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ABSTRACT

It is widely believed that university and corporate research are complementary: Companies 
invest in research in part to develop the capacity to absorb the knowledge emerging from 
universities. However, as we show in this paper, corporate research in the United States emerged 
when American universities were behind the world frontier in scientific research. Why, then, did 
for-profit businesses choose to invest in creating new knowledge, much of which could spill over 
to rivals, and whose conduct presented many managerial challenges? We argue that corporate 
research in America arose in the 1920s to compensate for weak university research, not to 
complement it. Using newly assembled firm-level data from the 1920s and 1930s, we find that 
companies invested in research because inventions increasingly relied on science, but American 
universities were unable to meet their needs. Large firms, close to the technological frontier, and 
operating in concentrated industries were likely to invest in research, especially in scientific 
disciplines where American universities lagged behind the scientific frontier. Corporate science 
seems to have paid off, resulting in novel patents and high market valuations for firms engaged 
in research.
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1 Introduction
The systematic application of scientific knowledge is a key source of technological advancements and eco-

nomic growth. A substantial literature has emerged to study university-to-industry knowledge transfer

(Bercovitz & Feldman, 2008; Bikard & Marx, 2019; Cohen et al., 2020; Jaffe et al., 2007; Perkmann et

al., 2021; Rothaermel et al., 2007; Zucker et al., 2002) and public-private partnerships to address techno-

logical challenges (Agarwal et al., 2021; Babina, He, et al., 2023; Gross & Sampat, 2020a; Howell, 2017).

At the heart of this research is an assumption that companies invest in research to access and to absorb the

knowledge emerging from universities (Cohen & Levinthal, 1989), or, as Nathan Rosenberg, referring to

why firms invest in basic research, put it, “...basic research may be thought of as a ticket of admission to an

information network” (Rosenberg, 1990, p. 170).

This paper documents that corporate research in the United States began when American universities

were behind the world frontier in scientific research. Though American firms did innovate before the 1920s,

they performed very little R&D, and no internal scientific research, sourcing new inventions from indepen-

dent inventors. This changed gradually as firms not only invested considerable amounts in R&D, but some

also invested in scientific research (Mowery, 2009). And while some American universities had begun to

engage in research, their investments were dwarfed by their corporate counterparts.

Why, then, did for-profit businesses choose to invest in creating new knowledge, much of which could

spill over to rivals, and whose conduct presented many managerial challenges? This paper argues that cor-

porate research in American firms arose in the 1920s to compensate for inadequate university research,

particularly of the type relevant for the needs of firms on the technological frontier. The argument is as fol-

lows: Inventions were increasingly based in science. However, independent inventors, hitherto the primary

source of inventions to firms, lacked the requisite scientific expertise (Lamoreaux et al., 1999; Nicholas,

2010). American universities, though a valuable source of trained engineers and scientists, were unwilling

or unable to carry out the use-inspired scientific research required to address the technological needs of

industry. The lack of commercially relevant research induced large firms, such as GE, AT&T, DuPont, and

Kodak to invest in internal research. Holding large market shares and operating in concentrated industries,

such companies did not fear spillovers to competitors.

We study these issues empirically using a newly assembled, comprehensive historical dataset of firms

operating in non-financial sectors in America at the time. Our dataset combines hitherto unavailable in-

1



formation on corporate research and innovation with financial information for U.S. firms in the interwar

period. For each firm in the sample, we assemble three proxies for investment in research — scientific

journal publications (a research output), the operation of research labs, and the employment of prominent

scientists (research inputs). We collect data on scientific publications authored by researchers employed at

corporations using Microsoft Academic Graph (MAG). We match firms to the Industrial Research Labo-

ratories of the United States survey (hereafter the “IRL” directory) of corporate laboratories. We also link

prominent scientists listed in the American Men of Science series (hereafter the “AMS”) to firms. We use

the extent to which a firm’s patents cite (rely on) science to proxy for its proximity to the technological

frontier, or need for science. To measure the public science that firms could draw upon, we develop new

measures of relative American scientific backwardness, in comparison with Europe, by scientific field. Our

sample period, ranging from 1926 to 1940, is well suited to study our research question because it is when

corporate science emerged in the United States. Moreover, in contrast to the period following the Second

World War, the U.S. government during our sample period exerted little influence on corporate research and

development activities (Gross & Sampat, 2020b; Mowery & Simcoe, 2002).

Our main empirical findings are as follows. First, to substantiate the basic premise of the paper — the

corporate need for science — we show that innovations, especially breakthrough innovations, became more

science-based during our sample period.

Second, we provide evidence that American universities did not produce scientific knowledge, relevant

and at the levels needed by the leading firms. Consistent with (Bikard, 2018), we show that university-

authored papers during our period were less likely to be cited by patents or to be textually close to them

compared to papers authored by corporate scientists. A case study of early electronics research provides

qualitative support for the proposition that American universities failed to support the scientific advances

made before the Second World War. We find that firms investing in science relied on scientific fields in

which U.S. universities were relatively weak at the time (such as select sub-fields of chemistry and physics),

suggesting that corporate research aimed to compensate for, rather than complement, university science.

Third, we establish that firms at the technological frontier invested in scientific research: Firms with

patents citing scientific articles (our proxy for proximity to the technological frontier) published nearly 38

times more in scientific journals and employed fifteen-fold more lab personnel than firms whose patents did

not cite science.

Fourth, we provide evidence that firms investing in science tended to be large in absolute terms (as
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measured by assets), market leaders in relative terms (with large market shares), and operated in concentrated

markets. Thus, they could afford to carry out research, a classic public good, without fearing spillovers to

rivals.

Finally, we observe a positive correlation between the intensity of corporate research, the generation of

valuable patents, and high stock market valuations, consistent with investment in corporate research being a

source of competitive advantage.

Admittedly, these results are empirical associations, as there is no source of exogenous variation in

the data. However, taken together they support the plausible explanation that the increasing reliance of

technological advances on science, along with the inability of American universities to provide the required

scientific knowledge, led large firms that had reached the technological frontier to invest in scientific research

themselves.

We contribute to the existing literature in several ways. First, we add a novel explanation for why firms

invest in science. Our argument, that corporate research in America was a response to a need for science

coupled with deficiencies in public science, departs from previous theories that focus on absorptive capacity

(Cohen & Levinthal, 1989; Rosenberg, 1990), recruitment incentives (Sauermann & Cohen, 2010), and

product quality signaling (Azoulay, 2002; Hicks, 1995). While we are not the first to argue knowledge

substitution exists between academia and industry, we are the first, to our knowledge, to show that this

substitution will be carried out principally by large and technologically advanced firms, rather than smaller

startups. Though histories of prominent companies are consistent with our argument (Hounshell, 1996;

Hounshell & Smith, 1988; Jenkins & Chandler, 1975; Maclaurin & Harman, 1949; Reich, 1985), to our

knowledge, no work has systematically investigated it using economy-wide data on corporate innovation.

Our work is also related to the question of why many U.S. firms have substantially reduced their invest-

ments in scientific research in recent decades (Arora et al., 2018; Bhaskarabhatla & Hegde, 2014; Mow-

ery, 2009). Our findings suggest that increased funding of university research in general (particularly in

fields such as solid-state electronics and computer science) starting after World War II may have eventu-

ally reduced the private returns to scientific research, possibly leading to a decline in corporate science in

subsequent decades (Arora et al., 2018).

Our results also speak to the institutional voids framework in a context hitherto not documented in the

literature. Khanna (2000), and Khanna and Palepu (2000) show that diversified business groups fill such

voids in emerging markets. Our findings indicate that when public institutions, such as university research,
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are weak, then building internal research capabilities can be a source of competitive advantage, especially

for firms with the scale and scope to justify the fixed cost.

The dataset we construct, combining financial information on U.S. corporations and data on corporate

science before the Second World War, is one of the most comprehensive of its kind, complementing the

recent literature on this era, which primarily focuses on individual inventors (Babina, Bernstein, et al.,

2023) and scientists (Moser et al., 2022). This new resource should open new research on the potential links

between corporate research and development, and government policy.

Finally, our use of historical methods to complement the quantitative analysis joins recent works in

organization studies (Braguinsky & Hounshell, 2016; Bucheli & Wadhwani, 2014; Ingram et al., 2012;

Silverman & Ingram, 2017) that employ hermeneutics (probing the motivations of the decision maker),

contextualization (interpreting the transpired events in their respective time and space), and source criticism

(weighing the integrity of the surviving evidence) to extend their explanatory power beyond their settings

(Pillai et al., 2024). We draw on biographical sources on managers and corporate scientists to corroborate

our thesis that universities were failing to provide science relevant to firms. We also contextualize our

findings in the backdrop of rapid scientific advances in physics and chemistry, which offered opportunities

to technologically advanced firms for breakthrough innovations. For the present-day context, our findings

speak most directly to sectors experiencing significant technological opportunities created by advances in

related scientific fields. Recognizing that our qualitative evidence relies on the more successful firms in the

period, we assemble an economy-wide dataset of innovating firms to examine our thesis more systematically.

The paper is organized as follows. Section 2 surveys the historical context; Section 3 describes our data;

Section 4 presents our econometric specifications and estimation results; Section 5 concludes. Appendices

present more details on the historical data, a theoretical framework and empirical robustness tests.

2 The Rise of Corporate Science in America
American firms began investing in scientific research around the 1920s owing to three factors. First, in-

ventions increasingly relied on science. Second, some firms reached the technological frontier, having

exhausted the opportunities to innovate through trial-and-error. Third, industrially relevant public science

from universities was inadequate. The following historical survey illustrates these points.

A Growing Corporate Need for Science — The beginning of the twentieth century was marked by a burst

of scientific advances in chemistry and physics and a greater reliance of the chemical and electric industries
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on these new discoveries. In Figure 1 we find that patents in the two decades preceding the First World

War rarely cited the scientific literature. The following period, between 1920 and 1940, on the other hand,

shows a marked increase in citations to science, especially by breakthrough patents.1 Breakthrough chemical

patents, for instance, are up to three times more likely to cite a scientific article than non-breakthrough ones,

while breakthrough communication patents (telephone, radio & vacuum tube) are more than seven times

more likely to do so than non-breakthrough ones.

[ Figures 1 and 2 Here]

Firms patenting in fields where innovation became more reliant on science also began to invest in science.

Figure 2 shows that, by 1920, the chemical industry employed 133 scientists listed in the American Men

of Science directory of prominent scientists, compared to only 18 in 1900.2 Overall lab employment also

increases by almost five times between 1927 and 1940, which accords with prior work (Lamoreaux &

Sokoloff, 1999; Mowery & Rosenberg, 1998). Figure 2 also shows substantial growth in scientific publica-

tions by corporations from 1900-1919 to 1920-1941: Scientific publications grew by more than 11 fold for

chemical firms and over 29 fold for firms in electrical engineering between these two periods.

Abundant scientific opportunities, coupled with a scarcity of publicly available scientific knowledge rel-

evant for industrial application, encouraged research managers such as Willis Whitney at GE Research Labs,

Frank Jewett at AT&T Bell Labs, C.E.K. Meese at Kodak, and Charles Stine at DuPont to invest in science

internally. Company histories indicate that, in the early years, corporate labs focused on quality control

and solving operational problems rather than fundamental science.3 As innovation became more science-

based, companies initially looked to external suppliers and specialized contract research organizations, such

as the Mellon Institute, established in 1913.4 But contract research worked best for generic, well-specified,

problems, where contracting problems were less severe, and required that the firm itself possess significant

1Breakthrough patents are patents in the top decile of the “importance” measure from Kelly et al. (2021) (KPST hereafter). The
authors define importance as the ratio between 10-year forward similarity to other patents and 5-year backward similarity, net of
year fixed effects.

2The American Men of Science (AMS) directory is a comprehensive listing of prominent scientists in the United States since 1906
(Moser et al., 2022). Further details on the dataset are discussed in Section 3.

3Whereas the earliest corporate researchers such as Charles Dudley at the Pennsylvania Railroad Company focused primarily on
testing iron and steel for rails, later cohorts of corporate scientists included renowned scientists such as the two Nobel Laureates,
Irving Langmuir of GE (Chemistry, 1932) and Clinton Davisson of AT&T (Physics, 1937). Their research in surface chemistry
(for Langmuir) and crystal physics and electronic diffraction (for Davisson) were not only scientifically important but was also
relevant to their companies.

4The institute grew steadily in contract revenues ($300,000 to $800,000) between 1919 and 1929. Over the same period, the number
of industrial fellows sponsored by firms grew from 83 to 145. Union Carbide’s contract with the institute yielded ethylene glycol,
an antifreeze, which became a key product for the firm (Servos, 1994, p.223).
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scientific capabilities (Mowery, 1983). Contract research could complement internal research, not substitute

it.

[Table 1 Here]

Public Science was Inadequate for Industry — Universities were another potential source. However,

American universities were unwilling or unable to produce the required science. Column 1 of Table 1 re-

gresses citations received from patents against whether the paper is authored by a corporation. The estimates

from the linear probability model suggest that university papers are around 90% less likely to be cited by

a patent than a corporate paper. Even after adding dummies for scientific subfield and journal, university

papers are 76% less likely to be cited than corporate papers (Column 2). In Columns 3 and 4, we test

whether university publications are farther from patents than corporate publications by comparing textual

similarity.5 Though universities produced the vast bulk of publications, the coefficient estimate in Column

3 show that university publications are 34% less likely than corporate publications to be ranked among the

10 closest papers to a patent.6 Adding subfield and journal fixed effects in Column 4 reduces this gap to

6.4%, but the difference is still statistically significant. That subfield and journal dummies reduce coefficient

estimates indicates that universities also publish in different subjects and outlets from companies. Figure 3

compares the focus of corporate and university publications. We find that electrical engineering, physics,

and chemistry account for the top three corporate scientific subjects, with electrical engineering accounting

for over half of all corporate publications between 1926 and 1940. In contrast, the top three university fields

are clinical medicine (28%), biology (23%), and chemistry (9%).

[Figure 3 Here]

The lower proportion of university science that is commercially relevant (i.e., science that is readily

applied to inventions) notwithstanding, the absolute quantity may still be high; 92% of all science & engi-

neering papers published between 1926 and 1940 were by university authors. We therefore examine how

often university science is relied upon compared to corporate science. We find that fewer than half (38%) of

science-citing patents cite public (non-corporate) science (5% of patent citations are to papers by nonprofits,

5Textual similarity is calculated using the SPECTER algorithm, which uses a transformer-based neural network to process texts.
Details on its construction are provided in (Arora et al., 2023).

6There are in total 39,616 papers: 3,363 are by companies and 36,253 are by universities. Of the corporate papers, 3,215 (95.6%)
have at least one patent for which they are ranked as the top 10 most similar papers. For university papers, 22,302 (61.5%) are
ranked within the top 10 similarity score of any patent.
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7% to those by the government, 26% to those by universities).7 Moreover, “breakthrough” patents (defined

as the top 5% most important patents based on patent textual similarity measures from Kelly et al. (2021))

have around 9% lower university science citation rates (24%) compared to non-breakthrough ones (33%).8

The evidence also supports the argument that university science received less attention from techno-

logically consequential inventors than corporate science. This is consistent with modern evidence from

Bikard (2018) who finds that, even within paper “twins” on simultaneous discoveries, academic papers

are less likely than corporate papers to be cited by inventors in the life sciences. This is not necessarily

because American university science during our sample period was inferior to firms: university papers re-

ceived around 28% more 5-year forward citations from other peer-reviewed scientific papers (1.40 vs 1.09).

Rather, as Figure 3 showed, U.S. university research before World War II was concentrated in scientific pur-

suits less relevant to industrial needs, leading American corporations on the technology frontier to invest in

research themselves. The case of vacuum tube electronics and wireless (radio) technology below illustrate

these points.

2.1 Industrial Response to Early Breakthroughs in Electronics

2.1.1 Discovery of the Electron and Thermionic Emissions

The discovery of the electron in 1897 by J.J. Thomson built upon earlier research in electricity and mag-

netism by Maxwell and Hertz. Though a key implication of this research was that electronic information

could be transmitted wirelessly, reliable transmission and reception of electronic signals did not occur until

after follow-on scientific discoveries in the 1920s. For instance, Thomas Edison had discovered the dis-

charge of electric currents from lamp filaments to cathodes as early as 1875, but it was only by 1901 that

Owen Richardson proved that the currents were formed by electrons escaping the surface of hot filaments.

Termed “thermionic emission,” the phenomenon would form the basis of the radio industry and vacuum

tube electronics in the coming decades.

The immediate impact, however, was more prosaic – extending the life of the incandescent bulb. General

Electric (GE) had exhausted trial and error methods to reduce the blackening that occurred on the surface

of the incandescent light bulb. The competing hypothesis to Richardson’s theory argued that thermionic

7There are 190 patents making citations to 123 papers, which constitute 203 citation pairs.
8To augment citation-based measures of patent-paper proximity, we examine the share of university papers textually close to a
patent in Appendix Table D2. Columns 1 shows that more important patents are closer to corporate publications relative to
university publications. Using a stricter measure of similarity strengthens this association sixfold, as Column 3 shows. Column
2 shows that higher quality patents (forward citations) are closer to corporate publications relative to university publications, and
more so when using a stricter standard for closeness (Column 4).
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emissions occurred by the interaction of electrons on the filament with the ambient gas inside the lamp.

These theories posited that bulb blackening was due to impurities (such as water vapor) left inside the lamp,

which led to prescriptions to create a better vacuum inside the bulb (Birr, 1957; Langmuir, 1913; Soddy,

1907). Irving Langmuir’s first research project at GE Research Labs was to settle this debate, a classic

example of commercially relevant science. Langmuir, an American chemist hired by GE after completing

his PhD at the University of Göttingen in Germany, attempted a solution suggested by Richardson’s theory:

instead of trying to create a better vacuum, Langmuir proposed to fill the bulb with inert gases that would

scatter the evaporated particles.9

In trying to exploit thermionic emissions, companies discovered they also had to develop some of the

basic science. Instruments exploiting this phenomenon were developed after Edison’s discovery, notably

the diode (1904 by John Ambrose Fleming) and triode (1906 by Lee De Forest). Though these devices

were promising prototypes for receiving and amplifying signals (relevant for telecommunications) as well

as switching and rectifying currents (relevant for electrical devices), they required substantial improvements.

Many of the defects could not be removed without understanding the science underlying the technology, a

task that universities seemingly left for industry.

2.1.2 Only the market-leading firms seemed willing to invest in electronics research

AT&T and GE are examples of market leaders in the communication and electrical industries that

reached the technological frontier, faced a gap in the scientific understanding of the technology embod-

ied in their products, and sought to fill this gap by investing in scientific research internally. By 1900, GE

controlled nearly 90% of lamp sales (Wise, 1985), while AT&T controlled around half of the telephone ex-

change market share in 1907 (Mueller, 1997). Quality improvements or cost savings from applying scientific

research could be realized over a larger output. Beyond scale, these firms also urgently needed improve-

ments in their core product: the expiration of the Edison patents in 1894 spurred GE’s research efforts to

produce the Coolidge tungsten filament (1910) and Langmuir’s gas-filled lamps (1913), which also created

new opportunities in vacuum tubes (Birr, 1957).10

Unlike GE, Westinghouse neither had the scale nor the urgent need to improve the incandescent bulb.

