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1 Introduction

During the first half of the Twentieth Century, Americans enjoyed tremendous gains

in health and life-expectancy as infectious diseases were drastically curtailed thanks

to major medical advances and significant investments in sanitation and public

health. Annual mortality rates from infectious disease in the United States fell by

an order of magnitude: from nearly 800 per 100,000 in 1900 to under 50 per 100,000

by 1960, in a steady downward trend, interrupted, dramatically, by the 1918-1919

Great Influenza.1 But as the HIV/AIDS pandemic made evident, and the COVID-19

pandemic reinforced, infectious diseases are far from vanquished.2 In fact, the risk

that we experience another pandemic in the not too distant future is considerable.

For example, according to a September of 2019 estimate by the President’s Council

of Economic Advisors, there is a four percent probability at an annual rate of a

pandemic influenza that, at the high end, would cause in the United States nearly

$4 trillion in economic damage and over half a million deaths.3

Given that we are likely to see significant outbreaks of infectious disease in the fu-

ture, this moment, after a year of COVID-19, seems an opportune time to re-examine

our models of disease dynamics and the policy options for disease control implied

by these models. What dynamics of infections and deaths should we expect to see

from a pandemic? What are our options for mitigating the impact of a pandemic on

public health? How might this mitigation be done in a manner to reduce the nega-

1See Armstrong, Gregory L., Conn, Laura A., Pinner, Robert W. “Trends in Infectious
Disease Mortality in the United States During the 20th Century” JAMA. 1999;281(1):61-66.
doi:10.1001/jama.281.1.61 https://jamanetwork.com/journals/jama/fullarticle/768249. To place
the mortality from COVID-19 in historical perspective, note that COVID mortality in the United
States was roughly 100 in 100,000 in 2020 and may very well reach this level again in 2021. So while
mortality from COVID will not reach the levels reached during the Spanish Flu, it will clearly be
the most significant short term increase in mortality from infectious disease in the United States in
at least 60 years.

2See Morens, David M. and Fauci, Anthony S. “Emerging Pandemic Diseases: How we got to
COVID-19” Cell 182, September 3, 2020 https://doi.org/10.1016/j.cell.2020.08.021

3See this September 2019 report “Mitigating the Impact of Pandemic Influenza through Vaccine
Innovation” from the President’s Council of Economic Advisors on the potential public health and
economic impact of pandemic influenza. https://www.hsdl.org/?view&did=831583
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tive impact of a pandemic on the economy? These are questions that will provoke

new research in the light of worldwide data from this COVID pandemic for years to

come. But, after one year of data on COVID, one conclusion seems clear: the endoge-

nous response of both public and private behavior to the prevalence of COVID-19

has transformed this epidemic from what standard epidemiological models predicted

to be a short, but exceedingly intense, episode into a drawn out pandemic that will

impact public health and the economy over several years, until, with luck, the techno-

logical solutions of vaccination an life-saving therapeutics4 brings this disease under

much greater control worldwide.

In this paper, I use a simple model of our experience with COVID-19 in the United

States over the past year to explore how the interaction of disease and behavior

changes the dynamics of an epidemic and constrains our options for mitigating the

impact of a pandemic on public health absent a technological solution such as vaccines

and life-saving therapeutics. Based on this model, I present four conclusions.

1. The behavioral responses that we have seen to COVID over the past year,

both private and public, have had a powerful impact in “flattening the curve”,

reducing peak levels of daily infections and deaths by an order of magnitude

relative to predictions of standard epidemiological models. These behavioral

responses, however, are forecast to have only a modest impact in reducing

the long-term death toll from COVID relative to predictions of standard epi-

demiological models in the absence of the development of technological solu-

tions such as vaccines or life-saving therapeutics. Absent such technological

solutions, the long run death toll in the United States would approach 1.25

million, even with the private and public efforts at mitigation that have been

undertaken. Thus, without the success of vaccines that we have now experi-

enced, here in the United States, we would be roughly halfway through this

4It is clear that the development of vaccines for COVID has been a technological marvel. There
also appears to be considerable promise for the development of therapeutics that could substantially
reduce the severity of the disease and thus complement vaccines in bringing the pandemic to an
end worldwide. See https://science.sciencemag.org/content/371/6530/681 for a description of such
therapeutics.
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pandemic in terms of cumulative deaths. Moreover, absent the development of

technological solutions, my model implies sharply diminishing returns to fur-

ther non-pharmaceutical interventions in reducing the long-run death toll from

COVID even if such measures were implemented early in 2020 and maintained

for a long, but finite, length of time. Thus, absent a technological solution, we

would be faced with few options for further mitigating the long run impact of

COVID on public health.

2. Here in the United States, we have been very fortunate with our success in

developing and now implementing effective vaccines against COVID. With vac-

cines, the long-run death toll from COVID is forecast to be roughly 600,000,

or half the level forecast without such a technological solution. This forecast

takes into account both the relaxation of private and public efforts at disease

control that we have seen this Spring and the introduction of new, more conta-

gious variants of the virus. Clearly, Operation Warp Speed and the associated

research effort has been a scientific and public health achievement of historic

importance.

3. In contrast to the case if no technological solution were developed, strong non-

pharmaceutical interventions implemented early on are highly complementary

with speedy development of vaccines and life-saving therapeutics in that they

save lives by delaying illness and death until such technological solutions are

available. This model forecast that plausible additional non-pharmaceutical

interventions, applied early on and consistently over time on top of the policies

that were implemented at state and local levels, could have reduced the long-

term death toll from COVID in the United States to roughly 300,000. This

forecast takes into account the likely countervailing relaxation of private and

state and local mitigation efforts had such interventions been implemented at

a Federal level. Based on this forecast, I conclude that here in the United

States, over the course of the past fourteen months, we failed to take actions

that would have saved hundreds of thousands of lives. Given the success of a

number of countries in containing COVID over the past year while preserving
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economic activity, it is entirely plausible that such non-pharmaceutical inter-

ventions would not have led to high economic costs and, in fact, might have

led to better economic outcomes.

4. Finally, looking ahead, we face a future in which COVID will remain a threat

as long as it is prevalent elsewhere in the world and in which new pandemic

threats will likely arise. We should use the worldwide experience with COVID

to guide investments in public health infrastructure that will allow us to rapidly

identify and react to pandemic threats with more effective and less costly non-

pharmaceutical interventions. Such investments have a strong “public good”

rationale and would be highly complementary with increased investments in the

scientific and clinical research infrastructure to rapidly develop technological

solutions such as vaccines and life-saving therapeutics for future threats from

infectious disease.

2 Epidemic dynamics with and without behavior

The public health policies enacted around the world to combat COVID-19 have been

guided by standard epidemiological models built on the SIR framework developed by

Kermack and McKendrick.5 These models simulate disease transmission as arising

when infectious individuals (corresponding to the I in SIR) interact with others.

Through this interaction, a virus or other pathogen succeeds in infecting those who

have no immunity and are thus susceptible (corresponding to the S in SIR), turning

such agents into newly infectious individuals. Individuals who gain immunity from

prior infections or vaccinations are said to be removed (corresponding to the R in

SIR) as they no longer contribute to the transmission of the disease. The progress

of the epidemic through the population is mechanical as the rate at which infectious

people interact with others is assumed to be invariant to the current prevalence of

5Kermack, W. O. and McKendrick, A. G. ”A Contribution to the Mathematical Theory of
Epidemics.” Proc. Roy. Soc. Lond. A 115, 700-721, 1927.
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the disease.

