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1 Introduction

The airline industry is well known for employing complex intertemporal pricing

strategies. In principle, dynamic pricing could be welfare-reducing or welfare-

increasing, depending on the sources of airline price adjustments. Fare adjustments

may arise in part because aggregate demand shocks change the opportunity cost

of selling a seat. Airlines raise fares to avoid selling out flights in advance, or fares

may fall from one day to the next, after a sequence of low demand realizations.

These price adjustments are welfare-improving as they increase capacity utilization.

However, fare adjustments may also reflect changes in the aggregate demand

elasticity. If late shoppers are business travelers, airlines will raise prices over time

to capture these consumers’ high willingness to pay through intertemporal price

discrimination. This allows airlines to extract more surplus, but it could also lower

welfare if seats remain empty more frequently. Existing theoretical frameworks on

the welfare effects of price discrimination, including Aguirre, Cowan, and Vickers

(2010) and Bergemann, Brooks, and Morris (2015), do not consider sequential

markets with limited capacity. However, these works establish that the welfare

predictions are ambiguous—depending on demand elasticities and information

structure—in the static setting, therefore, it is likely also true when considering

dynamic prices. This suggests it is an empirical question whether dynamic airline

pricing is on net welfare increasing.

In this paper, I estimate the welfare effects of dynamic pricing in the airline

industry, and in doing so, examine the sources of price adjustments over time. I

develop a dynamic pricing model that combines features of stochastic demand and

revenue management models from operations research with estimation techniques

widely used in empirical economics research. I estimate this model using novel data

that track daily prices and seat availabilities for over 12,000 flights in US monopoly

markets. With the model estimates, I disentangle key interactions between changes
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in willingness to pay over time and changes in opportunity costs arising from

stochastic demand and limited capacity. The results establish that if intertemporal

price adjustments were not possible, the prospect of extracting surplus from late-

arriving customers creates the incentive for airlines to save an inefficient number of

seats and charge an inefficiently high price. Allowing fares to respond to changing

aggregate price responsiveness and demand shock realizations expands output, but

also results in a significant reallocation of capacity across time. Leisure consumers

benefit, and business consumers are made significantly worse off.

I begin by describing airline pricing practices (Section 2) and documenting

stylized facts from novel airline data (Section 3) to motivate my empirical approach.

With a sample containing over 700,000 observations, I show that price adjustments

are consistent with standard dynamic pricing models: fare increases are common

after bookings, and fares stay constant, or even decline, in the absence of sales. In

addition,the trajectory of fares is overwhelmingly positive. Fares typically double

in the sixty days before departure and, regardless of bookings, tend to sharply

increase close to the departure date. This is consistent with intertemporal price

discrimination. I show that these pricing patterns also occur in competitive markets

and when considering tickets of different qualities (the pricing of economy versus

basic economy, and economy versus first class). This indicates that the forces and

trade-offs explored in this paper are relevant for these important extensions. Finally,

I show there is significant heterogeneity in dynamic pricing patterns across markets:

the frequency of fare increases and decreases varies, as well as the presence and

depth of advance purchase discount opportunities. This motivates an empirical

design that includes route-specific parameters.

In Section 4, I develop a structural model that allows for aggregate demand

uncertainty and a changing composition of arriving consumers over time. I do

so by combining features of dynamic pricing and stochastic demand models com-

monly used in operations research, including Gallego and Van Ryzin (1994), Zhao
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and Zheng (2000), Talluri and Van Ryzin (2004) and Su (2007), with elements of

the discrete, unobserved-heterogeneity utility specification of Berry, Carnall, and

Spiller (2006). Discrete heterogeneity demand models are commonly used in air-

line studies—for example, in Berry and Jia (2010), where demand is comprised of

"business" travelers and "leisure" travelers. Although I tailor the model to reflect in-

stitutional features of airline markets, the methodology can be useful for analyzing

any perishable goods market with a deadline.

The model contains three key ingredients: (i) a monopolist has fixed capacity

and finite time to sell; (ii) the firm faces a stochastic arrival of consumers; and (iii)

the mix of consumers, corresponding to business and leisure travelers, is allowed

to change over time. The model timing is discrete. Each day before departure, the

number of business and leisure arrivals is distributed according to independent

Poisson distributions with time- and day-of-week-dependent arrival rates. Con-

sumers know their preferences and solve a static utility maximization problem.

On the supply side, the monopolist solves a finite-horizon, stochastic dynamic

programming problem. Within a period, the firm first chooses a price, consumer

demand is realized, and then the capacity constraint is updated. Time moves for-

ward, and the process repeats through the perishability date or until the plane is

full.

This paper proposes explicitly modeling the pricing decision of the firm to ad-

dress the well-known issue of missing "no purchase" data, or the number of arrivals

who opted not to purchase (Vulcano, van Ryzin, and Chaar, 2010). The identifica-

tion assumption is that preferences for flights evolve in the same predictable way,

but demand shocks can vary (Section 5). This results in variation in seats sold to-

ward the deadline, and the firm’s response to these shocks informs the magnitude

of stochastic demand. The model estimates are route specific, with flexibility to

account for day of the week variation in demand. The estimates generally suggest

a significant shift in arriving consumer types over time and that demand shocks
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are a meaningful driver of the variation in sales (Section 6). Variation in demand

across days of the week matches travel patterns documented with data provided

by the Transportation Security Administration (TSA).

I use the model estimates to quantify the welfare effects of dynamic airline

pricing and to examine the drivers of dynamic price adjustments (Section 7). I

show that relative to uniform pricing, dynamic pricing expands output (by 2.7 per-

cent), primarily through lower fares offered to leisure travelers. Dynamic pricing

also ensures seat availability for business travelers; however, these consumers are

then charged significantly higher fares. This latter effect is sufficiently strong that

total consumer welfare is 6.3 percent lower under dynamic pricing compared to

uniform pricing. Increased revenues more than offset this decline, and I estimate

total welfare to be one percent higher under dynamic pricing compared to uniform

pricing.

Dynamic pricing increases welfare in most—but not all—of the monopoly mar-

kets studied. I show that the directionality of the overall welfare effect depends

on which sources of price adjustments drive revenues. Welfare declines under dy-

namic pricing when price changes are mainly in response to changes in willingness

to pay and not in response to demand shocks. Intertemporal price discrimina-

tion explains the strong upward trajectory in prices and accounts for two thirds of

the revenue gains of dynamic pricing over uniform pricing. The remaining one

third comes from responses to demand shocks that occur greater than 21 days be-

fore departure, when aggregate price responsiveness is stable but overall demand

uncertainty is at its highest. In such instances, price adjustments ensure seat avail-

ability for later arriving, price insensitive customers. If airlines did not react to

demand shocks, price changes would occur one third as frequently in the markets

studied.
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1.1 Related Literature

This paper contributes to growing literatures in economics, marketing, and op-

erations research that study intertemporal pricing dynamics. Intertemporal price

discrimination can be found in many markets, including video games (Nair, 2007),

Broadway theater (Leslie, 2004), storable goods (Hendel and Nevo, 2006, 2013;

Gowrisankaran and Rysman, 2012), and concerts (Courty and Pagliero, 2012).1 Im-

portantly, this paper focuses on third degree intertemporal price discrimination

resulting from time-varying arrivals of different consumer types, instead of second

degree intertemporal price discrimination as a result of screening (Stokey, 1979;

Bulow, 1982; Conlisk, Gerstner, and Sobel, 1984; Sobel, 1991; Su, 2007; Board and

Skrzypacz, 2016; Öry, 2016; Gershkov, Moldovanu, and Strack, 2018; Dilmé and Li,

2019). This large theoretical literature focuses on forward-looking buyer behav-

ior, but abstracts from a changing composition of arriving customers over time.

McAfee and Te Velde (2006) argue that a change in the elasticity of demand is

required to rationalize airfare pricing patterns.

The strong upward trajectory in prices observed in the airline setting greatly

reduces buyers’ incentive to wait to purchase. Imposing the assumptions that

buyers will not wait to buy and arrivals are exogenous to price, however, can affect

welfare estimates, via estimates of willingness to pay (Hendel and Nevo, 2006) or

from sorting and the timing of market participation (Sweeting, 2012). Nair (2007)

shows that abstracting from forward-looking consumers can lead to profit losses

when demand becomes more elastic over time.

However, the incentive to wait to purchase decreases when capacity constraints

are modeled, even in environments where prices typically fall (Soysal and Krish-

namurthi, 2012).2 Gale and Holmes (1993) and Dana (1998) show that firms may

1Lambrecht et. al. (2012) provide an overview of empirical work on price discrimination more
broadly.

2Aguirregabiria (1999) also considers a model with markdowns and studies how pricing varies
with remaining inventory.
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offer advance purchase discounts when consumers are heterogeneous and learn

their preferences over time. Although Gale and Holmes show that learning im-

plies increasing prices even without aggregate uncertainty, Dana (1998) emphasizes

that aggregate uncertainty increases airlines’ costs, and that even in competitive

markets these costs are passed on to consumers who learn their preferences later.

This causes prices to rise over time, which implies that once consumers know their

preferences, they no longer have an incentive to wait to purchase.

This paper advances consumer demand models that have been extensively

used in operations research to characterize optimal dynamic prices (Gallego and

Van Ryzin, 1994; Zhao and Zheng, 2000; Talluri and Van Ryzin, 2004; McAfee and

Te Velde, 2006).3 My approach differs from those used in operations research in that

I empirically estimate preferences and arrivals; I extend baseline Poisson demand

models to include time-varying arrivals, censored demand, and discrete random

coefficients, where the share of consumer types changes over time.

This paper also complements recent studies on the airline industry, includ-

ing Escobari (2012), Alderighi, Nicolini, and Piga (2015), and Puller, Sengupta, and

Wiggins (2015). In closely related work, Lazarev (2013) estimates the welfare effects

of intertemporal price discrimination in airline markets by modeling how changes

in willingness to pay over time affect the firm’s choice of the distribution of fares

to offer, prior to the realization of demand shocks. In this project, I investigate the

firm’s responses to demand shocks over time (the "revenue management" prob-

lem), however, I abstract away from the set of fares chosen (see Section 2). Chen

(2018) extends the methodology presented here to investigate competitive dynam-

ics. Aryal, Murry, and Williams (2018) utilize survey data to examine dynamic

pricing in international airline markets where seats have different qualities.

Finally, concurrent works provide new insights on the effects of dynamic pricing

in other industries. Cho et. al. (2018) quantify the gains from dynamic pricing in the

3Elmaghraby and Keskinocak (2003) and Talluri and Van Ryzin (2005) provide an overview of
revenue management work in operations.
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hotel industry. They also capture competitive pricing pressures. D’Haultfœuille

et. al. (2018) quantify the effects of revenue management in the French railway

system. They also examine the role of demand uncertainty and show that revenue

management results in significant gains relative to uniform pricing.

2 Motivating Facts and Industry Pricing Practices

In this section, I provide a short overview on airline pricing practices to motivate

my empirical approach. Additional details on airline revenue management algo-

rithms and practices can be found in McGill and Van Ryzin (1999) and Gallego and

Topaloglu (2019).

Flight prices depend on three key inputs: (1) plane capacity, (2) filed fares, and

(3) inventory allocation for filed fares, or revenue management. Filed fares (input

2) are the pre-set price levels at which the airline is willing to sell tickets for a

flight, and inventory allocation (input 3) is the number of tickets allocated to each

fare level. Each of these decisions is made by separate departments, holding the

other departments’ choices fixed. This paper focuses on modeling dynamic prices

arising from (3).

A carrier’s network-planning department determines which markets are served,

assigns capacity, and flight frequencies. These decisions typically occur well in ad-

vance of the departure date. Exceptions include entry or exit decisions or a change

in size of aircraft. While I do observe aircraft substitutions in the collected data,

they are not correlated with flight loads.4 It is more likely that these gauge ad-

justments occur for operational reasons. This motivates my assumption that initial

4I observe that 3.0% of flights experience a change in aircraft in the sixty days before departure.
79% of occurrences happen within the two days before departure. Yet these changes do not seem to
be associated with flight loads. I cannot reject the null hypothesis that flights which see an upgauge
(increase in capacity) have flight loads higher than the average load factor for that route and vice
versa. In the former case, p = 0.999; in the latter case, p = 0.197. Flights which see an upgauge
actually have lower load factors than the route average.
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capacity is exogenous.5

The pricing department determines filed fares, or prices and associated ticket

restrictions, that consumers may face. Examples include refundable and non-

refundable tickets, as well as first-class, economy-class, and basic-economy tickets.

A common ticket restriction is an advance-purchase (AP) requirement, or a re-

striction that requires consumers to purchase by a deadline. AP requirements are

commonly observed three, seven, ten, 14, 31, and 30 days before departure. A

fare class (or booking class) is a single- or double-letter code to denote broad ticket

characteristics—deeply discounted economy versus full-fare economy, for exam-

ple. When the additional ticket restrictions are incorporated, this results in what is

called a fare basis code (the fare class, price, and restrictions).

Fare Basis Airline Fare Class Trip Type Fare Adv. Purchase Req

LH4OASBN Alaska L One-Way $174.60 14

LH4OASMN Alaska L One-Way $189.60 14

QH4OASMN Alaska Q One-Way $217.60 14

YH0OASMR Alaska Y One-Way $334.00 −

In this example, there are two L-class fares filed, one saver economy fare and

one economy fare, each with a 14-day AP requirement. The two L-class fares have

different fare basis codes. The third fare is a 14-day AP Q-class fare, and the fourth

is an unrestricted Y-class economy fare. I incorporate this feature in the empirical

model by having firms choose among a discrete set of fares. Lazarev (2013) models

this distribution of fares chosen by airlines. Because I do not observe airline

ticketing data, I assume consumers only consider the lowest available economy

fare.

Finally, the revenue management department dynamically determines fare

availability, among the fare classes set by the pricing department. This process

involves setting the number of seats available for purchase for each fare class over

time. Allocations are determined using techniques developed in operations re-

5I explore the effects of initial capacity on dynamic pricing in Online Appendix E.
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search, including the well-known ESMR-b heuristic, in order to make them tractable

(Belobaba, 1987, 1989, 1992; Belobaba and Weatherford, 1996). Phillips (2005) pro-

vides an overview of these approaches. Importantly, the allocation decision takes

fares and forecasts as inputs, which are also the inputs I consider in my model.

