
NBER WORKING PAPER SERIES

TESTING FOR PARAMETER INSTABILITY AND STRUCTURAL CHANGE IN 
PERSISTENT PREDICTIVE REGRESSIONSˆ

Torben G. Andersen
Rasmus T. Varneskov

Working Paper 28570
http://www.nber.org/papers/w28570

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2021

We thank Atsushi Inoue for helpful comments and suggestions. This manuscript subsumes a 
previous working paper entitled "On the Informational Efficiency of Option-Implied and Time 
Series Forecasts of Realized Volatility." Financial support from CREATES, Center for Research 
in Econometric Analysis of Time Series (DNRF78), funded by the Danish National Research 
Foundation, is gratefully acknowledged. The views expressed herein are those of the authors and 
do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2021 by Torben G. Andersen and Rasmus T. Varneskov. All rights reserved. Short sections of 
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full 
credit, including © notice, is given to the source.



Testing for Parameter Instability and Structural Change in Persistent Predictive Regressionsˆ
Torben G. Andersen and Rasmus T. Varneskov
NBER Working Paper No. 28570
March 2021
JEL No. G12,G17

ABSTRACT

This paper develops parameter instability and structural change tests within predictive regressions 
for economic systems governed by persistent vector autoregressive dynamics. Specifically, in a 
setting where all – or a subset – of the variables may be fractionally integrated and the predictive 
relation may feature cointegration, we provide sup-Wald break tests that are constructed using the 
Local speCtruM (LCM) approach. The new tests cover both parameter variation and multiple 
structural changes with unknown break dates, and the number of breaks being known or 
unknown. We establish asymptotic limit theory for the tests, showing that it coincides with 
standard testing procedures. As a consequence, existing critical values for tied-down Bessel 
processes may be applied, without modification. We implement the new structural change tests to 
explore the stability of the fractionally cointegrating relation between implied- and realized 
volatility (IV and RV). Moreover, we assess the relative efficiency of IV forecasts against a 
challenging time-series benchmark constructed from high-frequency data. Unlike existing studies, 
we find evidence that the IV-RV cointegrating relation is unstable, and that carefully constructed 
time-series forecasts are more efficient than IV in capturing low-frequency movements in RV.

Torben G. Andersen
Kellogg School of Management
Northwestern University
2001 Sheridan Road
Evanston, IL  60208
and NBER
t-andersen@kellogg.northwestern.edu

Rasmus T. Varneskov
Copenhagen Business School
Department of Finance
Solberg Plads 3
2000 Frederiksberg
Denmark
rtv.fi@cbs.dk



1 Introduction

Predictive regressions are routinely invoked to assess the forecast prowess of candidate predictors

for the future value of an economic quantity of interest. This approach provides great flexibility

in accommodating multiple predictors, and it affords direct and transparent interpretability of the

findings. Under standard regularity conditions, robust inference techniques may be applied to test for

the significance of an individual regressor or the joint significance of (a subset of) the regressors.

The use of predictive regressions and least squares inference in time series contexts is, however,

subject to controversy due to the inherent nature of economic and financial data, which has spurred

a large literature dealing with potential pitfalls. One major issue is the strong persistence displayed

by many economic time series. In particular, the spurious regression case, where one I(1) process

is projected onto another independent I(1) process, generates large size distortions in standard least

squares significance tests and artificially inflates model-fit measures such as the R2 statistic; see e.g.,

Granger & Newbold (1974) and Phillips (1986). Similar problems arise for nearly integrated systems,

e.g., Ng & Perron (1997) and Valkanov (2003), or if the variables are fractionally integrated, I(d),

where d is possibly a non-integer, see Tsay & Chung (2000). Moreover, the regressions may be subject

to sizable predictive biases if the system features endogenous correlation between the regression errors

and innovations to the predictor variables, e.g., Stambaugh (1999) and Phillips & Lee (2013).

A second major complication is potential instability of the predictive regression relation. The

evidence for the structural breaks in the data generating process is extensive within economics and

finance; see, e.g., Stock & Watson (1996), Paye & Timmermann (2006), Peseran, Pettenuzzo & Tim-

mermann (2006), Chen & Hong (2012), Dangl & Hailing (2012) and Farmer, Schmidt & Timmermann

(2019). This issue is particularly salient when estimating predictive relations using data spanning mul-

tiple decades, and sometimes even centuries, or if using cointegration models to generate long-horizon

forecasts, relying critically on accurate identification of the long-run equilibrium, see, e.g., Christof-

fersen & Diebold (1998). Since predictive regressions are reduced-form specifications, it is therefore

not surprising that they evolve along with the economic environment over long time spans.