Westinghouse only had 13% of the lamp market. In addition, the antitrust settlement of 1911 whereby GE

9Langmuir recalled that his work on surface chemistry allowed him to “conclude with certainty that the life of the lamp would not
be appreciably improved even if we could produce a perfect vacuum” (Reich, 1983).

10GE’s incandescent light bulbs, for instance, were facing competition from alternative designs pioneered by German chemists such
as Carl Auer Welsbach’s Osram, Walther Nernst’s glower (licensed to Westinghouse for $ 1 million in 1894), and Leo Arons’
mercury vapor lamp.
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lamp patents were licensed to Westinghouse also required that technical information be shared between

the two firms. This dampened incentives for in-house lamp (and by extension, vacuum tube) research at

Westinghouse (Reich, 1992).11

A similar story emerges in telephony. As telephony became more science-based, AT&T realized it

could not rely upon independent inventors and needed internal scientific capability. In 1900, AT&T lost a

legal battle on the loading coil patent — a critical equipment for long distance calls — against a competing

inventor at Columbia University (Lipartito, 1989). But even when it managed to acquire rights to inventions,

the firm could not exploit them effectively because the fundamental electronics was poorly understood.

For instance, in 1913 AT&T acquired the rights to the De Forest Audion, which could detect and receive

radio signals (Reich, 1985). However, the Audion’s performance was erratic, with blue haze impeding its

functions and De Forest’s tantalum filaments prone to breakage. De Forest himself had a poor scientific

understanding of his own invention, unaware of the triode’s potential as an amplifying device (Hughes,

2004). Replacing the filaments with more reliable oxide-coated cathodes and solving the blue-haze problem

required the full-time attention of a scientist (H.D. Arnold) and a team of twenty-five researchers (including

future Nobel Physics laureate Clinton Davisson) for two years (Hoddeson, 1981). AT&T’s improved audions

were readily modified as amplifiers on the transcontinental telephone service between New York and San

Francisco in 1915.12

In comparison, competing firms in the telecommunications industry, such as Western Union and Postal

Systems, were focused on improving wired telegraphs, which relied on legacy technology. Western Union

had pioneered innovations such as Ezra Cornell’s glass-insulated telegraph wires in the 1840s but stayed

out of the telephone market as part of an 1879 patent settlement with Bell. It also largely ignored the

opportunities from advances in electrical engineering and chemistry.13

2.2 Undersupply of Industrially Relevant Public Science in Electronics

Despite the evident need, American universities were unable or unwilling to invest in research in elec-

tronics at the scale required. Maclaurin and Harman (1949) argue that much of the scientific foundation in

electronics until the 1920s was provided by European institutions such as the Cavendish laboratory in Britain

11Though Westinghouse established a laboratory in Forest Hills in 1916 and published papers, it was only by the late 1930s with
the recruitment of Princeton physicist Edward Condon, that it began to conduct research in nuclear medicine and industrial mass
spectroscopy (Lassman, 2003).

12An improved understanding of wireless technology by Arnold’s group also enabled the opening of a wireless relay on this line in
the same year.

13AT&T employed 26 scientists listed in the AMS directory of 1921, while Western Union employed none.
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(Faraday, Maxwell, Thomson, Richardson, and Bragg) and German research universities (Hertz, Siemens,

Hittorf, Roentgen, Wehnelt, and Braun).14 Until the First World War, American universities were well be-

hind: They published only nine papers per year in the Transactions of the American Institute of Electrical

Engineers, between 1920 and 1925, accounting for fewer than 10% of total publications (Terman, 1976).

While university scientists were instrumental in establishing the American Physical Society (1889 at

Columbia University), and the American Chemical Society (1876 at New York University), societies study-

ing commercially relevant topics were founded by corporate scientists: the American Institute of Electrical

Engineers, established in 1884, was headed by Norvin Green from Western Union. The first president of

the Institute of Radio Engineers, established in 1912, was Robert Marriott from the Wireless Company

of America. Similarly, the Optical Society was founded in 1916 by Peter Nutting of Kodak, while the

Acoustical Society of America was founded by Harvey Fletcher and V.O. Knudsen in 1928 (Bell Telephone

Laboratories).

The absence of American universities from electronics research can be attributed to a combination of a i)

general reluctance (by the government) to fund research, ii) the high cost of electronics research as well as iii)

a distaste among faculty for industrially-relevant, applied subjects. American universities before World War

II received very little federal funding for research and spent little as well. For its 1938 report, the National

Resources Planning Board under the National Research Council (NRC) surveyed 1,450 American colleges

and universities and found that the top 150 spent an average of $333 thousand per university on research

(National Research Council, 1938). The University of Chicago ($2.6 million in 1929-30), and the University

of California ($2.4 million in 1928-29) were the top research spenders. By comparison, DuPont alone spent

as much as the two universities put together: DuPont’s 1925, 1930, and 1935 budgets were $1.99 million,

$5.5 million, and $6.6 million, respectively (Hounshell & Smith, 1988, p.612). AT&T’s R&D expenditures

were even larger – the 1925, 1930 and 1935 budgets were $11.7 million, $23.2 million and $15.4 million,

respectively (Maclaurin & Harman, 1949, p.158).15 Finally, the intellectual climate at American universities

discouraged academics from engaging with industry: Henry Rowland’s (Johns Hopkins) 1883 in his address

14The British lead in electromagnetism was established early with Maxwell’s equations, but also aided by the Royal Society and
imperial projects such as the construction of a global telegraph line during the nineteenth century (Hunt, 2021). Germany’s
traditional strength in chemistry also allowed for the discovery of new rare-earth substances that were applied as new vacuum
tube filaments.

15Research equipment was expensive. For instance, The generation of high vacuum — a pre-requisite to studying thermionic
emissions — required Langmuir to adopt and modify Wolfgang Gaede’s molecular pump imported from Germany. The ultra-
centrifuges, Svedberg’s Nobel prize-winning scientific instrument used to separate chemical substances by their molecular
weights was vital to polymer research. In the 1920s, apart from DuPont, only the University of Wisconsin (where Svedberg
had visited in 1923) had an ultra-centrifuge (Cerveaux, 2013).
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to the American Association for the Advancement of Science (AAAS), titled “A Plea for Pure Science”

stated that he was “tired of seeing our professors degrading their chairs by the pursuit of applied science

instead of pure science” (Kline, 1995; Rowland, 1883).

2.3 Generalizing from the Case Studies

The case study of electrical engineering suggests that firms began investing in scientific research for

three reasons: i) inventions increasingly relied upon science, and sometimes directly arose from scientific

breakthroughs; ii) some firms reached the technological frontier, having exhausted the opportunities to in-

novate through trial-and-error; and iii) industrially relevant public science was inadequate.

We formalize this intuition in an analytical model in Appendix A involving a leader firm and a lag-

gard firm. We distinguish between upstream research and downstream innovation. Research reduces the

cost of innovation to the firm, as does public science. Thus, the returns to investing in research depend on

the scale of innovation - the larger the scale, the greater the marginal return to innovation. Leaders, with

a larger scale of innovation, are therefore more likely to invest in research. Weaker public science could

create a competitive advantage for market leaders who invest in science. Weaker public science increases

the cost of innovation. Unlike the market leader, however, the rival is unable to offset this through internal

research, thereby increasing the gap between it and the market leader. In our empirical analysis, we inves-

tigate whether investment in scientific research is associated with higher market value and whether this is

conditioned by public science.

The response to an increase in public science depends on whether public science increases the efficiency

of internal research, and whether the firm’s innovations are strategic complements or substitutes for those of

its rival (which can also access public science). The marginal returns to the leader of investing in research are

greater when public science is weak if public science substitutes for internal research. A necessary condition

for public science to reduce internal research is either that public science substitutes for internal research,

or that the marginal return to innovation is lower when a rival increases innovation (strategic substitutes).

In our empirical analysis, we examine whether market leadership and proximity to the technical frontier are

associated with greater investment in internal research and whether this relationship is conditioned by public

science.

11



3 Data
Our unbalanced firm panel combines financial statements data for public (listed) and (large) private firms

from Moody’s Manuals; market value data for listed companies from CRSP; United States Patent Office

(USPTO) data from Google Patents; and publication, lab, and scientist data from Microsoft Academic Graph

(MAG), the IRL and AMS directories respectively. The combined dataset covers the period 1926-1940.

We begin with 231 major “industrial” (i.e., non-financial) firms found in Berle and Means (1932) (here-

after B&M) and their subsidiaries.16 We only include firms that patent at least once between 1926 and 1940

in an IPC that cites at least five scientific articles between 1947 and 1957, to focus on firms that are “at risk”

of engaging in scientific research.17 The B&M sample of industrial firms collectively accounts for more

than half of all non-financial corporate assets in America in the 1930s (Kandel et al., 2019). We augment the

B&M sample with 235 additional listed firms from CRSP that patent in science-citing IPCs (Kogan et al.,

2017). Our basic sample thus consists of 466 American firms, both private and public, that patent at least

once between 1926 and 1940 in an IPC that cites at least five scientific articles between 1947 and 1957. For

these, there are 4,282 firm-years for which we have financial statement data between 1926 and 1940.

3.1 Corporate Investment in Science

Scientific Publications — We source 283,992 peer-reviewed scientific papers (excluding humanities and

the social sciences) from Microsoft Academic Graph (MAG) published between 1926 and 1940. We match

140,766 author affiliations from these publications to our sample firm names using fuzzy string-matching,

accounting for abbreviations common in the era such as RR for railroad, and name variants such as SO-

CONY for the Standard Oil Company of New York.18 We exclude articles authored by eponymous char-

itable foundations and hospitals (e.g., by DuPont, Carnegie and Rockefeller). We match 3,263 corporate

publications to 201 sample firms. Of these, 110 firms are found in the B&M sample, 162 are found in CRSP

and 71 are found in both samples.19

While publications were not the primary purpose of firms, they were tolerated to entice the brightest

16Subsidiaries data are from Kandel et al. (2019) whose source is Moody’s Manuals. As noted above, the Manuals include balance
sheet data on important, even if unlisted, firms. For instance, Ford Motor Company, whose Initial Public Offering was only in
1956 (after the end of our sample period) has its assets and sales data reported in Moody’s.

17Examples of excluded patent classes include B27M (woodworking), B60P (loading transportation vehicles) and E03D (Water
Closets or Flushing Valves thereof). Around 26% of patenting firms are lost due to this restriction.

18We extend this match to publications between 1900 and 1925 for the “pre-period” analyses in Figure 2 and Appendix Table D1.
See https://www.oecd.org/science/inno/38235147.pdf for a list of the fields of science, based on the 2002 revision (6th edition)
of the Frascati Manual. The Manual lays out the OECD standard for classifying scientific activity by research area and has been
maintained by the National Experts on Science and Technology Indicators (NESTI) Group at the OECD since 1963.

19See Appendix B.1 for details on matching scientific publications to firms.
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researchers to join their ranks. University scientists were often reluctant to join firms, leading to some being

offered the freedom to publish, in addition to a salary premium. A biography of Willis Whitney, GE’s

first research lab manager, also suggests that the “(F)reedom to do fundamental research and to publish

the results had attracted scientists of the caliber of (William) Coolidge and (Colin) Fink” (Wise, 1985)20

C.E.K. Mees, the founding head of Kodak’s research laboratory, negotiated the right to publish. He also

encouraged company researchers not to neglect the exploration of attractive problems of purely theoretical

interest. He believed that even applied scientists needed “the constant stimulation of theory ”, which could

additionally yield unexpected but valuable industrial applications (Clarke, 1971). Wallace Carothers was

offered a substantial pay raise (from $3,200 at Harvard vs $5,000 at DuPont) and the freedom to work on

scientific areas of interest to him, with substantial research support in terms of new assistants and a new

laboratory (Hounshell & Smith, 1988).

Reich (1985, p.251) highlights a strategic reason as well (Shvadron, 2024): publications would encour-

age outside researchers to work on the same areas as well:

[Through publications], the areas of research interesting to industry came forcefully to the atten-

tion of the larger scientific and technical communities, causing researchers outside the industrial

labs to consider some of the issues raised within them. The development of concern with the

electron physics of vacuum-tube operations is an excellent case in point. By the early 1920s

there was, as one physicist noted, a ”fever of commercialized science” sweeping the American

scientific community.

Corporate Labs — We obtain data on R&D labs operated by firms from a national survey by the National

Research Council (NRC) conducted since 1920 (Service, 1931). Data from these surveys have been used

in Mowery and Rosenberg (1998), Nicholas (2011), Field (2003) and Furman and MacGarvie (2007). We

manually search the names of our firms in the entries of the 1927 (999 firms), 1931 (1,620 firms), 1933

(1,562 firms), 1938 (1,769 firms), and 1940 (2,264 firms) surveys.

American Men of Science (AMS) — We use the employment of prominent scientists by a firm as an

additional indicator of corporate investment in science. For this, we collect information on the employment

affiliation of American scientists from the 1921 and 1938 edition of the Cattel Directory of American Men

of Science.
20[First names and capitalization added by authors.
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As seen in Appendix Figure B2, corporate investment in science has a skewed distribution: a total of

308 firms (66%) in our sample operate a research lab and 201 (43%) publish, but the top 8% of publishing

firms account for 75% of all corporate publications, while the 10 largest corporate laboratories account for

half of all lab employment.

[Table 2 Here]

The three indicators of corporate investment in science are highly correlated.21 However, each measure

is imperfect. Table 2 shows that nearly half of all firms that operate research labs do not publish in the

sciences, and around 37% do not employ scientists that appear in the AMS directory. Historical accounts

also indicate that some labs were engaged exclusively in downstream development rather than scientific

research. We therefore use multiple indicators in the empirical analysis.

3.2 University Science

3.2.1 Gap in University Science

Measuring the gap between the required and available industrially relevant science is very difficult.

Instead, we use as a proxy the “relative backwardness” of American academia compared to Europe by

scientific field. Intuitively, if the same fraction of university science is industrially relevant in both Europe

and the United States, and if firms could not easily access scientific knowledge from Europe, then our proxy

would capture differences across sectors in the extent to which relevant science was available to industry.

Indeed, knowledge flows from Europe were restricted after the onset of World War I.22 Our primary measure

is based on the citation-weighted number of scientific publications authored by scientists in each region. We

find similar results using an alternative measure based on citations to European journals made by American

scientific journals.

Scientific Publications: U.S. and Europe — We use the country of correspondence for the authors of

scientific publications. We collect the author address for 44,355 scientific papers published between 1900

and 1920 from Clarivate Web of Science (WoS) and classify addresses into US, Europe and “Rest of World”

regions based on their country names. For publications with missing addresses, we match the authors’ last

and first names to the AMS directory to identify 27,924 publications by prominent American scientists. The

21Pairwise correlations are 0.562 between lab size and publications, 0.656 between lab size and AMS scientists, and 0.684 between
publications and AMS scientists.

22Iaria et al. (2018) show that World War disrupted scientific knowledge transfer from Europe, which failed to recover as late as
1930.
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rest of the publications during this period are classified as European. We exclude papers in the social sciences

and humanities and are left with 12 OECD subfields for which at least one “European” or “American”

scientist published between 1900 and 1920.23 The above process yields 155,571 scientific publications by

Europeans and 60,605 publications by Americans between 1900 and 1920. We weigh the publication counts

by the number of forward paper citations received until 2019.

Constructing Firms-Specific Scientific Gaps — Our regional scientific activity data from Web of Science

are encoded at the scientific field level. Therefore, we link them to firms based on how much the firm

patents in a patent class, and on how much the patent class relies on a scientific field. We first calculate

the number of European papers published between 1900 and 1920 relevant to a patent class by weighting

the number of European papers in each field by how often they are cited by patents in the class.24 We sum

the weighted papers over all scientific fields at the patent class level to produce European papers relevant

for each class. We then weight these papers by how often the focal firm patents in the class.25 We sum the

weighted papers over all patent classes to generate the number of European papers relevant to the firm. The

number of American publications relevant to the firm is obtained analogously. We then divide the number

of European publications by the sum of American and European publications to obtain our primary measure

of scientific gap the firm faces.26

3.2.2 University Human Capital

Geographical proximity to universities could affect the access a firm has to university science and human

capital (Furman & MacGarvie, 2007). For each firm we calculate the average distance between its head-

quarters’ location (from the 1929-1930 edition of Moody’s Manuals) and American universities granting

graduate degrees in the natural sciences in 1930. For firms with no information on headquarter location,

we match their patents to the HistPat dataset, which extracts Federal Information Processing System (FIPS)

County codes for patent assignees (Petralia et al., 2016). We impute the firm’s address as the one that

23We use the correspondence in Marx and Fuegi (2020) to map Web of Science subject fields to 39 OECD subfields. Appendix
Table C1 provides the breakdown by field.

24The weights divide the number of patent citations made to the field by total patent citations to science from the IPC between 1947
and 1957 (the first 10-year period from the time NPL citations were formalized in U.S. patent documents).

25The weight is the share of patents filed by the firm in the IPC, between 1926 and 1940.
26For example, 15% of AT&T’s patents granted between 1926 and 1940 are in IPC H01J (Electric discharge tubes or discharge

lamps). Patents in this IPC, in turn, cite the Chemical Sciences most often (26%), followed by Electrical Engineering (23%) and
Physical Sciences (21%) between 1947 and 1957. As we see in Appendix Table C1, Chemical Sciences and Physical Sciences
have European-to-American ratios that are higher than the average, which contributes to the high (in the 90th percentile) firm-
level gap score for AT&T. In contrast, General Ice Cream Corp, which is below the 10th percentile in this gap score, patents most
often in A23G (Cocoa; Cocoa Products), where the highest number of NPL citations are made to Biological Sciences. Biological
sciences, in turn, has a European-to-American ratio below the average, which contributes to the firm receiving a low gap score.
Appendix C presents a detailed example, showing each step of the calculation.
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appears most frequently in its patents.

For university addresses, we use the 1930 edition of the “List of American Doctoral Dissertations”, a

catalog published by the Library of Congress, to identify 41 American universities that granted graduate

degrees in the natural sciences during our sample period. We manually search for the addresses of these

institutions and calculate their geodesic distances to our sample firms.27

We also measure the number of PhD graduates that are relevant to a firm’s technological base by count-

ing the number of dissertations similar to a firm’s patent portfolio for a focal year. We calculate textual

similarities (ranging from zero to one) between dissertations (titles and abstracts) sourced from ProQuest

Dissertation and Theses (PQDT) Database to the focal firm’s patents.28 We sum these similarity scores at

the firm-year level to derive the weighted number of PhD graduates relevant to a firm.

3.3 Patents

Patent data are derived from Google’s public patent dataset. There are 637,190 patents granted between

1926 and 1940. We match 92,330 patents to the 466 firms in our panel between 1926 and 1940 (see Ap-

pendix Section B.1 for details). We normalize forward patent citations by dividing the total number of

citations received by a focal patent by the per-patent citations received by all patents granted in that year.