Although I do not model inventory allocations explicitly, I note that the average

number of seats booked per day is less than one. This means customers are unlikely

to face intra-day price dispersion due to fare classes closing. 6

3 Data

I create several original data sets for this study. The data are collected from travel

management companies, travel meta-search engines, and airline websites.7 I collect

and merge together three pieces of information. First, I collect daily prices for

thousands of flight itineraries. I focus on one-way fares, since for almost all of the

sample, round-trip prices are equal to the sum of segment prices. Most analysis

concentrates on the cheapest available economy-class ticket for purchase. Second,

I collect censored fare class allocations for each flight. These show available fare

classes and can be used to determine when flights are sold out.8 Third, I collect

airline seat maps, which are graphical representations of available and occupied

seats. By tracking changes to individual seats across consecutive days, I obtain a

measure of daily bookings. I show in Online Appendix C that the measurement

error in using seat maps to proxy bookings may be small.

6Many RM systems are designed such that several fares are available at any given point in
time, which is called nesting (Phillips, 2005). Without access to individual-level purchase data and
inventory allocations (these data are proprietary and available data are censored), I cannot pursue
modeling inventory allocation.

7The data come from Alaska Airlines, BCD Travel, ExpertFlyer, Fare Compare, JetBlue Airways,
United Airlines, and Yapta. The airline websites provide a wealth of information, including seat
availabilities, seat maps and fares. ExpertFlyer reports filed fares, seat availabilities, and seat maps;
BCD Travel reports seat availabilities; Fare Compare reports filed fares, and Yapta tracks daily fares.
Data were collected in 2012 and again in 2019.

8For example, G5 means the active G-class fare has five available seats, however, airlines censor
these data at seven or none, depending on the carrier.
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In the following subsections, I discuss route selection (Section 3.1) and document

a set of new descriptive facts on dynamic pricing in the airline industry (Section 3.2).

3.1 Route Selection

I use the publicly available the Department of Transportation DB1B tables to select

markets to study.9 I define a market in the DB1B as an origin-destination (OD),

quarter, year. With the DB1B data, I filter based on the following criteria:

(i) there is only one carrier operating nonstop;

(ii) there is no nearby alternative airport serving the same destination;

(iii) total quarterly traffic is greater than 600 passengers;

(iv) total quarterly traffic is less than 45,000 passengers;

(v) a significant portion of traffic is nonstop;

(vi) a significant portion of traffic is not connecting.

Criteria (i) and (ii) narrow the focus to monopoly markets in terms of nonstop

flight options. Criteria (iii) and (iv) remove infrequently-served markets, and

the upper limit on traffic keeps data collection manageable. When I implement

these criteria, the resulting number make up roughly 14 percent of OD traffic in

the United States. In addition, quarterly revenues for these markets are roughly

$2.3 billion. Criterion (v) addresses the potential for alternative flight options,

including connecting flights for OD. Criterion (vi) is equally important because

it addresses how fares are assigned to observed changes in remaining capacity.

For this analysis, it is important to find markets that have relatively homogeneous

itineraries, primarily non-connecting, nonstop trips.

Criteria (v) and (vi) are negatively correlated, meaning routes with high nonstop

traffic percentages typically have low percentages of non-connecting traffic. This is

because ODs with very high nonstop traffic percentages tend to be short distance

9The DB1B tables contain a 10-percent sample of domestic US ticket purchases. The data are at
the quarterly level and contain neither the date flown nor the purchase date.
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flights to hubs, but overwhelmingly, most consumers on these flights connect to

other destinations. Without individual-level data, it is impossible to know the

itinerary for each observed booking. Moreover, given that ODs with the highest

concentration of nonstop traffic are more than twice as short—comparing above the

95th percentile with below the 95th percentile—it is also possible that alternative

modes of transportation, such as taking a bus or train, are valid substitutes to flying.

I collect data on fifty OD pairs which satisfy the selection criteria above. In ad-

dition, to compare the descriptive evidence, I select six duopoly markets.10 Online

Appendix B presents additional route selection information, market-level statis-

tics, and comparisons with the entire DB1B sample. All of the routes studied either

originate or end at Boston, MA; Portland, OR; or Seattle, WA. Most of the sample

covers markets served by Alaska Air Lines (JetBlue and Delta are the other carriers

studied).

Several features of the sample are worth noting. First, Alaska and JetBlue price

itineraries at the segment level; that is, consumers wishing to purchase round-

trip tickets on these carriers purchase two one-way tickets. As a consequence,

round-trip fares in these markets are exactly equal to the sum of the corresponding

one-way fares. I observe no length-of-stay requirements or Saturday-night stay-

overs. Since a fare must be attributed to each seat map change, this feature of

the data makes it easier to justify the fare involved. Second, JetBlue does not

oversell flights.11 I will use this feature of the data to simplify the pricing problem

presented in the next section. Third, several selected markets offer coach-only

flights. This feature allows for investigating all sales and also controls for one

aspect of versioning (first class versus economy class). Finally, the sample focuses

10Two markets, (Boston, MA - Kansas City, MO) and (Boston, MA - Seattle, WA) were both
monopoly and duopoly markets. The former market originally had nonstop service offered by
Delta and Frontier. Frontier exited early on in the sample and Delta became the only carrier flying
nonstop. The latter market was very briefly served by just Alaska, prior to the entry of JetBlue.

11In the legal section of the JetBlue website, under "Passenger Service Plan": "JetBlue does not
overbook flights. However some situations, such as flight cancellations and reaccommodation,
might create a similar situation."
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on airlines that allow consumers to select seats before departure. Many carriers

now charge fees to choose seats when traveling on restrictive coach tickets.12

In contrast with Jetblue, Alaska and Delta offer first class in several of the

markets studied—first class appears in 58 percent of the sample, with the average

cabin size being twelve seats of the plane. I provide some descriptive analysis of

first-class pricing (see Online Appendix A), but I do not pursue versioning in the

model. Alaska does allow for overselling, but I note that among the major airlines,

Alaska Airlines has an average denied-boarding rate (overselling).13

3.2 Descriptive Evidence

3.2.1 Summary Statistics

The sample contains over 12,000 flights, each tracked for the last sixty days before

departure. The sample contains 738,625 observations, as well as over five million

connecting fares. Data collection occurred over two six-month periods (March

2012-August 2012, March 2019-August 2019).

Summary statistics appear in Table 1. The average one-way ticket price in the

sample is $233.14 Load factor is the number of occupied seats divided by capacity

on the day of departure. Average load factor is 89 percent, ranging from 70 percent

to 98 percent, by market. I observe that 15.7 percent of flights sell out. There is

considerable variation in load factor within a market, which shows evidence for the

presence of flight-level demand shocks. The coefficient of variation (CV) of within-

market load factors ranges between 0.04 and 0.27. CVs are higher well in advance

of the departure date; the reduction over time is consistent with price adjustments
12The JetBlue data were collected before the introduction of Blue Basic seats, which feature a fee

to select seats. This is also true for Delta. Alaska’s restrictive coach tickets are called Saver fares.
These fares do allow for limited seat selection in the coach cabin. I observe availability of these
seats in 98 percent of seat maps.

13Source: Air Travel Consumer Report, accessed February 2020.
14This is higher than the average price calculated from the publicly available DB1B tables (Table 8);

however, recall that these gathered prices cover the sixty days before departure and also include
non-transacted prices.
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Table 1: Summary Statistics for the Data Sample

Variable Mean Std. Dev. Median 5th Pctile. 95th Pctile.

Oneway Fare ($) 232.60 139.33 190.18 89.00 504.00
Load Factor 88.76 13.52 93.42 59.21 100.00
Daily Booking Rate 0.68 1.94 -0.00 -0.00 4.00
Daily Fare Change ($) 3.43 31.25 0.00 0.00 46.00
Unique Fares (per itin.) 6.97 2.16 7.00 4.00 11.00

Note: Summary statistics for 12,119 flights tracked between 3/2/2012-8/24/2012 and
3/21/2019-8/31/2019. Each flight is tracked for sixty days before departure. The total
number of observations is 738,625. Load Factor is reported between zero and 100 the day
of departure. The daily booking rate and daily fare change compares consecutive days.

to fill unsold seats. The R2 of a regression of load factor on origin-destination-flight

number and departure date (subsuming seasonality and day-of-week indicators)

fixed effects is only 0.56, which suggests that demand shocks may be significant in

explaining flight loads.

The booking rate in Table 1 corresponds to the mean difference in occupied

seats across consecutive days. The average booking rate is 0.68, with the 5th and

95th percentiles of zero and four seats per flight, respectively. This finding shows

that airline markets are associated with low daily demand. 61% seat maps do not

change across consecutive days. This requires the demand estimation technique to

confront the fact that there is a significant number of zero sales.

On average, each itinerary reaches seven unique fares and experiences 10.4 fare

changes. This implies that fares fluctuate up and down, usually a few times, and

that the number of realized prices is relatively small. For the markets studied,

the median number of daily departures is one and the mean is two. Finally, I use

individual seat assignments to estimate the number of passengers per booking.15 I

15Each row in the data has at most six seats, and I assume whenever more than two seats in
row become occupied, this is a party traveling together. This occurs in less than eight percent of
bookings. For rows in which two seats become occupied, I check if the seats are adjacent. Seats with
passengers or space in-between are assumed to be two single-passenger bookings. This removes
18 percent of the two-passenger bookings. Thus, as a potential lower bound, I find that 55 percent
of passengers, or 75 percent of bookings, are single passenger bookings.
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estimate this to be 1.37, which motivates the unit demand assumption in the model.

There are a few differences across the data samples worth noting. Relative to

the data collected in 2012, the 2019 data contain substantially lower fares (-$170);

the booking rate and daily price increase are slightly lower (-0.2; -$0.3); slightly

fewer fares are offered per flight (-0.5); and load factors are lower (-7%). These

differences cannot be attributed to a single factor, as the carriers and markets differ

across the samples. In Section 7, I highlight how the welfare estimates vary across

markets.

3.2.2 Dynamic Prices

Figure 1 documents patterns on dynamic price adjustments in airline markets.

Panel (a) plots the mean fare and mean load factor by day before departure. The

plot confirms that the overall trend in prices is positive, with fares increasing from

roughly $200 to nearly $400 in sixty days. The noticeable jumps in the time series

occur when crossing advance purchase (AP) restrictions. At sixty days before

departure, roughly 42 percent of seats are already occupied. The booking curve for

flights in the sample is smooth over time and starts to level off around 80 percent a

few days before departure. There is a spike in load factor, of around 5 percent, the

day of departure. This spike could be driven by a combination of measurement

error (consumers who were not assigned seats in advance are assigned seats at

check-in) and last-minute bookings. On the last day before departure, there is

also a sharp decline in available economy tickets, which suggests that last-minute

bookings do occur (see Online Appendix A).

There is considerable variation in pricing across markets. Figure 7 and Figure 8

in Appendix A plot average fares over time as well as the average percentage

change in fares over time for each route studied. Price levels, the timing of AP

restrictions, and the depth of AP discounts vary by market.

Figure 1-(b) establishes an important link between bookings and price adjust-

14



Figure 1: Average Fares, Load Factors, and Fare Response to Sales

(a) Mean LF and Fares over Time
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(b) Fare Response to Sales
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(c) Fare Changes over Time
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(d) Fare Change Magnitudes over Time
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Note: (a) Average fare and load factor by day before departure. The vertical lines correspond to advance-purchase discount
periods (fare fences). (b) Average fare changes as a response to sales by day before departure. The vertical lines correspond
to advance-purchase discount periods (fare fences). The horizontal line indicates no fare response. The top panel shows the
percentage of itineraries that see fares increase or decrease by day before departure. The lower panel plots the magnitude of
the fare declines and increases by day before departure. The vertical lines correspond to advance-purchase discount periods
(fare fences).

ments. The graph separates out two scenarios: (1) a flight experiences positive

sales in the previous period; and (2) there are no sales in the previous period.

First, fares respond to demand shocks as predicted by standard dynamic pricing

models: When bookings occur, prices tend to rise; when bookings do not occur,

prices stay the same, or fall. However, close to the departure date and regardless

of bookings, prices increase. This suggests late-arriving consumers are less price-

sensitive and airlines capture their high willingness to pay with intertemporal price

discrimination.16

16This was originally pointed out by McAfee and Te Velde (2006). Although, stochastic demand
models can result in increasing price paths, they argue that the magnitude of observed price hikes
suggests later arrivals are less price sensitive.
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Figure 1-(c) shows the frequency of fare increases and decreases over time. Well

before the departure date, the number of fare hikes and the number of fare declines

are roughly even. The spikes correspond to advance purchase requirements. Note

their use is not universal. Less than 60 percent of flights experience a price increase

at the 7-day AP requirement. Finally, Figure 1-(d) shows the magnitude of fare

adjustments over time; conditional on fares changing, the magnitude of the change

is increasing over time.

The pricing patterns documented here also occur in competitive markets and

when considering tickets of different qualities, i.e., first class and basic economy). I

highlight two findings.17 First, for the few competitive markets in the sample„ the

magnitude of systematic fare increases is lower, and the number of systematic fare

decreases is higher. This may suggest the role of intertemporal price discrimination

is reduced in competitive markets.18 Second, all ticket qualities respond to AP

restrictions, the gap between economy and basic economy grows over time, and

the availability of basic economy fares decreases. Therefore, economy cabin fares

rise over time for two reasons: regular economy fares become more expensive and

basic economy fares are no longer offered.