Several studies develop inference techniques for systems with persistent variables. For example,

fractional (and standard) cointegration frameworks facilitate inference on linear predictive relations,

whose error is purged of (at least some of) the persistence in the original variables; see, e.g., Robinson

& Marinucci (2003), Christensen & Nielsen (2006), and Johansen & Nielsen (2012) for parametric and

semi-parametric procedures. Moreover, robust techniques have been proposed for the nearly integrated

case by, among others, Cavanagh, Elliott & Stock (1995), Jansson & Moreira (2006), and Elliott,

Müller & Watson (2015). These procedures are reviewed by Phillips & Lee (2013), who develop the

IVX methodology, allowing for stationary, nearly integrated, unit root and locally explosive processes.

Finally, Andersen & Varneskov (2020a) provides a robust procedure for systems where all variables

may be fractionally integrated of potentially different orders, covering both (asymptotically) stationary

and non-stationary processes, and where the predictive relation may feature fractional cointegration,

with a priori unknown persistence and cointegration properties. Furthermore, their Local speCtruM
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(LCM) approach accommodates regressor endogeneity and achieves asymptotic Gaussian inference.

Issues related to parameter instability and structural change have similarly received considerable

attention. Andrews (1993), Andrews & Ploberger (1994) and Diebold & Chen (1996) develop tests

for a structural change assuming that the break point is unknown, and Bai & Perron (1998) provide a

comprehensive treatment for multiple structural changes with the timing, and possibly also the number,

of breaks allowed to be unknown. These studies, however, require the system to be weakly dependent.

In contrast, Hansen (1992), Hansen (2003) and Kerjiwal & Perron (2010), among others, develop

similar structural change tests in I(1)-I(0) cointegration models that also allow for I(0) regressors.

Moreover, Hidalgo & Robinson (1996) extend the sup-Wald test by Andrews (1993) to systems with

stationary fractional integration, and Georgiev, Harvey, Leybourne & Taylor (2018) consider nearly

integrated regressors. No prior study, however, has provided tests in the flexible persistence setting

of Andersen & Varneskov (2020a), that is, when the system can feature a mixture between stationary

and non-stationary fractionally integrated variables and (fractional) cointegration, which is not known

prior to the analysis. In fact, as discussed in the reviews by Perron (2006) and Casini & Perron

(2019), existing procedures cannot simultaneously accommodate I(0) and I(1) errors, because the

latter induce spurious inference. In this paper, we tackle these problems.

Specifically, we provide new tests for parameter instability and structural change, applicable for

economic systems in which the variables (or a subset thereof) may be fractionally integrated of poten-

tially different orders, and the predictive relation may feature cointegration, thereby nesting standard

weakly dependent as well as cointegration settings. Our tests connect the LCM approach with the

sup-Wald testing framework by Andrews (1993) and Bai & Perron (1998). Hence, we provide tests

for structural changes with unknown break dates, where the number of breaks may be either known

or unknown ex ante. These tests are generally applicable as parameter instability tests, despite being

designed for the detection of structural breaks. We establish an asymptotic limit theory for the new

tests. Importantly, by leveraging the asymptotic Gaussian distribution theory obtained via the LCM

approach, we show that our tests, despite allowing for diverse and highly persistent systems, attain

identical asymptotic distributions as the corresponding tests in Andrews (1993) and Bai & Perron

(1998), who consider weakly dependent settings without cointegration. Hence, their critical values for

tied-down Bessel processes may readily be applied in our context. Interestingly, due to the robustness

properties of the LCM procedure, we also accommodate regressor endogeneity in the testing frame-

work. Consequently, the new tests may be used as “off-line” diagnostics for a wide array of predictive

systems, when one wants to retrospectively examine whether breaks occur in a given sample.1

We illustrate the finite sample properties of our LCM-based sup-Wald testing procedure in settings

that accommodate flexible, fractionally integrated persistence in the predictive relation, both in the

absence and presence of cointegration. Despite the semi-parametric nature of our approach, the test

1In contrast, if one wants to construct forecasts in real time, two alternatives include using rolling windows to implement
the predictive regressions, e.g., Pesaran & Timmermann (2007) and Clark & McCracken (2009), or the explicit modeling
of time-variation in the parameters, e.g., Peseran et al. (2006) and Dangl & Hailing (2012). None of their results, however,
pertain to our flexible setting with fractionally integrated variables and, possibly, cointegration.
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has excellent finite sample size and power properties for sample sizes typically encountered in financial

and macroeconomic applications. Moreover, it is robust towards tuning parameter selections.