When applied to COVID-19, three quantitative implications of this standard model

stand out.6 First, the model gives dire forecasts for the peak of the disease’s first

wave — 10 to 20% of Americans were predicted to be sick with COVID-19 simul-

taneously at the first peak of infections absent drastic efforts such as lockdowns to

slow transmission. At current estimates of the infection fatality rate for COVID-19,

this rate of infection would have corresponded to peak death rates on the order of

30,000 to 60,000 deaths per day.7 Second, this standard model forecast that if ef-

forts to slow transmission through lockdowns were applied early on but were only

temporary, this dramatic first peak would be delayed but not prevented: cases and

deaths would explode again once efforts to slow transmission were relaxed. Third,

this standard model offered dramatic long-run predictions made famous by Angela

Merkel in March of 20208 —more than 2/3 of the population were forecast to ex-

perience infections (if not vaccinated) before the pandemic would end through herd

immunity. Again, applying current estimates of the average infection fatality rate for

COVID-19 in the US, this implies a long-run death toll on the order of 1.49 million

or more.9

These implication of a standard epidemiological model for the magnitude of the

first peak and the long-run impact of COVID-19 in terms of infections are driven by

a single parameter known as the basic reproduction number of the virus (the R0).
10

6See https://www.nber.org/papers/w26867 and https://www.nber.org/system/files/working
papers/w26902/w26902.pdf for expositions of these predictions of standard SIR models from one
year ago.

7This estimate for peak deaths is likely understated given that such a wave of infections would
clearly have overwhelmed the health care system.

8See https://www.bundesregierung.de/breg-de/themen/coronavirus/
statement-chancellor-1732296 and https://edition.cnn.com/world/live-news/
coronavirus-outbreak-03-11-20-intl-hnk/h ab9bb8236fa91a9bf63cdbc7a69e0f10

9This forecast for the cumulative death toll in this model scenario does not take into account
that the infection fatality rate would likely have risen substantially due to congestion in the health
care system if the first wave of infections had approached anything close to the levels forecast by
this standard model.

10See https://www.cell.com/immunity/fulltext/S1074-7613(20)30170-9 for a description of the
calculations and considerations involved.
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The implications of these infections for deaths from COVID-19 are determined by the

average infection fatality rate across the infected population. While we now know

that the infection fatality rate from COVID-19 varies widely with age and other

factors, estimates of the disease burden from COVID-19 from the CDC are consistent

with an average infection fatality rate of 0.5% across the entire infected population

in the United States for 2020.11 The emergence of new, more transmissible, virus

variants with higher basic reproduction numbers make the predictions of standard

epidemiological models for peak infections and long run impact even more dire.

It is now clear that the first prediction of standard epidemiological models for the

first peak of infections and deaths were off by at least an order of magnitude — it

is unlikely that more than 2 percent of Americans have ever been infected simulta-

neously, and the peak of daily deaths in America from COVID-19 has fortunately

stayed under 4000. Looking at data worldwide, it appears that the second predic-

tion of standard epidemiological models is also off perhaps by an order of magnitude.

While many locations within the United States and abroad have suffered severe sec-

ond or third waves of COVID-19 deaths after relaxing costly public measures to

control disease transmission, these waves have been much smaller than predicted by

a standard SIR model. In contrast, the standard SIR model’s third prediction, re-

garding long-run impact, looks to be closer to the mark. While the precise threshold

of herd immunity—the fraction of the population that has to gain immunity through

infection or vaccination before the pandemic can end—is not yet empirically resolved,

available data from locations such as Manaus, in Brazil, which has experienced high

rates of infection, and from Israel, the United Kingdom, and the United States, each

of which now have high vaccination rates with effective vaccines, indicate that the

predictions of a standard epidemiological model for the long-run impact of COVID-

19 are likely correct: this pandemic will not resolve until high proportions of the

population have acquired immunity either through infection or vaccination.12

11The CDC estimates that 83 million Americans had been infected by the end of December 2020.
Total COVID deaths reached 445,000 30 days later, giving an average estimated infection fatality
rate including the delay from infection to death of slightly over 0.005. See https://www.cdc.gov/
coronavirus/2019-ncov/cases-updates/burden.html

12See https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)00183-5 and https:
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2.1 Behavior regulates disease dynamics

How does consideration of the impact of behavior on the progression of a pandemic

help us understand this relationship between the predictions of a standard SIR model

and observed outcomes? Within economics, Tomas Philipson pioneered the study of

the interaction of behavior and the spread of disease in his work on the HIV/AIDS

pandemic. In a 1999 handbook chapter summarizing work on that pandemic13,

Philipson argued that epidemiological models should incorporate prevalence-elastic

private demand for costly measures to prevent of the spread of infectious disease.

Such models, he maintained, offered two fundamental economic insights.

The first insight is that costly private efforts to prevent disease transmission are

self-limiting—as disease incidence falls, these costly efforts to control disease spread

are relaxed and the disease re-emerges.

Within the United States, it appears that this observation holds for public policies

aimed at COVID-19 as well — state and local disease control measures are often

conditioned on measures of disease prevalence such as infections or hospitalizations,

and these public measures aimed at the control of COVID-19 are relaxed as disease

prevalence falls. In the model I present below, I interpret this correlation between

public policies and disease prevalence as arising from a public behavioral response

to shifting political calculations as disease prevalence rises and falls, that is, as a

social-choice behavioral response that is conceptually similar to private behavioral

responses. I thus interpret the reduced form behavioral response of transmission

rates to disease prevalence in my model as resulting from a combination of private

and public reactions to disease prevalence.

The second insight is that the private and public behavioral response to changing

//www.nature.com/articles/d41586-021-00316-4 regarding data from Manaus and Israel on the
empirical herd immunity threshold. The CDC COVID data tracker site reports on vaccination
rates in the United States. Data on vaccination rates in the United Kingdom are available here
https://coronavirus.data.gov.uk/details/vaccinations

13NBER working paper 7037 published here https://www.sciencedirect.com/science/article/abs/
pii/S1574006400800463
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disease prevalence partially offsets the impact of additional non-pharmaceutical inter-

ventions aimed at disease control. In short, the effect of a specific non-pharmaceutical

intervention is limited by its success as private and public efforts aimed at disease

control are relaxed in response.

That both public and private prevalence-elastic demand for costly measures to

control disease is self-limiting is a particularly powerful insight for understanding

where the standard epidemiological model fails as a description of disease dynamics

and where it succeeds. In joint work with Karen Kopecky and Tao Zha14, I find

that the data on the progression of the COVID-19 pandemic across many countries

and U.S. states throughout 2020 conform strikingly well with a core prediction of

the standard epidemiological model modified to include prevalence-elastic demand

for disease prevention—that after the first phase of the pandemic in which disease

grows rapidly, the growth rates of infections and deaths should remain in a relatively

narrow band around zero until the pandemic is over.15

The intuition for this prediction regarding disease dynamics in the context of

a model with prevalence-elastic demand for disease prevention is simple. If new

infections and daily deaths from the disease grow too high, people and governments

take costly efforts to avoid interaction and thus slow disease spread. Likewise, if

the prevalence of the disease falls, people and government relax those costly efforts

at disease prevalence and the prevalence of the disease rises again. The reaction

of behavior, both public and private, to the prevalence of the disease regulates the

equilibrium prevalence of the disease in the same way that a cruise control regulates

the velocity of a car on the highway that winds up and down hills. The equilibrium

level of daily deaths, corresponding in this analogy to the velocity of the car, remains

within a relatively narrow band (relative to that predicted by a standard SIR model)

in response to shocks impacting disease transmission because of the stabilizing role

of endogenous prevalence-elastic public and private disease avoidance behavior. The

14https://www.minneapolisfed.org/research/staff-reports/behavior-and-the-transmission-of-covid19
15Joshua Gans reviews the implications of epidemiological models with a prevalence-elastic de-

mand for costly measures to prevent disease transmission and much of the work by others on this
topic in https://www.nber.org/papers/w27632.
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impact of this behavior then is to transform what would otherwise be a short and

sharp disease episode into a much more slowly evolving and drawn-out phenomenon.

