 1 − θncmt and hence
with high new-App download shares. This is sensible and expected. Also as expected,
the AI deployment coefficient becomes more negative with time: As AI has become more
sophisticated, its positive impact on new-App downloads has grown.

In columns 2 and 3 we add our covariates for non-AI patents and multiple-category AI
patents.17 Adding them does not alter the coefficients on our AI-deployment variables.

IV estimates are reported in columns 4–6. We use the same instrument as before, but
with one alteration. That instrument was at the cxt level: ln(1 + AIct) · (ConfPaperxt).

16 For each t, the cm download weights are the denominator of θncmt, that is, the downloads of all varieties
of category-c Apps available to users in country m in year t.

17These are the download-weighted average of non-AI patents and the download-weighted average of
the AI patents of multi-category firms. See equation (6) for weights.
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Table 12: (1 – New Product Share) Regressed on AI Deployment

OLS IV

(1) (2) (3) (4) (5) (6)

ln(1 + AI cmt ) • Year 2020 -2.56*** -2.53*** -2.51*** -2.91*** -2.88*** -2.89***

(0.115) (0.111) (0.111) (0.191) (0.187) (0.188)

ln(1 + AI cmt ) • Year 2019 -1.76*** -1.78*** -1.72*** -2.03*** -2.06*** -2.04***

(0.097) (0.096) (0.095) (0.182) (0.181) (0.182)

ln(1 + AI cmt ) • Year 2018 -1.60*** -1.54*** -1.48*** -1.88*** -1.83*** -1.81***

(0.105) (0.106) (0.105) (0.177) (0.177) (0.177)

ln(1 + AI cmt ) • Year 2017 -0.83*** -0.77*** -0.70*** -0.94*** -0.88*** -0.83***

(0.109) (0.101) (0.099) (0.179) (0.167) (0.167)

ln(1 + AI cmt ) • Year 2016 0.17 0.09 0.17 -0.04 -0.11 -0.05

(0.121) (0.120) (0.119) (0.201) (0.197) (0.197)

ln(1 + AI cmt ) • Year 2015 0.88*** 0.87*** 0.95*** -0.95*** -0.93*** -0.90***

(0.135) (0.133) (0.133) (0.309) (0.302) (0.302)

ln(1 + Multiple AI cmt ) -1.00* -0.17 -0.97* -0.15

(0.581) (0.448) (0.577) (0.445)

ln(1 + nonAI cmt ) -51.43*** -51.29***

(14.812) (14.783)

Observations 78,614 74,606 74,606 78,614 74,606 74,606

Fixed effects t-m, c t-m, c t-m, c t-m, c t-m, c t-m, c

K-P F -value 215.1 214.9 214.4

R
2

0.335 0.333 0.333

Notes: The dependent variable is (1 − θncmt) · 100. Each observation is indexed by an App category c, a
downloading country or importer m, and a year t. We use a panel of 292 App categories, 84 importers, and
6 years. The independent variable is ln(1 + AIcmt) where AIcmt is defined in equation (6). Columns 1–3
are OLS and columns 4–6 are IV. The first-stage results appear in table A2 in appendix. ‘K-P’ F -value is
the Kleibergen-Paap weak-instruments test statistic. We include fixed effects for year-importer and for App
category. Standard errors are clustered by importer. ***, ** and * indicates statistical significance at the 1%,
5% and 10% levels, respectively.
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Table 13: Quantifying Welfare Gains from AI’s Creative Destruction

2020 2015

OLS IV OLS IV

1. λt 0.878 0.878 0.867 0.867

2. ∆λt 0.082 0.093 -0.023 0.025

3. λno AI
t = λt +∆λt 0.960 0.971 0.844 0.892

4. Gains from AI (σ = 5.03) 1.022 1.025 0.993 1.007

5. Percentage Gains from AI (σ = 5.03) 2.2% 2.5% -0.7% 0.7%

6. Gains from AI (σ = 2.00) 1.093 1.106 0.973 1.029

7. Percentage Gains from AI (σ = 2.00) 9.3% 10.6% -2.7% 2.9%

Notes: Row 1 uses observed data. Row 2 is based on estimates from table 12. See the text for
an explanation. Row 3 is the sum of rows 1 plus 2. Row 4 is ∆Wt = (λt/λno AI

t )−1/(5.03−1).
Row 5 is 100·(∆Wt − 1). Row 6 is ∆Wt = (λt/λno AI

t )−1/(2.00−1). Row 7 is 100·(∆Wt − 1).