3.3.1 Proximity to the Technological Frontier

We identify firms close to the technological frontier in three ways: first, we measure the extent to

which its patents “rely” on science by counting citations to scientific publications in Microsoft Academic

Graph in the text of the patent, from Marx and Fuegi (2020).29 Second, we measure the “novelty” of a

patent by measuring whether it is the first in its Cooperative Classification Class (CPC). Third, we use the

patent “importance” measure developed by Kelly et al. (2021). This measure identifies patents distinct from

previous work but related to subsequent innovations by dividing a patent’s 10-year forward textual similarity

by its 5-year backward similarity.

3.4 Financial Data and Industry Concentration

Financial Statement Variables — Balance sheet and earnings data are not available before 1950 from

conventional sources such as S&P Compustat. Therefore, we build on Kandel et al. (2019), who collect

data on firm assets and earnings for the sample firms for the years 1926, 1929, 1932, 1937 and 1940 using

27Appendix Section B.2 provides further details.
28When a dissertation is similar to multiple patents by a firm, we keep the highest similarity score.
29We use in-text citations because NPL citations are available only after 1947. We use references with a confidence score of 9 or

above. We find 237 patent citations to science by our sample firms between 1926 and 1940.
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Moody’s Manuals, and fill in data for the intervening years from the same source.30 We classify firms to

industries by matching descriptions of firm “occupations” in Moody’s Manuals by hand to one of the 85 3-

digit industry codes in the revised 1947 SIC tables, reported by the BEA in 1958 (Department of Commerce,

1965). We augment the dataset with end-of-the-year stock market value data for all listed firms using the

CRSP Monthly Stock File for North American firms. For listed firms that appear on CRSP but not in the

B&M sample, we obtain financial data from Graham et al. (2015), who manually collected the data from

Moody’s Industrial Manuals.

Market Share and Industry Concentration — We measure annual market share by dividing firm sales in

a year by 3-digit industry sales in the same year.31 We then average annual market share for the first five

years of the panel (1926-1930) for each firm.32 We also use Wilcox (1940) to classify 3-digit industries as

competitive and non-competitive.33

3.5 Descriptive Statistics

The maximal number of observations is 6,990 (466 firms observed over 15 years between 1926 and 1940).34

There are only around a third of the total observations for “Lab Employees” because the IRL data were

collected for only five sample years by the NRC (1927, 31, 33, 37, 40).

[Figure 4 Here]

Figure 4 shows that the unconditional probability of a firm having a scientific patent, one of our indicators

of the firm having reached the scientific frontier, is positively related to the firm’s investment in science.

Firms with scientific patents are more likely to i) publish, ii) have a lab, or iii) employ prominent scientists.

This relationship is stronger when we combine indicators for corporate investment in science. For instance,

1.8% of firms that engage in one of the aforementioned activities (the “1 Indicator” group) cite scientific

articles, which is larger than those that engage in none of them (the “No Science” group, with 0.9%).

However, this difference is small and statistically insignificant. In contrast, 27.6% of the firms that engage

in all three activities cite scientific articles in their patents, and the difference with the rest of the groups is

statistically significant. The results are qualitatively similar for other patent-based measures of proximity to

30We use additional, ownership-related variables, drawn from Moody’s Manuals, in a robustness test in Table D6
31We use gross income to measure sales as our sample consists primarily of firms in manufacturing.
32We use earlier market share data to mitigate concerns that investment in science may subsequently affect market share. Averaging

mitigates the potential bias caused by years with incomplete sales data.
33Wilcox uses a broad set of criteria to separate competitive and non-competitive industries for the period 1934-1939. Stigler (1949)

and Nutter and Einhorn (1969) both validate the Wilcox (1940) classification.
34Appendix Table B2 presents descriptive statistics at the firm-year level, and Appendix Table B1 provides variable definitions.
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the technological frontier, as well as for measures of leadership (market share), size (assets), and, operation

in a concentrated market (although the patterns for this measure are less pronounced).

[Table 3 Here]

Table 3 shows that the three measures of proximity to the technological frontier are positively correlated,

though not perfectly. This implies each measure captures a different technological characteristic of the firm.

We therefore present in Table 4 specifications with each of these measures separately, and all three of them

together.

4 Empirical Results

4.1 Which Firms Invest in Science?

Table 4 presents the results of conditional Poisson specifications regressing corporate investment in

science on measures of proximity to the technological frontier and market leadership, controlling for firm

size (assets), geographical distance to universities, and the number of PhD dissertations relevant to firm

patents.35 All specifications control for year and industry fixed effects and standard errors are clustered at

the firm level.

[Table 4 Here]

Corporate publications, our primary indicator of investment in science, are positively associated with prox-

imity to the frontier – patent citations to science, first-in-CPC dummy, and patent importance – individually

(Columns 1-3) and jointly (Column 4). The estimate from Column 1 implies that citing scientific articles

in patents is associated with 8.5 times more corporate publications. Appendix Tables D3 and D4 replicate

these specifications for lab size and the number of prominent scientists: Patent citations to science are cor-

related with 2.5 times more lab employees and 5.5 times more AMS scientists. In Appendix Table D5, we

find that the result in Table 4 Column 1 is principally driven by firms citing recent and highly cited science.

The estimate in Column 1 implies that firms whose patents only cite papers older than average are not more

likely to publish papers themselves.36 Firms with patent citations to recent science publish 20% more than

those with citations to any scientific article. Column 2 shows that firms whose patents cite “high quality”

35Geographical distance to universities and number of PhDs dissertations proxy for the human capital the firm has access to.
36A paper is “Recent” if the difference between its publication year and the citing patent’s grant year is below the average for the

CPC-grant year.
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science (papers with above average forward citations from other scientific articles) publish twice as much as

those that cite any scientific article.37

Columns 5-8 of Table 4 focus on the relationship of corporate science with absolute size (assets), relative

size (market share) and industry concentration (competition).38 All three are correlated significantly with

corporate investment in science, with a standard deviation higher market share associated with 2.6 times

more publications (Column 6).

We also test whether proximity to the technological frontier can predict the decision to invest in science

at all. Appendix Table D6, Columns 1-3 show that firms with scientific patents are around 49% more likely

to publish (Column 1), 38% more likely to operate labs (Column 2) and 68% more likely to employ a

prominent scientist (Column 3). Since size may also be correlated with attributes of the firm’s ownership

structure, we control for whether the firm is part of a business group (with at least three public affiliates) in

Columns 4-6 of Appendix Table D6 and find that the positive correlation between investment in science and

firm size continues to hold (Appendix B.3 provides details on the construction of firm ownership data).39

We also find that our results tend to hold for the largest firms in the sample (Columns 7-9), and when the

largest firms are excluded (Column 10).

4.1.1 American Universities And Industrially Relevant Science

We explore the extent to which the relative weakness of American academia in certain fields (i.e., the

“gap” in public science) accentuates the incentives of the affected firms to invest in research. Column 1 of

Table 5 displays results from a conditional Poisson regression where we include a measure of the gap along

with controls for size, distance to academic institutions, number of relevant American PhD dissertations, as

well as year and industry dummies. The point estimate implies that a standard deviation higher gap in uni-

versity science is associated with around twice as many corporate publications.40 In Column 2, we interact

distance to universities with gap measures and find that the baseline results are stronger for firms located

close to universities: the marginal effect of University Gap on corporate publications in Column 1 becomes

negative for firms above the 95th percentile of distance to universities (and statistically indistinguishable

37The results are similar for lab size (Columns 3 & 4) and employment of prominent scientists (Columns 5 & 6).
38Since these measures are correlated with technological frontier measures (Table 3), we include them altogether in Appendix Table

D7 and find the main results hold. Note that we measure assets and market share for the first five years of the panel to mitigate
the possibility that earlier investments in science increase the (absolute or relative) size of firms later in the sample.

39Following Nelson (1959), we also test whether diversified firms are more likely to invest in science in Columns 4-6 and find
mixed results: the HHI coefficient estimates (measuring the diversification of sales across industries calculated for each ultimate
owner’s controlled firms) for Column 4 is consistent with diversification being positively correlated with corporate science, but
estimates in Columns 5 and 6 are not statistically significant.

40The results are qualitatively similar for lab employees and AMS scientists in Column 1 of Appendix Tables D8 and D9.
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from zero for firms above the 90th percentile). Firms farthest from universities would have been least likely

to benefit from academic knowledge, which could explain why the gap matters less for them.

[Table 5 Here]

Columns 3-5 interact the university gaps with proximity to the technological frontier.41 The interaction coef-

ficient estimate in Column 3 suggests that the positive association between the scientific gap and investment

in corporate research is driven by firms whose patents cite science. Comparing university gap measures

at the 25th and 75th percentile, firms with scientific patents have eight-fold more scientific publications,

whereas firm that do not cite science exhibit a negligible change (a statistically insignificant 4% decrease).

Columns 4 and 5 are also consistent with the view that the scientific gap matters more for firms closer to the

technological frontier.

Columns 6-8 interact university gaps with firm size, market share and concentration. The interaction

term estimate in Column 7 implies that the correlation between gap and publications is around 2.8 times

larger for firms in the 75th percentile of market share compared to those in the 25th percentile. Column

8 similarly shows that the positive association between scientific publications and the university gap is

principally driven by firms in non-competitive industries.42 We also see similar results using lab employees

and AMS scientists (Columns 6-8 of Appendix Tables D8 and D9). We replicate these results using an

alternative measure of university gap that is based on the number of citations from American journals to

European ones for publications (Appendix Table D11), lab personnel (Table D12), and prominent scientists

(Table D13).43 In sum, the firms most likely to respond to gaps in science were technologically advanced

and faced limited competition.

4.2 Corporate Science and Firm Performance

If firms invest in research to solve pressing technological problems, such firms ought also to have produced

better and more valuable new inventions. We feature two measures of such inventions: patents deemed

valuable by investors (from Kogan et al., 2017) and highly cited patents.44 We estimate a conditional Pois-

son specification that regresses the number of these “home-run” patents (in the top 5% of their respective
41Since the gap measure is a ratio between European and American publications, we also control for the level of European and

American publications (unreported in the tables), whose coefficients are insignificant. The results are not sensitive to their
inclusion.

42We find the interaction term with respect to size (assets) in Column 6 to be statistically insignificant, which may indicate that
market share and competition capture appropriability from scientific knowledge that is distinct from size.

43Details on constructing this gap measure are found in Appendix Section C
44Patent values are available only for public firms. Public firms account for the majority of firms in our sample and constitute the

vast majority (around 80%) of firms that publish or operate labs.
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measures for each grant year) against investment in science and controls for lagged size (assets) and patent

stock. Note that patent value is conceptually distinct from patent-based measures of proximity to the tech-

nological frontier used in Tables 4, 5, and D6. Patents that cite science, are first in their technology class, or

are “important” may actually be discounted by investors and future inventors because of their novelty.

[Table 6 Here]

The estimates from Table 6, Columns 1 & 2 show that corporate publications are positively correlated

with the number of highly valuable patents. An increase in publication stock by one standard deviation is

associated with about 16% more patents in the top 5% of stock market value. We replicate these results

for lab size as well the employment of prominent scientists in Appendix Table D10. These results are

consistent with the view that firms that invested in internal scientific research were also more likely to

produce higher-quality inventions. As an alternative to estimating patent-based outcomes, we also estimate

the relation between corporate science (publications) and firm stock market value for publicly traded firms

through an OLS specification in Columns 3-9 (Belenzon, 2012). A standard deviation larger publication

stock (normalized by assets) is associated with a 0.7% increase in logged firm market capitalization relative

to the sample mean (Column 3). However, splitting the sample by university gap measures in Columns 4

and 5, we find that firms whose gaps in university science are above the sample mean (Column 5) are driving

the association between market value and publication stock.45

Columns 6 and 7 show that publication stock is positively associated with stock market value primarily

for firms that employ AMS scientists and have a lab (Column 7). Firms in Column 6, which do not engage in

both activities, show a statistically insignificant correlation between publishing and stock market value. This

is consistent with uneven quality of publications across scientific fields at that time, as well as differences

in publication norms across industries. Columns 8 and 9 restrict the sample to firms that employ AMS

scientists and have a lab, and indicate that the association between publication stock and stock market value

is 43% stronger for firms whose fields are related to scientific disciplines in which American universities

lagged behind Europe.46 While not causal, the results suggest that investments in science are positively

related to market value, and that this relationship is driven by firms facing significant gaps in university

45Appendix Table D14 shows a similar result using citations to European journals as an alternative measure of university gap.
Appendix Table D15 replicates the specification for Tobin’s Q.

46While the 95% confidence intervals for Columns 6 and 7 as well as 8 and 9 overlap, it is also clear that the Column 6 and 8
estimates are small and imprecise (i.e., not significantly different from zero) while the Column 7 and 9 estimates are larger and
more precise.
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science.

4.3 Alternative Explanations

The results so far are consistent with American corporations investing in scientific research to make up

for insufficient university knowledge during this period. We consider several alternative explanations that

may explain our empirical patterns.

Absorbing European Science — It is possible that firms were investing in internal research to absorb scien-

tific knowledge from Europe. This may explain why firms in fields with greater gaps to Europe tend to invest

in science, especially if they are at the technological frontier (Table 5). Indeed, leading firms employed sci-

entists trained in Europe, and backward publication citations to European journals are positively correlated

with the employment of these scientists.47 However, university science from Europe, while advanced, was

also removed from application, leaving gaps in translational research to be filled by firms. For instance, U.S.

patent citations to Europe are rare, with only 19 out of 203 papers cited (9.3%) by corporate patents having

been published in European journals.

German research universities and public research institutions were at the forefront of the chemical sci-

ences, with German chemists accounting for 44% of Nobel Laureates before 1920. However, this did not

prevent Bayer, BASF, Hoechst or AGFA from establishing their own basic research programs. German

academics were initially sources of inventions as well as human capital during the late nineteenth century

(Murmann & Landau, 1998). Carl Graebe and Carl Lieberman at the University of Berlin, for instance,

collaborated with Heinrich Caro of BASF to produce Alizarin in 1869. Hoechst’s first drug, antipyrin, was

a product of a Joint Venture with Ludwig Knorr at University of Erlangen around the 1880s. Carl Duis-

berg (who went on to direct Bayer Research and later became CEO) started his research career in 1883 at

Strasbourg University by carrying out basic research on areas of interest to Bayer. By the end of the 1880s,

however, German firms determined that they could no longer rely upon universities. They funded industrial

research consortia such as the Kaiser Wilhelm Institutes for Chemistry, Physical Chemistry and Coal Re-

search (Murmann & Landau, 1998, p.38-39). However, many of the leading firms also established central

laboratories: BASF (1879), Hoechst (1883), Oehler (1882), Kalle (1882), Agfa (1882), and Bayer (1886)

(Homburg, 1992).

[Table 7 Here]
47Appendix Figure D2 plots citations to European journals by firm publications against the employment of European PhDs and

finds a positive correlation (r= 0.245)
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To support our claim that American firms were investing in science not to absorb European science, but

to generate their own research, we compare the research topics of doctorate holders in AMS (1921) by

the sector they work in (corporate or university) and their PhD institution (U.S. versus European). To

measure research similarity, we measure the Jaccard similarity between the words used in the topic section.48

There are 15,988 unique topics and 4.4 topics per scientist. Of the 5,496 scientists, 356 have a corporate

affiliation at least once during their career, and 22% (1,200) had European doctoral training. To mitigate

concerns that we are capturing industry’s (and academia’s) propensity to publish in different disciplines

(e.g., industry scientists may focus on chemical engineering, while academia focuses on chemistry), we

limit our comparison to scientists within the same field (there are 121 fields).

Table 7 shows that the average topic similarity between corporate scientists and university scientists with

European PhDs (2.2%) is 12% lower than corporate similarity with American PhDs (2.5%). If corporate

investments in science were primarily aimed at absorbing European science, we would expect corporate

scientists’ topics to be closer to those with European PhDs, contrary to our findings.

[Figure 5 Here]

Other evidence suggests that European scientists changed research towards commercially relevant directions

after moving to American firms. We analyze the publications of 747 corporate scientists in AMS (1938) be-

fore and after joining a firm for the first time in their career. Figure 5 shows that scientists’ publications

receive 2.4 times more citations from patents 10 years after joining a firm (compared to the 10 years prior),

and the pattern holds for European-trained scientists.49 Corporate scientists also author around 30% more

publications, while their average publication citations grow almost nine-fold between the two periods. The

evidence points toward corporations investing in science (rather than merely invention). It also points to

corporate science being qualitatively different (focused in practical applications), yet respected by the sci-

entific community. In sum, while European science may have been more advanced compared to the U.S. in

key areas, it was still insufficient for the needs of American corporations.

Reverse Causality — A second alternative explanation is that universities may be responding to an abun-

dance of corporate research rather than firms responding to inadequate university research. The estab-

48The Jaccard index is calculated by dividing the count of topics shared between two scientists by the total count of distinct topics
across both scientists, represented as A∩B

A∪B for the research topics of scientists A and B. Further details can be found in Appendix
Section B.1.4.

49There are 50 (6.7%) such scientists, which shows these labs’ scientific ranks were primarily staffed by American-trained person-
nel. Further details on matching AMS scientists to scientific publications are in Appendix Section B.1.4.

23



lishment of Caltech, for instance, was partly a reaction to the perceived excessive industry partnerships

advocated by the MIT Technology Plan in the 1920s (Geiger, 1986). That is, it is possible that universities

vacated fields where firms had established dominance early. Though we cannot rule this out, it seems un-

likely that universities stepped back from research in areas where corporations had invested. We calculate

our gap measures prior to the sample period, between 1900 and 1920. As established in Figure 2, this is

a period when corporate investment in science was very low (with corporate publications in chemistry and

electrical engineering averaging only around three papers per year). Moreover, As noted earlier, funding for

university research was limited to begin with. For instance, Langmuir joined GE in 1909, in part, because

his academic job (at the Stevens Institute of Technology) offered him little time and resources for research.

Similarly, Clint Davisson left Carnegie Tech and joined Western Electric in 1917 because it offered him

more research freedom. It seems more likely that the leading companies stepped into scientific topics that

universities were neglecting but that the companies valued.

5 Discussion and Conclusion
The twentieth century saw technical progress becoming increasingly reliant on scientific knowledge. Sci-

entific discoveries, such as the vacuum tube and polymers, created opportunities for productivity advances

in existing industries such as textiles, lighting, and telephony, and opened up entirely new ones, such as

plastics, synthetic fibers, radio, and television. To exploit these opportunities, American companies needed

a deeper understanding of the materials and instruments they were using. For large firms that were close to

the technological frontier and operated in concentrated industries, internal research was a way to overcome

the inability or unwillingness of American universities to provide the needed knowledge and thereby gain

a competitive advantage: competitors would not be able to acquire the needed scientific knowledge from

universities.