We use our new sup-Wald testing procedure to study the stability of the predictive relation be-

tween option implied and realized volatility (IV and RV), which has received considerable attention in

empirical finance and financial econometrics. Specifically, using predictive regressions, this literature

has been concerned with examining the bias and efficiency of IV as a predictor of future RV. After

correcting for various methodological issues, consensus is converging towards the conclusion that IV

forecasts are biased, but efficient predictors of future volatility; see, e.g., Christensen & Prabhala

(1998), Jiang & Tian (2005), Chernov (2007), Chraoenwong, Jenwittayaroje & Low (2009), Taylor,

Yadav & Zhang (2010) and Cheng & Fung (2012). These studies, however, all rely on inference pro-

cedure for weakly dependent processes, despite comprehensive evidence that return RV exhibits long

memory; e.g., Andersen & Bollerslev (1997), Andersen, Bollerslev, Diebold & Ebens (2001), Andersen,

Bollerslev, Diebold & Labys (2001, 2003), Corsi (2009) and Varneskov & Perron (2018).

The evidence of long-memory in IV and RV has inspired a number of studies to assess whether their

predictive relation is fractionally cointegrated and whether IV is “long-run unbiased” for the persistent

variation in RV. In particular, Bandi & Perron (2006), Christensen & Nielsen (2006), Nielsen (2007),

Kellard, Dunis & Sarantis (2010) and Nielsen & Frederiksen (2011) provide solid support for these

hypotheses. In addition, Bollerslev, Sizova & Tauchen (2011) and Bollerslev, Osterrieder, Sizova

& Tauchen (2013), Osterrieder, Ventosa-Santaularia & Vera-Valdes (2019), Li, Izzeldin & Yao (2020)

confirm the findings of fractional cointegration and proceed to exploit the equilibrium relation between

IV and RV to estimate (components of) the volatility risk premium and forecast asset returns.

We revisit the long-run relation between IV and RV by first examining the relative efficiency of

the long-run information in IV for RV. We compare it to forecasts from a long-memory volatility

model exploiting high-frequency data, thereby providing a more challenging benchmark than historical

volatility, which typically is used in the literature. Second, we examine the stability of the fractional

cointegrating relations using our new LCM-based sup-Wald tests. Unlike existing studies, we find the

IV-RV cointegrating relation to be unstable, and that carefully constructed time-series forecasts are

more efficient than IV in capturing low-frequency movements in RV. These results are interesting from

a volatility forecasting perspective, indicating a change in the low-frequency characteristics of RV over

time. In addition, they have implications for asset pricing and return prediction, because our evidence

is at odds with the presumed stability of the cointegration models, which are often used to estimate

the volatility risk premium component associated with a long-run equilibrium and to forecast returns.

In fact, we provide reduced-form evidence that the significant forecasting power of the volatility risk

premium for returns materializes during a period surrounding the global financial crises of 2008-2009,

where the low-frequency relation between IV and RV breaks down, with the former being completely

spanned by our long-memory time-series forecasts. In contrast, during periods where a “normal” long-

run equilibrium between IV and RV prevails, the volatility risk premium has no significant predictive

power for returns. These findings provide a challenge for existing asset pricing models that stipulate
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a stationary relation between RV, IV, the volatility risk premium and future returns.

The paper proceeds as follows. Section 2 describes the modeling framework, the underlying assump-

tions, and the competing parameter (in)stability hypotheses. Section 3 introduces the LCM procedure

and derives the requisite partial-sample limit theory. Section 4 provides the new LCM-based sup-Wald

tests and establishes their asymptotic properties. The simulation study is contained in Section 5, and

Section 6 explores the IV-RV relation empirically. Section 7 concludes. The proofs of the theoretical

results are relegated to the Appendix together with additional simulation results.

Throughout the paper, “∼” and “�” signify, respectively, that the ratio of the left- and right-hand-

side of the relevant equation tends to one and a non-zero constant in the limit, element-wise, while

we use ‖ · ‖ to denote the Frobenius matrix norm, ◦ the Hadamard product, i =
√
−1, and Ik the k-

dimensional identity matrix. Moreover, the notation“→”, “
D−→”and“

P−→”describe the limit, convergence

in distribution and convergence in probability. Finally, we denote by “⇒” weak convergence under the

uniform metric on the space D[0, 1], as defined by Pollard (1984, Chapter V).