As in equation (6), we aggregate this to the cmt level using importer download weights,
that is, ∑xwcmxt · ln(1 +AIct) · (ConfPaperxt). We then interact this with year dummies
to create six instruments for our six endogenous variables. The first stages appear in
appendix table A2 where it is shown that the instruments are highly significant and the
first-stage coefficients are sensible. With five instruments we must be especially mindful
of the weak-instruments problem; however, our Kleibergen-Paap F -statistics of over 200

are well above the Stock-Yogo threshold of 20. See the second last row of table 12. With
instruments in place, columns 4–6 show that the IV estimates are similar to OLS, are
statistically significant, are negative in 2020, and decline over time. The exception is
2015.

We can now quantify how AI has influenced the welfare gains from creative destruc-
tion. We are interested in ∆Wt = (λt/λno AI

t )−1/(σ−1). We set σ to 5.03, which is the
Head and Mayer (2014) median estimate of σ from their meta-study. However, it seems
reasonable given network effects that the elasticity relevant to Apps is closer to unity.
If this is the case, we are understating the welfare gains. Table 13 reports calculations
of ∆Wt for 2020 and 2015. Consider the first column of numbers. From row 1, one
minus the new-App share is 0.878 in 2020. From row 2, we estimate that AI induces λt to
change by 0.082. This is calculated as follows. From column 1 of table 12, the impact of
AI deployment on λ2020 is -2.56/100. (We divide by 100 because the dependent variable
in the table was multiplied by 100.) The weighted average of ln(1+AIcm,2020) conditional
on AIcm,2020 > 0 is 3.19. Hence the estimated change in λ2020 from shutting down AI is
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∆λt = (-2.56/100) · (-3.19) = 0.082. We compute the counterfactual λt as λno AI
t = λt+∆λt

and this appears in row 3. Row 4 reports ∆Wt = (λt/λno AI
t )−1/(5.03−1). Row 5 expresses

this as the percent 100 · (∆Wt − 1). Using OLS, we estimate that AI led to welfare gains
of 2.2% in 2020. Our headline number, based on IV, is that AI led to welfare gains of 2.5%.
There is limited evidence on elasticities of substitution between Apps. We therefore also
consider a common alternative estimate of σ, namely, σ = 2. From rows 6–7, this implies
that AI led to welfare gains of 10.6%, a very large number.

The commercialization of AI is usually dated to 2012 (Agrawal et al., 2018) so that in
2015, the use of AI in mobile Apps was in its early days. We should therefore expect
smaller welfare benefits of AI in 2015. This is a bit like a placebo test. In table 13 we
repeat the analysis for 2015. The calculations are similar except that now we use the
2015 coefficients from table 12 (0.88 for OLS and -0.95 for IV) and we use the weighted
average of ln(1 + AIcm,2015) conditional on AIcm,2015 > 0, which is 2.64. From table 13

(IV), in 2015 AI led to welfare gains of 0.7%. This is for σ = 5.03. It is 2.9% for σ = 2.00.
As expected, these are much smaller than the corresponding gains in 2020.

Summarizing, in 2020, AI deployment raised welfare from creative destruction by between
2.5% and 10.6%. Further, in 2015, when AI deployment in mobile Apps was still in its
infancy, AI deployment raised welfare from creative destruction by only between 0.7%
and 2.9%.

6. Conclusions

Artificial Intelligence is a powerful new technology that will likely have large impacts on
the size, direction and composition of international trade flows. Yet almost nothing is
known empirically about this process, partly because impacts on goods trade have likely
been minimal and partly because researchers have failed to look where the action is most
obvious — in the palms of our hands. We observed that mobile Apps provide a large and
growing collection of services that billions of people use daily and whose international
dimension is captured by mobile App downloads. We developed a new database of App
downloads and the AI deployed in those Apps. Using an IV strategy to estimate the
impacts of AI deployment we presented three results:

1. Bilateral Trade: AI deployment increased App downloads by a factor of six. This is
the first systematic evidence of the impact of AI on trade.