As he was making the case for a central research laboratory for “pure science or fundamental research

work” to the executive committee of DuPont in 1926, Charles Stine argued that “applied research is facing

a shortage of its principal raw materials” (Hounshell & Smith, 1988, p.223). The study of large molecules

would eventually open a new field in chemistry specializing in polymers and spawn the plastics and synthetic

fiber industry. However, American universities during this time were not investing in this topic. This led

DuPont to recruit Wallace Carothers from Harvard university, who would publish his landmark paper on

polymerization in 1931, and the firm was selling nylon stockings in the New York World Fair in 1939,
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extending its market position in the chemical industry.

A similar process seems to be at work in select scientific subfields such as the birth of semiconductor

physics in the 1950s and the renaissance of Artificial Intelligence (AI) in the 2010s. In the former, AT&T

invested heavily in the creation of a solid-state alternative to the vacuum tube, which led to the transistor

in 1948. Similar concepts had been floated by academics such as Julius Lilienfeld in the 1920s, but no

follow-on work at universities ensued, prompting the firm to invest (Riordan & Hoddeson, 1997). Similarly,

university support for AI research into neural networks using deep propagation had dried up in all but a few

institutions during the 1990s (Goodfellow et al., 2016). However, after seeing the promise of deep learning

from computer vision competitions such as ImageNet (principally, Alexnet in 2012), Google invested heav-

ily in AI research, hiring university researchers such as Geoffrey Hinton (University of Toronto, founder of

DNN Research) and integrating them into their research organization to work on internal projects such as the

Google Neural Machine Translation tool in 2016. Both cases demonstrate that technologically leading firms

in concentrated markets can expand the frontiers of knowledge when university investments are anemic.

On the other hand, our results also suggest that these leading firms, while substituting for the lack of

academic science, also reinforced their advantage over competitors. This is especially relevant to the recent

debates over rising industry concentration in the United States, and on the merits of regulation of “big tech”

firms in the ICT sector(Autor et al., 2020; Gutiérrez & Philippon, 2020). Our results imply that the breakup

of firms with substantial research capabilities may, at least in the short term, reduce industrial research,

as the demise of the Bell Labs showed. Policymakers should therefore also weigh the unique functions

that “big tech” firms provide — the provision of commercially relevant scientific research neglected by the

public sector — against the downsides of their market power.

Our findings have implications for answering whether and why our innovation system has become more

sclerotic (Bloom et al., 2017). Following World War II, the growth of university research was paralleled by

growing investments in corporate research. However, by the 1980s, the two trends had begun to diverge, with

universities continuing to spend more on research and corporations withdrawing from it (Arora et al., 2020).

Our results suggest that sustained federal support for universities, as well as reforms that have reduced the

barriers to transferring government-funded science at universities (such as the Bayh-Dole Act of 1980),

may have made it easier for firms to buy or borrow commercially relevant science rather than produce it

themselves. How this growing division of labor between academia and universities is related to the rate and

direction of technological change is a question we leave for future research.
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We acknowledge that the relationship between academic and industrial research is complex: universi-

ties not only produce knowledge that feeds into firms’ innovations but also train scientists and engineers.

Universities also produce inventions that compete with corporate inventions. While we control for hetero-

geneity in firm access to human capital by proximity to universities and the availability of relevant doctoral

dissertations in the regression analyses, further research is needed to unpack how public science, in all its

dimensions, is related to private innovation.

In addition to providing new evidence on corporate research in America in the interwar period, we

assemble the most extensive historical sample of American firms involved in innovation during that period,

including information on the scientific investment of these firms and on the relative gap between American

and European universities. Though, to our knowledge, there is no corresponding dataset for European firms,

a natural follow-on research agenda may examine how European firms responded to the availability of public

science during the same period. We hope that these newly developed data will spur future research on the

open questions we have raised.
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Figure 1: PATENT CITATIONS TO SCIENCE, BY BREAKTHROUGH PATENT STATUS (KPST) AND TECH-
NOLOGY CATEGORY
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Notes: The right panel plots the percentage share of “breakthrough” patents that cite scientific articles for patents issued between 1900 and
1919 and 1920 and 1940, by NBER categories. The left panel plots the same for all other (“non-breakthrough”) patents. Breakthrough patents
are defined as those that are in the top 10% of the importance measures from Kelly et al. (2021), where importance is calculated by dividing
similarity with future patents (ten years after focal patent issuance) by similarity with past patents (five years before focal patent issuance) net
of focal patent grant year fixed effects. Scientific citation data for patents is sourced from Marx and Fuegi (2020). NBER categories for patents
are sourced from Hall et al. (2001).

Figure 2: CORPORATE INVESTMENTS IN SCIENCE, BY TECHNOLOGY CATEGORY
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Figure 3: SCIENTIFIC PUBLICATIONS BY SUBFIELD AND TYPE OF AUTHOR
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Figure 4: INDICATORS OF CORPORATE SCIENCE AND DISTANCE TO TECHNOLOGICAL FRONTIER AND

FIRM CHARACTERISTICS
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Figure 5: PUBLICATION CHARACTERISTICS OF CORPORATE SCIENTISTS WITH DOCTORATES
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Notes: The top-left panel plots average MAG publications 10 years before (“Before Joining Firm”) and 10 years after (“After Joining Firm”) by
all doctorate holders with a corporate affiliation in the 1938 edition of the American Men of Science (AMS) Directory (N=747). The top-right
panel plots this number for a subset of corporate scientists that have received their doctoral degrees from a European institution (N=50). The
mid and bottom panels respectively plot the average publication and patent citations received by the papers in the top panel.
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Table 1: SCIENTIFIC PAPER PROXIMITY TO U.S. PATENTS

(LINEAR PROBABILITY MODEL)

Dependent Variable Cited by Patent Within 10 Closest

(1) (2) (3) (4)
Corporate Publication Dummy 0.014 0.007 0.310 0.042

(0.002) (0.003) (0.005) (0.007)
Journal Impact Factor 0.000 -0.002 -0.229 -0.014

(0.001) (0.002) (0.011) (0.020)
Average of Dep Var 0.003 0.003 0.646 0.646
Year Dummies Yes Yes Yes Yes
Subfield Dummies No Yes No Yes
Journal Dummies No Yes No Yes
R2 0.006 0.020 0.062 0.221
N 38,887 38,816 38,887 38,816

Notes: The unit of analysis is a scientific paper. The sample is limited to American
science or engineering papers published from 1926 to 1940 in Microsoft Academic
Graph (MAG). “Corporate Publication Dummy” is equal to one if the paper was pub-
lished by one of the sample firms described in Section 3, and zero if it is authored by
a U.S. university. The dependent variable for Columns 1 and 2 is equal to one if the
paper has been cited by a patent; for Columns 3 and 4 it is equal to one if the paper
is ranked within the 10 most textually similar papers to a patent. Textual similarity is
calculated through the SPECTER algorithm (details in Arora et al. (2023)). All spec-
ifications include fixed effects for paper publication year. Columns 2 and 4 add fixed
effects for scientific subfield and journal.

Table 2: CROSS TABULATION OF MEASURES OF CORPORATE SCIENCE

Does Not Publish Publishes Publishing Firm Share

Does Not Operate Lab 116 42 27%
Operates Lab 149 159 52%

Does Not Employ AMS Employs AMS AMS Firm Share

Does Not Operate Lab 121 37 23%
Operates Lab 114 194 63%

Does Not Employ AMS Employs AMS AMS Firm Share

Does Not Publish 174 91 34%
Publishes 61 149 71%

Notes: The unit of analysis is the firm. The top and middle panels split the sample by whether a firm
operates a research lab during our sample period based on the IRL directory. The bottom panel splits
the sample by whether the firm produces a scientific publication. The columns in the top panel further
split the sample by whether the firm produces a scientific publication; those in the middle and bottom
panels split the sample by whether the firm employs scientists from the 1938 edition of AMS.
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Table 3: CORRELATIONS BETWEEN EXPLANATORY VARIABLES

(1) (2) (3) (4) (5) (6)

(1) Dummy for Patent Cite to Science 1.000
(2) Dummy for First Patent in CPC 0.591∗∗∗ 1.000
(3) Patent Importance 0.280∗∗∗ 0.267∗∗∗ 1.000
(4) ln(Assets, 1926-1930) 0.338∗∗∗ 0.396∗∗∗ 0.128∗ 1.000
(5) Market Share 0.180∗∗ 0.294∗∗∗ -0.004 0.413∗∗∗ 1.000
(6) Dummy for Competitive Market 0.071 -0.085 0.107 0.048 0.093 1.000

Notes: This table displays pairwise Pearson correlations for the main explanatory variables relating
to technological and market leadership at the firm level. *p < 0.05 **p < 0.01 ***p < 0.001

Table 4: CORPORATE SCIENTIFIC PAPERS AND TECHNOLOGICAL & MARKET LEAD-
ERSHIP (POISSON)

Dependent Variable Publication Count

Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Dummy for Patent Cite to Science 2.135 1.107

(0.446) (0.468)
Dummy for First Patent in CPC 1.770 0.714

(0.247) (0.144)
Patent Importance 4.327 2.874

(0.750) (0.855)
ln(Assets, 1926-1930) 1.046 0.684

(0.283) (0.250)
Market Share 6.337 1.834

(0.687) (1.536)
Dummy for Competitive Market -1.045 -0.977

(0.503) (0.508)
ln(Assets) 0.617 0.667 0.525 0.479 0.494 0.778

(0.205) (0.220) (0.140) (0.129) (0.084) (0.105)
Distance to Universities 0.016 -0.010 0.029 0.057 -0.052 -0.050 -0.045 -0.031

(0.031) (0.027) (0.035) (0.031) (0.042) (0.062) (0.056) (0.045)
PhD Graduates 0.014 0.012 0.696 0.348 0.051 0.041 0.130 0.113

(0.018) (0.019) (0.133) (0.133) (0.022) (0.019) (0.093) (0.062)
Average of Dep Var 0.688 0.688 0.939 0.939 0.628 0.922 0.624 0.716
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes No No
Pseudo-R2 0.670 0.649 0.716 0.733 0.605 0.728 0.372 0.430
Number of Firms 422 422 397 397 355 273 417 272
Number of Obs 3,855 3,855 2,640 2,640 4,860 2,747 4,252 4,080

Notes: The analysis is at the firm-year level. Columns 1-4 regress corporate publications against firm-level measures of
technologcial leadership; Columns 5-8 regress them against measures of market leadership. “ln(Assets)” takes the natural
log of concurrent assets; “ln(Assets, 1926-1930)” takes the natural log of average assets between 1926 and 1930 (all dollar
amounts in this paper are deflated to 2005 using https://www.measuringworth.com/datasets/usgdp12/result.php). “Market
Share” averages firm market share at the 3-digit industry-level between 1926 and 1930. See Appendix Table B1 for further
details on variable construction. Standard errors are clustered at the firm level. Standard errors are clustered at the firm
level.
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Table 5: CORPORATE SCIENTIFIC PAPERS AND GAP IN UNIVERSITY SCIENCE (POISSON)

Dependent Variable Publication Count

Baseline Univ Distance Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Univ Gap 26.343 41.509 -1.338 -0.465 16.732 -133.178 3.041 34.389

(7.624) (11.894) (7.312) (9.123) (8.068) (145.425) (7.812) (5.413)
Univ Gap × Distance to Universities -2.311

(1.439)
Univ Gap × Dummy for Patent Cite to Science 86.697

(14.577)
Univ Gap × Dummy for First Patent in CPC 54.643

(11.620)
Univ Gap × Patent Importance 135.141

(25.226)
Univ Gap × ln(Assets, 1926-1930) 7.669

(6.914)
Univ Gap × Market Share 104.177

(49.577)
Univ Gap × Dummy for Competitive Market -32.105

(7.744)
Dummy for Patent Cite to Science -59.299

(10.172)
Dummy for First Patent in CPC -37.103

(8.135)
Patent Importance -91.569

(17.488)
ln(Assets, 1926-1930) -4.584

(4.843)
Market Share -68.427

(35.518)
Dummy for Competitive Market 21.731

(5.495)
ln(Assets) 0.825 0.830 0.577 0.633 0.679 0.540 0.694

(0.205) (0.205) (0.101) (0.128) (0.097) (0.063) (0.070)
Distance to Universities -0.036 1.626 0.043 0.025 -0.001 -0.049 -0.062 -0.079

(0.040) (1.014) (0.026) (0.027) (0.042) (0.037) (0.064) (0.060)
PhD Graduates 0.072 0.069 0.008 0.012 0.466 0.065 0.040 0.133

(0.028) (0.029) (0.014) (0.017) (0.096) (0.024) (0.021) (0.066)
Average of Dependent Variable 0.688 0.688 0.688 0.688 0.939 0.628 0.922 0.624
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes Yes No
Pseudo-R2 0.653 0.655 0.734 0.702 0.743 0.655 0.744 0.458
Number of Firms 422 422 422 422 397 355 273 417
Number of Observations 3,855 3,855 3,855 3,855 2,640 4,860 2,747 4,252

Notes: The analysis is at the firm-year level. “ln(Assets)” takes the natural log of concurrent assets; “ln(Assets, 1926-1930)” takes the natural log of
average assets between 1926 and 1930. “Market Share” averages firm market share at the 3-digit industry-level between 1926 and 1930.“University
Gap” divides the number of European scientific publications relevant to a firm from Web of Science between 1900 and 1920 by all (European and
American) publications relevant to it. Controls for the level of European and American publications are included. See Appendix Table B1 for further
details on variable construction. Standard errors are clustered at the firm level.
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Table 7: AVERAGE PAIRWISE JACCARD SIMILARITY SCORES

FOR SCIENTISTS’ TOPICS

Corporate Scientist Non-Corporate:
U.S. PhD

Non-Corporate:
European PhD

Corporate Scientist
2.719

(0.051)
N=16,984

Non-Corporate:
U.S. PhD

2.478
(0.016)

N=149,937

2.676
(0.008)

N=546,524

Non-Corporate:
European PhD

2.190
(0.024)

N=51,071

2.379
(0.010)

N=324,148

2.328
(0.022)

N=52,691
Number of Scientists 356 3,940 1,200
Notes: The sample is limited to 5,496 scientists with doctorates in the 1921 American

Men of Science (AMS). Six sets of scientist pairs (in the same field) are analyzed: the
first column shows summary statistics of Jaccard similarities (ranging from 0 to 1) of
topics listed in AMS for 356 corporate scientists 1) against themselves in the first row;
2) against scientists without corporate affiliations that hold U.S. doctorates in the second
row; 3) against non-corporate scientists that hold European doctorates. The second col-
umn limits the sample to 3,940 non-corporate scientists with U.S. PhDs and calculates
similarities within this set in the second row, and against non-corporate scientists with
European PhD in the third row. The third column limits the sample to non-corporate
scientists with European PhDs. Each quadrant calculates the mean and standard errors
(in parentheses) of pairwise Jaccard similarities of the constituent scientist pairs (multi-
plied by 100 to aid with interpretation), followed by corresponding number of pairs. A
quadrant is shaded darker when the mean pairwise Jaccard similarity score is higher.
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Appendix A Analytical Model

Section 2 that recounts the rise of American corporate science stresses three factors: the imperative to
innovate for the leading firms, the role of science in facilitating innovation, and the weakness of American
university science. To study more formally how these factors interact, we adapt the framework developed in
Arora et al. (2021). Whereas they analyze the impact of spillovers, we focus on the differences across firms
in the payoffs from innovation and the effect of public science on research investments.

The relationship between the state of academic research and corporate investment in science is complex.
Internally generated research by companies could complement or substitute for academic science. More-
over, because academic science is potentially available to all firms in a market, the nature of the strategic
interactions among competitors matters as well. We develop a simple conceptual framework to study the
private returns to investment in research, conditional on the state of public science. We distinguish between
scientific knowledge and innovation. Innovation — the introduction of new products and processes — is the
source of profits. Scientific knowledge, either from universities or from internal research, reduces the cost
of innovation. Leading firms that are more dependent on innovation derive greater returns from investing
in research. However, their incentives also depend upon the nature of strategic interactions, as well as on
the state of academic science. We show that, under some conditions, the incentives for leaders to invest in
internal research may be higher when the supply of academic science is low.50

A.1 Setup
There are three stages. In Stage 3, the firms compete in the product market. Their product market

performance depends on the quality of their products and the cost of producing them. We assume that cost
and quality depend upon the innovation output, di, i = 0,1. Their payoffs from Stage 3 are Π(d0,d1) and
Π̃(d1,d0), where the tilde indicates firm 1. We assume that Π(d0,d1) is increasing in the first argument and
decreasing in the second, and concave in its arguments, so that the firm’s profit increases in its innovation
output, albeit at a diminishing rate. To avoid the need for assumptions on third order derivatives, we assume

Π(d0,d1) = kd0 −
c00

2
d2

0 −bd1 −
c11

2
d2

1 + c01d1d0, k > 1

Π̃(d1,d0) = d1 −
c00

2
d2

1 −bd0 −
c11

2
d2

0 + c01d1d0

Firms farther from the frontier (e.g., smaller firms) can increase profits by imitation and by increasing scale,
possibilities that the leaders have already exhausted. Instead, leaders have to introduce new and improved
products and processes-to innovate. Accordingly, the marginal product of innovation for Firm 0 is greater
than that of Firm 1 because k > 1.

The coefficient c01 is positive under strategic complementarity and negative under substitutability. Con-
cavity of Π implies c00 > 0,c11 > 0,c00c11 − c2

01 ≥ 0. We assume that b > 0 so that ∂Π

∂d1
=−b− c11d1 < 0,

i.e., innovation by rivals reduces payoff. We also assume that c00 ≥ c11. This assumption implies that the
returns to internal invention increases at a slower rate than the rate at which profits decline due to invention
by rivals.

In Stage 2, firms choose their innovation output. Firm 0 chooses d0 and Firm 1 chooses d1. The cost
of innovation for Firm 0 is φ(r0;u)d0, where r0 represents investments in internal scientific research by
the firm, and u indexes the stock of (relevant) public science. The cost of innovation includes the cost
50In the present paper we ignore the effect of the production of human capital. Arora, Belenzon, and Patacconi (2019) analyze

how the joint production of knowledge and human capital conditions the incentive of a single incumbent in a model where the
incumbent may potentially buy inventions from startups.
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of inventing new products and processes or improving them. Internal research may directly lead to such
inventions, but may also indirectly reduce the cost of invention by guiding the search for inventions in more
promising directions. Innovations may also be based on inventions acquired from independent inventors,
other firms or university researchers. Thus the cost of innovation also depends on the state of public science.
It is natural to assume that both internal research and public science reduce the unit cost of innovation,
φ(r0;u), i.e., ∂φ

∂ r0
< 0, ∂φ

∂u < 0, and diminishing returns so that ∂ 2φ

∂ r2
0
> 0.