What are the implications of a model with prevalence-elastic demand for disease

prevention for the long run impact of an epidemic? Here the insight that the demand

for disease prevention is self-limiting is particularly relevant. For an epidemic to

end, the prevalence of the disease must fall towards zero. As disease prevalence falls

towards zero, the demand for costly disease prevention efforts also falls towards zero,

and hence the disease will come back unless the population has already achieved herd

immunity measured at pre-pandemic levels of behavior. That is, the predictions for

the long-run impact of COVID-19 using a standard epidemiological model should

continue to hold.16 Given estimates of the basic reproduction number in the range

of 3 or now higher with new variants, this herd immunity threshold should kick in

when significantly less than one-third of the population remains susceptible.

This logic implies that, absent a vaccine or the development of life-saving thera-

peutics, the implications of a model that includes a prevalence-elastic demand for

disease prevention for the long-run impact of a pandemic in terms of cumulative infec-

tions and deaths should be similar to that of a standard epidemiological model. The

slowing of the epidemic that results from a behavioral response to disease prevalence

can reduce the cumulative death toll by reducing the extent to which cumulative in-

fections in the long run overshoot the herd-immunity threshold, but this behavioral

response does not reduce the cumulative impact of the epidemic to a point below

this threshold. In the case of COVID-19 in the United States, in the model I present

below, this would be a cumulative death toll on the order of 1.24 million.

16More complex models that emphasize heterogeneity and the network structure of human in-
teraction potentially offer more optimistic implications for the long-run impact of COVID. See,
for example https://www.nber.org/papers/w27373, https://www.nber.org/papers/w27374, https:
//www.nber.org/papers/w27741, and https://www.nber.org/papers/w28282.
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2.2 A Quantitative Illustration

To illustrate these points regarding the predictions of a standard epidemiological

model and one with a prevalence elastic demand for disease prevention for the dy-

namics of an epidemic, I turn to a model of the dynamics of deaths from the COVID-

19 epidemic in the United States that I presented in a recent working paper17 and

which is included as an online appendix to this paper . This model accounts for the

dynamics of deaths from COVID-19 in the United States over the past year with

shocks to transmission rates due to seasonality, due to the emergence of a new, more

transmissible, variant of the novel coronavirus, and due to potential changes in the

prevalence-elasticity of demand for costly measures to mitigate disease transmission.

(I refer to this third shock as “pandemic fatigue” as a short-hand description of a

decline in the responsiveness of private and public demand for costly disease pre-

vention measures to changes in disease prevalence. This shock is perhaps a reduced

form for a more dynamic response of behavior as a pandemic wears on.)

This model accounts remarkably well for the pandemic’s evolution in the United

States over the past year. In the online appendix to this paper, I document that, in

the model, a seasonal decline in transmission rates explains why the prevalence of

COVID-19 dropped to relatively low levels in the summer of 2020. In the model, a

decline in the strength of the behavioral response to disease prevalence in late fall

— “pandemic fatigue” —explains the large waves of infections and deaths seen in

the late fall and winter. The introduction of a more transmissible variant in early

December together with the start of an aggressive vaccination program explain the

progress of the epidemic this Spring.18

In Figure 1, I show the model’s prediction (in a solid blue line) for daily deaths

17https://www.nber.org/papers/w28434
18In the online appendix to this paper, I document the specific features of this model that allow

it to fit the pattern of daily deaths observed over the past 14 months with relatively few shocks
and discuss the procedure used to choose the model parameters. The fit of the model to the data is
serendipitous. Further research is needed to develop behavioral models that can fit the wide range
of experiences with COVID seen across regions and countries of the world.
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from COVID-19 in the United States from mid-February 2020 to mid-February 2022,

and data (in a red dashed line) on the seven-day moving average of daily deaths in the

United States over the past year downloaded from the Center for Disease Control’s

(CDC’s) COVID data tracker website.19 The behavioral model matches the data on

deaths over the past year quite well, and it forecasts, absent vaccines, a continuation

of the pandemic well into 2022. The predicted long plateau of daily deaths through

2021 shown in this figure is driven by the spread of the new, more contagious, virus

variant in the model. The long-run cumulative death toll in this forecast run of

the model in Figure 1 is 1.24 million. The forecast shown in this figure does not

include any consideration of the impact of vaccines, both to permit comparison with

projections from a standard epidemiological model, and to serve as a benchmark for

the impact of vaccination efforts.

To illustrate the impact of the behavioral response to disease prevalence in shaping

the growth rate of the epidemic, in Figure 2, I show the model-implied growth rate

of daily deaths from the simulation of the model shown in Figure 1. We see in this

figure that the growth rate of daily deaths starts out at a very high level — above

30% per day — and then falls rapidly towards zero and hovers around zero even with

shocks due to seasonality in transmission, pandemic fatigue, and the introduction of

new variants. In the model, the response of private and public behavior to the level

of daily deaths acts to slam the brakes on the growth of the epidemic in its initial

phase and then maintain that growth rate of daily deaths in a narrow band around

zero in the face of shocks to transmission much as a cruise control regulates the

acceleration of a car on the highway.

19https://covid.cdc.gov/covid-data-tracker Note that these data on daily deaths omit roughly
14,000 deaths included in the CDC estimate of the cumulative death toll from COVID available on
the same site as these additional deaths were included retroactively due to reclassification of state
and local death counts.
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Figure 1: Behavioral model implications for daily deaths in the United States from mid-February,
2020 through mid-February 2022 are shown in a solid blue line. Transmission rates in the model
are impacted by seasonal variation, the introduction of a more contagious variant in December of
2020, and prevalence elastic demand for costly measures to slow disease transmission. The onset
of pandemic fatigue in late 2020 accounts for much of the peak of deaths late that year. The long
plateau of daily deaths forecast to occur in 2021 is driven in the model by the introduction of the
new, more contagious variant of the virus. Data on the seven-day moving average of daily deaths
in the United States over the past year are shown in a red dashed line. The forecast for cumulative
deaths over the long-run implied by this model is 1.24 million.
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Figure 2: The growth rate of daily deaths implied by the solution of the model shown in Figure 1.
In this figure we see that behavior closely regulates the growth rate of the epidemic after its initial
phase of rapid growth.

To contrast the implications of this model with a behavioral response to disease

prevalence with those of a standard model without such a response, in Figure 3, I

show the prediction for daily deaths of the same model with the behavioral response

to disease prevalence turned off (in a blue solid line), relative to data on the seven-

day moving average of daily deaths (in a red dashed line). As we see in this figure,

this standard epidemiological model without a behavioral response overstates the

first peak of daily deaths by at least an order of magnitude (these peak at over

13



30,000/day), but then the pandemic comes quickly to an end in the fall of 2020.

The cumulative death toll in this model forecast is 1.49 million. This prediction for

the cumulative death toll is certainly larger than in the model with a behavioral

response, but the gap between the two models in this dimension is much smaller

than in their predictions for the initial peak and the time scale of the pandemic.20

What is evident from these figures is that incorporating a response of public and

private behavior to disease prevalence gives a dramatically different forecast for the

severity of disease peaks as well as for the speed with which this epidemic passes

through the population. In this behavioral model, absent the introduction of vac-

cines, the pandemic takes two-and-a-half years to play out rather than six-to-nine

months as forecast by the standard model without consideration of behavior. The

model’s implications, however, for the long-run impact of the disease are not much

altered by the consideration of behavior. In both basic and behavior variations, the

model forecasts that a substantial majority of the population must become immune

through infection or vaccination for the pandemic to end.