2 Framework and Competing Hypotheses

First, to set the stage, let (1− L)d denote a generic fractional filter,

(1− L)d =

∞∑
i=0

Γ(i− d)

Γ(i+ 1)Γ(−d)
Li, (1)

with Γ( · ) being the gamma function. Next, we assume observations are available for a (k + 1) × 1

vector of economic variables zt = (yt,x
′
t−1)′, which obeys a Type II fractional model,

D(L) (zt − µ) = vt 1{t≥1} (2)

where µ is a (k + 1)× 1 vector of nonrandom unknown finite numbers, either capturing the means or

initial values of the variables, vt = (et,u
′
t−1)′ is a weakly dependent vector process, and,

D(L) = diag[(1− L)d1 , . . . , (1− L)dk+1 ].

In this setting, following Andersen & Varneskov (2020a), we define and study the predictive relation

between yt and xt−1 through their weakly dependent components. Specifically, we assume,

et = B′t ut−1 + η
(b)
t , t = 1, . . . , n, (3)

where η
(b)
t = (1 − L)b ηt for some constant b ≥ 0, ηt ∼ I(0), and the k-dimensional parameter vector,

Bt, decomposes as Bt ≡ (β′t, δ
′)′ with βt ∈ Rkβ , δ ∈ Rkδ and k = kβ + kδ.

The main difference between the relation (3) and the corresponding assumption in Andersen &

Varneskov (2020a) concerns the potential time variation of βt. They consider estimation and inference
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for predictability under the standard invariant parameter vector assumption,

H0 : βt = β , for all t = 1, . . . , n. (4)

Importantly, even under the restriction, βt = β, the observation equation (2) and functional form (3)

encompass most fractionally integrated systems within the long memory literature, and they translate

into a well-defined, balanced relation between yt and xt−1, despite the variables exhibiting distinct

degrees of fractional integration. This is readily seen by combining the two equations, obtaining,

yt = a + B′Q(L)xt−1 + υt, t = 1, . . . , n, (5)

where Q(L) = Dx(L)(1−L)−d1 , Dx(L) is the k×k lower-right submatrix of the fractional filter D(L),

a = µy − B′Q(L)µx for µ = (µy,µ
′
x)′ and υt = (1− L)−d1 η

(b)
t = (1− L)b−d1 ηt. The filtering matrix

Q(L) adjusts the persistence of the predictors so that regression balance is achieved in this implied

relation between the observed variables. If the system is balanced a priori, then Q(L) = Ik, and

the adjustment is trivial. Its presence, however, ensures that the implied dynamics of the dependent

variable, yt ∼ I(d1), are equivalent, both in the presence and absence of predictive power,

B = 0 and B 6= 0, (6)

respectively, and apply for settings with and without fractional cointegration;

(i) B = 0 and b = 0: xt−1 contains no predicitive power for yt.

(ii) B 6= 0 and b = 0: xt−1 partially spans the persistent component(s) of yt.

(iii) B 6= 0 and b > 0: xt−1 cointegrate with yt, spanning its persistent component(s).

Andersen & Varneskov (2020a) show that most predictive long-memory systems, with and without

cointegration, are nested in scenarios (i)-(iii), and they propose the Local SpectruM (LCM) procedure

(described below) to draw inference on B, whose validity holds uniformly across these settings, without

prior knowledge of the persistence of the system, or whether it features cointegration. Hence, the LCM

procedure overcomes problems with spurious inference in persistent systems, as documented by, among

others, Granger & Newbold (1974), Phillips (1986) and Tsay & Chung (2000).

Their analysis, however, does rest critically on the null hypothesis, H0. In contrast, in this paper,

we are concerned with testing whether H0 holds, allowing for either parameter instability or structural

change in (a subset of) Bt under the alternative. In line with previous studies offering instability

tests in regression contexts, see, e.g., Andrews (1993) and Bai & Perron (1998) for one and multiple

breaks, respectively, our framework nests pure and partial structural change models, when kδ = 0 and

0 < kδ < k. Our new structural change tests within this flexible long-memory setting substantively

generalizes the dynamic specifications assumed in prior work, both under the null hypothesis, as

conveyed by scenarios (i)-(iii), and under the alternative. The specific alternatives are detailed next.
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2.1 Alternative Hypotheses