As we show below, the relationship between public science and internal research in the reduction in the
unit cost of innovation will be important in how research investments relate to the stock of public science.
The relationship may be one of complementarity (in the sense of Milgrom and Roberts 1989). For instance,
it is typically believed that public science would complement internal research efforts. However, public
science may also lead to startups and independent inventors, who can license or sell their inventions, which
can substitute for internally generated inventions. If so, the relationship may be one of substitutability.
Complementarity between university and corporate science exists if − ∂ 2φ

∂ r0∂u > 0, and substitutability exists

if − ∂ 2φ

∂ r0∂u < 0. If ∂ 2φ

∂ r0∂u = 0, public science and research have independent effects on the cost of innovation.
The cost of innovation for Firm 1 is ˜φ(u)d1. As noted, innovations may be based on external discoveries

and inventions. Thus, we assume that ˜φ(u) decreases with u.
In Stage 1, Firm 0 choose its research investments, r0, and the cost of research is modelled simply as

γ

2 r2
0, so v0 = kd0 − c00

2 d2
0 −bd1 − c11

2 d2
1 + c01d1d0 −φ(r0,λ )d0 − γ

2 r2
0.

A.2 Stage 2: Innovation
We assume a stable Nash Equilibrium exists. For a stable equilibrium, we require that D = c2

00 − c2
01 >

0 ⇐⇒ |c00|> |c01|.
Note that as long as k ≥ 1+(φ − φ̃), d0 ≥ d1. In particular, if neither firm invests in research, so that

φ = φ̃ , Firm 0 would innovate more, and the gap is larger, the larger is k. This would imply that Firm 0 has
a greater incentive to invest in research. The following intermediate results are helpful for later results.
A.2.1 Focal Firm Research and Innovation

The response of innovation output to the focal firm’s research is

∂d0

∂ r0
=

c00

D
(− ∂φ

∂ r0
)

∂d1

∂ r0
=

c01

D
(− ∂φ

∂ r0
)

(A1)

Note that if c01 ≥ 0, Firm 1 also increases its innovation in response to an increase in research by Firm 0.
Furthermore, ∂ 2d0

∂ r0∂u = − c00
D

∂ 2φ

∂ r0∂u ≥ 0 if ∂ 2φ

∂ r0∂u ≤ 0, i.e., if public science and internal research are comple-
ments.
A.2.2 Public Science and Innovation

The response of innovation output to public science is

∂d0

∂u
=

−1
D

(
c00

∂φ

∂u
+ c01

∂ φ̃

∂u

)
∂d1

∂u
=

−1
D

(
c00

∂ φ̃

∂u
+ c01

∂φ

∂u

) (A2)

If there is strategic complementarity, i.e., c01 ≥ 0, both firms innovate more in response to an increase
in public science. However, if there is strategic substitutability, then one (but not both) firm may reduce
innovation. In particular, if the innovation costs of a firm are not very responsive to public science, the effect
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of a rival increasing its innovation may cause the firm to reduce its innovation. However, note that

∂d0

∂u
+

∂d1

∂u
=

−1
D

(
∂φ

∂u
+

∂ φ̃

∂u

)
(c00 + c01)≥ 0 (A3)

This implies that innovation on average increases with public science.
A.3 Stage 1: Research
Suppose Firm 1 does not invest in research. Firm 0 chooses r0, taking into account how its choice will affect
the equilibrium choices of d0 and d1 in the Stage 2 game. For Firm 0, the first-order condition for optimal
r0, is

− ∂φ

∂ r0
d0 +

∂Π

∂d1

∂d1

∂ r0
= γr0 (A4)

The marginal return to research has a direct benefit represented by the first term: the reduction in the unit
cost of innovation, which is proportional to the scale of innovation. The second term represents the feedback
effect from competition in the innovation stage. By increasing innovation, research has a secondary benefit if
it reduces innovation by the rival, which would be the case if there is strategic substitution in the innovation,
so that c01 ≤ 0. If innovations are strategic complements, then there is a secondary cost, because the second
term would be negative. However, the first term is always larger than the second term. Substituting for ∂d1

∂ r0
from Equation A1 and gathering terms, Equation A4 can be rewritten as

− ∂φ

∂ r0

(
∂Π

∂d1

c01

D
+d0

)
= γr0 (A5)

Therefore,
∂Π

∂d1

c01

D
+d0 must be positive at an interior maximum. A sufficient condition for this is strategic

substitutability in innovation, c01 ≤ 0. 51

A.4 Innovation Leadership
Leaders earn higher profits. Conversely, the profits of the follower fall with the lead of Firm 0. Formally,

∂v
∂k

= d0 +
∂Π

∂d1

∂d1

∂k

= d0 +
∂Π

∂d1

c01

D
> 0 at an interior maximum

∂ ṽ
∂k

=
∂ Π̃

∂d0

∂d0

∂k
=

∂ Π̃

∂d0

c00

D
< 0

(A6)

Importantly, the returns to research of the innovation leader increase with its lead k. Those of the follower
decrease if innovations are strategic substitutes and increase otherwise. Intuitively, as k increases, the leader
increases innovation. With strategic substitutes, the marginal return to innovation for the follower decreases.
Given that research reduces the cost of innovation, the marginal return to research for the follower decreases.

∂ 2v
∂k∂ r0

=
∂d0

∂ r0
+

c01

D
(−c11

∂d1

∂ r0
+ c00

∂d0

∂ r0
)

= (− ∂φ

∂ r0
)

(
c00

D
+

c2
01
D

(c00 − c11

)
> 0

∂ 2ṽ
∂k∂ r1

=
c00

D
(−c11

∂d0

∂ r0
+ c01

∂d1

∂ r1
) =

c00

D
(− ∂ φ̃

∂ r1
)c01(c00 − c11)≤ 0 ⇐⇒ c01 ≤ 0

(A7)

51We assume that the second order condition for an interior maximum holds. This requires that γ be large.
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This result points to why the follower may not invest in research. Equation A7 implies that if innovations are
strategic substitutes, as the gap between leaders and followers grows, their incentives to invest in research
diverge: leaders are more likely to invest in research, and followers are less likely to do so. If there is a fixed
cost to such investment, then, for a range of such costs, we will have only Firm 0 invest in research while
Firm 1 does not.
A.5 Public Science

In this section, we focus on the equilibrium where only Firm 0 invests in research.
A.5.1 The Value of the Firm

The value of the firm, v, may decrease with public science if public science substitutes for internal
research, particularly if innovations are strategic complements. Intuitively, although public science reduces
the cost of innovation, the innovation cost of the rival also declines. Increased innovation by the rival reduces
value for the focal firm. If public science substitutes for internal research, it will be less effective in reducing
the innovation cost of Firm 0, i.e., | ∂φ

∂u | < | ∂ φ̃

∂u |. Formally, the value of the firm is v = max
r0

{Π− γ
r2

0
2 }.

Applying the envelope theorem, the effect of public science is given by

∂v
∂u

=−d0
∂φ

∂u
+

∂Π

∂d1

∂d1

∂u

=−∂φ

∂u

(
d0 +

∂Π

∂d1

c01

D

)
− c00

∂Π

∂d1

∂ φ̃

∂u

(A8)

Although the first term is positive if the firm invests in internal research, by Equation A4, its magnitude
depends on | ∂φ

∂u |. The second term is negative, and represents the effect due to the reduction in the rival’s

innovation cost. It is larger in magnitude the larger is | ∂ φ̃

∂u |. Note that rivalry also matters. If
∂Π

∂d1
=

−b+ c01d0 is large in magnitude (as would be the case for b large and c01 < 0), the firm’s value can decline
with public science.
A.6 Internal Research and Public Science

At an interior maximum, the direction of the effect of public science on internal research is given by
∂ 2v

∂ r0∂u
. Research increases with public science if

∂ 2v
∂ r0∂u

≥ 0 and decreases otherwise.

∂ 2v
∂ r0∂u

=

(
− ∂φ

∂ r0

)
∂d0

∂u
+d0

(
− ∂ 2φ

∂ r0∂u

)
+

∂Π

∂d1

∂ 2d1

∂ r0∂u
+

∂d1

∂ r0

∂ 2Π

∂d1∂u

substituting and collecting terms

=

(
− ∂φ

∂ r0

)
∂d0

∂u
− ∂ 2φ

∂ r0∂u

(
d0 +

∂Π

∂d1

c01

D

)
+

∂d1

∂ r0

∂ 2Π

∂d1∂u

(A9)

The first term in Equation A9 is positive. The second is positive if public science and research are com-
plements in reducing the unit cost of innovation and negative otherwise. The third term is negative only
if innovations are strategic complements and positive otherwise. Put differently, the first term reflects a
direct effect: public science reduces innovation costs, and the resulting increase in innovation increases the
marginal return to research. The second term represents the interaction between public science and research
in reducing innovation costs. If they are complements, the second term also implies that the marginal return
to research increases with public science. The third term captures the strategic interaction in innovation. If
innovations are strategic substitutes, this term is also positive. Strategic complementarity is a necessary, but
not sufficient, condition for this term to be negative. Thus, if internal research falls with public science, it
implies that public science is a strategic substitute for research, or innovations are strategic complements, or
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both. These are one-way implications; even if they hold, public science could increase internal research if
the direct effect, represented by the first term, is large.

To see this more fully, consider the case where there is neither complementarity nor substitution in the
innovation stage, and where public science and research are independent in their effect on the unit cost of
innovation. The latter implies that ∂ 2φ

∂ r0∂u = 0, and the former implies that ∂d1
∂ r0

= 0. In that case, Equation A9

has a single term
(
− ∂φ

∂ r0

)
∂d0
∂u ≥ 0. That is, if public science and research are independent and there are no

strategic interactions in the innovation stage, internal research increases with public science because public
science increases the scale of innovation, thereby increasing the marginal return to research.

If there are no strategic interactions in innovation, A9 is
(
− ∂φ

∂ r0

)
∂d0
∂u − ∂ 2φ

∂ r0∂u

(
d0 +

∂Π

∂d1

c01
D

)
. The second

term is non-negative if − ∂ 2φ

∂ r0∂u ≥ 0, i.e., if public science and internal research are complements and negative
otherwise. Therefore, if internal research declines with public science, and there are no strategic interactions
in innovation, it implies that public science and internal research are strategic substitutes.

The third term can be written as

∂d1

∂ r0

∂ 2Π

∂d1∂u
=

∂d1

∂ r0

[
∂ 2Π

∂d1∂d0
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+
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∂d2
1
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]
=

∂d1
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1
D

[
−c11c00(−
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∂u
)− c11c01(−

∂φ
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)+ c01c00(−

∂φ

∂u
)+ c2

01(−
∂ φ̃

∂u
)

]
collecting terms and substituting

∂d1

∂ r0

∂ 2Π

∂d1∂u
=

c01

D2 (−
∂ φ̃

∂u
)(c2

01 − c00c11)+
c2

01
D2 (−

∂φ

∂u
)(c00 − c11)

(A10)

Note that c00 ≥ c11, so that c2
01

D2 (− ∂φ

∂u )(c00 − c11) ≥ 0. Also, − ∂ φ̃

∂u (c
2
01 − c00c11) ≤ 0 by the concavity of Π.

Thus, c01
D2 (− ∂ φ̃

∂u )(c
2
01 − c00c11) > 0 if c01 < 0 and negative otherwise. Therefore, a necessary condition for

the expression in A10 to be negative is that innovations be strategic complements. The conclusion is that for
public science to reduce research, it would require that either innovations be strategic complements, or that
public science be a strategic substitute for internal research. Else, public science will increase research by
the leader.
A.6.1 The Gap Between the Leader and Follower, the Returns to Research, and Public Science

Recall from Equation A7 that the marginal returns from research to the leader as k increases is given by

− ∂φ

∂ r0

(
c00

D
+

c2
01
D

(c00 − c11)

)
. It is easy to see that this expression is increasing in u if public science and

internal research are complements (− ∂ 2φ

∂ r0∂u
≥ 0) and decreasing otherwise.

That is, restricting ourselves to the case where only the leader invests in research, we have that

∂ r0

∂k
=− ∂φ

∂ r0

(
c00

D
+

c2
01
D

(c00 − c11)

)(
−∂ 2v

∂ r2
0

)−1

> 0 (A11)

The effect of public science u on
(
−∂ 2v

∂ r2
0

)−1

cannot be signed in general.

However, the term − ∂φ

∂ r0

(
c00

D
+

c2
01
D

(c00 − c11)

)
will increase with public science if − ∂ 2φ

∂ r0∂u
≥ 0 and

decreasing otherwise. This suggests that if public science and internal research are substitutes, firms closer
to the technological frontier will respond to decreases in public science by increasing internal research. Put
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differently, suppose
(
−∂ 2v

∂ r2
0

)−1

is constant. Then,
∂ 2r0

∂k∂u
≥ 0 ⇐⇒ − ∂ 2φ

∂ r0∂u
≥ 0.

Table A1: EFFECT ON INTERNAL RESEARCH

Conceptual
Relationship

Analytical
Relationship Empirical Measure

Univ Science
Complementary
(− ∂ 2φ

∂ r0∂u > 0)

Univ Science
Substitute

(− ∂ 2φ

∂ r0∂u < 0)

Proximity to Frontier ∂ r0
∂k k


Patent Cites to Science

First Patent in CPC
Patent Importance

Market Share

+ +

Univ Science ∂ r0
∂u u

{
Eur. Scientific Pubs

Cites to Eur. Journals

+
if Strategic
Substitutes

Ambiguous

Proximity to Frontier
and

Univ Science

∂ 2r0
∂k∂u Same As Above + -
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Appendix B Data Appendix

Table B1: VARIABLE DEFINITION TABLE

Variable Name Variable Definition Source

Firm Performance
ln(Market Value) Log of market capitalization Center for Research in Secu-

rity Prices (CRSP)
Patents Within Top 5% Value
(KPSS)

Number of annual focal firm patents within the top 5% of
patent value

Kogan, Papanikolaou, Seru,
and Stoffman (2017)

Patents Within Top 5% For-
ward Cites

Number of annual focal firm patents within the top 5% of
forward patent citations

Google Patents

Corporate Investment in Science (r0)
Publication Count Number of annual peer-reviewed scientific publications

matched to focal firm
Microsoft Academic Graph
(MAG)

Lab Employees Number of annual laboratory employees matched to focal
firm

Industrial Research Labora-
tories of the United States
(1927,1931,1933,1938,1940)

AMS Scientists Number of prominent scientists that are affiliated with fo-
cal firm

American Men of Science
(1938)

Returns from Innovation (k)
Dummy for Patent Cite to Sci-
ence

Equals 1 for a firm whose patents make at least one cita-
tion to scientific publications during sample period, zero
otherwise

Marx and Fuegi (2020)

Dummy for First Patent in
CPC

Equals 1 for a firm that is issued the first patent in a CPC
for a given year

Google Patents

Patent Importance (KPST) Average “importance” of annual focal firm patents for
given firm-year, where importance is measured by divid-
ing the 10-year forward textual similarity by 5-year back-
ward textual similarity of patents

Kelly, Papanikolaou, Seru,
and Taddy (2021)

Market Share Firm level average of focal firm annual sales normalized
by annual sales in focal firm’s 3-digit industry between
1926 and 1930

Kandel, Kosenko, Morck, and
Yafeh (2019)

Dummy for Competitive Mar-
ket

Dummy equalling 1 if focal firm’s industry is classified as
competitive and zero otherwise

Wilcox (1940)

Availability of Public Science (u)
University Gap Number of European scientific publications relevant to a

firm divided by all (European and American) publications
relevant to a firm (calculated for papers published between
1900 and 1920)

Clarivate Web of Science

University Gap (Cites) Number of American journal citations to European
journals divided by total American journal citations (cal-
culated for citations made between 1900 and 1920)

Clarivate Web of Science

Control Variables
ln(Assets) Log of total assets for firm-year Kandel, Kosenko, Morck,

and Yafeh (2019) & Graham,
Leary, and Roberts (2015)

Distance to Universities Average distance of a firm to American universities grant-
ing graduate degrees in the sciences in 1930 (in 100 miles)

Wilson (1932)

PhD Graduates Number of science & engineering doctoral dissertations
relevant to a firm’s patents (divided by 100)

Arora, Belenzon, Cioaca,
Sheer, and Zhang (2023)

Notes: All dollar amounts (market value, sales, and assets) are deflated to 2005 using https://www.measuringworth.com/
datasets/usgdp12/result.php.
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Table B2: SUMMARY STATISTICS OF MAIN VARIABLES

Count Mean Median Std Dev Min Max
Dummy for Patent Cite to Science 6990 0.07 0.00 0.25 0.00 1.00
Dummy for First Patent in CPC 6990 0.11 0.00 0.32 0.00 1.00
Patent Importance 4030 0.05 0.01 0.18 -0.48 1.31
Market Share 5955 0.05 0.00 0.12 0.00 1.00
Dummy for Competitive Market 6870 0.42 0.00 0.49 0.00 1.00
University Gap 6990 0.70 0.70 0.03 0.58 0.79
University Gap (Cites) 6990 0.48 0.48 0.08 0.28 0.78
Distance to Universities 6975 8.56 7.90 3.07 6.83 42.44
PhD Graduates 6990 13.52 16.35 12.54 0.00 37.12
Lab Size 2330 44.61 0.00 220.63 0.00 4669.00
Publications, Annual Count 6990 0.47 0.00 3.73 0.00 88.00
AMS Scientists 6058 3.07 0.00 17.45 0.00 379.00
Patents, Annual Count 6990 13.21 1.00 55.04 0.00 838.00
Patents Within Top 5% Xi (KPSS) 6990 0.53 0.00 4.78 0.00 127.00
Patents Within Top 5% Forward Cites 6990 0.72 0.00 3.32 0.00 56.00
Total Assets ($MM) 4282 1373.64 413.79 3320.42 7.43 60114.66
Gross Income ($MM) 3242 864.31 272.59 1825.53 0.25 20655.93
Market Capitalization ($MM) 3840 1096.07 246.42 2905.64 0.69 37352.08

Notes: Observations are at the firm-year level. Distance to Universities is in hundreds of miles. Number
of PhD Graduates is also divided by 100. The sample period is between 1926 and 1940. All dollar amounts
are deflated to 2005 dollars using https://www.measuringworth.com/datasets/usgdp12/result.php. Details
on variable definition and data sources can be found in Appendix Table B1.
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B.1 Matching Corporations to Patents, Publications, Laboratories and Scientists
B.1.1 Matching Corporations to Patents

Our patent data is sourced from the Google Patents dataset via Google BigQuery. We cross-check the
number of utility patents granted each year with the official USPTO statistics for our sample period in Figure
B1 to ensure that our data source does not have coverage issues.52 We find that the missing rate is around
3.43%; there are an average of 42,476 utility patents granted per year from 1926 to 1940.

Figure B1: NUMBER OF PUBLISHED UTILITY PATENTS, 1925-1950

Source: The bar graph (right axis) plots the missing rate, defined as the difference in annual patent numbers between the
USPTO official statistics and the Utility Patent (inventions) Column in the following source: https://www.uspto.gov/web/
offices/ac/ido/oeip/taf/h counts.htm.