4 An Empirical Model of Dynamic Airline Pricing

4.1 Model Overview

A monopolist airline offers a flight for sale in a series of sequential markets. More

precisely, I will define the markets for a flight on a particular departure date,

17Additional analysis can be found in Figure 9, Figure 10, and Figure 11 in Online Appendix A.
18This finding complements the work of Siegert and Ulbricht (2020), who use fare data to show

that competition is correlated with a flattening of prices over time. Dana and Williams (2021)
show in a theoretical model that strong competitive effects work to equalize prices across periods
and that inventory controls can facilitate intertemporal price discrimination in oligopoly. If the
role of intertemporal price discrimination is reduced in competitive markets, this may suggest the
efficiency aspect of dynamic pricing may be higher compared to the markets studied in this paper.
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and I will abstract away from potential correlations in demands across departure

dates and other flight options, including connecting flights and other nonstop

itineraries. The sales process for every market evolves over a finite and discrete

time horizon t ∈ {0, . . . ,T}. Period 0 corresponds to the first sales period, and

period T corresponds to the flight departure date. Initial capacity for the flight is

exogenous, and the firm is not allowed to oversell. Unsold capacity on the day

of the flight (t = T) is scraped with zero value. The only costs modeled are the

opportunity costs of remaining capacity, and all other costs are normalized to zero.

Each period t, the airline first offers a single price for the flight, and then

consumers arrive according to a stochastic process specified in the next subsection.

Each arriving consumer is either a business traveler or a leisure traveler; business

travelers are less price sensitive than leisure travelers, and the proportion of each

type is allowed to change over time. Note that the terms "business" and "leisure" are

used simply to describe a consumer type; they do not identify consumers based on

a travel need.19 Upon entering the market, all uncertainty about travel preferences

is resolved.20 Arriving consumers either purchase a ticket or exit the market. If

demand exceeds remaining capacity, tickets are randomly rationed. Consumers

who are not selected receive the outside option. This ensures that the capacity

constraint is not violated. Consumers do not cancel seats so remaining capacity

is monotonically decreasing.21 This process repeats each sales period; the firm is

forward looking and solves the finite horizon, dynamic program.

19Booking websites and surveys oftentimes ask the reason for travel. Typically, the two options
are for business or for leisure. The model estimates two consumer types that need not coincide with
these two rationales for travel.

20This approach differs from earlier theoretical work such as Gale and Holmes (1993), as well
as some empirical work such as Lazarev (2013), in which existing consumer uncertainty can be
resolved by delaying purchase. This assumption is motivated by the fact that I do not find significant
bunching in bookings before the expiration of AP fares (see Online Appendix D).

21The average number of cancellations per flight in the data is less than two.
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4.2 Demand

Each day before the flight leaves, t = 0, 1, ...,T, a stochastic process brings a discrete

number of new consumers to the market. M̃t denotes the arrival draw. The demand

model is based on the two-consumer type discrete choice model of Berry, Carnall,

and Spiller (2006), which is frequently applied to airline data. Consumer i is a

business traveler with probability γt or a leisure traveler with probability 1 − γt.

Consumer i has preferences (βi, αi) over product characteristics (x jt ∈ RK) and price

(p jt > 0), respectively.

I assume utility is linear in product characteristics and price. If consumer i

chooses to purchase a ticket on flight j, she receives utility ui jt = x jtβi −αip jt + εi jt. If

she chooses not to fly, she receives normalized utility ui0t = εi0t. Arriving consumers

solve a straightforward maximization problem: consumer i selects flight j if and

only if ui jt ≥ ui0t.

Define yt =
(
αi, βi, εi jt, εi0t

)
i∈1,..,M̃t

to be the vector of consumer preferences. Sup-

pressing the notation on product characteristics for the rest of this section, demand

for flight j at t is defined as Q jt(p, yt) :=
∑M̃t

i=0 1
[
ui jt ≥ ui0t

]
∈ {0, ..., M̃t}, where 1(·)

denotes the indicator function. Demand is integer valued; however, it may be the

case that there are more consumers who want to travel than there are seats remain-

ing. That is, Q jt(p, y) > c jt, where c jt is the number of seats remaining at t. Since the

firm is not allowed to oversell, in these instances, I assume that remaining capacity

is rationed by random selection. Specifically, consumers arrive and choose to fly

or not. The capacity constraint is then checked. If demand exceeds remaining

capacity, c jt consumers are randomly selected from the set of consumers who chose

to travel, and the rest receive their outside options. Although this assumption may

appear restrictive, the daily booking rate is less than one.22

22Although the model assumes that consumers arrive and purchase a single one-way ticket, it
allows for round-trip ticket purchases in the following way. A consumer arrives looking to travel,
leaving on date d and returning on date d′. The consumer receives idiosyncratic preference shocks
for each of the available flights in both directions and chooses which tickets to purchase. Since
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Without the ability to oversell and incorporating the rationing rule, expected

sales are formed by integrating over the distribution of yt,

Qe
jt(p; c) =

∫
yt

min
(
Q jt(p, yt), c

)
dFt(yt).

I incorporate a number of parametric assumptions. First, following McFadden

(1973), I assume that the idiosyncratic preferences of consumers are independently

and identically distributed according to a Type-1 Extreme Value (T1EV) distribu-

tion. This assumption implies that the individual choice probabilities are equal

to

πi
jt

(
p jt

)
=

exp(x jtβi − αip jt)
1 + exp(x jtβi − αip jt)

.

Let B denote the business type and L denote the leisure type. Recall that the

probability of a consumer being type B is γt. Then, γtπB
jt defines the purchase

probability that a consumer is of the business type and wants to purchase a ticket;

(1 − γt)πL
jt is similarly defined. Hence, integrating over consumer types, product

shares is equal toπ jt

(
p jt

)
= γtπB

jt

(
p jt

)
+(1−γt)πL

jt

(
p jt

)
.Next, I assume that consumers

arrive according to a Poisson distribution, M̃t ∼ Poissont(µt). The arrival rates, µt,

are also allowed to change over time. Hence, daily demands will depend on

both the arrival process as well as preferences of consumers entering the market.

Conditional on price, it follows that demand is also Poisson, Q jt ∼ Poissont(µtπ jt).

The probability that q seats are demanded on flight j at time t are equal to

Prt

(
Q jt = q ; p jt

)
=

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

.

With these probabilities defined and noting that demand is censored at remain-

several airlines such as Alaska and JetBlue price at the segment level, there is no measurement error
in this procedure. That is, a consumer pays the same price for two one-way tickets as he or she
would for a round-trip ticket.
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ing capacity, expected sales is equal to23

Qe
jt(p jt; c jt) =

c jt−1∑
q=0

Prt

(
Q jt = q ; p jt

)
q +

∞∑
q=c jt

Prt

(
Q jt = q jt ; p jt

)
c jt.

=

c jt−1∑
q=0

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

q +

∞∑
q=c jt

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

c jt.

4.3 Monopoly Pricing Problem

The monopolist maximizes expected revenues of flight j (subscript suppressed)

over a series of sequential markets. Each day before departure, the firm chooses to

offer a single price before the arrival of customers. Using the institutional features

discussed in Section 2, I assume the firm chooses a price from a discrete set, denoted

A(t). The set may change over time due to advance purchase restrictions.24

The pricing decision is based on the states of the flight: seats remaining; time left

to sell; flight characteristics; and idiosyncratic shocksωt ∈ RA(t), which are assumed

to be independently and identically distributed following a Type-1 Extreme Value

(T1EV) distribution, with scale parameter σ > 0. These shocks are assumed to be

additively separable to the remainder of the per-period payoff function, which are

expected revenues, Re
t(pt; ct) = pt ·Qe

t(pt; ct).

The firm’s problem can be written as a dynamic discrete choice model. Let

23This is can be equivalently written as

Qe
jt(pt; c jt) =

c jt−1∑
q=0

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

q +

1 −
c jt−1∑
q=0

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

 c jt.

24In principle, the model can be extended to an environment where the monopolist offers multiple
flights (J). Two assumptions that can be used so that the model closely follows the exposition
here are: (1) consumers do not know remaining capacities when solving the utility maximization
problem, (2) when capacity is rationed, consumers not selected receive the outside option. The first
assumption addresses that consumers may select less preferred options if the probability of getting
a seat is higher. The second assumption implies that conditional on price, Q jt is independent of
Q j′t for j′ , j and that Q jt ∼ Poissont(µtπ jt). The complexity of the dynamic program increases by
dim[A(·)](J−1) relative to the complexity of the single-flight problem.
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Vt(ct, ωt) be the value function given the state (t, ct, ωt). Denoting δ as the discount

factor, the dynamic program (DP) of the firm is

Vt(ct, ωt) = max
p∈A(t)

(
Re

t(p; ct) + ωtp + δ

∫
ωt+1,ct+1 |ωt,p,ct,

Vt+1(ct+1, ωt+1)dHt(ωt+1, ct+1 |ωt, p, ct)
)
.

Because the firm cannot oversell, capacity transitions as ct+1 = ct − min
{
Qt, ct

}
,

where Qt is the realized demand draw. The firm faces two boundary conditions.

The first is that once the airline hits the capacity constraint, it can no longer sell

seats for that flight. The second is that unsold seats are scrapped with zero value.

I follow Rust (1987) and assume that conditional independence is satisfied.

This means that the transition probabilities are equal to ht(ωt+1, ct+1 |ωt, pt, ct) =

g(ωt+1) ft(ct+1 | pt, ct). The capacity transitions ft(·) can be derived from the probability

distribution of sales described in the previous section. I return to this momentarily.

By assuming the unobservable is distributed T1EV, along with conditional in-

dependence, the conditional value function is equal to

EVt(pt, ct) =

∫
ct+1

σ ln

 ∑
pt+1∈A(t+1)

exp
(

Re
t+1(ct+1, pt+1) + EVt+1(pt+1, ct+1)

σ

)
 ft(ct+1|ct, pt)+σφ,

where φ is Euler’s constant. The conditional choice probabilities also have a closed

form and are computed as

CCPt(pt ; ct) =
exp

{(
Re

t(pt, ct) + EVt(pt, ct)
)
/σ

}
∑

p′t∈A(t) exp
{(

Re
t(p
′

t, ct) + EVt(p′t, ct)
)
/σ

} .
Before continuing, I discuss the connection between the notation Prt

(
Q jt = q ; p jt

)
and ft(ct+1 | ct, pt). Consider a two-period model with a single seat. In the first

period, expected revenues are simply Pr1
(
Q1 ≥ 1 ; p1

)
· 1 · p1 because at most

one seat can be sold. The demand probabilities exactly inform the capacity

transition probabilities under conditional independence, that is, f1(c2 | 1, p1) =
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[Pr1
(
Q1 ≥ 1 ; p1

)
, Pr1

(
Q1 = 0 ; p1

)
]. With probability Pr1

(
Q1 ≥ 1 ; p1

)
, the seat sells

today and nothing is available for sale tomorrow, and with probability Pr1
(
Q1 = 0 ; p1

)
,

the seat is not sold today and is available for purchase tomorrow. The optimal price

that affects these probabilities depends on the arrival process and product shares.

Time is a deterministic state. Note, in the general model, any transition probability

where ct+1 > ct is equal to zero because capacity is monotonically decreasing.

I utilize a dynamic discrete choice model because fares are chosen from a pre-

determined set—as discussed in Section 2, fares are assigned by the pricing depart-

ment. The supply model can be interpreted as modeling the decisions of revenue

management, conditional on the choices made by other airline departments. In

particular, the model takes the initial capacity and observed fares as given. Given

the set of fares, identification assumes that the pricing choice is optimal. This is

perhaps not unreasonable given the sophisticated pricing models used by airlines

(McGill and Van Ryzin, 1999). However, airlines operate complex networks and

the pricing decision for a single flight may be impacted by forces not accounted for

in the model—for example, a persistent, unobserved shock to the network could

overstate the role of capacity in the model.

Another potential limitation of the model is that consumers are assumed to

make a one-shot decision upon entering the market, and market participation is

exogenous. This can impact estimated demand elasticities (Hendel and Nevo,

2006). If increasing prices are also used to shape consumer expectations, my

estimates may overstate the proportion of business travelers and understate their

price sensitivity. In addition, if consumers learn about their preferences toward the

deadline, this will cause opportunity costs to rise over time (Dana, 1998), which

may act to reinforce this potential overstatement.
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5 Estimation

I assign the discount factor to be one. Arrival rates, µd
t , vary by day before departure

(t) and departure date (d) in the following way. Over the booking horizon, I let

arrival rates vary corresponding to observed advance-purchase discount intervals,

which are then scaled according to the day-of-week of the departure date,

µd
t =


µdow

· µ1, Greater than twenty-one days before departure (21+);

µdow
· µ2, Fourteen to twenty-one days before departure (20-14);

µdow
· µ3, Seven to fourteen days before departure (13-7); and

µdow
· µ4, Within seven days before departure (6-0).

Here, µdow is a day-of-week shifter for each departure date. Mondays are normal-

ized to one, and parameters are estimated for Tuesday through Sunday. In total,

there are ten arrival rate parameters per market.

I introduce flexibility in the composition of consumer types by assuming

Prt(Business) = γt =
exp

(
γ0 + γ1t + γ2t2)

1 + exp
(
γ0 + γ1t + γ2t2

) ,∀t = 0, ...,T.

This parametric specification allows for non-monotonicity in consumer types over

time, while keeping the function bounded between zero and one. Each market has

three consumer-type parameters.

Finally, I assume consumer utility is of the form

ui jt = βdow j − αip jt + εi jt,

where βdow j is a day-of-week preference for the departure date.25 There are nine

preference parameters per market.

To reduce computational burden, I construct a single pricing menu for each

25This control explains more of the variation in bookings than day-of-week of purchase.

23



route by reducing the dimensionality of observed prices. The average number

of unique fares observed per flight is less than seven, however, I observe price

differences across departure dates within a route, sometimes by a single dollar. To

avoid constructing likelihoods for each flight individually, I first cluster all observed

prices for a given route using k-means with a minimum in-sample fit threshold of

99 percent. This results in pricing choice sets that range in size from five to eleven.

I then map each observed fare to its clustered fare, creating pricing menus that only

vary by route and day before departure. Because lower-priced fares are typically

not offered close to the departure date, this procedure preserves advance-purchase

discounts, albeit with clustered fares.26

Given a set of flights (F) each tracked for (T) periods, the log-likelihood for the

data is given by

max
(β,α,γt,µt,σ)

∑
F

∑
T

log
(
CCPt(pt ; ct)

)
+ log

(
ft(ct+1|ct, pt)

)
.