20This difference between the cumulative death toll forecast in the model run in Figure 3
and that in Figure 1 is due to what is known as “overshooting” of herd immunity in the
model without behavior in Figure 3. See https://www.nytimes.com/2020/05/01/opinion/sunday/
coronavirus-herd-immunity.html for an explanation of this concept.
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Figure 3: Standard model implications for daily deaths in the United States from mid-February,
2020 through mid-February 2023 are shown in a blue solid line. Transmission rates in the model
are impacted by seasonal variation, the introduction of a more contagious variant in December of
2020, but this specification of the model has no prevalence elastic demand for costly measures to
slow disease transmission. Data on the seven-day moving average of daily deaths in the United
States over the past year are shown in a red dashed line. The forecast for cumulative deaths over
this three-year period is 1.49 million.
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3 Private Behavior and Constraints on Policy

Given these insights on the impact of prevalence elastic demand for disease prevention

on the dynamics of an epidemic, what are our options for using public policy to

mitigate the impact of a pandemic on public health? One insight that I have already

mentioned is that there is likely to be an offsetting private behavioral response to

public measures that limit the spread of disease — that is, that additional non-

pharmaceutical interventions to control an epidemic may well be partially undone

by private responses and the responses of other government actors to declining disease

prevalence. The other insight is that public measures at disease prevention must be

essentially permanent to result in a meaningful reduction of the long-run impact of

an epidemic absent a technological solution such as a vaccine or the development of

life-saving therapeutics.

We can use our simple behavioral model to illustrate the quantitative implications

of these two insights. Imagine that through public policies facilitating a wide range of

disease control measures such as masking and social distancing protocols, testing and

contact tracing with isolation of the infectious, and other measures, it was possible to

significantly reduce the transmission rate of COVID-19, holding fixed seasonality and

the level of costly disease control measures undertaken by both private agents and

state and local authorities. Imagine that these policy interventions are undertaken

for a fixed period of time independent of disease prevalence. In this sense, I imagine

that these interventions are undertaken independently of the political process that

leads currently observed public interventions to rise and fall with disease prevalence.

Here, for purposes of illustration, I imagine these interventions as being carried out

by the Federal government.

In Figure 4, I show a simulation of the model with such measures put in place

for a two-year period from May 1, 2020 through May 1, 2022. Here I assume that

these additional mitigation measures are put in place independently of the level

of daily deaths and that they act to reduce disease transmission by 40% (a factor

of exp(−0.5)) on top of whatever reductions in transmission are brought about by
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private and public changes in behavior undertaken in response to disease prevalence.

I show the model implications for daily deaths over a four-year period as a solid blue

line and the data on the seven-day moving average of daily deaths in a dashed red

line. As we see in this figure, these disease control measures, when imposed on top

of those arising in equilibrium from the prevalence-elastic demand of both private

agents and public authorities for costly measures to control disease, have a significant

impact in reducing deaths from the disease in the first year. Then, in this simulation,

in early 2021, the arrival of the new variant and, in mid 2022 the abandonment of

these disease control measures, leads to significant spikes in forecast deaths. Over the

long run, the cumulative death tool is 1.22 million — almost exactly what we found

in the simulation in Figure 1 that had no such additional disease control measures

imposed. This simulation indicates sharply diminishing returns to additional non-

pharmaceutical interventions absent a technological solution such as a vaccine or

life-saving therapeutics.

3.1 Waiting for a technological solution

We saw in Figure 4 that additional but temporary disease control measures do not

significantly reduce the long run public health impact of the epidemic in the absence

of a technological solution such as vaccines or life-saving therapeutics. How does

the analysis of the impact of such measures change when there is a good prospect

that a vaccine or therapeutics might arrive? Here I use the model to show that such

measures can have a significant long-run public health benefit in reducing deaths

from disease while waiting for the arrival of that technological solution.
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Figure 4: Predictions of the model for the evolution of daily deaths from COVID-19 in a version of
the model in which disease control measures such as masks, social distancing, testing with contact
tracing and isolation of the infected cut the transmission rate of the disease in by 40% (a factor of
exp(−0.5)) holding fixed the level of private and state and local disease control efforts undertaken in
response to the prevalence of the disease. These measures are assumed to be in place for two years
from May 1, 2020 to May 1, 2022. While these disease control measures are effective in reducing
deaths in the first year, they do not succeed in later years. The data on the seven-day moving
average of daily deaths are shown in red. The model-implied cumulative death toll is 1.22 million
— nearly the same as we found in the simulation in Figure 1.

In Figure 5, I show the implications of the model for the evolution of daily deaths

(in a solid blue line) when a program of vaccination starts on January 1, 2021 at a

pace sufficiently fast to succeed in protecting half of the United States population by

July 1, 2021. This vaccine is assumed to prevent both illness and disease transmission
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by the vaccinated. The data on the seven-day moving average of daily deaths is again

shown in a dashed red line. To see the model-implied impact of this vaccination

program on the epidemic, one can compare the blue lines in Figures 1 and 5. Here

we see that in the model, this vaccination program significantly reduces the forecast

impact of the new variant later this Spring and brings the epidemic to an end late this

summer or fall. Note that here the vaccination program succeeds despite the model-

implied relaxation of public and private efforts at disease prevention in response to

falling daily deaths.

The model predictions for the long-run death toll with this vaccination program

is 595 thousand, less than half of what is forecast in the absence of a vaccine (in the

simulations in Figures 1 and 4). In this sense, the vaccination program succeeds in

substantially reducing cumulative deaths in a manner that a two-year program of

disease mitigation absent a vaccine does not.

But now consider the model-implied scenario for cumulative deaths if the tempo-

rary disease mitigation measures used in the simulation in Figure 4 had been imposed

starting May 1, 2020 and the same vaccination program applied in the simulation

in Figure 5 had started on January 1, 2021. With this combination of temporary

disease mitigation measures and a successful vaccination program, the cumulative

death toll implied by the model would have been only 302 thousand. Clearly, the

combination of temporary disease control measures applied while waiting for a tech-

nological solution can save many lives. The lesson here is that there are tremendous

complementarities between early and aggressive mitigation and the development of a

technological solution such as vaccines or life-saving therapeutics in terms of reducing

the public health impact of a pandemic.
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Figure 5: Predictions of the model for daily deaths from COVID-19 (in a solid blue line) in a
simulation with a vaccination program starting on January 1, 2021 that proceeds at a rate fast
enough to protect half of the population by July 1, 2021. In this simulation, the vaccine is assumed
to protect against illness and to prevent disease transmission by the vaccinated. The data on the
seven-day moving average of daily deaths are shown in a red dashed line. To see the predicted
impact of the vaccine on the dynamics of the epidemic, compare the blue line for model-implied
daily deaths 2021 in Figure 1 to the solid blue line here. The long-run cumulative death toll in this
simulation is 595 thousand.

20



4 Conclusion

The global COVID pandemic has clearly demonstrated that the risks from the emer-

gence of new infectious diseases that epidemiologists have been speaking about for

years is terribly real. This pandemic has also posed a severe test of public health

strategies and capabilities worldwide. In many countries, the associated economic

impact has been as severe as any downturn seen since the Great Depression. How

might we do better next time?

Based on the lessons about the interaction of behavior and disease dynamics dis-

cussed here, I suggest the following three-part strategy to improve our public health

and economic response to emerging infectious disease.

First, we need to invest in our disease surveillance capabilities worldwide, perhaps

using the infrastructure developed for worldwide influenza surveillance as a model.21

It is certainly worth a lot of money to have the capacity to identify the threat from

a new infectious disease anywhere in the world before it gets going so as to buy time

to mount a public health and scientific response.

Second, we must consolidate all that has been learned about the implementation of

non-pharmaceutical public health measures for disease control over the past year so

that we might be able to quickly implement those measures that have been proven to

effectively slow the spread of an infectious disease with the least cost to the economy.

Given the widespread discussion of “pandemic fatigue” in the population, we should

also look at policies for infectious disease control that have low personal costs and

thus have a greater change of enjoying widespread voluntary adherence. A number

of countries, many of them in Asia, have been able to keep COVID infections and

deaths to low levels over the course of the past year with effective public health

interventions based on travel restrictions, testing, contact tracing, and isolation of

infected individuals while preserving considerable economic activity and personal

autonomy. Several universities in the United States have also succeeded at control

21https://www.who.int/influenza/gisrs laboratory/en/
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of COVID infections with extensive testing and isolation regimes.22 As we have seen

from the model simulations in this paper and these real-world experiences, public

health measures that allow us to wait for the development of a technological solution

to a global pandemic with minimal loss of life and economic damage can be extremely

valuable. Given the public good nature of infectious disease surveillance and public

health system preparedness to implement rapidly scalable countermeasures, it seems

a high priority to fund these capabilities at the Federal level.