We extract the assignee field of the patents and standardize the names. We remove common prefixes
and suffixes, such as “The,” “LLC,” “INC,” “A CORP OF”. We also standardize names common in certain
industries such as petroleum (sometimes abbreviated as “petr”), utilities (“power” abbreviated as “pwr”),
rail (“railway,” “railroad,” “rail” used interchangeably and variously abbreviated as “RC,” “RW,” “RD,” and
“RC”) as well as more common names, such as “manufacturing” (“MFG”), “National” (“Nat’l Steel Corp.”),
“American” (“Radio Corp of Amer”) and state abbreviations. The last standardization is important for our
sample period because companies then were more often named after the states they operated in (for instance,
“Delaware Lackawanna & Western Coal Co.” or the “Pennsylvania Electric Company”). Furthermore, we
find alternative names specific to certain firms such as the Standard Oil Company of Indiana (STANOLIND)
and lab names for large companies such as AT&T’s Bell Laboratories. Common abbreviations, such as RCA
(Radio Corporation of America) and GE (General Electric), are also included. We then use a fuzzy string
matching algorithm that calculates a length-adjusted Levenshtein distance. Using a fuzzy string matching
algorithm is critical for patents from this period, as assignee names were not input electronically and are
parsed through OCR.53 Moreover, we manually check the names of 620 patentees with above 100 patents

52USPTO official statistics for this period come from https://www.uspto.gov/web/offices/ac/ido/oeip/taf/h counts.htm.
53As an example, the SOCONY Vacuum Oil Company is “misspelled” in the Google Patent data as: SCONY VACUUM OIL CO

INC, SOCCNY VACUUM OIL CO INC, SOCENY VACUUM OIL CO IN, SOCONEY VACUUM OIL CO INC, SOCONY
VACUNM OIL CO INC, SOCONY VAEUUM OIL CO INC, SOCONYVACUUM OIL CO INC, SOECNY VACUUM OIL CO
INC, SOEONY VACUUM OIL CO INC, and SONCONY VACUUM OIL CO INC. The fuzzy string matching algorithm is still
able to recover these matches.
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to include any matches that the string matching algorithm may still have missed.
We match 318 firms found in the B&M sample to 64,523 patents. We also add 2,344 additional patents

matched to 38 CRSP firms that were not matched in Kogan, Papanikolaou, Seru, and Stoffman (2017).54

B.1.2 Matching Corporations to Publications

Table B3: AMERICAN CORPORATE PUBLICA-
TIONS (TOP 20)

Firm Name Paper Count

GENERAL ELECTRIC CO 1146
AMERICAN TELEPHONE & TELEG CO 658
WESTINGHOUSE ELECTRIC & MFG CO 466
RADIO CORP AMER 207
EASTMAN KODAK CO 173
SQUIBB E R & SONS 112
WESTERN ELECTRIC COMPANY, INC 100
COMMONWEALTH EDISON CO 49
SWIFT & CO 44
HUMBLE OIL AND REFINING COMPANY 41
PROCTER & GAMBLE CO 40
SHARP & DOHME INC 40
PARKE DAVIS & CO 37
SOUTHERN CALIFORNIA EDISON CO 34
PHILADELPHIA ELECTRIC CO 33
CORNING GLASS WORKS 30
WESTERN UNION TELEGRAPH CO 29
WESTINGHOUSE LAMP COMPANY 29
DETROIT EDISON CO 29
PHILADELPHIA ELECTRIC POWER CO 29

Notes: The table presents the number of scientific publica-
tions in MAG from 1900 to 1940 matched to our sample firms.
The top 20 publishing firms are included.

Our publication data is sourced from Microsoft Academic Graph. We first download all author affilia-
tions for papers published between 1900 and 1940.55 We run the same fuzzy string matching algorithm as
above and manually check matches above a threshold score. Unlike patents, corporate publications are also
often published under the name of the lab, which may not always correspond to the name of the firm. There-
fore, we add names of prominent corporate laboratories such as Bell Labs and the Edgar C Bain Lab (for
U.S. Steel) as name variants. To prevent false positive matches, we check that charitable organizations and
university labs are not mismatched to the company. For instance, a 1934 publication by the “Eastman Lab-
oratory of Physics” has high textual similarity to Eastman Kodak, but is actually part of the Massachusetts
Institute of Technology, with no ties to the firm. We also cross-tabulate the publication field of the company
with its industry as a sanity check: we confirm, for instance, the wholesale and retail industry has scientific
publications because the Boots Pure Drug Company (classified under this industry) published 29 articles
ranging from the chemical sciences to clinical medicine.
B.1.3 Matching Corporations to Industrial Research Laboratories

We download the PDF files for the 1927, 1931, 1933 and 1938 editions of the NRC’s Industrial Research
Laboratory directory from Hathitrust. Since lab entries in the directory are of varying length (e.g., a stub
for the American Beet Sugar Company (figure B3) vs 2 pages for DuPont (figure B4)) and the fields are

54Kogan, Papanikolaou, Seru, and Stoffman (2017) match 60,493 patents to 368 CRSP firms from 1926 to 1940, which we also
add to our sample.

55Though our main sample runs from 1926 to 1940, publications data before 1926 are used in the analyses in Section 2.

49



Figure B2: HETEROGENEITY OF CORPORATE SCIENCE

Notes: The upper histogram bins the number of publications authored by firms in our sample. 265 firms (the leftmost bar) do
not author any scientific publications from 1926 to 1940. The middle histogram bins the number of personnel employed at
corporate laboratories for firms in our sample. 154 firms (the leftmost bar) report no employed lab personnel in our sample
period. The lower histogram bins the number of scientists in AMS affiliated with firms in our sample. 344 firms (the leftmost
bar) do not employ any AMS scientists in 1921.
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not sorted into metadata, the use of automated string matching algorithms is inefficient. However, since
the entries are listed alphabetically, the directories are still amenable to manual matching. We enlisted
two research assistants who manually searched through the directory to gather the name of the lab and the
number of personnel employed at them. Though the directory also lists the type of personnel employed
(e.g., chemists, physicists, etc.), these are not standardized by training or salary level, making it difficult to
compare across firms. Therefore, we only use the total number of personnel as the indicator of investment
in science for the analysis.

Figure B3: 1933 IRL ENTRY FOR AMERICAN BEET & SUGAR COMPANY

Figure B4: 1933 IRL ENTRY FOR AT&T BELL LABS
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Table B4: CORPORATE SCIENTIFIC PUBLICATIONS, BY OECD SUBFIELD

OECD Subfield
Number of

Firms
Number of

Papers
Average Forward

Publication Citations

1.03 Physical sciences and astronomy 39 433 1.73
1.06 Biological sciences 27 71 1.52
2.03 Mechanical engineering 57 148 1.37
2.02 Electrical eng, electronic eng 63 1268 0.91
1.04 Chemical sciences 59 267 0.88
4.01 Agriculture, forestry, fisheries 5 8 0.77
1.02 Computer and information sciences 29 77 0.65
1.01 Mathematics 21 77 0.61
1.07 Other natural sciences 2 2 0.60
2.05 Materials engineering 40 152 0.59
3.02 Clinical medicine 32 112 0.55
2.08 Environmental biotechnology 6 6 0.51
1.05 Earth and related environmental sciences 34 96 0.44
2.11 Other engineering and technologies 44 97 0.37
2.06 Medical engineering 4 21 0.31
3.01 Basic medical research 19 23 0.26
3.03 Health sciences 12 19 0.22
2.01 Civil engineering 30 73 0.19
2.07 Environmental engineering 50 169 0.19
2.04 Chemical engineering 19 22 0.13
4.02 Animal and dairy science 7 10 0.11
4.03 Veterinary science 2 3 0.04
4.05 Other agricultural science 8 10 0.03
Not Available 37 99 0.02

Notes: Observations are at OECD subfield level for years from 1926 to 1940. “Number of Firms” counts
the number of firms publishing at least one article in the focal field. “Number of Papers” counts the number
of total papers in the focal field. “Average Forward Publication Cites” take the field-level average of the
normalized forward citations. Forward citations are normalized by the average number of forward citations
received by all publications published in the focal publication’s year.

B.1.4 Matching Corporations to American Men of Science Directory
The AMS directory lists information on each scientist in a consistent manner: the last name is followed

by the title, first name, current employment and residence and main discipline. Information on date and
place of birth, alma mater, past employment and membership in professional societies follow. The final item
in each entry is a detailed list of keywords that describe the focal scientist’s research interests. We make use
of a dataset that manually inputs this information into spreadsheet format, which has been used in recent
works such as Moser and Kim (2022), Moser and Parsa (2022), and Moser et al. (2022). Out of a total of
9,557 scientists, we identify 653 that work for 122 firms in our sample. To increase coverage of our sample
period, we also search through around 30,000 scientists in the 1938 edition of AMS and find 3,322 working
at 231 sample firms.
Matching AMS Scientists to Scientific Publications — To reduce instances of false positive matches, we
exact-match author names from Microsoft Academic Graph (MAG) against the full first and last names of
scientists transcribed from the 1938 edition of AMS. We find 1,259 authors publishing 3,564 MAG papers
between 1900 and 1940. Figure B6 plots corporate papers that make citations to Europe56 (normalized by
all of the focal firm’s papers) against European PhDs employed at firms (normalized by all AMS scientists
working at the focal firm) and finds a positive correlation (r=0.245).

56Since MAG does not have location information for the publisher, we link MAG journals to Web of Science to identify European
journals (further details are discussed in Appendix Section C).
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Figure B5: AMERICAN MEN OF SCIENCE ENTRY FOR GILBERT LEWIS (1921)

Source: Entry on Gilbert Lewis from the 1921 edition of the American Men of Science (AMS) Directory.

Figure B6: CITATIONS TO EUROPE VS EMPLOYMENT OF EUROPEAN PHDS
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Calculating Topic Similarity between Scientist Pairs — We use the 1921 edition of AMS data from Moser
et al. (2022) to compare research topics of scientists. We remove all stopwords including prepositions (“of”)
and conjunctions (“and”) and generate pairs of scientists working in the same field. In the case of Gilbert
Lewis in Figure B5, the scientist’s field is “Chemistry,” while his topics are “Thermodynamic theory and
its application to chemistry; free energy tables; equilibrium in numerous reactions; electric potentials of the
common elements; properties of solutions and the activity of ions; distribution of thermal energy; specific
heat of electrons; the principle of relativity and non-Newtonian mechanics; application of four-dimensional
vector analysis to electro-magnetic theory; the geometry of the space time manifold of relativity; ultimate
rational units; calculation of Stefan’s constant; the structure of the atom and the molecule and the theory of
valence; entropy of elements; third law of thermodynamics”.
B.2 Measuring University Human Capital Relevant to Corporations
B.2.1 Firm Geographical Distance to Universities
Geolocation Data on Firms — We collect the addresses of B&M firms and their subsidiaries from the
1929-1930 Moody’s Public Utilities, Railroad and Industrial Manuals. Each entry has a section on the
firm’s management team (“Officers”), in which the firm’s office location is indicated. In the case of firms
with multiple offices, we use the main office as the firm’s location (in the case of the Porto Rico Telephone
Company in Figure B7, the location is San Juan, Puerto Rico).

For firms that are not included in the B&M sample, we use the patents matched to their assignee names
by their patent numbers to the HistPat dataset (Petralia et al., 2016). HistPat is a publicly available dataset
that collects geolocational data on patent inventors and assignees for U.S. patents prior to 1976 through a text
mining algorithm. We use version 8.0 of the dataset57 and extract the FIPS (Federal Information Processing
Standards) County Codes of the assignee of the firms’ patents. Where there are multiple counties associated
with a firm’s patents, we choose the county that appears most frequently.
Geolocation Data on Universities — We collect the location of all universities in the United States that
were granting doctorates in the natural sciences from Wilson (1932).58 While select universities were pub-
lishing catalogs of theses, a nation-wide catalog did not begin until 1912, when the Librarian of Congress
began compiling doctoral dissertations from all degree-granting institutions. The Library circulated letters
to “all universities listed in the latest “Report to the Commissioner of education” as maintaining graduate
departments.” to receive “every thesis printed,” with the aim of acquiring, classifying and cataloguing them
(Flagg, 1913, p.7). The catalog is prepared from this annual list, complete with subject headings for each
dissertation. We use the 1932 volume, which contains dissertations that were submitted between January
1931 and September 1932. Based on subject headings of the dissertations, we removed universities that do
not grant doctorates in the natural sciences such as the “Peabody College for Teachers” and the “Dropsie
College for Hebrew and Cognate Learning”. At the end of the process, we find 41 universities granting
doctorates in the natural sciences in 1930 and manually collect the addresses of the institutions from the
web, under the assumption that university locations have not changed over time.
Measuring Distances — For consistency with the HistPat database, we gather the FIPS County codes for
offices addresses from Moody’s (for the B&M firms) and for university addresses from Flagg (1913). We
then calculate the latitude and longitude of the centroid of all FIPS and calculate the geodesic distances
between all 466 firm and 41 university combinations using the Stata module “geodist”.59

B.2.2 Identifying Dissertations Relevant to Firms
We also measure human capital relevant to corporate innovations by counting the number of PhD disser-

tations from the ProQuest Dissertations and Theses (PQDT) database close to firm patents. PQDT archives
over five million dissertations submitted in fulfillment of graduate degrees in the United States from 1637

57Available from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BPC15W
58Available form https://babel.hathitrust.org/cgi/pt?id=uc1.b3509036&view=1up&seq=7).
59Package download link: urlhttps://ideas.repec.org/c/boc/bocode/s457147.html
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to present day. We focus on a subset of 27,766 dissertations in the natural sciences60 submitted to degree
granting institutions in the United States from 1925 to 1941.

Since PhD dissertations are not typically cited by patents or publications, we assess the relevance of each
thesis to a firm’s innovations based on the textual similarities between theses and patents using a deep learn-
ing algorithm, SPECTER. SPECTER (Scientific Paper Embeddings using Citation-informed Transform-
ERs) is a specialized Bidirectional Encoder Representations from Transformers (BERT) model trained on
146,000 scientific papers (containing 26.7 million words) from Semantic Scholar and their forward citations.
SPECTER has been compared to several other deep learning models specialized in technical documents, in-
cluding BERT, PatentBERT, BERT for Patents, PatentSBERTa, SciBERT, RoBERTa, and ALBERT. For
detailed descriptions of how SPECTER is implemented, please see Arora et al. (2023).

For each corporate patent, we identified the top 1,000 most similar dissertations awarded in years [t −
1, t+1], where t is the patent grant year. Because a PhD dissertation could be similar to multiple patents, we
used the maximum similarity score between a dissertation and all patents it was found similar to. The “PhD
Graduates” variable was then constructed by summing over the maximum similarity scores at the firm-year
level. Hence, the measure is a weighted sum of PhD dissertations where the weights are the (maximal)
similarity scores (ranging from zero to one) between American science & engineering dissertations and
patents owned by the focal firm.
B.3 Corporate Ownership Data

We define a business group as a collection of three or more listed firms under common ownership. For
years in our sample where ownership data are not collected (i.e., years other than 1926,29,32,37,40), we
impute business group affiliation years if they do not change between consecutive collection years.61 In
addition to using business group data, we measure levels of diversification by calculating Herfindahl (HHI)
indices of sales distributions across 3-digit SIC industries at the ultimate owner level.62 For each ultimate
owner-year, we calculate the share of each 3-digit industry out of total sales and sum the squared shares
across industries. A Herfindahl index of 1 implies that the group of firms owned by the ultimate owner
derives all of its sales from a single industry.63

B.3.1 Control Chains
We use Moody’s Manuals to track companies controlling, or controlled by, the 200 companies on the

B&M list. In each volume, a company report is followed by reports on its controlled subsidiaries (which are
identified without an explicitly specified control threshold held by the controlling company). For example, if
company A controls company B and company B, in turn, controls company C, and all three firms belong to
the railroad sector, the A-B-C control chain will appear in Moody’s Railroads Manual in the same sequence
with the identity of the corporate controller usually reported next to the company name. We examine if
one or more companies are controlled by another corporation included in the original list and, if this is the
case, combine their control chains. Therefore, each control chain in our sample is a long sequence of firms
consisting of an apex corporation and its subsidiaries, each of which has control over the next one. In most
cases, control chains include firms belonging to the same industrial category (e.g., railroads), but there are
occasionally multiple control chains in different categories with the same ultimate owner as well (e.g., a few

60We use Proquest’s subject thesaurus and classify as natural science the following categories: “Pure sciences”. “Biological
sciences”, “Health and environmental sciences”, “Applied sciences”, “Earth science”. This excludes categories in the humanities
and the social sciences such as “Language”, “Literature”, and “Psychology.” The ProQuest Thesaurus of subject terms is a
proprietary vocabulary that has been developed over many years by ProQuest Taxonomy experts. The thesaurus is actively
managed to ensure that terms remain accurate and up to date, while new terms are added regularly to ensure that our indexing
remains relevant in capturing new and emerging concepts and topics.

61That is, if a firm is controlled by General Electric in 1926 and 1929, years 1927 and 1928 are imputed for the firm as GE affiliate
years.

62The ultimate owner firm is the “apex firm” at the end of a control chain.
63It is important to note that we calculate HHI for any multi-firm entity regardless of the number of listed affiliates. Therefore, the

calculation of HHI is not restricted to business groups only, as defined in Kandel et al. (2019)
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cases of public utility apex companies controlling industrial companies).
B.3.2 Ultimate Controlling Shareholders

Moody’s Manuals do not provide any information on the identity of the controllers of apex firms. To
identify the owners of apex corporations that are not controlled by any other entity, we use the following
sources:

1. For the 1926-1929 period: Pinchot (1928), the Wall Street Journal (WSJ) and the New York Times
(NYT) archives, as well as additional sources, such as internet searches, historical documents, corpo-
rate files, www.archives.org and www.fundinguniverse.com.

2. For the 1929-1932 period: Table XII, Berle and Means (1932), Bonbright and Means (1932), Buchanan
(1936), Lundberg (1937), the Encyclopedia of American Business History (2006), the WSJ and NYT
archives and www.fundinguniverse.com.