First, define the set Φ ∈ (ε, 1 − ε), for some ε > 0, let {ϕ1 < · · · < ϕq} ∈ Φ denote the sample

break fractions, and fix ϕ0 = 0 and ϕq+1 = 1. In addition, we label the corresponding observation

subsets Tg = {t = bϕgnc+ 1, . . . , bϕg+1nc} for the q + 1 regimes g = 0, . . . , q and denote the number

of observations in Tg by ng = n(Tg). We will entertain multiple alternative hypotheses concerning

structural change of the form,

HA1 : βt = βg, for t ∈ Tg, g = 0, . . . , q , (7)

where the break dates are unknown, while q may be known or unknown, a priori. This alternative

allows the predictive power of xt−1 to be characterized by distinct regimes of the form (i)-(iii). For

example, xt−1 may partially span the persistence of yt in some subsets of the sample, but not in others,

thereby switching between scenarios (i) and (ii). Moreover, we allow for predictive systems, where the

cointegration properties for a subset of the regressors may break down in specific economic regimes, as

long as the system remains in scenario (iii). To see this, suppose we have a cointegration model, where

yt ∈ I(1), xt−1 = (x1,t−1, x2,t−1)′ ∈ I(1) and b = 1. Then, our setting may feature a partial structural

change model, with kβ = kδ = 1, where cointegration arises through a time-invariant relation with

x2,t−1, but the predictive power of x1,t−1 pertains only to certain regimes.

As a final example, the alternative hypothesis accommodates fractionally cointegrated systems,

where persistence is balanced, that is, with yt ∈ I(d), xt−1 ∈ I(d) and 0 ≤ b ≤ d, and where the

relative efficiency of (a subset of) the predictors may change over the course of the sample.

The flexibility of scenarios (i)-(iii), allowing all variables to have different fractional integration

orders and the predictive relation to feature cointegration, in conjunction with the alternative hypoth-

esis (7), facilitates testing for parameter changes in the vast majority of the predictive long-memory

systems studied in the literature. Furthermore, it is robust to a feature not accommodated by prior

structural break tests; namely, we remain agnostic as to whether the system involves cointegration.

Specifically, Andrews (1993) and Bai & Perron (1998), among others, provide structural change tests

with unknown break dates in weakly dependent settings, and Hansen (1992), Hansen (2003) and Ker-

jiwal & Perron (2010) consider cointegrated systems that may also feature I(0) regressors, but their

respective procedures cannot simultaneously accommodate I(0) and I(1) errors, because the latter

induce spurious inference; see, e.g., the discussions in Perron (2006) and Casini & Perron (2019). In

our setting, the errors may be I(0) or I(1), and we also accommodate fractional cointegration within

the system. As will be explained in detail subsequently, this added generality stems from our use of

the LCM procedure in the construction of the structural change tests.

Finally, we emphasize that, despite our tests being designed with alternatives such as the structural

break specification (7) in mind, they will also have power against other alternatives of the form,

HA2 : βt 6= βs, for some t, s ≥ 1,
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as noted by Andrews (1993) in a weakly dependent setting without cointegration. Following the

analysis in the latter, we show below that our new tests, indeed, have power against local alternatives

of the form βt = β + η(t/n)/Sn(b) for some bounded function η(t/n) on [0, 1], that is not almost

everywhere constant on Φ, and where Sn(b) is an increasing deterministic function of the sample size

n, which depends on the cointegration strength, b. Hence, our tests will capture more general forms

of parameter instability under the predictive scenarios (i)-(iii).

2.2 Assumptions

The theoretical analysis rests on formal assumptions for the components of equations (2) and (3).

Moreover, we assume an estimator of the fractional integration orders, d̂i for i = 1, . . . , k+1, satisfying

mild consistency requirements, is available. The assumptions, stated in terms of qt = (u′t−1, ηt )′, mirror

the corresponding ones in Andersen & Varneskov (2020a), and they are consistent with the regularity

conditions underpinning the fractional cointegration analyses in, e.g., Robinson & Marinucci (2003),

Christensen & Nielsen (2006) and Christensen & Varneskov (2017).

Assumption D1. The vector process qt, t = 1, . . . , is covariance stationary with spectral density

matrix satisfying fqq(λ) ∼ Gqq as λ → 0+, where the upper left k × k submatrix, Guu, has full rank,

and the (k + 1)th element of the diagonal, Gηη, is strictly greater than zero. Moreover, there exists a

$ ∈ (0, 2] such that |fqq(λ)−Gqq| = O(λ$) as λ → 0+. Finally, let Gqq(i, k + 1) be the (i, k + 1)th

element of Gqq, which has Gqq(i, k + 1) = Gqq(k + 1, i) = 0 for all i = 1, . . . , k.