I maximize this objective separately for each market. To increase sample sizes,

I group together the directional traffic of the city pairs, which means demand

does not vary by direction. Online Appendix B shows that directional prices are

very similar. For any candidate parameter vector, I calculate the censored-Poisson

demand functions, expected revenues, and transition probabilities. I then solve

for the value functions using the recursive structure of the firm’s problem, which

defines the conditional choice probabilities (CCP).27

26Other approaches are available. In the hotel setting, Cho et. al. (2018) find the set of prices to
be large and they propose using generalized method of moments (GMM) with moment conditions
from both the demand and supply side.

27Estimation utilizes analytical gradients computed via the module JAX using GPUs (set to 64-bit)
and the solver Knitro. I select the Sequential Quadratic Programming (SQP) algorithm. I first use
parallel multi-start, selecting 200 random initial starting values, using relaxed parameter bounds.
I then rerun the estimation script with tighter bounds centered around the first solution, using 42
random random starts.

24



5.1 Identification

The key identification challenge of the paper is to separately identify the demand

parameters from the arrival process. This challenge is pointed out in Talluri and

Van Ryzin (2004), for example. The issue arises because without proprietary search

data to pin down the arrival process, an increase in arrivals could instead be inferred

as inelastic demand. For example, the sale of two seats could have occurred because

two consumers arrived and both purchased, or because twenty consumers arrived

and a tenth purchased. This is sometimes called the lack of "no purchase" data.

This paper proposes incorporating the supply-side model in order to separately

identify the demand parameters and the arrival process. In particular, I assume

that firms optimally price given seats remaining, time left to sell, and their un-

observables. Preferences are assumed to evolve in the same predictable way, but

demand shocks can vary for each flight toward the deadline. This results in vari-

ation in seats sold over time, and the firm’s response to these shocks informs the

magnitude of stochastic demand. That is, by solving the firm’s problem, I recover

the opportunity cost of capacity, and along with the pricing decision, I back out

the overall demand elasticity. By tracing out price adjustments from variation in

seats remaining given time to sell and variation over time given a constant capacity

constraint, I separate the incentives to adjust prices in response to demand shocks

versus the demand elasticity.

Figure 1-(b) provides graphical evidence of the identification argument. Given

stochastic demand, we would expect prices to rise when demand exceeds expec-

tations and fall after a sequence of low demand realizations. This is shown in the

figure as the solid (blue) line is above the zero, and the dashed (orange) line is at

or below zero. However, Figure 1-(b) shows that prices sharply rise close to the

departure date and regardless of bookings. This sharp rise in prices, regardless of

the scarcity of seats, suggests a change in demand elasticity. That is, consumers

who shop late are less price sensitive than those who shop early.
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6 Empirical Results

Complete parameter estimates span three tables, Table 4−Table 6 in the appendix.28

Each table reports results for a set of markets and has three sections. The first

section, "Logit Demand," reports day-of-week preferences, price sensitivities, and

the parameters governing the probability on consumer types over time (γt). The

second section, "Poisson Rates", reports mean arrival rates for each of the specified

time intervals for Monday departures. The rows labeled "DoW Effect" contain

the multiplicative factor for Tuesday through Sunday departures. Finally, the last

row, "Firm Shock", reports estimates of the scaling parameter. A summary of the

demand estimates is shown in Table 2 below.

Almost all consumer preferences are all found to be statistically significant at

conventional levels.29 The parameter estimates suggest that, on average, leisure

consumers are over twice as price sensitive as business consumers, and business

consumers are willing to pay up to 125% more in order to secure a seat.30 I

estimate meaningful differences in demand across departure dates due to day-of-

week effects. In Figure 2-(a), I plot the average willingness to pay for the days of the

week, relative to the minimum estimated day-of-week preference. The histogram

is over markets. I estimate that willingness to pay is highest for flights departing

on Sunday, Friday, Thursday, Monday (in that order; highest to lowest). Saturday,

Tuesday, and Wednesday are estimated to be the most off-peak days. These values

closely match day-of-week patterns found using security checkpoint data from the

Transportation Security Administration (TSA).31

28I do not estimate demand in competitive routes or routes with infrequent service. The excluded
routes are: Boston, MA - Seattle, WA; Boston, MA - Portland, OR; Portland, OR - Sacramento, CA;
Portland, OR - Lihue, HI; and Portland, OR - Palm Springs, CA. In addition, Omaha, NE - Seattle,
WA is excluded from the analysis due to numerical stability issues and resource constraints.

29The exception being Oklahoma City, OK - Seattle, WA. All random starts converge to the same
maximum; however, several parameters are estimated to be insignificant.

30The mean ratio of price sensitivity across markets is 3.34; the median is 2.25.
31In 2019, the busiest to least busy travel days in the United States were Friday (2.44

mil.), Sunday (2.38 mil.), Thursday (2.37 mil.), Monday (2.36 mil.), Wednesday (2.15 mil.),
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Table 2: Demand Results Summary Table

Parameter Mean Std. Dev. Median 25th Pctile. 75th Pctile.

DoW Preferences 5.77 4.67 4.72 3.27 6.99
Leisure Price Sensitivity -3.48 3.46 -2.37 -3.57 -1.71
Business Price Sensitivity -1.61 1.72 -1.24 -1.72 -0.74
Prob(Business) 0.26 0.28 0.15 0.03 0.38
DoW Arrival Rates 2.02 2.36 1.35 0.93 2.01

Note: Summary of demand estimates. See Table 4−Table 6 for all parameter estimates.
DoW preference statistics are computed using all βd

r parameters. Leisure and Business price
sensitivity statistics are computed using all αL,r and αB,r parameters. Probability of business
uses the predicted values of the Logit specification at the γt,r level. DoW Arrival Rates are
computed using all µd

t,d parameters.

Fitted values of the probability that a customer is of the business type (γt) is

shown in Figure 2-(b). The plots depict the average (across routes) business share

over time, as well as the interquartile range and the fifth and ninety-fifth percentiles

over markets. Most routes exhibit increasing γt processes over time. On average,

10 percent of early arrivals are the type labeled "business" and close to 80 percent

of late arrivals are the type labeled "business." In early periods, prices are relatively

flat and I estimate the average γt to be flat. Starting at 21 days before departure,

I estimate a significant change in the business customer share. This corresponds

with the time at which fares start raising rapidly.

There is substantial heterogeneity in the fitted values for γt across routes, as

shown in Figure 12 in Online Appendix A. The heterogeneity reflects the differences

in pricing dynamics across markets (see Figure 7 and Figure 8 in Online Appendix

A). In general, the shape of the curves correlates with the use of AP restrictions:

a larger price increase at the 21-day AP requirement generally creates a steeper

profile. The share of business arrivals well before the departure date is typically

between 0 and 20 percent and increases to between 60 to 80 percent the day of

Tuesday (2.06 mil.), and Saturday (2.01 mil.), respectively (daily average). Compiled from
https://www.tsa.gov/foia/readingroom.
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Figure 2: Day-of-week Preferences and Consumer Types over Time

(a) Day-of-Week WTP Differences
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(b) Prt(Business) over Time
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Note: (a) Average willingness to pay for the days of the week, relative to the minimum estimated day-of-week effect for
each market. The plot shows an average over markets. (b) Fitted values of the arrival process of business versus leisure
customers across the booking horizon. The y-axis is Pr(business), so 1 − Prt(Business) defines Prt(Leisure).

departure.

The parametric assumption on consumer types is flexible, as it captures S-shape,

almost linear, and convex arrival paths. It can also be restrictive. One market is

estimated to shift from one Poisson demand distribution to another (leisure to

business) corresponding to the 21-day AP requirement.

All arrival rates are estimated to be statistically significant.32 There are three

levels of heterogeneity in these estimates. First, across markets, the average number

of arrivals ranges from around one to up to ten. Second, in some markets, the arrival

rates rise over time, whereas in most of the estimates, the rates stay low. Finally,

there is variation in which days of the week experience the largest market sizes

across routes. Monday and Sunday are estimated to have the largest market sizes

in forty percent of markets, followed by Thursday and Friday. I estimate that 24.6

percent of arrivals are business travelers. As a point of comparison, Lazarev (2013)

estimates 20 percent of consumers are business travelers.

Overall, the demand estimates establish that a meaningful shift occurs in will-

ingness to pay over time. Demand elasticities range from -9.38 to -1.46, depending

32The exception being Oklahoma City, OK - Seattle, WA, where both the DoW preferences and
blocked arrival rates are found to be insignificant.
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on route and time until departure. I estimate the average price elasticity to be -3.31.

6.1 Model Fit and Discussion

Figure 3: Model Fit and Optimal Pricing

(a) Model Fit over Time
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(b) Estimated Policy Functions
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Note: Comparison of mean data fares and mean model fares across the booking horizon. Two versions of model fares are
plotted. The solid black line defines per-period price choice sets using fare restrictions in the data. The dashed grey line
allows firms to choose from all prices each period.

The model fits the data well. Figure 3-(a) shows within-sample model fit by

plotting data and model fares over time. Model fares are shown under the choice

set restrictions in the estimated model as well as with the restrictions removed—the

firm has access to the entire choice set in each period. The figure depicts means

as well as the fifth and ninety-fifth percentiles of fares. Model fares closely follow

observed fares, with an average difference of $7.50. Differences do vary by day

before departure—they are less than $11 for the first half of the sample but the

gap increases around AP requirements. The reason is that the model produces a

smoother fare profile that results in fare hikes slightly before the 14 and 7-day AP

requirements. The fifth and ninety-fifth percentiles of fares are also aligned, except

for close to the departure date, where the top five percent of data fares are higher

than what the model assigns. The dashed line, corresponding to model fares where

the firm utilizes the entire choice set, also closely follows the data except close to

the deadline, where the unrestricted model assigns lower prices. One view on this
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finding is that the utilization of fare restrictions acts as a reputation mechanism

that allows firms to commit to high prices close to the date of travel, even for flights

with excess capacity.

Price adjustments occur because of the time-varying composition of customers

and in response to demand shocks. Figure 3-(b) highlights how remaining capacity

affects pricing within a period for a sample route. Plotted are the firm’s policy

functions. Each line corresponds to a different time period. With fewer seats re-

maining (moving toward the origin on the x-axis), fares increase. The plot also

demonstrates for a given amount of seats remaining, opportunity costs are increas-

ing in time left to sell. For example, the price of having forty seats remaining sixty

days out is higher than forty seats remaining thirty days out. However, close to

departure, fares are higher regardless of remaining capacity due to demand being

more inelastic. Also, consistent with Dana (1998), aggregate demand uncertainty

results in unused capacity that raises opportunity costs over time.

7 The Welfare Effects of Dynamic Airline Pricing

In this section, I estimate the welfare effects of dynamic pricing through a series of

counterfactual exercises. In Section 7.1, I study uniform pricing, where the firm is

not able to respond to demand shocks nor changes in the demand elasticity, and

intertemporal price discrimination (IPD), where the firm is not able to respond to

demand shocks. In Section 7.2, I examine the the sources of price adjustments and

show how both forces explain airline pricing patterns.

To set up all counterfactuals, I use the empirical distribution of remaining

capacity sixty days before departure as the initial capacity condition.33 All coun-

33Note that it may be profitable for firms to adjust capacity if the unmodeled fixed costs are such
that the counterfactual pricing systems support a different gauge of aircraft. This is explored further
in Online Appendix E, where I consider dynamic pricing under a large range of initial capacities. I
do not bound the fixed costs, but I do show that capacity would need to be significantly higher for
demand shocks to not affect airline prices.
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terfactuals utilize the important boundary conditions of the initial problem: (1)

the firm cannot oversell, and capacity transitions as ct+1 = ct −min{Qt(p, yt), ct}; (2)

unused capacity is scrapped with zero value. I simulate 100,000 flights per market

using the distribution of initial observed capacities. I then combine the results over

markets. Route-level heterogeneity is then explored.

For all counterfactual analysis, I make two changes to the estimated model.

First, I allow firms to use the unrestricted choice set, A(t) = ∪T
t=0A(t), in each period,

in order to streamline the counterfactuals, e.g., under uniform pricing, the firm

may wish to charge a low fare that is not available close to departure. Second, I

remove the firm shocks (ω) in order to single out the effects of the demand elasticity

and scarcity (rather than the role of unobservable errors) in determining the pricing

decision. For example, under uniform pricing, the firm would receive a single error

vector, whereas in the dynamic counterfactual, the firm receives per-period error

shocks.

7.1 Uniform Pricing and a Model of Intertemporal Price Discrimination

With uniform pricing, the firm sets a single price for each flight by integrating over

future demands in the initial period. The revenue maximization problem under

uniform pricing is

max
p
Ey

 T∑
t=0

p min
{
Qt(p, yt), ct

}
such that ct+1 = ct −min

{
Qt(p, yt), ct

}
, c0 given.

With a constant price, the firm cannot respond to both demand shocks and changes

in willingness to pay.

In the model of intertemporal price discrimination, I assume the firm sets a se-

quence of prices before sales begin, at t = 0. Price changes over time reflect changes

in willingness to pay—intertemporal price discrimination as third degree price dis-
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crimination (as opposed to screening with second degree price discrimination). The

revenue maximization problem is therefore

max
p0,...,pT

Ey

 T∑
t=0

pt min
{
Qt(pt, yt), ct

}
such that ct+1 = ct −min

{
Qt(pt, yt), ct

}
, c0 given.

Since prices cannot depend on the remaining capacity, they cannot react to changes

in the opportunity cost of a seat.34

The counterfactuals are nested such that as the pricing strategy becomes more

flexible, expected revenues are necessarily increasing. This is because under dy-

namic pricing, prices are defined by p∗(ct, t), whereas in the model of intertemporal

price discrimination, prices are time-dependent, p∗(t). Finally, under uniform pric-

ing, prices do not vary with both seats and time remaining, p∗. Therefore, expected

revenues are increasing in pricing flexibility, that is,

T∑
t=0

Re
t

(
p∗; ct

)
︸        ︷︷        ︸
Uniform Pricing

≤

T∑
t=0

Re
t

(
p∗(t); ct

)
︸            ︷︷            ︸

IPD

≤

T∑
t=0

Re
t

(
p∗(t, ct); ct

)
︸               ︷︷               ︸

Dynamic Pricing

.