3. For the 1937-1940 period: National Resources Committee (1939, Chapter IX and Appendix 13) and
TNEC (1940).

B.3.3 Corporate Historical Documents and Data Sources
• Bureau of Economic Analysis (BEA, 1958), U.S. Department of Commerce, Benchmark Federal

Trade Commission (FTC) Annual Reports: www.ftc.gov/os/annualreports/index.shtm

• Input-Output Data: Historical SIC Data, www.bea.gov/industry/io histsic.htm

• Interstate Commerce Commission (ICC) Reports

• Moody’s Manuals, 1926-1940: http://webreports.mergent.com/

• Statistics of Income: http://www.irs.gov/pub/irs-soi/

• National Association of Railroad and Utility Commissioners

• National Resources Committee (NRC) (1939), The Structure of the American Economy (Washington,
DC: U.S. Government Print Office)

• Regulation of Stock Ownership in Railroads, 71st Congress, 3d Session, House Report No. 2789,
Vol.2, February 1931

• Securities and Exchange Commission (SEC) Annual Reports: www.sec.gov/about/annrep.shtml

• Survey of American Listed Corporations: Reported Information on Registrants with the SEC under
the Securities Exchange Act of 1934, 1939-40

• Temporary National Economic Committee (TNEC), (1940), The Distribution of Ownership in the
200 Largest Nonfinancial Corporations, monograph 29 (1-2) (Washington, DC: U.S. Government
Printing Office): http://www.bpl.org/govinfo/online-collections/federal-executive-branch/temporary-
national-economic-committee-1938-1941/

• Twentieth Century Fund, Committee on Taxation (1937), Facing the Tax Problem (New York: Twen-
tieth Century Fund)
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Figure B7: A MOODY’S MANUALS ENTRY: THE PORTO RICO TELEPHONE COMPANY, 1949

Notes: This figure reproduces the 1949 entry for the Porto Rico Telephone Company (http://webreports.mergent.com).
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B.3.4 Corporate Histories
• http://www.Archive.org

• Encyclopedia of American Business History (Facts on File, 2005): http://www.Fundinguniverse.com

• The New York Times Archives: http://www.nytimes.com/ref/membercenter/nytarchive.html

• The Wall Street Journal Archives: http://pqasb.pqarchiver.com/wsj/search.html
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Appendix C Gaps in University Science
C.1 Details on Calculating Gaps in University Science

Figure C1 provides an example of how the publications-based gap calculation is done for Black &
Decker Company, which patents in four patent classes from 1926 to 1940. Half of its patents are in tools and
bench devices (B25B) and the rest of its patents are equally divided among three patent classes (B23F , G01G
and H02K). Of these, only Dynamo-electric devices (H02K) has patents that make Non-Patent Literature
(NPL) citations to the scientific literature from 1947 to 1957. Among all NPL citations made from H02K
during this period, 80% are made to Electrical Engineering and 20% are made to Materials Engineering.
Hence, the European papers relevant to the IPC are:

Eur. PapersH02K,EE +Eur. PapersH02K,ME = 0.8×143+0.2×15456 = 3205.6 (C1)

while the American papers relevant to the IPC are US PapersH02K,EE +US PapersH02K,ME = 0.8× 125+
0.2×3806 = 862. The European papers relevant to the firm are then calculated as Eur. PapersB&D,H02K +
Eur. PapersB&D,G01G +Eur. PapersB&D,B23F +Eur. PapersB&D,B25B = .167× 3205.6+ .167× 0+ .167×
0+ .5×0 = 538.5.

The American papers relevant to the firm are similarly calculated as US PapersB&D,H02K +
US PapersB&D,xG01G +US PapersB&D,B23F +US PapersB&D,B25B = .167×862+ .167×0+ .167×0+ .5×
0 = 144. It follows that Gap in university science, 1900-20 value for Black & Decker is 538.5/(538.5+
144) = .79.

For the period from 1900 to 1920, Microsoft Academic Graph data do not record the country of publica-
tion. Also, we find that the affiliations sections rarely list the full address of the author for this period, which
leads MAG to omit country data from affiliation data. We therefore rely on Clarivate Web of Science, which
has previously been used for research on the impacts of World War I on scientific production (Iaria, Schwarz,
& Waldinger, 2018). Of 307,847 publications listed in Web of Science, 15% (44,356) have country data. We
code each country as American, European and Rest of the World. For the remaining 85% of publications
without country information, we match the names of the authors to the 1906 and 1921 versions of the Cattell
directory and classify those authors found in the directory as American (and the rest as European).

Figure C1: PUBLICATION-BASED SCIENTIFIC GAP CALCULATION FOR BLACK & DECKER

Patenting Shares 
(1926-1940)

Black & 
Decker 

Company

B25B: TOOLS OR BENCH DEVICES NOT 
OTHERWISE PROVIDED FOR, FOR FASTENING, 
CONNECTING, DISENGAGING, OR HOLDING

2.02 Electrical eng, electronic eng

2.05 Materials engineering

B23F: MAKING GEARS OR TOOTHED RACKS

H02K: DYNAMO-ELECTRIC MACHINES

G01G: WEIGHING

50%

16.7%

16.7%

16.7%

80%

20%

American Papers:  125

European Papers: 143

European Papers:  15456

American Papers: 3806

No Patent Citations to Science

NPL Citation Shares
(1947-1957)

Web of Science 
(1900-1920)

Notes: American and European paper numbers refer to papers published from 1900 to 1920 weighted by forward citations
received up until 2019.
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Journal Citation-Based Gap — Another way to measure scientific gaps is by the number of citations
made to publications in European journals by American journals. We classify 244 journals indexed in
the WoS Science Citation Index - Expanded (SCI-EXPANDED) as “American” or “European” based on
name and web searches. We first classify journals with non-English and non-Latin names (e.g., Zeitshcrift
für Physik) as European. We also classify journals with the name “American” in it as American (e.g.,
the American Heart Journal). We then manually classify the remaining journals by web searches. Where
a full history of the journal is available, we classify the journal’s home country as the place where its
publisher/publishing academic society is. For instance, “Bacteriological Reviews” is a journal that was
published by the American Society of Microbiology.64 When publisher information is not available, we use
the nationality of the founding members to classify the journal. 230 journals out of the 244 are classified,
111 (45%) of which are American.

For articles published from 1900 to 1920, we count the number of citations made by “American” journals
to “European” journals in the same period. This constitutes a measure of European scientific strength: if a
field relies more on European science, citations to European journals would be higher.
C.2 Comparison Between Gap Measures

Table C1: PUBLICATIONS AND CITATIONS, EUROPE VS AMERICA

Publications Journal Citations

OECD Subfield Equivalent U.S. Europe Ratio U.S. to U.S. U.S. to Europe Ratio

2.05 Materials Engineering 3,806 15,456 0.80 143 44 0.24
1.01 Mathematics 5,334 19,556 0.79 134 71 0.35
1.03 Physical Sciences and Astronomy 12,802 42,719 0.77 197 665 0.77
1.04 Chemical Sciences 31,330 75,596 0.71 650 656 0.50
3.02 Clinical Medicine 43,007 81,883 0.66 6,017 2,200 0.27
3.03 Health Sciences 5,121 9,373 0.65 1,042 336 0.24
4.01 Agriculture, Forestry, Fisheries 2,112 3,594 0.53 - - -
2.02 Electrical Eng, Electronic Eng 125 143 0.53 5 29 0.85
1.06 Biological Sciences 39,262 44,261 0.53 3,764 3,285 0.47
3.01 Basic Medical Research 32,556 34,614 0.52 4,845 2,721 0.36
2.01 Civil Engineering 1,010 636 0.39 - - -
1.05 Earth and Related Env Sciences 7,996 1,189 0.13 369 128 0.26

Notes: This table presents the number of citation-weighted articles (from WoS) that have non-missing subject and
affiliation fields. The “Ratio” column for the Publications sub-columns divides the number of European-affiliated
papers (published globally) divided by American-affiliated papers. The rows are downward-sorted by this value.
The “Ratio” column for the Journal Citations sub-columns divides the number of citations to American journals by
American journals by citations to European journals.

Table C1 compares the measures of scientific “strength” (relative backwardness). The “Ratio” columns
for each measure present the number of European-authored papers and citations to European journals by
American papers divided by the total number of papers and total number of citations by American journals,
respectively. Intuitively, these ratios can be thought of as the “gap” or “lag” that exists between European and
American institutions (fields with relatively large values are those where the scientific gap between Europe
and the U.S. is large). The two measures do not yield identical results. Given the lack of citations data
in civil engineering and agriculture, forestry & fisheries journals, the citations-based gap measure cannot
be calculated for these fields. However, the fact that physics and chemistry have high gap scores, whereas
clinical and medical sciences have relatively low gap scores, accords with the publications-based measure.
A notable outlier in this measure is Electrical Engineering, which has a high score (0.85) partly due to low
overall citations (34 citations in total throughout the 20-year period, compared to chemistry, which made

64https://en.wikipedia.org/wiki/Microbiology and Molecular Biology Reviews
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1,306 total citations).65 Excluding this outlier, the correlation between the citations-based measure and the
publications-based measure is positive (r=0.286) at the scientific field level. At the firm level, i.e., when the
observations are weighted by the industries and scientific subfields of firms in the sample, the correlation
between the two measures (r=0.537) is greater, suggesting that fields with the highest mismatches between
AMS and WoS are not very important in the patent classes used by our sample firms (Figure C2).

Figure C2: COMPARISON OF GAPS IN UNIVERSITY SCIENCE
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Notes: This figure compares the two scientific gap measures at the firm level. Higher values represent a larger gap between Europe and the
United States. The journal citation-based gap measure (on the vertical axis) is positively correlated with the publication volume-based gap
measure (on the horizontal axis) (r=0.537).

Appendix Figure C3 presents the correlation between the scientific gap and corporate science across
industries. Corporate investments in science are greater in industries where the U.S. lags behind European
science. For instance, construction, which relies on civil engineering, where the scientific gap is small,
exhibits less corporate science investment than communications, which relies partly on chemistry, where the
gap is large. This pattern is consistent with our conjecture in Section 2; it also calls for the use of industry
fixed effects.

65It is unclear whether this represents a measurement error. The only electrical engineering journal in print during this period (1900-
20) is American (“Proceedings of the Institute of Radio Engineers”) and the only other electrical engineering journal indexed in
the SCI before 1940 is the BELL SYSTEM TECHNICAL JOURNAL, which is American. It is also possible that this field still
relied on European science in the 1900-20 period, since 21 (62%) of the 34 citations were made to physics journals. Moreover, we
have established in Section 2 that Electrical Engineering was a discipline where universities were unwilling or unable to provide
scientific knowledge and published very little in. Hence, to the extent we measure American excellence in this discipline through
the publication-based measure, it likely captures American corporate excellence, rather than university excellence.
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Figure C3: CORPORATE SCIENCE VS GAPS IN UNIVERSITY SCIENCE, BY INDUSTRY
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Notes: Industry-level scatter plots of firm investment in science and the gaps in the relevant academic discipline based on American and
European publications in Web of Science. The left panel plots logged number of corporate publications per firm-year against gaps in university
science (averaged at the 1-digit industry level). University science gap is measured as the ratio of European against American publications in
Clarivate Web of Science. The middle panel replaces corporate publications with number of corporate lab employees; the right panel replaces
it with scientists from AMS affiliated with firms.

Figure C4: CORPORATE SCIENCE VS GAP IN UNIVERSITY SCIENCE, BY INDUSTRY (CITATION-BASED

GAP)
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Appendix D Auxiliary Results
Appendix Table D1 shows that, even after controlling for year and patent class, patents citing science are
more likely to be breakthrough in the 1920-1940 period (Columns 2 and 4), whereas no such relationship
exists for the 1900-1919 period (Columns 1 and 3).

Table D1: BREAKTHROUGH INVENTIONS AND RELIANCE ON SCI-
ENCE (OLS)

Dependent Variable Top 10% KPST Top 5% Cites

(1) (2) (3) (4)
1900-1919 1920-1940 1900-1919 1920-1940

Dummy for patent citation to science 0.000 0.122 0.092 0.054
(0.083) (0.021) (0.113) (0.014)

Avg of Dep Var 0.053 0.105 0.051 0.055
Year Dummies Yes Yes Yes Yes
4-digit CPC Dummies Yes Yes Yes Yes
R2 0.090 0.379 0.029 0.023
Observations 672,342 848,358 672,944 848,826

Notes: The unit of analysis is the patent. The sample is limited from 1900 to 1940 and split into
two periods (1900-1919 for Columns 1 and 3 and 1920-1940 for Columns 2 and 4). The dependent
variable in Columns 1 and 2 is a dummy indicating whether the patent is within the top 10% of
the patent text-based importance measure from Kelly et al. (2021). The dependent variable for
Columns 3 and 4 is a dummy indicating whether the patent’s forward patent citations are within
top 5% of the sample. Standard errors are robust to arbitrary heteroscedasticity.

Table D2 regresses the share of university papers against measures of patent quality. We find that patents
with greater technological impact (as measured through textual similarities) and forward citations are farther
from university papers. Column 3 shows a standard deviation greater patent importance (Kelly et al., 2021)
is associated with 1.1% fewer university papers in the 10 closest papers to patents (relative to the sample
mean). This negative correlation with patent importance is around 6.4 times stronger compared to the
1000 closest paper set (Column 1). Similar contrasts are observed in Columns 2 and 4, where the negative
correlation between forward patent citations and university shares is 40% larger for 10 closest papers versus
1000 closest papers to patents. The positive correlation between proxies of patent quality and corporate
paper shares is consistent with corporate papers serving as inputs to technologically advanced inventions.
The positive correlation between proxies of patent quality and corporate paper shares is consistent with
corporate papers serving as inputs to technologically advanced inventions.
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Table D2: PATENT PROXIMITY TO UNIVERSITY SCIENCE

(OLS)

Dependent Variable Univ Share (1000 Closest) Univ Share (10 Closest)

(1) (2) (3) (4)
Patent Importance -0.006 -0.042

(0.001) (0.002)
Forward Patent Cites -0.003 -0.005

(0.000) (0.001)
Avg of Dep Var 0.877 0.877 0.774 0.774
Year Dummies Yes Yes Yes Yes
Patent Class Dummies Yes Yes Yes Yes
R2 0.142 0.142 0.114 0.113
Observations 658,570 658,742 658,570 658,742

Notes: The unit of analysis is a patent. The sample is limited to U.S. patents between
1926 and 1940. The dependent variable for Columns 1 and 2 is the share of university
papers out of the 1000 closest papers to the focal patent; for Columns 3 and 4, it is
university paper share for the 10 closest papers to the focal patent. Textual similarity
between patents and papers is calculated through the SPECTER algorithm (details in
Arora et al. (2023)). Patent Importance is calculated by dividing 10-year forward textual
similarity by 5-year backward textual similarity of patents from Kelly et al. (2021).
Forward Patent Cites refers to log of one plus 10 year forward citations received by the
focal patent. All specifications include patent grant year and NBER Patent Category
fixed effects.
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D.1 Replication of Results with Alternative Measures of Corporate Science

Table D3: INDUSTRIAL LAB EMPLOYEES AND TECHNOLOGICAL & MARKET LEAD-
ERSHIP (POISSON)

Dependent Variable Lab Employees

Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Dummy for Patent Cite to Science 1.872 0.622

(0.338) (0.300)
Dummy for First Patent in CPC 1.612 0.483

(0.196) (0.149)
Patent Importance 1.307 0.662

(0.596) (0.559)
ln(Assets, 1926-1930) 0.746 0.748

(0.116) (0.114)
Market Share 0.217 -0.444

(0.858) (0.796)
Dummy for Competitive Market -0.447 -0.491

(0.224) (0.258)
Distance to Universities -0.021 -0.021 0.010 0.013 -0.020 -0.017 -0.032 -0.040

(0.039) (0.031) (0.034) (0.037) (0.021) (0.027) (0.032) (0.030)
PhD Graduates 0.096 0.089 0.918 0.682 0.091 0.062 0.113 0.147

(0.019) (0.020) (0.078) (0.089) (0.025) (0.021) (0.043) (0.053)
ln(Assets) 0.750 0.738

(0.127) (0.069)
Average of Dep Var 46.012 46.012 73.721 73.721 56.157 78.168 58.817 65.549
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes No No
Pseudo-R2 0.588 0.578 0.669 0.685 0.670 0.700 0.556 0.542
Number of Firms 465 465 423 423 355 260 389 272
Number of Obs 2,250 2,250 1,308 1,308 1,720 934 1,386 1,360

Notes: The table replicates results from Table 4 using lab size as the dependent variable. The analysis is at the firm-year
level. See Appendix Table B1 for details on variable construction. Standard errors are clustered at the firm level.
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Table D4: PROMINENT CORPORATE SCIENTISTS AND TECHNOLOGICAL & MARKET

LEADERSHIP (POISSON)

Dependent Variable AMS Scientists

Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Dummy for Patent Cite to Science 2.539 1.569

(0.403) (0.291)
Dummy for First Patent in CPC 1.784 0.624

(0.236) (0.113)
Patent Importance 2.422 0.941

(0.497) (0.390)
ln(Assets, 1926-1930) 0.940 0.740

(0.131) (0.112)
Market Share 1.432 0.112

(1.024) (0.887)
Dummy for Competitive Market -0.396 -0.316

(0.408) (0.402)
Distance to Universities -0.074 -0.110 -0.107 -0.063 -0.118 -0.134 -0.135 -0.129

(0.029) (0.042) (0.056) (0.034) (0.051) (0.070) (0.062) (0.054)
PhD Graduates 0.056 0.059 0.819 0.447 0.063 0.053 0.102 0.116

(0.011) (0.015) (0.111) (0.079) (0.014) (0.017) (0.046) (0.049)
ln(Assets) 0.845 0.781

(0.181) (0.086)
Average of Dep Var 3.327 3.327 5.297 5.297 3.886 5.856 4.075 4.432
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes No No
Pseudo-R2 0.609 0.518 0.633 0.703 0.655 0.671 0.455 0.459
Number of Firms 465 465 445 445 355 273 411 272
Number of Obs 5,564 5,564 3,116 3,116 4,277 2,378 3,663 3,536

Notes: The table replicates results from Table 4 using employment of prominent scientists as the dependent variable. The
analysis is at the firm-year level. See Appendix Table B1 for details on variable construction. Standard errors are clustered
at the firm level.
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Table D5: CORPORATE INVESTMENT IN SCIENCE AND TYPE OF PATENT CITA-
TIONS TO SCIENCE (POISSON)

Dependent Variable Publication Count Lab Employees AMS Scientsts

(1) (2) (3) (4) (5) (6)
Dummy for No Pat Cite to Sci (Base) 0.000 0.000 0.000

(.) (.) (.)
Dummy for Pat Cite to Old Sci -0.173 0.019 0.186

(0.513) (0.457) (0.327)
Dummy for Pat Cite to Recent Sci 2.321 0.968 1.857

(0.442) (0.298) (0.293)
Dummy for No Pat Cite to Sci (Base) 0.000 0.000 0.000

(.) (.) (.)
Dummy for Pat Cite to Low Quality Sci 1.525 0.398 1.311

(0.620) (0.272) (0.376)
Dummy for Pat Cite to High Quality Sci 2.900 1.245 1.988

(0.371) (0.315) (0.310)
ln(Assets) 0.605 0.454 0.644 0.585 0.658 0.590

(0.198) (0.116) (0.070) (0.065) (0.074) (0.062)
Distance to Universities 0.017 0.034 -0.008 -0.004 -0.080 -0.080

(0.030) (0.029) (0.029) (0.029) (0.032) (0.039)
PhD Graduates 0.013 0.004 0.052 0.050 0.023 0.020

(0.018) (0.015) (0.016) (0.016) (0.010) (0.010)
Average of Dep Var 0.688 0.688 61.267 61.267 4.438 4.438
Year Dummies Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes
Pseudo-R2 0.678 0.700 0.709 0.718 0.752 0.751
Number of Firms 422 422 394 394 415 415
Number of Obs 3,855 3,855 1,331 1,331 3,363 3,363

Notes: The analysis is at the firm-year level. Dummy for Pat Cite to Recent Sci is equal to one if the firm’s patent cites
a recent scientific article, and zero otherwise. A cited scientific article is “recent” if its age (grant year of the citing
patent minus the publication year of the cited article) is below the average age of articles cited by patents in the same
CPC and grant year. Dummy for Pat Cite to Old Sci is equal to one for firms whose patents cite a scientific article, but
that are not recent. Dummy for Pat Cite to High Quality Sci is equal to one if firm patents cite scientific articles that
receive above-average forward paper citations (the average is calculated for papers cited by firm patents). Standard
errors are clustered at the firm level.
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Table D7: CORPORATE SCIENCE AND LEADERSHIP: SATURATED SPECIFI-
CATION (POISSON)

Dependent Variable Publication Count Lab Employees AMS Scientists

(1) (2) (3)
Dummy for Patent Cite to Science 2.335 0.504 1.061

(0.474) (0.342) (0.266)
Dummy for First Patent in CPC 0.843 0.671 0.440

(0.285) (0.206) (0.139)
Patent Importance -0.683 0.449 2.647

(1.218) (0.598) (0.587)
ln(Assets, 1926-1930) 0.284 0.461 0.339

(0.210) (0.079) (0.084)
Market Share 2.639 -0.951 0.165

(1.170) (0.548) (0.655)
Dummy for Competitive Market -1.294 -0.646 -0.486

(0.601) (0.233) (0.385)
Distance to Universities 0.066 0.005 -0.086

(0.043) (0.033) (0.040)
PhD Graduates 0.299 0.530 0.449

(0.183) (0.089) (0.112)
Average of Dep Var 1.137 105.332 7.092
Year Dummies Yes Yes Yes
3-Digit SIC Dummies No No No
Pseudo-R2 0.677 0.702 0.739
Number of Firms 272 241 264
Number of Obs 2,371 798 2,021

Notes: The analysis is at the firm-year level. “ln(Assets, 1926-1930)” takes the natural log average assets
for 1926-1930. Standard errors are clustered at the firm level. See Appendix Table B1 for details on variable
construction.