Assumption D2. qt is a linear process, qt =
∑∞

j=0Ajεt−j, with square summable coefficients∑∞
j=0 ‖Aj‖2 < ∞, the innovations satisfy, almost surely, E[εt|Ft−1] = 0 and E[εtε

′
t|Ft−1] = Ik+1,

and the matrices E[εt⊗ εtε′t|Ft−1] and E[εtε
′
t⊗ εtε′t|Ft−1] are nonstochastic, finite, and do not depend

on t, with Ft = σ(εs, s ≤ t). There exists a random variable ζ such that E[ζ2] <∞ and, for all c and

some C, P[‖qt‖ > c] ≤ C P[|ζ| > c]. For future reference, we denote the periodogram of εt by J(λ).

Assumption D3. For A(λ, i), the i-th row of A(λ) =
∑∞

j=0Aje
ijλ, its partial derivative satisfies

‖∂A(λ, i)/∂λ‖ = O(λ−1‖A(λ, i)‖) as λ→ 0+, for i = 1, . . . , k + 1.

Assumption M. Let 0 ≤ di < 2 for all i = 1, . . . , k + 1 and define d = mini=1,...,k+1 di. Moreover,

suppose that the cointegration strength parameter satisfies 0 ≤ b ≤ min(d, 1).

Assumption F. Let md � n% be a sequence of integers where 0 < % ≤ 1, then, for all i = 1, . . . , k+ 1

elements of zt, we assume to have an estimator with the property,

d̂i − di = Op
(
1/
√
md

)
, and we then let, D̂(L) = diag

[
(1− L)d̂1 , . . . , (1− L)d̂k+1

]
.

The regularity conditions on qt in Assumptions D1-D3 are standard in the literatures analyzing

semi-parametric fractional cointegration as well as the estimation of multivariate fractional time series

models, e.g., Shimotsu (2007) and Nielsen (2015). Specifically, conditions D1 and D3 impose a mild rate
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of convergence for the spectral density fqq(λ) as λ→ 0+, which depends on the smoothness parameter

$ ∈ (0, 2]. Moreover, D1 requires full rank of ut−1 and the vector being locally exogenous to ηt as

λ→ 0+, but not global exogeneity. That is, ut−1 and ηt may have non-trivial covariance for frequencies

λ → c > 0. Finally, D2 specifies linearity, martingale and moment conditions for qt, allowing for

general multivariate dependence, but rules out time-variation in the conditional covariance between

the innovations as well as their third and fourth conditional moments. Assumption M restricts the

fractional integration order of the variables to be below 2 as well as the cointegration range in relation

to the memory of the system. The first part is innocuous, since it is satisfied by most macroeconomic

and financial time series. Moreover, the cointegration restriction is rather intuitive. If the system is

balanced di = d, i = 1, . . . , k + 1, then we accommodate both I(1)-I(0) and fractional cointegration

settings, without any additional restrictions. If the memory parameters differ, Assumption M implies

that the cointegration relation must be balanced and, at least, weakly dependent. To see this, suppose

yt ∈ I(0.3) and xt−1 ∈ I(0.6). Then, the upper bound b = 0.3, in conjunction with the balanced

regression requirement (5), implies a cointegrating relation with I(0) residuals. On the other hand, if

yt ∈ I(0.6) and xt−1 ∈ I(0.3), then the restriction generates I(0.3) residuals. Hence, the regressors

cannot purge yt of more persistence than their own degree of fractional integration.

These conditions allow for zt to constitute vector ARFIMA processes (for $ = 2), thus nesting VAR

and integrated VAR dynamics as special cases with di = 0 and di = 1, respectively, for i = 1, . . . , k+1,

and b = 0. Generally, however, the properties of the variables depend on their integration orders.

Specifically, the ith variable have (asymptotically) stationary long memory, when 0 < di < 1/2, it is

non-stationary when di ≥ 1/2, and it has a well-defined mean for di < 1. Hence, the assumptions

allow for very flexible persistence of the variables as well as fractional cointegration amongst them.