Note that if capacity where sufficiently large, then the outcomes of the IPD and

dynamic pricing models would coincide. The extent to which they differ suggests

that responding to demand shocks is particularly important in the airline context.35

Note that aggregate demand uncertainty affects prices in all scenarios, but in

distinct ways. With dynamic pricing, prices are state-dependent and the firm re-

acts directly to demand shock realizations. However, with uniform pricing and in

the model of IPD, the pricing decision reflects the integral of all future demands

34Note that because demand becomes more inelastic over time, there is little to no role for Coasian
forces (consumer waiting for fare declines). In Online Appendix D, I provide a bound on the waiting
costs so that no consumer would choose to wait to buy under dynamic pricing.

35See Online Appendix E for additional counterfactual analysis on initial capacities.
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(for given prices) before any uncertainty is resolved. The magnitude of demand

uncertainty affects both the overall price level, but also the incentive to set different

prices over time, irrespective of changes in the demand elasticity. Therefore, in

order to completely separate the effects of demand uncertainty changes in willing-

ness to pay on intertemporal price adjustments, I consider an alternative model of

intertemporal price discrimination in Section 7.2.

The firm’s objective function the model of IPD is large dimensional problem—

an exhaustive search involves evaluating the objective over dim(A)T possible price

vectors. At a minimum, the problem contains approximately 8.6e41 possibilities.

To reduce the dimensionality of the problem, I add the restriction that the firm can

adjust fares when the advance purchase requirements typically expire (days 3, 7,

14, and 21). This results in five prices per flight.

Table 3: Welfare Effects of Dynamic Airline Pricing

Fare Load Factor Sell Outs Revenue CSL CSB CS Welfare
Dynamic 243.3 87.6 18.7 10.7 2.2 6.5 8.7 19.5
IPD 243.6 83.6 22.2 10.4 2.1 6.4 8.4 18.9
Uniform 219.9 84.9 29.4 9.9 2.0 7.4 9.3 19.2

Fare: mean fare for flight observations with positive seats remaining; Load factor (LF):
average at departure time; Sell Outs: percentage of flights with zero seats remaining in the
last period; Revenue: mean flight revenue; Consumer surplus (CSL,CSB): surplus per flight;
Welfare: daily mean revenues plus consumer surplus, excluding fixed costs. All dollar values
reported in thousands of dollars. Results come from simulating 100,000 flights per market
given the empirical distribution of remaining capacity sixty days before departure.

Welfare estimates for the baseline dynamic pricing model and the two counter-

factuals are shown in Table 3. All values are in levels, except for load factor and sell

outs, which are reported as percentages. A visual summary of the intertemporal

dynamics are shown in Figure 4.

I find that average fares are over ten percent lower under uniform pricing

compared to the other pricing models. However, this does not lead to an increase

in output—load factors are 2.7 percent higher under dynamic pricing. This occurs
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because although uniform pricing prohibits price discrimination, it creates the

incentive for the firm to save an inefficient number of seats for later arrivals. As

shown in Figure 4-(a), uniform pricing results in fares that are relatively high early

on, but that are relatively low close to the departure date.

Figure 4: Counterfactual Results over Time

(a) Mean Fares

0 10 20 30 40 50 60
Booking Horizon

200

225

250

275

300

325

350

M
ea

n 
Pr

ice

Dynamic Pricing
IPD
Uniform Pricing

(b) Load Factors relative to DP
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(c) CDF of Sell Outs
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(d) CS & Revenues Relative to DP
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Note: Revenue drop relative to dynamic (daily) pricing for all markets. For example, 3-day corresponds to firms utilizing
dynamic pricing, but restricting the number of price updates to 3-day intervals.

The primary driver of market expansion under dynamic pricing is that leisure

consumers are offered lower fares. This is also true in the model of IPD; however,

in this model, the firm cannot adjust fares downward when flights are realized

to have low demand. This is shown in Figure 4-(b), which depicts load factors

relative to dynamic pricing over time. There are two notable findings. First, output

remains highest under dynamic pricing throughout the entire booking horizon.

Second, although the relative booking rate increases over time under both uniform
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pricing and in the model of IPD (the lines move closer to 100%), both curves level

off. This occurs because without the ability to respond to demand shocks, more

flights flights sell out in advance. Figure 4-(c) highlights this result, which shows

the cumulative distributions of sell outs for all scenarios. Uniform pricing results

in not only more sell outs, but sell outs also occur much earlier than under dynamic

pricing. Relative to dynamic pricing, I find sell outs are 3.5 percent higher under

IPD, and 10.7 percent higher under uniform pricing.

Dynamic pricing leads to substantial changes in how capacity is allocated across

consumer types (and time). In general, leisure consumers benefit under more flexi-

ble pricing systems (by construction, as does the firm). I estimate leisure consumer

surplus would decline by 12.4 percent under uniform pricing. For business cus-

tomers, there are two opposing forces. On one hand, dynamic pricing allows for

increased price targeting, which lowers surplus relative to uniform pricing. On the

other hand, dynamic pricing also acts to ensure seat availability, thus potentially

allowing more business consumers to purchase. The model estimates show that

the former negative effect on business consumer surplus dominates. Optimal uni-

form prices result in flights that are up to $125 less expensive than under dynamic

pricing, which more than offsets the increased probability that later arrivals may

not be able to secure a seat. Consequently, business consumer surplus is 13.3 per-

cent lower under dynamic pricing than under uniform pricing. Aggregating over

consumer types, I estimate that dynamic pricing results in 6.3 percent lower total

consumer surplus compared to uniform pricing.

Dynamic pricing leads to substantially higher revenues than those under uni-

form pricing (7.6 percent higher). This primarily comes from a transfer of business

consumer surplus to the firm. Allocative efficiency is also improved. Output

expands as the firm offers lower fares to early-arriving customers, and for peak

flights, capacity is allocated to those with the highest willingness to pay. Because
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the two counterfactuals are nested, I calculate

Revenue under IPD − Revenue under Uniform Pricing
Revenue under Dynamic Pricing − Revenue under Uniform Pricing

(7.1)

to measure the importance of intertemporal price discrimination versus the impor-

tance of responding to demand shocks in explaining the revenue increase. Using

this decomposition, I find that 65.7 percent of the revenue gains associated with dy-

namic pricing over uniform pricing come from intertemporal price discrimination.

The remaining 34.3 percent comes from the ability to respond to demand shocks.

The increase in revenues is greater than the aggregate consumer surplus decline.

I estimate the overall welfare effect of dynamic pricing is a one percent increase

in surplus compared to a world without price discrimination, with a stark realloca-

tion of capacity across consumers. Dynamic pricing leads to a 7.2 percent increase

in tickets purchased by leisure consumers and a 5.8 percent decrease in the number

of tickets purchased by business travelers.

Dynamic airline pricing increases welfare in aggregate, but not for each market

individually. Figure 5 graphically shows the welfare effects of dynamic pricing

for each market separately; each dot denotes the total welfare of dynamic pricing

over the welfare of uniform pricing on the vertical axis. On the horizontal axis,

I plot the calculation in Equation 7.1. I find that dynamic pricing lowers welfare

in seven of the markets studied and increases welfare in fifteen of the markets

studied, thus highlighting that the welfare predictions of dynamic pricing are in

general ambiguous.

As Figure 5 highlights, the directionality of the overall welfare effect depends

on which sources of price adjustments drive revenues. Welfare declines under dy-

namic pricing when price changes are mainly in response to changes in willingness

to pay and not in response to demand shocks. On the other hand, dynamic pricing

improves overall welfare relative to uniform pricing only if demand is subject to

many unpredictable shocks.
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Figure 5: Welfare Effects of Dynamic Pricing due to IPD
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Note: Each dot represents counterfactual results for a single market. The vertical axis is welfare under dynamic pricing over
the welfare under uniform pricing. The horizontal axis computes the percentage of revenue gains from uniform pricing to
dynamic pricing attributed to intertemporal price discrimination. Figure 13 in Online Appendix A presents an alternative
figure with market labels and reports the frequency of sell outs for each market.

7.2 The Sources of Price Adjustments in Airline Markets

In this section, I examine the importance of the two reasons for price adjustments

with dynamic pricing: changes in the willingness to pay and changes in the op-

portunity cost of a seat. I consider a model of static pricing where the cost of

capacity is (close to) zero.36 This implies that prices only change in response to

changes in demand. The revenue maximization problem in this counterfactual is

simply the baseline pricing model with the discount factor set equal to zero; that

is, maxpt Eyt

[
pt min

{
Qt(pt, yt), ct

}]
.

The static pricing model results in substantially lower fares because there is no

opportunity cost of capacity. Prices still rise significantly over time due to changes

in willingness to pay, conditional on the firm having seats remaining. Figure 6-

(a) shows that both models produce qualitatively similar patterns. Fares nearly

double in sixty days and the slopes are similar. There is a level shift because the

36Because the model is not in continuous time, more than a single seat may be demanded in
a single period. This would raise prices (opportunity costs are positive); however, the estimated
arrival rates are sufficiently low that this does not significantly impact the results. Results are very
similar to a model where the firm does not take into account its capacity constraint when pricing.
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Figure 6: Decomposition of the Source of Price Adjustments

(a) Price Levels over Time
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Note: (a) Average fares over time under dynamic pricing and static pricing. (b) The percentage of flights that experience
price changes from t to t + 1 under dynamic pricing and static pricing.

opportunity cost of capacity is close to zero under static pricing, lowering fares.

This establishes that the primary source for increasing prices in airline markets is

intertemporal price discrimination. Although average fares are nearly 30 percent

lower under static pricing, output increases by only 3.5 percent and the number of

seats sold to business travelers decreases by 41.9 percent (leisure sales increase by

17.8 percent).

In Figure 6-(b), I plot the percentage of flights that experience price changes

over time. Comparing the two lines provides insights on the sources for price

adjustments. Under static pricing, the first significant price hike occurs twenty-one

days before departure, or when there is a significant change in the composition

of arriving consumers according to the model estimates. These price adjustments

occur regardless of whether the firm internalizes scarcity. Under dynamic pricing,

there are substantially more price adjustments at all other times. This occurs well

in advance of departure date (well over five times more price adjustments), even

though preferences are not changing. There are also over three times as many price

adjustments close to the perishability date. Both of these findings are consistent

with the raw data and show that the early price adjustments are primarily in

response to demand shock realizations that allow the firm to better reoptimize
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remaining inventory for future (and increasingly price insensitive) arrivals.

8 Conclusion

This paper investigates two major determinants of airfare fluctuations, demand

shocks and intertemporal variation in willingness to pay. The main contribution

of this paper is to jointly study these pricing forces to quantify their welfare im-

plications. I do so by examining US monopoly markets using novel flight-level

data. I show that dynamic airline pricing expands output, increases revenues,

and lowers total consumer surplus relative to uniform pricing. Leisure consumers

benefit from dynamic pricing. Although business consumers are ensured seats,

they are also targeted with high prices. In aggregate, I find welfare is higher under

dynamic pricing than under uniform pricing. The results at the route level high-

light that the welfare effects of dynamic pricing are ambiguous. In markets where

price adjustments are primarily in response to changes in willingness to pay, the

intertemporal price discrimination force dominates, and welfare decreases under

dynamic pricing.
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Table 4: Parameter Estimates

Variable AUSBOS BILSEA BOIPDX BOSJAX BOSMCI BOSSAN BZNPDX CHSSEA

Logit Demand
DoW Prefs β0 6.769 3.642 4.529 6.404 7.536 9.365 3.412 4.911

0.197∗∗∗ 0.300∗∗∗ 0.131∗∗∗ 0.170∗∗∗ 0.046∗∗∗ 0.349∗∗∗ 0.314∗∗∗ 0.193∗∗∗

β1 6.275 3.246 3.993 5.165 7.231 8.597 2.579 2.374
0.166∗∗∗ 0.285∗∗∗ 0.122∗∗∗ 0.173∗∗∗ 0.050∗∗∗ 0.286∗∗∗ 0.276∗∗∗ 0.318∗∗∗

β2 6.126 3.110 4.088 5.343 7.432 8.609 2.803 3.371
0.172∗∗∗ 0.286∗∗∗ 0.129∗∗∗ 0.169∗∗∗ 0.051∗∗∗ 0.317∗∗∗ 0.290∗∗∗ 0.237∗∗∗

β3 6.414 3.291 4.780 6.662 7.400 9.679 3.696 4.120
0.200∗∗∗ 0.299∗∗∗ 0.139∗∗∗ 0.164∗∗∗ 0.052∗∗∗ 0.359∗∗∗ 0.300∗∗∗ 0.230∗∗∗

β4 6.031 3.365 4.922 6.515 7.550 9.270 3.777 5.692
0.245∗∗∗ 0.308∗∗∗ 0.140∗∗∗ 0.193∗∗∗ 0.052∗∗∗ 0.339∗∗∗ 0.311∗∗∗ 0.191∗∗∗

β5 6.169 3.388 3.737 6.090 8.397 9.634 2.470 −10.958
0.181∗∗∗ 0.302∗∗∗ 0.120∗∗∗ 0.219∗∗∗ 0.050∗∗∗ 0.346∗∗∗ 0.291∗∗∗ 0.001∗∗∗

β6 6.367 3.874 4.928 7.033 7.906 10.141 4.219 6.996
0.255∗∗∗ 0.324∗∗∗ 0.143∗∗∗ 0.228∗∗∗ 0.048∗∗∗ 0.382∗∗∗ 0.294∗∗∗ 0.214∗∗∗

Leis. Price Sens. αL −4.087 −1.647 −3.268 −3.285 −3.994 −2.409 −2.056 −1.661
0.099∗∗∗ 0.094∗∗∗ 0.078∗∗∗ 0.067∗∗∗ 0.022∗∗∗ 0.103∗∗∗ 0.125∗∗∗ 0.054∗∗∗