Third, we need to invest in new models for accelerating the development, financing,

and distribution of vaccines and life-saving therapeutics for emergent disease. In the

end, it is these technological solutions that will allow us to contain the long run

impact of new pandemics once they become global.23

To illustrate the urgency of addressing these public health priorities now, consider

one final model scenario. As long as COVID-19 remains prevalent worldwide, new

mutations of the virus are likely to emerge and there is increasing evidence that such

mutations might allow COVID-19 to evade the immunity conferred by prior infection

and vaccines. In such a scenario, COVID-19 could be an endemic, seasonal, disease

that might require essentially permanent efforts at disease control.24 To illustrate

how such a scenario might play out, I simulate the model with vaccines shown in

Figure 5 with a version of the virus circulating that is 2/3 more transmissible than

22See, for example, the experience of the University of Illinois at Champagne Urbana documented
here https://covid19.illinois.edu/on-campus-covid-19-testing-data-dashboard/ and that of Georgia
Tech documented here https://health.gatech.edu/coronavirus/health-alerts

23See “Mitigating the Impact of Pandemic Influenza through Vaccine Innovation” by the Pres-
ident’s Council of Economic Advisors, September 2019 for a careful analysis of the economic and
public health rationale for a large Federal investment in such technologies. See Angus, et. al.
“Emerging Lessons From COVID-19 for the US Clinical Research Enterprise” JAMA editorial
February 26, 2021 https://jamanetwork.com/journals/jama/fullarticle/2777058 for a discussion of
current difficulties in conducting rapid clinical trials of new treatments in the United States.

24See for example Christopher Murray and Peter Piot “The Potential Future of the COVID-19
Pandemic: Will SARS-CoV-2 Become a Recurrent Seasonal Infection?” Journal of the American
Medical Association (JAMA) , published online March 3, 2021 doi:10.1001/jama.2021.2828. See also
Lavine et. al. “Immunological characteristics govern the transition of COVID-19 to endemicity”
Science, February 2021, Vol. 371, Issue 6530, pp. 741-745 https://science.sciencemag.org/content/
371/6530/741
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the original virus, but in which immunity from infection and/or vaccination lasts on

average for only 18 months. I show the resulting forecast path of daily deaths from

COVID over a five-year period in Figure 6. In this simulation, I assume that the

vaccination program continues at a constant rate of roughly 1.3 million vaccinations

per day throughout the forecast period. As one can see in this figure, the epidemic is

forecast in this scenario to settle into a regular seasonal pattern killing over 100,000

Americans per year even with new vaccines and a response of public and private

behavior to the changing prevalence of the disease. Clearly, in such a scenario, we

would benefit greatly from finding ways to mitigate this disease on an ongoing basis

at a lower economic cost.
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Figure 6: Predictions of the model for daily deaths from COVID-19 (in blue) in a simulation with a
vaccination program starting on January 1, 2021 that proceeds at a rate fast enough to protect half
of the population by July 1, 2021. The data on the seven-day moving average of daily deaths are
shown in red. In this simulation, immunity acquired from prior infection or vaccination is assumed
to last 18 months on average. The vaccination program is assumed to continue at a constant rate
throughout the entire period with presumably new booster shots conferring immunity against new
variants as they occur. Even with this program of booster vaccines and continued prevalence elastic
behavior, in this simulation, roughly 100,000 Americans die each year from COVID on a persistent
basis.
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5 Appendix

This appendix presents the model and parameters used in “Behavior and the Dy-

namics of Epidemics” by Andrew Atkeson for the Brookings Panel on Economic

Activity Spring 2021. This model is based closely on that presented in “A Parsimo-

nious Behavioral SEIR Model of the 2020 COVID Epidemic in the United States and

United Kingdom” which is available as NBER working paper 28434 and as Federal

Reserve Bank of Minneapolis Staff Report 619. This appendix discusses the model

extended to include vaccines and the potential for waning immunity. It is applied to

the United States.

This model is a an SEIR model (with compartments for agents who are susceptible,

S, exposed, E, infectious, I, and recovered and hence removed R) modified to include

a compartment for those infected agents who end up with serious disease. I refer to

this compartment as H, for hospitalized. Agents who die from COVID are assumed

to transition from infection I to death, D, through this compartment H. The expected

time that agents spend in this compartment is set to 30 days to capture the delay

between serious illness, death, and the reporting of that death.

Behavior in this model is assumed to respond to daily death rates as they are

reported. It is assumed that behavior does not respond immediately to new infections

as these are not directly observed. As discussed by John Cochrane25 and Weitz et.

al. 202026 the delay between infection and death introduced by this compartment H

implies that this simple behavioral model has oscillatory endogenous dynamics that

are helpful in allowing the model to reproduce the data with only a few shocks.

In the United States, we have seen public authorities tighten and loosen COVID

mitigation policies in tandem with changes in the prevalence of this disease. I inter-

25See https://johnhcochrane.blogspot.com/2020/05/an-sir-model-with-behavior.html
26Joshua Weitz, Sang Woo Park, Ceyhun Eksin, and Jonathan Dushoff, “Awareness-driven be-

havior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders,
and oscillations” , Proceedings of the National Academy of Science, vol. 117, no. 51, December 22,
2020
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pret this correlation between public policies and disease prevalence as arising from a

public behavioral response to shifting political calculations as disease prevalence rises

and falls, that is, as a social choice behavioral response. I interpret private behav-

ioral responses as arising from rising concern over personal infection risk with rising

disease prevalence. As described below, I thus interpret the reduced form behavioral

response of transmission rates to disease prevalence as resulting from a combination

of private and public reactions to disease prevalence. I do not attempt to distinguish

the relative importance of these two responses.

The four shocks considered in this paper are as follows. First, I add a standard

seasonal variation in the baseline transmission rate of the virus from a winter peak to

a low in midsummer. Second, I introduce a one-time change in behavior modeled as

a reduction in the semi-elasticity of the transmission rate with respect to the daily

death rate from an initial level to a new, permanently lower level. I refer to this

second shock as the onset of pandemic fatigue. When I fit the model to the United

States, I assume that pandemic fatigue sets in late in 2020. Third, I introduce a

more contagious variant of COVID to the United States through a single individual

on December 1, 2020. The transmissibility of this variant is set to be 50% higher than

the original variant. The model implies that this new variant becomes the dominant

variant circulating in the United States by summer of 2021. The fourth shock is

the introduction of vaccines starting on January 1, 2021. I assume an aggressive

vaccination program that proceeds at a rate to vaccinate just over 50% of the total

population by July 1, 2021 and that continues indefinitely.

This appendix has three parts. In section 5.1, I present the equations of the

model. I discuss the interpretation of the reduced form behavioral response of the

transmission rate to disease prevalence measured by daily deaths as a combination

of endogenous private and public responses to disease prevalence. I also compare the

structure of this model with that of a simpler behavioral SIRD model as analyzed in
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Atkeson, Kopecky, and Zha (2021)27 and Droste and Stock (2021)28 .

In section 5.2, I discuss the values of the parameters. The model is fit to US data

on daily deaths from COVID. Several parameters are set to match recommendations

from the Center for Disease Control for modeling of COVID-19. Other parameters,

in particular, the basic reproduction number of the original variant of the virus,

the original semi-elasticity of the transmission rate to the level of daily deaths, and

the size of the seasonal fluctuation in transmission, are chosen through a process of

trial and error. To illustrate this fitting process, I show the sensitivity of the model

predictions to variation in these three parameters around their baseline values.