Finally, the conditions on d̂i in Assumptions F are mild, essentially only requiring the existence of

an estimator which, under the Assumptions D1-D3 and M, is consistent. Examples of estimators, that

satisfy these requirements for the entire range, 0 ≤ di < 2, are the parametric ARFIMA estimators by

Hualde & Robinson (2011) and Nielsen (2015), the mean-robust exact Local Whittle (ELW) estimator

by Shimotsu (2010) and the trimmed ELW (TELW) estimator by Andersen & Varneskov (2020a).

Remark 1. The LCM procedure, and thus our new tests below, further accommodates regressor en-

dogenenity in the spirit of Stambaugh (1999) and Pastor & Stambaugh (2009) as well as regressors

that have been pre-estimated as fractional cointegration residuals. These effects are formally analyzed

in Andersen & Varneskov (2020a, Section 4), who show that robustness is achieved by slightly stricter

trimming conditions than those required by Assumption T below. As these conditions are not binding

in our empirical analysis, we refrain from formally introducing endogeity and pre-estimated regressors

here for simplicity of exposition, noting, however, that all our subsequent qualitative results will apply.
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3 Partial Sample LCM Inference

This section introduces a partial sample version of the two-step LCM estimator by Andersen & Var-

neskov (2020a). Furthermore, it provides a joint functional limit theory for q + 1 partitions of the

sample under the null hypothesis of parameter stability and develop associated feasible inference proce-

dures. These estimators, and their resulting limit theory, are of independent interest but, importantly,

also form the basic building blocks in the design of the structural change tests in Section 4.

3.1 Partial Sample LCM Estimation and Limit Theory

The LCM estimation procedure is carried out in two steps.

Step 1: Fractional filtering. As in Assumption F, we use a consistent estimator of the fractional

integration orders d̂i, for i = 1, . . . , k + 1, to compute D̂(L), and then fractionally filter zt to obtain

estimates of vt, the weakly dependent components of the variables in equation (2),

v̂t ≡ (êt, û
′
t−1)′ = D̂(L)zt, (8)

without, however, accounting for the mean, or initial value, of zt. Rather than treating “de-meaning”

of the series on a case-by-case basis, depending on the magnitude of di, we account for the residual

impact of the mean component, D̂(L)µ, in a unified manner during the second stage estimation.

Step 2: Medium Band Least Squares. For a given partition g = 0, . . . , q, denote the Fourier

frequencies for observation set Tg by λj(g) = 2πj/ng, j = 1, . . . , ng. Then, the partial sample discrete

Fourier transform and cross-periodogram are defined as,

wh(λj , g) =
1√

2πng

∑
t∈Tg

ht e
itλj(g), Ihk(λj , g) = wh(λj , g)wk(λj , g), (9)

respectively, where ht and kt are generic (and compatible) vector time series. Moreover, let Ihk(λj , g) =

<(Ihk(λj , g)) + i=(Ihk(λj , g)) be the real and imaginary decomposition of Ihk(λj , g). Finally, define

the corresponding trimmed discretely averaged co-periodogram (TDAC) as,

F̂hk(`,m, g) =
2π

ng

mg∑
j=`g

<(Ihk(λj , g)), 1 ≤ `g ≤ mg ≤ ng, (10)

where `g = `(ng) and mg = m(ng) are partition-specific trimming and bandwidth functions. Then,

we can write the TDAC of ût−1 as F̂ûû(`,m, g) and, similarly, of ût−1 and êt as F̂ûê(`,m, g), and use

these to define the partial sample medium band least squares (MBLS) estimator as,

B̂(`,m, g) = F̂ûû(`,m, g)−1 F̂ûê(`,m, g), (11)
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for which `g,mg → ∞ and `g/mg + mg/ng → 0, as ng → ∞.2 Moreover, by definition of the partial

sample observation scheme, we have ng/n→ ϕg+1 − ϕg > 0 as n→∞, that is, each subsample grows

proportionally to n. Importantly, the MBLS estimator in equation (11) is equivalent to the second-step

estimator in Andersen & Varneskov (2020a), although it applies only to a subsample rather than the

full set of observations.3 Hence, it inherits some useful properties. First, it is semiparametric about

the dynamics of zt, requiring only some specific structure on the spectrum as λ → 0+. Second, the

trimming and bandwidth functions aid in the recovery of the parameter vector within each subsample

by asymptotically eliminating the first-stage estimation errors through filtering. Specifically, the trim-

ming component eliminates any slippage from the means, or initial values, D̂(L)µ, occurring at lower

frequencies and, in conjunction with the bandwidth, the estimation errors given in Assumptions F.