Bus. Price Sens. αB −1.721 −0.722 −1.498 −2.157 −1.636 −1.707 −0.693 −0.968
0.044∗∗∗ 0.055∗∗∗ 0.044∗∗∗ 0.040∗∗∗ 0.011∗∗∗ 0.061∗∗∗ 0.062∗∗∗ 0.040∗∗∗

Pr(Bus.) Cons. γ0 −1.561 −4.194 −6.661 −3.369 −0.452 −0.705 −18.985 −5.982
0.152∗∗∗ 0.234∗∗∗ 0.152∗∗∗ 0.110∗∗∗ 0.004∗∗∗ 0.197∗∗∗ 2.263∗∗∗ 0.463∗∗∗

Pr(Bus.) Linear γ1 −0.020 0.005 0.119 0.103 −0.026 −0.018 0.614 0.061
0.003∗∗∗ 0.007 0.005∗∗∗ 0.007∗∗∗ 7.0E-04∗∗∗ 0.008∗∗ 0.093∗∗∗ 0.021∗∗∗

Pr(Bus.) Quad. γ2 0.001 0.002 3.5E-04 -3.7E-04 5.2E-04 0.002 −0.004 0.001
6.6E-05∗∗∗ 8.7E-05∗∗∗ 5.4E-05∗∗∗ 9.2E-05∗∗∗ 1.5E-05∗∗∗ 1.3E-04∗∗∗ 8.7E-04∗∗∗ 2.8E-04∗∗∗

Poisson Rates
> 21 Days µ1 3.531 1.451 0.804 1.338 1.344 1.178 1.193 2.094

0.463∗∗∗ 0.070∗∗∗ 0.010∗∗∗ 0.037∗∗∗ 0.008∗∗∗ 0.034∗∗∗ 0.062∗∗∗ 0.068∗∗∗

14 to 21 days µ2 2.948 1.661 1.349 1.028 1.484 0.939 0.831 1.580
0.292∗∗∗ 0.108∗∗∗ 0.023∗∗∗ 0.033∗∗∗ 0.012∗∗∗ 0.036∗∗∗ 0.056∗∗∗ 0.067∗∗∗

7 to 14 days µ3 2.279 1.418 1.237 0.745 1.287 0.770 0.533 1.140
0.169∗∗∗ 0.103∗∗∗ 0.023∗∗∗ 0.025∗∗∗ 0.008∗∗∗ 0.038∗∗∗ 0.047∗∗∗ 0.053∗∗∗

< 7 days µ4 0.809 1.798 1.218 0.442 0.986 0.406 0.851 1.303
0.070∗∗∗ 0.143∗∗∗ 0.025∗∗∗ 0.019∗∗∗ 0.010∗∗∗ 0.029∗∗∗ 0.096∗∗∗ 0.056∗∗∗

DoW Effect µ1 1.089 0.977 0.901 1.347 1.141 0.995 1.062 2.559
0.033∗∗∗ 0.076∗∗∗ 0.030∗∗∗ 0.044∗∗∗ 0.008∗∗∗ 0.048∗∗∗ 0.068∗∗∗ 0.530∗∗∗

µ2 1.039 1.144 1.024 1.252 1.190 1.173 1.036 1.602
0.032∗∗∗ 0.060∗∗∗ 0.014∗∗∗ 0.035∗∗∗ 0.007∗∗∗ 0.044∗∗∗ 0.055∗∗∗ 0.101∗∗∗

µ3 1.181 1.207 0.997 1.032 1.209 1.124 0.822 1.205
0.035∗∗∗ 0.063∗∗∗ 0.012∗∗∗ 0.031∗∗∗ 0.007∗∗∗ 0.044∗∗∗ 0.038∗∗∗ 0.052∗∗∗

µ4 1.425 1.174 0.905 1.051 1.128 1.232 0.871 0.956
0.043∗∗∗ 0.066∗∗∗ 0.013∗∗∗ 0.045∗∗∗ 0.006∗∗∗ 0.043∗∗∗ 0.050∗∗∗ 0.043∗∗∗

µ5 1.024 0.936 0.801 0.981 0.451 0.824 0.891 8.493
0.029∗∗∗ 0.067∗∗∗ 0.029∗∗∗ 0.064∗∗∗ 0.003∗∗∗ 0.036∗∗∗ 0.045∗∗∗ 0.001∗∗∗

µ6 1.366 0.932 0.826 0.973 0.941 1.160 0.695 0.691
0.050∗∗∗ 0.048∗∗∗ 0.011∗∗∗ 0.050∗∗∗ 0.006∗∗∗ 0.060∗∗∗ 0.041∗∗∗ 0.048∗∗∗

Firm Shock
σ 0.670 0.370 0.118 0.499 0.311 0.862 0.182 1.068

0.030∗∗∗ 0.039∗∗∗ 0.005∗∗∗ 0.014∗∗∗ 0.001∗∗∗ 0.025∗∗∗ 0.012∗∗∗ 0.035∗∗∗

LogLike -47,557 -79,749 -266,052 -101,409 -60,597 -61,387 -53,669 -35,926
Number of Flights 238 423 1,626 478 304 317 333 173
Number of Dep. Dates 119 106 106 120 108 120 106 87
Number of Obs. 13,645 25,180 96,774 26,673 22,652 18,294 19,848 10,198

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Prices are scaled to $100.
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Table 5: Parameter Estimates

Variable CMHSEA FATPDX GEGPDX GTFSEA HLNSEA ICTSEA MSOPDX

Logit Demand
DoW Prefs β0 3.715 3.270 21.913 12.182 6.107 1.386 5.627

0.343∗∗∗ 0.255∗∗∗ 0.604∗∗∗ 1.497∗∗∗ 0.327∗∗∗ 0.234∗∗∗ 0.446∗∗∗

β1 3.319 3.017 21.325 12.105 5.667 1.768 5.043
0.302∗∗∗ 0.216∗∗∗ 0.601∗∗∗ 1.491∗∗∗ 0.312∗∗∗ 0.215∗∗∗ 0.412∗∗∗

β2 3.406 2.761 21.605 12.132 5.517 2.057 4.971
0.305∗∗∗ 0.204∗∗∗ 0.603∗∗∗ 1.500∗∗∗ 0.304∗∗∗ 0.187∗∗∗ 0.409∗∗∗

β3 3.849 3.032 22.216 12.175 6.077 2.463 5.433
0.362∗∗∗ 0.239∗∗∗ 0.601∗∗∗ 1.496∗∗∗ 0.331∗∗∗ 0.209∗∗∗ 0.418∗∗∗

β4 3.780 3.212 22.152 12.247 6.350 1.845 5.166
0.349∗∗∗ 0.253∗∗∗ 0.605∗∗∗ 1.502∗∗∗ 0.359∗∗∗ 0.249∗∗∗ 0.410∗∗∗

β5 3.295 3.186 21.178 12.111 5.416 2.407 4.838
0.325∗∗∗ 0.238∗∗∗ 0.601∗∗∗ 1.491∗∗∗ 0.297∗∗∗ 0.295∗∗∗ 0.404∗∗∗

β6 3.951 3.323 22.225 12.261 6.593 0.837 5.430
0.389∗∗∗ 0.261∗∗∗ 0.604∗∗∗ 1.498∗∗∗ 0.362∗∗∗ 0.316∗∗∗ 0.445∗∗∗

Leis. Price Sens. αL −1.288 −2.215 −17.718 −6.131 −3.321 −1.146 −3.266
0.079∗∗∗ 0.097∗∗∗ 0.488∗∗∗ 0.729∗∗∗ 0.165∗∗∗ 0.043∗∗∗ 0.227∗∗∗

Bus. Price Sens. αB −0.552 −0.837 −8.825 −2.755 −1.691 −0.240 −1.538
0.047∗∗∗ 0.049∗∗∗ 0.235∗∗∗ 0.348∗∗∗ 0.087∗∗∗ 0.021∗∗∗ 0.151∗∗∗

Pr(Bus.) Cons. γ0 −6.175 −4.325 −2.734 −2.276 −12.088 −2.553 −1.742
0.378∗∗∗ 0.309∗∗∗ 0.089∗∗∗ 0.438∗∗∗ 2.080∗∗∗ 0.128∗∗∗ 0.162∗∗∗

Pr(Bus.) Linear γ1 0.115 0.022 −0.015 −0.360 −4.022 0.024 −0.029
0.015∗∗∗ 0.011∗∗ 0.007∗∗ 0.181∗∗ 2.406∗ 0.005∗∗∗ 0.006∗∗∗

Pr(Bus.) Quad. γ2 2.2E-04 0.001 0.002 0.010 0.107 7.2E-05 0.002
1.4E-04 1.2E-04∗∗∗ 1.4E-04∗∗∗ 0.005∗∗ 0.061∗ 4.8E-05 1.8E-04∗∗∗

Poisson Rates
> 21 Days µ1 2.712 1.624 1.019 0.833 0.930 3.128 0.930

0.143∗∗∗ 0.065∗∗∗ 0.015∗∗∗ 0.029∗∗∗ 0.020∗∗∗ 0.320∗∗∗ 0.025∗∗∗

14 to 21 days µ2 3.278 2.606 0.614 0.588 0.492 3.448 0.690
0.186∗∗∗ 0.165∗∗∗ 0.021∗∗∗ 0.064∗∗∗ 0.031∗∗∗ 0.372∗∗∗ 0.039∗∗∗

7 to 14 days µ3 1.831 2.513 0.482 0.572 0.376 3.821 0.535
0.189∗∗∗ 0.142∗∗∗ 0.021∗∗∗ 0.049∗∗∗ 0.021∗∗∗ 0.410∗∗∗ 0.037∗∗∗

< 7 days µ4 2.501 2.861 0.277 0.946 0.234 6.489 0.366
0.290∗∗∗ 0.158∗∗∗ 0.013∗∗∗ 0.089∗∗∗ 0.014∗∗∗ 0.727∗∗∗ 0.060∗∗∗

DoW Effect µ1 0.990 0.777 0.895 0.869 0.882 0.678 0.942
0.053∗∗∗ 0.039∗∗∗ 0.020∗∗∗ 0.059∗∗∗ 0.041∗∗∗ 0.071∗∗∗ 0.047∗∗∗

µ2 0.925 0.838 0.876 1.120 0.946 0.643 1.050
0.055∗∗∗ 0.038∗∗∗ 0.021∗∗∗ 0.038∗∗∗ 0.047∗∗∗ 0.052∗∗∗ 0.034∗∗∗

µ3 0.979 0.928 0.890 1.168 0.928 0.528 0.987
0.051∗∗∗ 0.024∗∗∗ 0.025∗∗∗ 0.037∗∗∗ 0.044∗∗∗ 0.040∗∗∗ 0.039∗∗∗

µ4 1.006 0.970 0.917 1.218 1.009 0.765 1.140
0.056∗∗∗ 0.024∗∗∗ 0.023∗∗∗ 0.047∗∗∗ 0.050∗∗∗ 0.096∗∗∗ 0.042∗∗∗

µ5 0.928 0.820 0.769 0.915 0.943 0.519 0.929
0.086∗∗∗ 0.021∗∗∗ 0.018∗∗∗ 0.052∗∗∗ 0.047∗∗∗ 0.131∗∗∗ 0.050∗∗∗

µ6 1.054 1.114 0.825 0.982 0.883 1.624 1.202
0.061∗∗∗ 0.024∗∗∗ 0.025∗∗∗ 0.082∗∗∗ 0.035∗∗∗ 0.188∗∗∗ 0.048∗∗∗

Firm Shock
σ 0.678 0.228 0.260 0.194 0.197 0.264 0.086

0.073∗∗∗ 0.020∗∗∗ 0.004∗∗∗ 0.018∗∗∗ 0.012∗∗∗ 0.016∗∗∗ 0.010∗∗∗

LogLike -40,301 -78,041 -304,409 -57,210 -29,791 -39,109 -26,969
Number of Flights 210 424 1,718 412 212 212 208
Number of Dep. Dates 106 106 106 106 106 106 106
Number of Obs. 12,398 25,248 102,292 24,532 12,644 12,606 12,390

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Prices are scaled to $100.
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Table 6: Parameter Estimates

Variable OKCSEA PDXRNO PDXSBA PDXSTS SBASEA SEASTS SEASUN

Logit Demand
DoW Prefs β0

−0.834 6.991 3.173 4.479 3.698 4.591 9.845
0.501∗ 0.203∗∗∗ 0.370∗∗∗ 0.183∗∗∗ 0.436∗∗∗ 0.333∗∗∗ 1.071∗∗∗

β1
−0.590 6.045 2.463 2.917 2.799 3.099 9.279

0.429 0.204∗∗∗ 0.280∗∗∗ 0.235∗∗∗ 0.356∗∗∗ 0.354∗∗∗ 1.086∗∗∗

β2
−0.567 6.051 2.484 2.416 2.930 3.206 9.498

0.441 0.206∗∗∗ 0.276∗∗∗ 0.226∗∗∗ 0.364∗∗∗ 0.352∗∗∗ 1.101∗∗∗

β3
−0.403 6.888 2.942 4.313 3.638 4.421 8.822

0.463 0.195∗∗∗ 0.352∗∗∗ 0.184∗∗∗ 0.437∗∗∗ 0.326∗∗∗ 0.993∗∗∗

β4
−0.579 7.394 3.265 4.504 3.864 4.665 9.967

0.549 0.216∗∗∗ 0.378∗∗∗ 0.183∗∗∗ 0.455∗∗∗ 0.347∗∗∗ 1.064∗∗∗

β5
−0.449 6.256 2.647 3.359 3.458 2.772 8.767

0.458 0.195∗∗∗ 0.314∗∗∗ 0.228∗∗∗ 0.410∗∗∗ 0.411∗∗∗ 1.007∗∗∗

β6
−0.697 9.448 3.857 4.555 4.429 5.608 10.033

0.479 0.277∗∗∗ 0.444∗∗∗ 0.193∗∗∗ 0.553∗∗∗ 0.388∗∗∗ 0.995∗∗∗

Leis. Price Sens. αL −0.715 −3.658 −1.603 −2.333 −1.850 −1.873 −7.118
0.037∗∗∗ 0.102∗∗∗ 0.098∗∗∗ 0.077∗∗∗ 0.147∗∗∗ 0.096∗∗∗ 0.760∗∗∗