In section 5.3, I discuss the shocks to the model. I illustrate the role that these

shocks play in allowing the model to match the data on daily deaths from COVID

by solving the model with each of these shocks turned off.

5.1 Model

The model is as follows.

The SEIHR model extends the SIR model by adding both the exposed state E

and the hospitalized state H. In this version of the model the total population N is

given by the sum of susceptible agents in state S, exposed in state E, infected in I,

hospitalized in H, recovered in R, and dead in D.

The rate at which agents leave the E compartment for both the normal and more

transmissible variants is σ and the rate at which agents leave the I compartment for

both variants is γ. The mean generation time for the model is then 1/σ + 1/γ. As

discussed below, the choice of these parameters is guided by CDC recommendations

for these disease parameters.

27Atkeson, Kopecky, and Zha “Behavior and the Transmission of COVID-19” forthcoming,
American Economic Review Papers and Proceedings with the longer version available here https:
//www.minneapolisfed.org/research/staff-reports/behavior-and-the-transmission-of-covid19

28Droste and Stock “Adapting to the Pandemic” forthcoming, American Economic Review Pa-
pers and Proceedings
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As agents leave the I compartment, fraction η go into the hospitalized compart-

ment H and 1− η transition directly to the recovered compartment R. The rate at

which agents leave the H compartment is ζ. Of those leaving the H compartment

fraction ν die and 1− ν survive. Thus, the overall infection fatality rate is given by

ην and the mean time in the H compartment corresponding to illness and delays in

reporting deaths is 1/ζ.

To model the introduction of a new variant, I add separate compartments Ev and

Iv for those exposed to and infectious with the new variant. The transmission rate of

the original variant is denoted by β(t). That for the new variant is denoted by βv(t).

I will assume that the new variant is always 50% more transmissible than the original

variant, That is, I set βv(t) = 1.5β(t) for all t. The new variant is introduced by

setting Ēv(t) = 1/population in the equations below for one day on a specified date

tv and equal to zero otherwise. This corresponds to the introduction from abroad of

a single individual carrying this more transmissible variant. Note that this quantity

is subtracted off of the change in the R compartment simply to keep the population

constant. Since this shift is only one person for one day, it does not impact the

quantitative implications of the model for large populations.

I model the impact of vaccines as moving agents from the susceptible compartment

S directly to the removed compartment R at a rate λ per day. With this assumption,

I impose that the vaccine blocks both transmission by the vaccinated and disease in

the vaccinated. These assumptions are clearly optimistic. I model waning immunity

as a movement of agents from the removed compartment R back to the susceptible

compartment at a rate ξ per day. I do not consider population growth in the model.

The dynamics of the model are given by

dS(t)

dt
= −(β(t)I(t) + βv(t)Iv(t))S(t)− λ(t)S(t) + ξR(t)

dE(t)

dt
= β(t)I(t)S(t)− σE(t)
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dEv(t)

dt
= βv(t)Iv(t)S(t)− σEv(t) + Ēv(t)

dI(t)

dt
= σE(t)− γI(t),

dIv(t)

dt
= σEv(t)− γIv(t)

dH(t)

dt
= ηγ(I(t) + Iv(t))− ζH(t)

dR(t)

dt
= (1− ν)ζH(t) + (1− η)γ(I(t) + Iv(t))− Ēv(t) + λ(t)S(t)− ξR(t)

dD(t)

dt
= νζH(t),

The reduced-form for the behavioral response of the transmission rate to the level

of daily deaths is given by

β(t) = β̄ exp(−κ(t)
dD(t)

dt
+ ψ(t)) (1)

βv(t) = β̄v exp(−κ(t)
dD(t)

dt
+ ψ(t))

where the parameters β̄ and β̄v control the baseline transmissibility of the normal

and variant of COVID, the parameter ψ(t) is used to introduce seasonality in trans-

mission, and κ(t) is the semi-elasticity of transmission with respect to the level of

daily deaths.

To model seasonality in the transmission of the virus, we set

ψ(t) = seasonalsize ∗ (cos((t+ seasonalposition) ∗ 2π/365)− 1)/2

where seasonalsize controls the magnitude of the seasonal fluctuations in trans-

missibility holding behavior fixed and seasonalposition controls the location of the

seasonal peak in transmission. Note that t is indexed to t = 0 on February 15, 2020.
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To model pandemic fatigue, I set

κ(t) = κ̄ ∗ (1− normcdf(t, fatiguemean, fatiguesig))+

fatiguesize ∗ κ̄ ∗ normcdf(t, fatiguemean, fatiguesig)

where κ̄ sets the initial semi-elasticity of transmission with respect to daily deaths,

fatiguesize sets the percentage reduction in this semi-elasticity in the long run,

normcdf is the normal CDF, fatiguemean sets the date at which the transition in

κ(t) from its initial to new long run level is halfway complete, and fatiguesig sets

the speed with which that transition occurs.

For all model forecasts, I leave the behavioral parameter κ which determined the

semi-elasticity of the transmission rate with respect to daily deaths fixed at its final

value at the end of the model estimation period of one year. Thus, I assume that

there are no further changes in behavioral parameters going forward.

Initial conditions for all simulations are E(0) > 0 , Ev(0) = I(0) = Iv(0) = R(0) =

H(0) = D(0) = 0, S(0) = 1 − E(0). For the United States, E(0) = 33 on February

15 out of a population of 330 million. The new more contagious variant is introduced

with Ēv(t) = 1/330, 000, 000 for one day on December 1, 2020.

The MATLAB code to run this model and create all of the figures in this document

and the main text is comprised of the following files. BPEAAtkesonSpring2021.mlx is

a Matlab live script that is the main file. This file calls three Matlab scripts bpeaode-

file.m is a function with all the differential equations described above, bpearunthe-

model.m contains the code to solve these differential equations starting from the

initial conditions described above with various parameter configurations, and us-

data.m contains the CDC data on daily COVID deaths in the United States used in

the plots.
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5.1.1 Behavior as a combination of private and public responses to dis-

ease prevalence

The reduced form response of the transmission rates of the original and new variants

of the virus to daily deaths assumed in the model can be understood as arising from

the combined responses of private and public actors to disease prevalence as follows.

This reduced form response of transmission to daily deaths can be obtained as a

result of a two-equation system in which the transmission rate is given as a function

of activity Y (t) with

β(t) = β̄Y (t)α exp(v(t) + ψ(t))

and activity is given as a declining function of daily deaths

Y (t) = exp(−κp(t)
α

dD(t)

dt
+ u(t))

In the first of these two equations, the parameters β̄ and β̄v are fixed coefficients

that capture features of the virus and the population determined prior to the epi-

demic that might impact transmission of the original and more transmissible variants.

Factors considered in the literature include population density, modes of transporta-

tion (subway vs. car, etc.), household and demographic structure, cultural norms

(bowing vs. shaking hands or kissing), temperature and humidity, etc.

The parameter α captures the elasticity of transmission with respect to activity.

The parameter v(t) represents a potentially time-varying shock to the region-

specific relationship between activity and transmission that may represent the impact

of policy over time. I normalize v(0) = 0. When interpreting variation in v(t) as

representing the impact of policies, here I am thinking about policies such as mask-

wearing, ventilation, physical distancing, redesign of workspaces, or other measures

implemented after the start of the epidemic that reduce transmission given a fixed

level of activity.
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I normalize the level of activity at the start of the pandemic to Y (0) = 1. Given

this normalization, the parameter β̄ sets the transmission rate of the virus at the

start of the epidemic. Specifically, β̄/γ and β̄v/γ correspond to the basic reproduction

number of the original and more transmissible variants at the peak of the seasonal

cycle of transmissibility.

In the second of these two equations, I model individuals’ decisions to engage in

activity at time t, Y (t), as a declining function of the level of daily deaths, Ḋ(t).