2. Variety Effects: AI deployment doubled the number of bilaterally traded App vari-
eties.

3. Entry, Exit, and Creative Destruction: AI deployment caused high levels of entry
into and exit out of Apps/varieties available in the importer country. This has

30



important welfare implications. Comparing the actual evolution of mobile App
downloads to a counterfactual world in which no AI is deployed, AI deployment in
2020 raised welfare from App downloads by between 2.5% (when Apps are highly
substitutable) and 10.6% (when Apps are less substitutable).18

With regards to international App markets, AI deployment has already had tangible
impacts on trade, product variety, creative destruction and welfare.

18An important caveat is that our welfare calculations use download shares rather than expenditure
shares.
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Appendix Tables

Table A1: First Stage for Table 8

ln (1 + AI cxt ) ln (1 + AI cxt ) ln (1 + AI cxt )

• First positive tercile • Second positive tercile • Third positive tercile

Instrument • First positive tercile 0.810*** -0.036*** -0.023***

(0.0506) (0.00964) (0.00624)

Instrument • Second positive tercile -0.053*** 0.911*** -0.030***

(0.0155) (0.101) (0.00426)

Instrument • Third positive tercile -0.067*** -0.049*** 0.898***

(0.0249) (0.0175) (0.0466)

F-value 807 385 596

Fixed effects t-m-x, c t-m-x, c t-m-x, c

Notes: This table displays the first stage for our preferred specification in table 8 (column 2). The dependent
variable in the first stage is ln(1+AIcxt). Its instrument is ln(1+AIct) · (ConfPaperxt). Both are interacted
with terciles dummies of the distribution of AIcxt conditional on AIcxt > 0. There are thus three indepen-
dent variables and hence three first stages or columns. We include fixed effects for year-importer-exporter
and category. Standard errors are clustered by importer. ***, ** and * indicates statistical significance at the
1%, 5% and 10% levels, respectively.

Table A2: First Stage for Table 12

ln(1 + AI cmt ) ln(1 + AI cmt ) ln(1 + AI cmt ) ln(1 + AI cmt ) ln(1 + AI cmt ) ln(1 + AI cmt )

• Year 2020 • Year 2019 • Year 2018 • Year 2017 • Year 2016 • Year 2015

Instrument • Year 2020 10.25*** -1.040*** -0.818*** -1.066*** -1.162*** -1.468***

(0.289) (0.0561) (0.0477) (0.0344) (0.0399) (0.0593)

Instrument • Year 2019 -1.461*** 10.37*** -0.700*** -0.993*** -0.990*** -1.296***

(0.0666) (0.312) (0.0471) (0.0360) (0.0416) (0.0495)

Instrument • Year 2018 -2.204*** -1.417*** 14.93*** -1.431*** -1.424*** -1.905***

(0.0896) (0.0776) (0.351) (0.0510) (0.0581) (0.0608)

Instrument • Year 2017 -2.207*** -1.468*** -1.082*** 16.39*** -1.670*** -2.048***

(0.0955) (0.0846) (0.0741) (0.377) (0.0652) (0.0729)

Instrument • Year 2016 -2.634*** -1.550*** -1.111*** -1.737*** 15.80*** -2.451***

(0.120) (0.0919) (0.0869) (0.0681) (0.543) (0.106)

Instrument • Year 2015 -3.136*** -1.785*** -1.642*** -2.831*** -2.831*** 19.95***

(0.154) (0.103) (0.101) (0.140) (0.159) (0.778)

F-value 403 387 783 785 630 535

Fixed effects t-m, c t-m, c t-m, c t-m, c t-m, c t-m, c

Notes: This table displays the first stages for our preferred specification in table 12 (column 4). The depen-
dent variable in the first stage is ln(1 +AIcmt) defined in equation (6). Its instrument is ∑x wcmxt · ln(1 +
AIct) · (ConfPaperxt). Both are interacted with year dummies. With six years there are six dependent
variables and hence six first stages or columns. We include fixed effects for year-importer and category.
Standard errors are clustered by importer. ***, ** and * indicates statistical significance at the 1%, 5% and
10% levels, respectively.
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