Bus. Price Sens. αB −0.029 −2.037 −0.741 −0.860 −0.747 −0.979 −2.551
0.029 0.065∗∗∗ 0.066∗∗∗ 0.050∗∗∗ 0.073∗∗∗ 0.067∗∗∗ 0.254∗∗∗

Pr(Bus.) Cons. γ0 −3.454 −3.739 −3.370 −6.307 −7.502 −7.091 −1.334
0.219∗∗∗ 0.441∗∗∗ 0.401∗∗∗ 0.473∗∗∗ 0.368∗∗∗ 0.833∗∗∗ 0.078∗∗∗

Pr(Bus.) Linear γ1 0.044 −0.114 0.008 0.058 0.160 0.020 −0.025
0.004∗∗∗ 0.019∗∗∗ 0.011 0.015∗∗∗ 0.017∗∗∗ 0.019 0.005∗∗∗

Pr(Bus.) Quad. γ2 -3.0E-04 0.004 0.001 0.001 -1.6E-04 0.002 6.0E-04
4.7E-05∗∗∗ 2.2E-04∗∗∗ 1.7E-04∗∗∗ 1.9E-04∗∗∗ 1.8E-04 3.9E-04∗∗∗ 1.1E-04∗∗∗

Poisson Rates
> 21 Days µ1 11.419 1.137 1.790 1.603 2.418 1.234 0.991

8.256 0.026∗∗∗ 0.133∗∗∗ 0.044∗∗∗ 0.126∗∗∗ 0.050∗∗∗ 0.032∗∗∗

14 to 21 days µ2 13.810 1.151 1.862 1.662 3.172 1.353 0.832
9.989 0.030∗∗∗ 0.173∗∗∗ 0.073∗∗∗ 0.245∗∗∗ 0.069∗∗∗ 0.047∗∗∗

7 to 14 days µ3 13.188 0.951 1.795 1.015 2.521 0.995 0.821
9.446 0.032∗∗∗ 0.179∗∗∗ 0.056∗∗∗ 0.217∗∗∗ 0.061∗∗∗ 0.050∗∗∗

< 7 days µ4 18.045 1.106 2.305 1.248 2.895 1.036 0.895
12.784 0.052∗∗∗ 0.241∗∗∗ 0.083∗∗∗ 0.346∗∗∗ 0.068∗∗∗ 0.157∗∗∗

DoW Effect µ1 0.763 0.879 0.944 0.881 0.905 1.353 1.100
0.159∗∗∗ 0.031∗∗∗ 0.052∗∗∗ 0.086∗∗∗ 0.054∗∗∗ 0.094∗∗∗ 0.047∗∗∗

µ2 0.730 0.907 0.918 1.075 0.972 1.348 1.009
0.156∗∗∗ 0.032∗∗∗ 0.061∗∗∗ 0.144∗∗∗ 0.062∗∗∗ 0.086∗∗∗ 0.047∗∗∗

µ3 0.687 0.918 0.994 0.852 1.039 1.051 1.149
0.163∗∗∗ 0.029∗∗∗ 0.042∗∗∗ 0.035∗∗∗ 0.036∗∗∗ 0.052∗∗∗ 0.046∗∗∗

µ4 0.860 0.940 0.953 0.917 0.976 1.101 1.011
0.207∗∗∗ 0.038∗∗∗ 0.036∗∗∗ 0.040∗∗∗ 0.038∗∗∗ 0.053∗∗∗ 0.044∗∗∗

µ5 0.640 0.835 0.868 0.730 0.867 1.437 0.847
0.147∗∗∗ 0.028∗∗∗ 0.046∗∗∗ 0.061∗∗∗ 0.042∗∗∗ 0.154∗∗∗ 0.063∗∗∗

µ6 0.932 0.645 0.867 1.137 0.884 0.999 0.722
0.205∗∗∗ 0.024∗∗∗ 0.053∗∗∗ 0.040∗∗∗ 0.104∗∗∗ 0.055∗∗∗ 0.132∗∗∗

Firm Shock
σ 0.262 0.430 0.309 0.395 0.464 0.623 0.194

0.013∗∗∗ 0.015∗∗∗ 0.036∗∗∗ 0.024∗∗∗ 0.065∗∗∗ 0.052∗∗∗ 0.015∗∗∗

LogLike -36,660 -143,894 -38,303 -66,833 -43,454 -58,125 -26,587
Number of Flights 212 721 212 384 212 306 168
Number of Dep. Dates 106 106 106 106 106 106 85
Number of Obs. 12,405 42,989 12,623 22,833 12,582 18,182 9,994

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Prices are scaled to $100.
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Online Appendix
The Welfare Effects of Dynamic Pricing: Evidence from Airline Markets

by Kevin R. Williams

A Additional Figures

Figure 7: Average Fares over Time by Market
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Note: Average fares over time for each market separately. This analysis combines origin-
destination and destination-origin fares. Both axes are common across all plots.

1



Figure 8: Percentage Change in Fares over Time by Market
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Note: Percent change in average fares over time for each market separately. This analysis
combines origin-destination and destination-origin fares. Both axes are common across all
plots.
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Figure 9: Fare Dynamics in Competitive Markets

(a) Fare Response to Sales
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(b) Fare Change over Time
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(c) Fare Change Magnitudes over Time
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Note: Recreation of Figure 1-(b) through Figure 1-(d) for markets with non-stop compe-
tition. (a) Fare response to own bookings (no bookings) over time. (b) Frequency of fare
increases and decreases over time. (c) Magnitude of fare increases and decreases over time.
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Figure 10: Fare Category Pricing Dynamics

(a) Mean Fare Category Pricing over Time
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(b) Fare Response to First Class Sales over Time
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(c) Fare Category Availability over Time
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Note: (a) Mean prices of different fare categories over time. Full-fare (refundable) tickets
for both economy and first class are flat over time. Average prices for saver-economy,
economy, and first-class tickets rise over time. The gap in prices between saver-economy
and economy prices grows as the departure date approaches.

(b) Recreation of Figure 1-(b) for first class. Compared to economy class, the presence of
APDs is diminished in first class, and fare increases are more pronounced throughout the
booking horizon.

(c) Percentage of flights that offer observed fare categories over time. First-class denomi-
nator is the number of flights with first class, not the number of flights in the sample.Close
to departure, economy fare availability abruptly drops suggesting that the spike in load
factor shown in Figure 1-(a) captures last-minute bookings. Economy fares rise and saver
economy availability declines.
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Figure 11: Pricing Effects on Other Itineraries

(a) Connecting Fare Response to Direct Sales
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(b) Multiple Nonstop Prices and Load Factors
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Note: (a) Recreation of Figure 1-(b), but with connecting fares instead of direct fares.
The connecting fare is the average fare among connecting flight options for the same
carrier, departure date, and booking date. Evidence suggestions that connecting fares are
unaffected by nonstop bookings.

(b) Fourth order polynomial fit of a regression of the percent difference in fares on the
percent difference in load factor when a carrier operates two nonstop flights a day. When
flights have the same load factor, average difference in fares is 0.6 percent. The line is
upward sloping, meaning that the flight with the higher load factor is, on average, more
expensive.
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Figure 12: Fitted Values of γt over Time for Each Market
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Note: Probability that an arriving consumer is of the business type over time, by market.
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Figure 13: Welfare Effects of Dynamic Pricing for Each Market
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B Route Selection

Using the publicly available DB1B data, I select origin-destination pairs to study.

These data contain a 10 percent sample of bookings and are at the quarterly level.

The data contain neither the date of travel nor the date of purchase.

I first combine traffic from all airports in which there exists a nearby airport

within sixty miles. This combines, for example, Laguardia (LGA), John F. Kennedy

(JFK), and Newark (EWR).37 Next, I focus on ODs with a nonstop option; this

reduces the number of potential markets studied from 73,000 to 9,800. Over 40

percent of these markets have a single carrier providing nonstop service and this

subset makes up a total of 14 percent of OD traffic in the United States. I then

implement the following cleaning criteria: (1) total quarterly traffic, including

connecting traffic with up to four stops, exceeds 600 passengers;38 (2) a single

carrier operates nonstop on the OD leg. This reduces the number of potential

markets by over half, to roughly 3,900.

Next, I calculate the following statistics: (1) OD nonstop traffic; (2) OD total

traffic (including one-stop connections, all the way up to four-stop connections);

(3) passenger traffic connecting to OD or connecting from OD, which again is

allowed to have at most five legs. The fraction (1)/(2) calculates the percentage of

37This creates the following groupings: (DAB, MCO, SFB); (OGD, SLC); (EWN, OAJ); (KOA,
MUE); (SBP, SMX); (AZA, PHX); (BRO, HRL, MFE); (CMI, DEC); (PIE, SRQ, TPA); (MHT, PSM);
(BUR, LAX, LGB, ONT, SNA); (BTV, PBG); (BFM, MOB); (HHH, SAV); (DAL, DFW); (EVV, OWB);
(MSS, OGS); (BQN, MAZ); (PSG, WRG); (HOU, IAH); (ORF, PHF); (FAT, VIS); (ATW, GRB); (PAE,
SEA); (LNS, MDT); (CLT, USA); (OAK, SFO, SJC); (AOO, JST, LBE); (BLV, STL); (CPX, SPB, STT,
VQS); (LWS, PUW); (BGM, ELM, ITH); (BGR, BHB); (ACK, EWB, HYA, MVY, PVC, PVD, BOS);
(BWI, DCA, IAD); (CLD, SAN); (CHO, SHD); (ASE, EGE); (SCM, VAK); (GYY, MDW, ORD); (BUF,
IAG); (CMH, LCK); (PHL, TTN); (PGD, RSW); (FLL, MIA); (HNM, JHM, LNY, LUP, MKK, OGG);
(MCE, MOD, SCK); (LEB, RUT); (CKB, MGW); (GLV, WMO); (EWR, HPN, HVN, ISP, JFK, LGA,
SWF).

38This is calculated as half a fifty-seat plane, offering at least weekend service (eight monthly
flights), for the quarter, e.g. .5*50*8*3 = 600. This level of the criterion is not critical, but a minimum
passenger threshold of 10 (scaling 1 passenger up to 10, as it is a 10% sample) is important because
it removes erroneous entries in the DB1B. For example, in 2012, United Airlines did not operate
nonstop between Lehigh Valley International Airport (ABE) and Nashville (BNA). Another method
is to look at scheduled service in the T100 segment tables.
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traffic flying nonstop. The fraction (1)/[(1) + (3)] calculates the percentage of traffic

not connecting. Shown another way,

FracNonstop :=
Passengers OD Nonstop

(Passengers OD Nonstop) + (Passengers OD ≥ 1 Stops)

:=
(O→ D)

(O→ D) + (O→ C→ D)
,

where C denotes potential connections for passengers flying on OD. Using similar

notation,

FracNotConnecting :=
(O→ D)

(O→ D) + (C→ O→ D) + (O→ D→ C)
,

which is simply the fraction of passengers on planes flying OD that are not con-

necting on either end.

Single carrier markets have percent nonstop and percent non-connecting means

of 76 percent and 57 percent as compared with 83 percent and 61 percent for

competitive markets (medians of 82 percent, 56 percent, 88 percent, 62 percent,

respectively). I limit myself to markets with at most 15,000 monthly passengers.

This is to keep the data collection process manageable.

The two fractions are negatively correlated (ρ = −0.33), each is correlated with

distance. The correlation between percentage non-connecting and distance is 0.24;

ODs that are closer together have higher connecting traffic. The correlation between

percentage nonstop and distance is−0.52; ODs that are closer together have a higher

percentage of nonstop traffic.

Markets with high nonstop percentages and low connecting percentages are

ideal because changes in seat maps are likely to be attributed to the correct itinerary,

and hence, fare. One important caveat to this approach is that markets with a high

nonstop percentage are also closer together, which implies there may be alterna-

tive modes of transportation, e.g., a train, that is relevant for airline demand. For

9



example, in 2019, there exist 556 ODs with nonstop and non-connecting fractions

above the 95 percent threshold. Of those ODs, 523 are operated by low-cost carriers

Allegiant Air and Spirit Airlines. Unfortunately, both airlines charge for a seat as-

signment; thus, utilizing seat maps to determine bookings will likely be inaccurate.

The next two carriers that meet threshold criteria (for nonstop and non-connecting

traffic) are Alaska Airlines and JetBlue Airways.

I select fifty ODs and concentrate data collection on two carriers, JetBlue Air-

ways and Alaska Airlines, such that both seat map and airfare data could be

collected. The other carriers included in the data are Delta Air Lines and Frontier

Airlines. In addition, for a comparison in the descriptive analysis, I collect data

on six duopoly markets.39 Figure 14 maps the markets and Table 7 provides a

dictionary for the airport codes. The data were collected in two phases: The data

on markets operated by Delta and JetBlue were collected in 2012, and the data

for Alaska Air Lines were collected in 2019. Prices for data collected in 2012 are

adjusted for inflation.

Figure 15 depicts all OD pairs in the DB1B data that meet the thresholds stated

above. Each dot corresponds to an OD pair. The vertical axis reports the percentage

(0-100) of non-connecting traffic. The horizontal axis reports the percentage of

nonstop traffic. The left panel (a) includes all markets, and the right panel (b)

removes Allegiant and Spirit because of the fee charged to select seats. These

556 ODs removed in (b) lie mostly along the top of the graph, corresponding to

markets with 100 percent non-connecting traffic. The red squares show the markets

selected for data collection and analysis. The dashed grey lines show the mean of

each statistic and the solid black line depicts the fit of a linear simple regression.