The parameter κp(t)

α
is the semi-elasticity of private behavior with respect to daily

deaths. The variable u(t) in this second equation represents a time-varying shock

to the region-specific relationship between deaths and activity. I interpret u(t) as

reflecting public policies such as lockdowns or closures that would reduce activity

below what agents might choose in a decentralized fashion.

I consider government policies that are “behavioral” in that they are responsive

to the prevalence of the disease as measured by daily deaths as well as policies that

depend only on time. To model the behavioral component of government policies,

I assume that public policies impacting the relationship between activity and trans-

mission v(t) and between daily deaths and activity u(t) are responsive to the level

of daily deaths. Specifically, I assume that

v(t) = −ηv
dD(t)

dt

u(t) = −ηu
α

dD(t)

dt

I assume that all government mandated mitigation that is dependent only on time

enter the model through ψ(t).

With these assumptions, we have that the behavioral decline in activity and disease

transmission with daily deaths can be interpreted as arising either from a change in

private behavior or public mandates that are conditioned on the prevalence of the

disease. Specifically, with these assumptions, we obtain the reduced-form relationship

between daily deaths and disease transmission in equation (1) with the overall semi-
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elasticity of transmission with respect to daily deaths given as a compound parameter

capturing both private and public responses to daily deaths

κ = κp + ηv + ηu

The parameter ψ(t) corresponds to changes in disease transmission that are un-

related to the level of daily deaths. In the baseline model, this variation is pure

seasonal variation in disease transmission. When I consider additional government

efforts at mitigation of transmission such as through testing and tracing and isolation

of the infected, I model these interventions as a shift in ψ(t) as well. In this case,

this component of public policy should be interpreted as an intervention that is not

directly responding to disease prevalence.

5.1.2 Comparison with behavioral SIRD models

Note here that the addition of the compartments E and H to this model together

with the assumption that behavior responds to the level of daily deaths distinguishes

the behavioral component of this model from those in the SIRD models in Atkeson,

Kopecky, and Zha (2021) and Droste and Stock (2021). These additional compart-

ments substantially alter the endogenous dynamics implied by this model relative to

these models. The difference between the implied dynamics can be understood as

follows.

In an SIRD model, the level of daily deaths is directly proportional to the current

level of the infected population I(t), so, an assumption that behavior reacts to disease

prevalence measured by the level of daily deaths is equivalent to an assumption that

behavior reacts to the current level of active infections in the population. In turn,

since the growth of the infected population is directly governed by the transmission

rate β(t), then the assumption, as above, that behavior reacts to daily deaths is

equivalent to assuming a tight relationship between the level and growth rate of

active infections. One way to interpret the findings in Atkeson, Kopecky, and Zha
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(2021) and Droste and Stock (2021) that large and frequent shocks are needed to

fit a behavioral SIRD model to the data on daily deaths from the United States is

as a finding that this simple behavioral model is “over-controlled”. That is, for the

simple behavioral SIRD model, the the model’s endogenous dynamics do not permit

significant fluctuations in the growth rate of daily deaths after the initial phase of

the pandemic and hence such a model requires large and frequent shocks to match

the observed fluctuations in the growth rates of daily deaths.

In contrast, in the model presented here, the level of daily deaths in not directly

proportional to the infected population I(t), but instead it is directly proportional

to the level of hospitalizations H(t), and this level of hospitalizations is, in turn,

equivalent to a distributed lag of past levels of infections I(t), with ζ controlling

the length of these lags. This lag between infections and the behavioral response

gives the model oscillatory dynamics. I show below how changes in this parameter ζ

change the endogenous dynamics of the model in such a way to substantially reduce

the need for shocks to the model.

That the addition of the E and H compartments allow for a good fit to the

deaths data for the United States and United Kingdom is serendipitous. The COVID

epidemic has displayed different dynamics in different locations. I have not had

similar success in fitting this model to some other locations that I have tried. I leave

it future research to determine whether further refinement of the structure of the

model or additional shocks are needed to fit the wide range of COVID outcomes

observed around the world.

5.2 Parameters

In this section I discuss the choice of parameters and shocks to the model. To

illustrate how parameter values and shocks impact the implications of the model, I

use the simulation of the model shown in Figure 5 of the main text as a baseline

for comparison. This simulation of the model has the baseline parameter values
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described below and the shocks of seasonality in transmission, pandemic fatigue, and

the new variant, and the introduction of vaccines. To ease comparison, I reproduce

Figure 5 from the main text here in Figure A7.
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Figure A7: Baseline model implications corresponding to Figure 5 in the main text. This simu-
lation has the baseline parameter valeus, the shocks due to seasonality, pandemic fatigue, and the
introduction of a new, more transmissible variant, as well as the introduction of vaccines.

I group the parameters of the model into three sets.

The first set are those set from CDC model recommendations for the generation

time of infections and the infection fatality rate. As is standard in an SIR model,
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the basic reproduction number, which is a ratio of two rates and is thus unitless,

determines the overall shape of the epidemic. The generation time then determines

the time-scale over which the epidemic plays out.

This first set of parameters is set as follows: γ = 0.4, σ = 0.425, η = 0.025,

ν = 0.2. The parameter σ corresponds to an expected time before an exposed agent

becomes infectious of 2.35 days and the parameter γ corresponds to an expected

time for which an infected individual is infectious of 2.5 days. The generation time is

defined as the average time between which one infected individual shows symptoms

and a person infected by that individual shows symptoms. These two parameters

together imply an average generation time of 1/σ+1/γ = 4.85 days.29 As mentioned

above, this generation time sets the time-scale of the epidemic implied by the model.

The infection fatality rate implied by these parameters is ην = 0.005. This param-

eter is key for translating the model’s implications for infections into implications

for deaths. While this model is simplified in that it does not consider the age dis-

tribution of infections, it does do fairly well in matching the overall estimates of the

burden of COVID provided by the CDC.30 The decomposition of this infection fatal-

ity rate has fraction ν = 0.2 of those hospitalized dying (again see the CDC model

scenario page cited above for data on the fatality rate conditional on hospitalization)

and thus fraction η = 0.025 resulting in hospitalizations. The decomposition of the

infection fatality rate into a rate of hospitalization and a fatality rate conditional on

hospitalization does not impact the prediction of the model for daily deaths, but is

relevant if one were to attempt to use the model to match data on hospitalizations.

The second set of parameters is comprised of the rate ζ at which those hospitalized

flow either to death or recovery. This rate is chosen to have an average stay in

29See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. On that web-
page, the CDC notes a mean time of approximately six days between symptom onset in one person
to symptom onset in another person infected by that individual.

30The CDC estimates that 83 million Americans had been infected by the end of December 2020.
Total COVID deaths reached 445,000 30 days later, giving an average estimated infection fatality
rate including the delay from infection to death of slightly over 0.005. See https://www.cdc.gov/
coronavirus/2019-ncov/cases-updates/burden.html
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compartment H of 30 days, which corresponds to an average stay in the hospital of

two weeks for those with serious illness and a reporting delay of deaths of two weeks.31

This assumption combined with the average generation time assumed above implies

that roughly six generations of infections pass on average before reported daily deaths

rise provoking a behavioral response.

The delay between infection and reported death introduced by this compartment H

implies that this simple behavioral model has oscillatory endogenous dynamics that

are helpful in allowing the model to reproduce the data with only a few shocks. To

illustrate the role of this delay in generating endogenous model dynamics, in Figure

A8, I show the implications of the model with all the parameters set as in Figure A7

except that I set ζ = 10 so that the average stay in the H compartment is only a few

hours. In comparing Figure A8 below and Figure A7, we see that if we have only a

short stay in the H compartment, the model does not match the waves in the first

six months of the epidemic while the baseline model shown in Figure A7 does.

31See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. On that web-
page, the CDC notes a median time from symptom onset to death of approximately two weeks and
a median time from death to reporting just under three weeks.