Table D7 estimates a conditional Poisson specification which includes all level variables from Tables 4, D3,
and D4.
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Table D8: INDUSTRIAL RESEARCH LABS AND GAP IN UNIVERSITY SCIENCE (POISSON)

Dependent Variable Lab Employees

Baseline Univ Distance Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Univ Gap 15.139 26.018 11.034 8.385 13.312 -19.793 12.065 26.634

(4.600) (6.230) (5.180) (5.133) (5.725) (73.854) (6.373) (4.223)
Univ Gap × Distance to Universities -1.629

(0.602)
Univ Gap × Dummy for Patent Cite to Science 14.387

(12.150)
Univ Gap × Dummy for First Patent in CPC 15.395

(7.971)
Univ Gap × Patent Importance 13.607

(24.728)
Univ Gap × ln(Assets, 1926-1930) 1.569

(3.604)
Univ Gap × Market Share 56.913

(32.873)
Univ Gap × Dummy for Competitive Market -21.615

(5.592)
Dummy for Patent Cite to Science -9.252

(8.426)
Dummy for First Patent in CPC -10.050

(5.537)
Patent Importance -8.427

(17.043)
ln(Assets, 1926-1930) -0.412

(2.524)
Market Share -40.320

(23.029)
Dummy for Competitive Market 14.566

(3.932)
ln(Assets) 0.713 0.719 0.633 0.608 0.504 0.743 0.709

(0.071) (0.072) (0.069) (0.069) (0.063) (0.107) (0.053)
Distance to Universities -0.025 1.124 -0.006 -0.009 0.012 -0.024 -0.026 -0.045

(0.029) (0.424) (0.028) (0.025) (0.025) (0.024) (0.029) (0.038)
PhD Graduates 0.073 0.069 0.055 0.050 0.462 0.097 0.065 0.110

(0.020) (0.019) (0.017) (0.016) (0.090) (0.026) (0.021) (0.030)
Average of Dependent Variable 61.267 61.267 61.267 61.267 82.962 56.157 78.168 58.817
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes Yes No
Pseudo-R2 0.698 0.700 0.717 0.718 0.738 0.681 0.718 0.610
Number of Firms 394 394 394 394 338 355 260 389
Number of Observations 1,331 1,331 1,331 1,331 934 1,720 934 1,386

Notes: The table replicates results from Table 5 using lab size as the dependent variable. The analysis is at the firm-year level. See Appendix Table B1
for details on variable construction. Standard errors are clustered at the firm level.
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Table D9: PROMINENT CORPORATE SCIENTISTS AND GAP IN UNIVERSITY SCIENCE (POISSON)

Dependent Variable AMS Scientists

Baseline Univ Distance Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Univ Gap 16.774 26.934 7.220 4.188 12.592 -112.929 3.348 27.651

(5.759) (9.878) (4.445) (5.237) (6.388) (96.160) (6.941) (4.995)
Univ Gap × Distance to Universities -1.656

(1.139)
Univ Gap × Dummy for Patent Cite to Science 39.396

(9.088)
Univ Gap × Dummy for First Patent in CPC 30.714

(7.661)
Univ Gap × Patent Importance 64.562

(22.304)
Univ Gap × ln(Assets, 1926-1930) 6.227

(4.594)
Univ Gap × Market Share 102.786

(30.930)
Univ Gap × Dummy for Competitive Market -24.537

(7.597)
Dummy for Patent Cite to Science -25.680

(6.381)
Dummy for First Patent in CPC -20.321

(5.395)
Patent Importance -43.109

(15.424)
ln(Assets, 1926-1930) -3.546

(3.276)
Market Share -70.589

(21.938)
Dummy for Competitive Market 16.393

(5.199)
ln(Assets) 0.851 0.853 0.629 0.706 0.601 0.765 0.760

(0.110) (0.110) (0.066) (0.092) (0.071) (0.112) (0.086)
Distance to Universities -0.134 1.041 -0.068 -0.093 -0.120 -0.118 -0.160 -0.165

(0.060) (0.821) (0.030) (0.050) (0.066) (0.046) (0.077) (0.075)
PhD Graduates 0.058 0.057 0.023 0.024 0.394 0.068 0.050 0.100

(0.014) (0.014) (0.010) (0.010) (0.107) (0.014) (0.015) (0.026)
Average of Dependent Variable 4.438 4.438 4.438 4.438 6.063 3.886 5.856 4.075
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes Yes No
Pseudo-R2 0.687 0.688 0.764 0.727 0.758 0.686 0.705 0.593
Number of Firms 415 415 415 415 374 355 273 411
Number of Observations 3,363 3,363 3,363 3,363 2,263 4,277 2,378 3,663

Notes: The table replicates results from Table 5 using employment of prominent scientists as the dependent variable. The analysis is at the firm-year
level. See Appendix Table B1 for details on variable construction. Standard errors are clustered at the firm level.
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Table D10: CORPORATE SCIENCE AND PATENT VALUE (POISSON)

Dependent Variable Top 5% Market Value (KPSS) Top 5% Forward Cites

(1) (2) (3) (4) (5) (6) (7) (8)
ln(Publication Stockt−1) 0.313 0.289 0.187 0.227

(0.118) (0.276) (0.100) (0.093)
ln(Lab Employeest−1) -0.142 -0.237 0.075 0.020

(0.064) (0.061) (0.049) (0.045)
ln(AMS Scientistst−1) 0.218 0.247 0.204 0.072

(0.160) (0.171) (0.093) (0.068)
ln(Patent Stockt−1) 0.165 0.447 0.169 0.188 0.703 0.912 0.673 0.755

(0.095) (0.138) (0.116) (0.142) (0.086) (0.083) (0.083) (0.091)
Distance to Universities -0.092 -0.077 -0.070 -0.055 -0.026 -0.009 0.001 -0.014

(0.067) (0.079) (0.056) (0.064) (0.026) (0.019) (0.022) (0.024)
PhD Graduatest−1 0.092 0.042 0.089 0.070 0.065 0.030 0.064 0.037

(0.040) (0.044) (0.040) (0.054) (0.015) (0.018) (0.015) (0.018)
ln(Assetst−1) 0.927 1.146 0.964 1.105 -0.103 -0.126 -0.090 -0.164

(0.185) (0.187) (0.205) (0.225) (0.087) (0.096) (0.098) (0.100)
Average of Dep Var 1.574 1.563 1.499 1.563 0.844 0.799 0.802 0.799
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes Yes Yes
Pseudo-R2 0.798 0.781 0.790 0.799 0.712 0.738 0.702 0.746
Number of Firms 321 308 317 308 418 384 415 384
Number of Obs 1,888 497 1,754 497 3,916 960 3,589 960

Notes: The analysis is at the firm-year level. ln(Assetst−1), ln(PatentStockt−1), ln(PublicationStockt−1) and
ln(LabEmployeest−1) take the natural log of lagged assets, patent stock, publication stock and lab employees
respectively. Patent and publication stock are calculated using a perpetual inventory method with a 15% rate
of depreciation. The dependent variable for Columns 1-4 is the number of firm patents in the top 5% of stock
market value (Kogan et al., 2017). The dependent variable for Columns 5-8 is the number of firm patents in
the top 5% in terms of forward citations. See Appendix Table B1 for details on variable construction. Standard
errors are clustered at the firm level.
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D.2 Replication of Results with Journal Citation-Based Measure

Table D11: CORPORATE PUBLICATIONS AND JOURNAL CITATION-BASED GAP IN UNIVERSITY SCIENCE

(POISSON)

Dependent Variable Publication Count

Baseline Univ Distance Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Univ Gap (Cites) 4.960 7.334 -1.080 -0.013 1.953 -39.378 -1.277 9.788

(2.855) (4.579) (1.960) (2.478) (3.049) (32.355) (2.361) (2.031)
Univ Gap (Cites) × Distance to Universities -0.310

(0.326)
Univ Gap (Cites) × Dummy for Patent Cite to Science 31.922

(7.034)
Univ Gap (Cites) × Dummy for First Patent in CPC 12.626

(4.029)
Univ Gap (Cites) × Patent Importance 46.339

(14.924)
Univ Gap (Cites) × ln(Assets, 1926-1930) 2.180

(1.628)
Univ Gap (Cites) × Market Share 59.715

(28.968)
Univ Gap (Cites) × Dummy for Competitive Market -10.522

(4.347)
Dummy for Patent Cite to Science -13.659

(3.459)
Dummy for First Patent in CPC -4.611

(1.967)
Patent Importance -18.339

(6.919)
ln(Assets, 1926-1930) -0.112

(0.853)
Market Share -24.045

(14.643)
Dummy for Competitive Market 4.105

(2.014)
ln(Assets) 0.839 0.843 0.741 0.678 0.678 0.580 0.806

(0.215) (0.215) (0.105) (0.142) (0.107) (0.069) (0.098)
Distance to Universities -0.011 0.155 0.041 0.028 -0.020 -0.042 -0.027 -0.073

(0.031) (0.178) (0.028) (0.025) (0.059) (0.043) (0.053) (0.057)
PhD Graduates 0.080 0.078 0.010 0.022 0.490 0.071 0.040 0.140

(0.032) (0.034) (0.015) (0.020) (0.101) (0.026) (0.021) (0.092)
Average of Dependent Variable 0.688 0.688 0.688 0.688 0.939 0.628 0.922 0.624
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes Yes No
Pseudo-R2 0.640 0.640 0.725 0.684 0.737 0.646 0.746 0.404
Number of Firms 422 422 422 422 397 355 273 417
Number of Observations 3,855 3,855 3,855 3,855 2,640 4,860 2,747 4,252

Notes: The table replicates results from Table 5 using the journal citation-based measure of university gap. The analysis is at the firm-year level. See
Appendix Table B1 for details on variable construction. Standard errors are clustered at the firm level.
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Table D12: INDUSTRIAL RESEARCH LABS AND JOURNAL CITATION-BASED GAP IN UNIVERSITY SCI-
ENCE (POISSON)

Dependent Variable Lab Employees

Baseline Univ Distance Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Univ Gap (Cites) 2.514 5.620 0.039 0.954 2.574 -40.384 2.085 5.785

(1.580) (2.655) (2.578) (1.808) (2.068) (21.022) (2.187) (2.016)
Univ Gap (Cites) × Distance to Universities -0.441

(0.308)
Univ Gap (Cites) × Dummy for Patent Cite to Science 12.687

(5.040)
Univ Gap (Cites) × Dummy for First Patent in CPC 4.139

(2.117)
Univ Gap (Cites) × Patent Importance 7.739

(6.924)
Univ Gap (Cites) × ln(Assets, 1926-1930) 2.098

(1.065)
Univ Gap (Cites) × Market Share 12.472

(18.868)
Univ Gap (Cites) × Dummy for Competitive Market -9.111

(2.975)
Dummy for Patent Cite to Science -5.064

(2.213)
Dummy for First Patent in CPC -1.185

(0.940)
Patent Importance -2.289

(2.844)
ln(Assets, 1926-1930) -0.304

(0.572)
Market Share -5.977

(9.095)
Dummy for Competitive Market 3.647

(1.373)
ln(Assets) 0.731 0.738 0.651 0.629 0.515 0.754 0.766

(0.075) (0.075) (0.060) (0.064) (0.062) (0.110) (0.071)
Distance to Universities -0.018 0.200 0.003 -0.006 0.015 -0.024 -0.018 -0.032

(0.025) (0.152) (0.026) (0.024) (0.023) (0.025) (0.027) (0.036)
PhD Graduates 0.072 0.068 0.048 0.051 0.466 0.100 0.065 0.109

(0.021) (0.020) (0.015) (0.016) (0.086) (0.029) (0.022) (0.033)
Average of Dependent Variable 61.267 61.267 61.267 61.267 82.962 56.157 78.168 58.817
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes Yes No
Pseudo-R2 0.692 0.693 0.727 0.713 0.737 0.682 0.709 0.596
Number of Firms 394 394 394 394 338 355 260 389
Number of Observations 1,331 1,331 1,331 1,331 934 1,720 934 1,386

Notes: The table replicates results from Table D8 using the journal citation-based measure of university gap. The analysis is at the firm-year level.
See Appendix Table B1 for details on variable construction. Standard errors are clustered at the firm level.
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Table D13: PROMINENT CORPORATE SCIENTISTS AND JOURNAL CITATION-BASED GAP IN UNIVER-
SITY SCIENCE (POISSON)

Dependent Variable AMS Scientists

Baseline Univ Distance Technological Leadership Market Leadership

(1) (2) (3) (4) (5) (6) (7) (8)
Univ Gap (Cites) 3.465 4.875 -0.820 1.108 2.708 -54.337 -0.489 5.592

(1.999) (3.583) (1.517) (1.678) (1.851) (27.319) (2.649) (2.362)
Univ Gap (Cites) × Distance to Universities -0.211

(0.404)
Univ Gap (Cites) × Dummy for Patent Cite to Science 21.790

(3.168)
Univ Gap (Cites) × Dummy for First Patent in CPC 7.356

(1.818)
Univ Gap (Cites) × Patent Importance 25.456

(6.835)
Univ Gap (Cites) × ln(Assets, 1926-1930) 2.794

(1.331)
Univ Gap (Cites) × Market Share 42.878

(20.475)
Univ Gap (Cites) × Dummy for Competitive Market -8.982

(4.079)
Dummy for Patent Cite to Science -8.317

(1.500)
Dummy for First Patent in CPC -2.289

(0.859)
Patent Importance -9.661

(3.158)
ln(Assets, 1926-1930) -0.465

(0.676)
Market Share -19.435

(10.071)
Dummy for Competitive Market 3.569

(1.807)
ln(Assets) 0.869 0.870 0.687 0.725 0.626 0.823 0.832

(0.117) (0.116) (0.064) (0.089) (0.073) (0.141) (0.104)
Distance to Universities -0.121 -0.014 -0.055 -0.092 -0.121 -0.112 -0.126 -0.147

(0.057) (0.238) (0.027) (0.051) (0.067) (0.047) (0.065) (0.070)
PhD Graduates 0.061 0.061 0.015 0.028 0.419 0.072 0.056 0.100

(0.014) (0.015) (0.009) (0.010) (0.106) (0.014) (0.017) (0.028)
Average of Dependent Variable 4.438 4.438 4.438 4.438 6.063 3.886 5.856 4.075
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes Yes Yes No
Pseudo-R2 0.677 0.678 0.776 0.717 0.756 0.680 0.691 0.580
Number of Firms 415 415 415 415 374 355 273 411
Number of Observations 3,363 3,363 3,363 3,363 2,263 4,277 2,378 3,663

Notes: The table replicates results from Table D9 using the journal citation-based measure of university gap. The analysis is at the firm-year level.
See Appendix Table B1 for details on variable construction. Standard errors are clustered at the firm level.
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Table D14: CORPORATE SCIENCE AND STOCK MARKET VALUE (JOURNAL

CITATION-BASED GAP) (OLS)

Dependent Variable ln(Market Capitalization)

University Gap Split
University Gap Split for Subsample

with Lab & AMS Scientist

(1) (2) (3) (4)
University Gap
Below Mean

University Gap
Above Mean

University Gap
Below Mean

University Gap
Above Mean

ln(Publication Stockt−1) 0.239 0.212 0.210 0.247
(0.090) (0.072) (0.118) (0.079)

ln(Patent Stockt−1) 0.211 0.016 0.110 -0.197
(0.043) (0.043) (0.084) (0.064)

ln(Assetst−1) 0.724 0.794 0.767 0.965
(0.074) (0.068) (0.151) (0.080)

Average of Dependent Variable 19.567 19.248 20.042 19.984
Year Fixed Effects Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes
R2 0.727 0.798 0.746 0.906
Number of Firms 167 154 85 54
Number of Observations 1,776 1,557 173 96

Notes: The analysis is at the firm-year level. The dependent variable is logged market capitalization. Columns
1 and 2 split the sample by mean values of the “University Gap (Cites)” measure based on share of American
journal citations to European journals. Columns 3 and 4 limit the sample to firms that operate a lab and employ
AMS scientists. Standard errors are clustered at the firm level.

Table D15: CORPORATE SCIENCE AND MARKET-TO-BOOK RATIOS (OLS)

Dependent Variable ln(Tobin’s Q)

Publication-Based Gap Split Journal Citation-Based Gap Split

(1) (2) (3) (4) (5)

All
University Gap
Below Mean

University Gap
Above Mean

University Gap
Below Mean

University Gap
Above Mean

Publication Stock/Assetst−1 6.860 -3.483 10.926 4.610 5.610
(4.247) (4.199) (4.076) (8.110) (4.690)

Patent Stock/Assetst−1 0.150 0.157 0.175 0.107 0.406
(0.088) (0.165) (0.103) (0.081) (0.139)

Average of Dependent Variable -0.479 -0.517 -0.440 -0.462 -0.498
Year Fixed Effects Yes Yes Yes Yes Yes
3-Digit SIC Dummies Yes Yes Yes Yes Yes
R2 0.350 0.437 0.415 0.395 0.459
Number of Firms 316 165 151 164 152
Number of Observations 3,213 1,625 1,586 1,716 1,497

Notes: Unit of analysis is at the firm-year level. Dependent variable is log of Tobin’s Q. Columns 2 and 3 split the sample
by mean values of the “University Gap” measure comparing European and American publications. Columns 4 and 5 split
the sample by mean values of the “University Gap (Cites)” measure based on citations to European journals. Year and
industry dummies are included in all columns. Standard errors are clustered at the firm level.
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