The graphs show the negative correlation between the two statistics previously

mentioned, with a large cluster of ODs having close to 100 percent nonstop traffic

but also very high levels of connecting traffic. For this study, “ideal" markets

39The city pair Boston, MA - Kansas City, MO was a duopoly market, with nonstop offered by
both Delta Air Lines and Frontier Airlines in 2012. Frontier then exited the market.
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Figure 14: Markets of Study

Note: Map of the markets selected for study. All of the markets either start or end at Seattle, WI; Portland, OR; and Boston,
MA.

arguably lie in the upper right of the graph. These are markets in which most

consumers travel nonstop (versus one-stop) and do not connect to other flights.

Note that this region is less dense compared with other areas in the graph. The

graphs show that all but eight (panel a) or five (panel b) of the selected markets

appear above the regression line, and most lie in the upper-right region of the

graph.

Table 8 provides traffic and price statistics in the DB1B for each OD in the

sample. Note that OD fares are very similar to DO (the reverse) fares in the DB1B,

and I use this finding in order to aggregate observations in estimation. Finally, one-

stop fares are not necessarily cheaper than nonstop options. For example, nonstop

fares from Billings, MT to Seattle, WA are cheaper than one-stop connections.
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Figure 15: Nonstop and Non-Connecting Traffic in the DB1B

(a) Full Sample
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(b) Removing Allegiant & Spirit
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Note: (a) Percentage nonstop traffic and percentage non-connecting traffic for markets that meet selection criteria in the
DB1B data. (b) Repeat of (a), excluding markets operated by Allegiant and Spirit.

Table 7: Airport Code Lookup

Airport Code City Airport Code City

AUS Austin, TX JAX Jacksonville, FL
BIL Billings, MT LIH Lihue, HI
BOI Boise, ID MSO Missoula, MT
BOS Boston, MA OKC Oklahoma, OK
BZN Bozeman, MT OMA Omaha, NE
CHS Charleston, SC PDX Portland, OR
CMH Columbus, OH PSP Palm Springs, CA
FAT Fresno, CA RNO Reno, NV
GEG Spokane, WA SAN San Diego, CA
GTF Great Falls, MT SBA Santa Barbara, CA
HLN Helena, MT STS Santa Rosa, CA
ICT Wichita, KS SUN Sun Valley, ID
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C Inference and Accuracy of Seat Maps

Seat maps may not accurately represent flight loads if consumers do not select seats

at the time of booking. This measurement error would systematically understate

sales early on, but then overstate last-minute sales when consumers without seat

assignments are assigned seats. Ideally, the severity of measurement error can

be measured by matching changes in seat maps with bookings; however, this is

impossible with publicly available data.

I perform two analyses to gauge the magnitude of the measurement error in

using seat maps.

Figure 16: Estimated Seat Map Measurement Error at the Monthly Level
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Note: Measurement error estimated by comparing monthly enplanements, using the T100 Tables and aggregating seat maps
to the monthly level. The solid line reflects zero measurement error.

First, I match monthly enplanements using my seat maps aggregated on the the

day of departure with actual monthly enplanements reported in the T100 Segment

tables. These tables record the total number of monthly enplanements by airline

and route. I make two adjustments. First, because I do not observe first class

cabins in the 2012 sample, I assume first class goes out at 100% full and subtract

off this passenger number using the size of the first class cabin as recorded from

the plane types in the T100. Second, because the number of observed flights
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can differ, e.g., due to cancellations, flight number changes cause data collection

to end, or flights are not tracked for 60 days, I reconcile any differences in the

number of departures by adding or subtracting the average observed flight load

times the count difference. Figure 16 provides a scatter plot that compares the

two statistics. Most points closely follow the 45-degree line, and I find seat maps

overstate recorded enplanements, with the median difference being three percent.

Some of this difference could be driven by last-minute cancellations.

Second, I create a new data set that allows me to estimate seat-map measurement

error for each day before departure. The mobile version of United.com allowed

users to examine seat maps for upcoming flights. In addition, for premium cabins,

the airline reports the number of consumers booked into the cabin. I randomly

select flights, departure dates, and search dates in 2012. In total, I obtain 15,567

observations. With these data, I find that seat maps understate reported load factor

by 2.3 percent, or around one to two seats on average.

Figure 17: Estimated Seat Map Measurement Error by Day Before Departure
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Note: Measurement error estimated by comparing seat maps with reported load factor using the United Airlines mobile
website. The dots correspond to the daily mean, and the line corresponds to fitted values of an orthogonal polynomial
regression of the fourth degree. Total sample size is equal to 15,567, with an average load factor of 70.7 percent.

Figure 17 plots the average measurement error by day before departure (t=60

corresponds to the day that flights leave), as well as a polynomial smooth of the

data. I find the difference ranges between zero to five percent across days, or at
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most four seats. This suggests seat maps are useful for recovering bookings as the

departure date approaches.

D Dynamic Demand in Airline Markets

There are noticeable jumps in prices over time, however, the booking curve for

flights is smooth. If consumers are aware that fares tend to increase sharply around

APD requirements, and they can strategically enter into the market, we should

expect to see bunching in sales before APDs expire and few sales after expiration.

I investigate bunching (strategic purchasing timing) by modeling the booking

curve as a function of time and include dummy variables for the day-before-

departure (DFD) times immediately before AP fare expires. Table 9 reports regres-

sion results under three fixed effects specifications. I find insignificant bunching

at the fourteen-day AP expiration. I find negative bunching at the three-day and

twenty-one-day AP expiration, meaning sales are lower prior to the price increases.

Finally, I find a positive and significant coefficient for the seven-day AP require-

ment; that is, sales are higher before the usual seven-day fare increase. It may be

that at least some consumers anticipate price hikes and time their purchases ac-

cordingly. For example, Li, Granados, and Netessine (2014) estimate that between

5 and 20 percent of consumers dynamically substitute across days.

I also investigate the incentive to wait by changing the estimated model in the

following way: after consumers arrive, each consumer has the option to buy a

ticket, choose not to travel, or wait one additional day to decide. By choosing to

wait, each consumer retains her private valuations (the ε’s) for traveling but may

be offered a new price tomorrow. Consumers have rational expectations regarding

future prices. However, in order to wait, each consumer has to pay a transaction

cost φi. This cost reflects the disutility consumers incur when needing to return to

the market in the next period.
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Table 9: Consumer Bunching Regressions

(1) (2) (3)
APD3 -0.504∗∗ -0.502∗∗ -0.502∗∗

(0.144) (0.142) (0.142)

APD7 0.200∗ 0.202∗ 0.201∗
(0.0725) (0.0697) (0.0697)

APD14 -0.0717 -0.0720 -0.0719
(0.0459) (0.0414) (0.0413)

APD21 -0.131∗ -0.131∗ -0.130∗
(0.0412) (0.0397) (0.0397)

m(t) Yes Yes Yes

OD FE Yes Yes −

Month FE Yes Yes −

D.o.W. Search FE No Yes Yes

D.o.W. Departure FE No Yes −

Flight FE No No Yes
Observations 738,625 738,625 738,625
R2 0.609 0.618 0.748
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. m(t) is a sixth-order polynomial
in days before departure, D.o.W. stands for day-of-week indicators for the day
the flight leaves and the day of search. OD-Month clustered standard errors in
parentheses.

I derive a waiting cost φ such that if all consumers have a waiting cost at least

as high as φ, then no one will wait. I then calculate the transaction costs.

Dropping the i, t, s subscripts, the choice set of a consumer arriving at time t in

a model of waiting is

max
{
ε0, β − αp + ε1,EUwait

− φ
}
,

where EUwait is the expected value of waiting one more period. This expected
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utility can be written as

EUwait = E
[

max{ε0, β − αpt+1 + ε1}
]
.

To derive φ, I first investigate the decision to wait for the marginal consumer, or

the consumer such that ε0 = β − αp + ε1. This consumer has no incentive to wait

if the price tomorrow is at least as high as today. If the price drops, the gain from

waiting is

ut+1 − ut = (β − αpt+1 + ε1) − (β − αp + ε1)

= α(p − pt+1).

For this marginal consumer, the expected gains from waiting are

Pr
(
pt+1 < p

)
E
[
α(p − pt+1)

∣∣∣∣ pt+1 < p
]
.

Hence, an indifferent consumer will not wait if φi > φ = Pr
(
pt+1 < p

)
E
[
α(p −

pt+1) | pt+1 < p
]
. This leads to the following proposition.

Proposition: With φ = Pr
(
pt+1 < p

)
E
[
α(p − pt+1) | pt+1 < p

]
, then all consumers will

choose not to wait.

Proof: Take a consumer who wants to purchase today, i.e., ε0 < β − αp + ε1. Then

there exists a p > p such that ε0 = β − αp + ε1. The expected gain for this consumer

waiting comes from prices dropping below pt and from price increases up to the

indifference point. If prices increase past p, then ε0 is preferred and there is no gain.

Hence, the expected gains from waiting are

Pr
(
pt+1 < p

)
E
[
α(p − pt+1)

∣∣∣∣ pt+1 < p
]

+ Pr
(
p < pt−1 ≤ p

)
E
[
α(p − pt+1)

∣∣∣∣ p < pt+1 ≤ p
]
− φ.
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The first term above is equal to φ, and the second term is less than or equal to zero.

Hence, waiting is not optimal for a consumer wishing to buy today.

Next, consider a consumer who prefers not to buy a ticket today, i.e., ε0 >

β − αp + ε1. Then there exists a p < p such that ε0 = β − αp + ε1. The gains from

waiting come from price declines lower than the cutoff, and are equal to

Pr
(
pt+1 < p

)
E
[
β − αpt+1 + ε1 − ε0

∣∣∣∣ pt+1 < p
]
− φ.

Applying the definition of φ, this is equivalent to

Pr
(
pt+1 < p

)
E
[
β − αpt+1 + ε1 − ε0

∣∣∣∣ pt+1 < p
]
− Pr

(
pt+1 < p

)
E
[
α(p − pt+1) | pt+1 < p

]
.

Define EG to be the expression above. Since p ≤ p, we have

EG ≤ Pr
(
pt+1 < p

)(
E
[
β − αpt+1 + ε1 − ε0

∣∣∣∣ pt+1 < p
]
− E

[
α(p − pt+1)

∣∣∣∣ pt+1 < p
])

≤ Pr
(
pt+1 < p

)(
E
[
β − αpt+1 + ε1 − ε0

∣∣∣∣ pt+1 < p
]
− E

[
α(p − pt+1)

∣∣∣∣ pt+1 < p
])
.

Moving the expectation operator, the last line above equals

Pr
(
pt+1 < p

)
E
[
β − αpt+1 + ε1 − ε0 − α(p − pt+1)

∣∣∣∣ pt+1 < p
]
,

which can be simplified to Pr
(
pt+1 < p

)
Pr

(
pt+1 < p

)(
β − αp + ε1 − ε0

)
≤ 0, since

β − αp + ε1 − ε0 < 0 by assumption. Hence, waiting is not optimal for a consumer

wishing to not buy today. �

For consumers who would purchase today, the gains from waiting are equal

to φ, but there is an additional cost if prices rise. Hence, waiting is not optimal.

For consumers who would prefer not to buy, the expected gains of waiting are

negative.

In monetary terms, φ/α = Pr
(
pt+1 < p

)
E
[
(p−pt+1)

∣∣∣∣ pt+1 < p
]

defines a transaction
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cost such that waiting is never optimal. For these costs to be calculated, the

information set of consumers needs to be defined. I assume consumers form

expectations given current prices and time, but they do not forecast the changes in

number of seats remaining across time. This seems reasonable given that remaining

capacity is not reported to consumers. With these assumptions, I find the median

and mean transaction costs to be $5.85 and $5.75, respectively. These costs are based

on the most extreme case—the consumer who is indifferent between purchasing

today or delaying the decision.

E Additional Counterfactuals

E.1 Initial Capacity and Approaching Static Pricing

I compute optimal dynamic prices and simulate outcomes for a wide range of initial

capacity values in order to investigate how large initial capacity has to be in order

for static pricing to be a reasonable approximation of the environment.

Figure 18: Initial Capacity Counterfactual
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Note: The left panel shows the percentage change in quantity sold by increasing the initial capacity constraint by one (dotted
blue). Also show are expected revenues by initial capacity constraint (dashed grey). The black vertical line shows the
(weighted) average initial capacity observed in the data. The black dot shows expected revenues under this capacity. The
grey square shows expected revenues with six fewer seats. The blue triangle shows expected revenues in the first instance
when the percentage change in quantity sold is less than 0.5%. The right panel shows average prices over time for those
three scenarios (average less ten, average, and the limiting case).

Figure 18 demonstrates the counterfactual. In the left panel, the horizontal axis
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is the initial capacity condition. The left vertical axis is the percentage change in

sales from increasing the initial capacity constraint by one. The right vertical axis

plots total expected revenues by initial capacity. The (grey) vertical line depicts the

average observed initial capacity. The (light orange) square denotes revenues with

six fewer seats than the average (a row of a plane); the (orange) triangle denotes the

minimum initial capacity such that approximate a static pricing model (revenues

are within 0.5 percent).

The right panel plots average prices over time for the three initial capacities

just described. The dashed blue (triangle) line shows the limiting case, where

dynamic prices correspond to static prices. If the firm starts with fewer initial

seats, realizations of demand impact prices.

I repeat this exercise for all markets then compare initial observed capacities to

the calculated thresholds. I find that 31.9 percent of the observed flights can be

approximated by static pricing.

E.2 Frequent Price Adjustments

I explore the use dynamic pricing, with the restriction that prices must be main-

tained for k days. I conduct six counterfactuals, corresponding to k = 2, 3, 6, 10, 20, 30.

Figure 19 plots the revenue loss compared to revenues under daily re-optimization.

The results show that the ability to update prices just once reduces the revenue loss

compared uniform pricing by more than half (30-day adjustments). An additional

price adjustment yields another 1.3 percent gain. Re-optimization in with time

intervals less than one week result in similar revenues, meaning several demand

shocks can be observed before re-optimization is required.
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Figure 19: The Role of Frequent Price Adjustments
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Note: Revenue drop relative to dynamic (daily) pricing for all markets. For example, 3-Day corresponds to firms utilizing
dynamic pricing, but restricting the number of price updates to 3-day intervals.
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