37

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html


Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021

days

0

500

1000

1500

2000

2500

3000

3500
Daily Deaths US with very short H compartment

Figure A8: Model implications with a very short duration of the H compartment

The third set of parameters are those that I choose through a process of trial

and error to fit the model to data from the first six months of the epidemic in the

United States. These are the basic reproduction number, the original semi-elasticity

of transmission with respect to daily deaths, and the size of the seasonal fluctuation

in transmission rates. Note from Figure A7 that the model fits the path of daily

deaths quite well over the first six months of the epidemic with the only shock being

the seasonality in transmission. The assumed shocks for pandemic fatigue, the new

variant, and vaccines, do not impact the model’s predictions over these first six

months.
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The basic reproduction number of the virus at peak transmissibility is R0(t) =

β̄/γ for the original virus and R0(t) = β̄v/γ for the new variant. For the United

States, I set β̄ = 3γ giving a peak basic reproduction number at pre-pandemic

levels of behavior in Winter of 3. This number is well within the range of estimates

of this parameter from the early phase of the pandemic.32 As discussed above,

this parameter was chosen by trial and error. In Figure A9 I show how the model

implications for the path of daily deaths varies if this parameter is increased or

decreased by 20% (from 3.6 to 3 to 2.4). As can be seen in this figure, increasing

this basic reproduction number increases the speed and height of the first wave of

deaths.

32See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.
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Figure A9: Implied path for daily deaths with the basic reproduction number β̄/γ = 3 and with
this parameter set 20% above and below this baseline value.

The initial semi-elasticity of transmission with respect to daily deaths (measured

as a fraction of the population) for the United States is κ̄ = 250000. This parameter

value was also chosen through trial and error. In Figure A10, I show the implications

of the model with this initial semi-elasticity set to this baseline value and to values

20% above and below this baseline value. As can be seen in this figure, this semi-

elasticity primarily impacts the level of the daily deaths in a roughly parallel manner.
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Figure A10: Implied path for daily deaths with the semi-elasticity κ̄ = 250000 and with this
parameter set 20% above and below this baseline value.

To model seasonality of transmission in the United States, I set seasonalsize =

0.35 and seasonalposition = 20. This seasonal variation in the parameter ψ(t) leads

to variation over time in the basic reproduction number of the virus. Figure A11

shows the basic reproduction number for the original variant corresponding to no

reduction in transmission due to a behavioral response (the transmissibility of the

virus with behavior at pre-pandemic patterns of behavior). We see that the assumed

pattern for seasonality introduces a reduction in transmissibility of the virus by a

factor of exp(−0.35) holding behavior fixed from the winter peak in late January and
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the summer low in late July.
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Figure A11: Assumed seasonality in the basic reproduction number.

In Figure A12 I show the implications of the baseline model from Figure A7 but

with no seasonality in transmission. By comparing this Figure A12 to Figure A7,

we see that seasonal variation in transmission is important for matching the drop in

daily deaths observed over the summer.
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Figure A12: Implications of the model with vaccines, the new variant, and pandemic fatigue, but
no seasonality in transmission.

The magnitude of the seasonal fluctuation in transmission was chosen by trial and

error. While the seasonal variation in transmission is important for matching the

pattern of daily deaths in the data, the model’s implications are fairly insensitive to

the precise magnitude of the seasonal. In Figure A13, I show the implications of the

model for daily deaths with the size of the seasonal variation in transmission set to

its baseline value and 20% above and below this value.
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Figure A13: Implications of the model with the size of the seasonal variation in transmission 20%
above and below its baseline value.

5.3 Shocks

The model has several shocks in addition to the seasonal fluctuation in transmission

rates. These include pandemic fatigue, the introduction of a new variant on December

1, 2020, the introduction of vaccines, and the counterfactuals of extra mitigation

measures that are not dependent on disease prevalence and of waning immunity. I

describe the specification and impact of these shocks and counterfactual experiments
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here.

The initial semi-elasticity of transmission with respect to daily deaths (measured

as a fraction of the population) for the United States is κ̄ = 250000. To model

the onset of pandemic fatigue in the United States, I set fatiguesize = 0.375,

fatiguemean = 285 and fatiguesig = 15. Figure A14 shows the the semi-elasticity

of the transmission rate with respect to the level of daily deaths. We see in that

figure that this semi-elasticity is assumed to fall to 37.5% of its original level late in

the year.
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Figure A14: Assumed pandemic fatigue. The blue line shows the evolution of the semi-elasticity
of transmission with respect to daily deaths relative to its initial level.

In Figure A15 I show the implications of the baseline model with no pandemic

fatigue. By comparing this figure with Figure A7, we see that pandemic fatigue

is quite important in generating the large wave of deaths in the winter of 2020.

Essentially, the initial behavioral response in the model is too strong to allow for a

significant winter wave even with the seasonal rise in transmission.

Note from Figure A14 that I leave the semi-elasticity of transmission with respect

to behavior at its new, lower level, throughout the remainder of the Spring of 2021.
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The match between the model in this time period shown in Figure A7 suggests that

the behavioral reaction of transmission to the reduction in daily deaths induced by

the introduction of vaccines has remained as it was at the end of 2020 through the

first three months of 2021.
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Figure A15: Implications of the model with no pandemic fatigue

To model the transmissibility of the new variant of the virus, I set β̄v = 4.5γ giving

a basic reproduction in Winter of 4.5. This implies that the new variant is 50% more

transmissible than the original variant at any given level of activity. Note that the

other epidemiological parameters associated with this new variant are assumed to

stay the same, including the infection fatality rate.
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The assumption that the new variant of the virus is 50% more transmissible than

the original variant of the virus controls how fast it takes over as the dominant variant

among those currently infected. In Figure A16 I show the model implications for the

fraction of current infections that are due to the new variant of the virus. As can

be seen in this figure, under our baseline simulation of the model with vaccines, the

new variant becomes dominant quickly in the spring of 2021 after starting from a

single infection on December 1, 2020.33
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Figure A16: Current infections with the new variant as a fraction of total current infections

33CDC estimates of the prevalence of variants this Spring is available here https://covid.cdc.
gov/covid-data-tracker under the page labelled “Genomic Suvelliance: variant proportions”.
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In simulations in which I include a vaccine, I set λ(t) = 0.004 starting on January 1,

2021. I assume that vaccinations are offered to the general population. This implies

that in a population of 330 million, the daily number of vaccines administered is close

to 1.3 million. In comparing this number to data on vaccinations, one must take into

account that most of the vaccines administered require two doses for full effect. This

assumption implies that roughly 51% of the population is fully vaccinated by July 1,

2021. Note that Figure 1 in the main text shows the implications of the model with

the baseline parameters but no vaccines. A comparison of Figures 1 and 5 in the

main text suggest that the introduction of vaccines has had an important impact on

the death toll from COVID in March and April of 2021.

In simulations in which I assume that the Federal government takes steps to miti-

gate the transmission of the virus through a program such as testing and tracing that

is not contingent on the level of daily deaths but instead is contingent on fixed dates,

I subtract 0.5 from the seasonal pattern in ψ(t) for those dates. The implications

of the model with this additional mitigation are shown in the main text in Figures

3 in a simulation with no vaccines. The implications of the model with additional

mitigation and the introduction of vaccines are shown in Figure A17. As is evident

in this figure, the extra mitigation substantially reduces the death toll in the first

year of the epidemic. As discussed in the main text, in this simulation, the predicted

cumulative death toll over a five year period is 302,000.
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Figure A17: Implications of the model with extra mitigation and vaccines

In simulations in which I assume waning immunity, I set ξ = 1/547.5 which corre-

sponds to an expected time to loss of immunity of 18 months. In these simulations,

I also assume a higher rate of transmission for the new variant. In this simulation

shown in Figure 5 in the main text, I set β̄v/γ = 5 rather than 4.5.
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