Consistent with subsample estimation of the parameter vector B, we require additional conditions

on the partition-specific bandwidth and trimming functions. These are partial sample analogs of the

corresponding assumptions in Andersen & Varneskov (2020a).

Assumption T. Let the bandwidth mg � nκg and `g � nνg with 0 < ν < κ < % ≤ 1 for sample

partitions g = 0, . . . , q. Moreover, recall that the parameter $ ∈ (0, 2] measures the smoothness of the

spectral density in Assumption D1. Then, the following cross-restrictions are imposed,

m1+2$
g

n2$
g

+
`1+$+b
g

n$g m
1/2+b
g

+
n

1/2+b
g

m
1/2
d mb

g `g
+

n
1−2d+b
g

m
1/2−2d+b
g `2g

+
nbg

m
1/2+b
g

→ 0, as n → ∞.

The conditions in Assumption T are mild. The first condition is standard for semiparametric

estimation in the frequency domain, e.g., Robinson (1995) and Lobato (1999), while the last is needed,

because we only require local exogeneity between ut−1 and ηt as λ→ 0+. For the empirically relevant

vector ARFIMA process ($ = 2), this condition implies κ < 4/5. The remaining conditions are LCM-

specific upper and lower bounds in the trimming and bandwidth rates, ν and κ, which are discussed at

length in Andersen & Varneskov (2020a). They depend on d, b and %, thus reflecting the persistence

properties of the economic system, cointegration and the convergence rate of the first-step estimator

of the fractional integration orders, respectively. For the vector ARFIMA process, the most important

implications of conditions 2-4 of Assumption T amount to,

(3/5− (2d− b)/5)/2 ∨ (1− %)/2 + b(1− κ) < ν < κ < 4/5, (12)

2We have suppressed dependence on the (lagged) time t indicator in F̂ûû(`,m, g) and F̂ûê(`,m, g) to ease exposition. The
dependence on time, however, is explicated when necessary, e.g., when establishing Theorem 1 below.

3The MBLS estimator is also related to the estimator in Christensen & Varneskov (2017), who, however, input observable
variables rather than fractionally filtered ones. This has important implications; the framework in the latter only
applies to (asymptotically) stationary processes and cannot handle situations where the integration orders differ across
variables in the system. Moreover, the asymptotic analysis in Christensen & Varneskov (2017) assumes cointegration.
However, since the latter shows robustness of their estimator (via trimming) towards outliers, structural breaks (in
means), Markov switching means, certain deterministic trends, etc., which are known to contaminate co-periodograms
at frequency ordinates close to the origin, see, e.g., Diebold & Inoue (2001) and Perron & Qu (2010), this suggests that
our estimator will enjoy similar robustness properties. We do not formally analyze those effects here.
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for the trimming rate, thereby generating a conservative bound 3/10 < ν for standard choices of the

parameters % and κ. The last condition generates a mild lower bound restriction on the bandwidth

rate, b/(1/2 + b) ≤ min(d, 1)/(1/2 + min(d, 1)) < κ. Naturally, the trimming and bandwidth rates can

be made subsample specific, as long as they satisfy Assumption T in each partition. We refrain from

doing so for simplicity of exposition and to avoid dealing with a large set of tuning parameters.

Before stating the joint functional limit theory for the subsample LCM estimators, we introduce

some auxiliary notation. Specifically, we let,

ϑ(b) = diag
[
(ϕ1 − ϕ0)2b(κ−1)−κ−1, . . . , (ϕq+1 − ϕq)2b(κ−1)−κ−1

]
(13)

be a (q + 1)-dimensional diagonal matrix, depending on the sample partition, and,

C(b) = G−1
uu V (b)G−1

uu , where V (b) = Guu
Gηη

2(1 + 2b)
, (14)

denote the k×k asymptotic covariance matrix of the LCM estimator. Moreover, write the full sample

Fourier frequencies as λj = 2πj/n, j = 1, . . . , n, and let ` = `(n) and m = m(n) be the full sample

trimming and bandwidth sequences, which also satisfy Assumption T. Finally, let Y (ϕ), for some

ϕ ∈ [0, 1], denote a k × 1 vector of independent Brownian motions on [0, 1], and we then define,

Y (ϕ) =


Y (ϕ1)− Y (ϕ0)

...

Y (ϕq+1)− Y (ϕq)

 , (15)

with dimension (q+1)×1, for the sample partitions ϕ on the set Φ. We are now ready to characterize

the joint limit theory for subsample LCM estimators given any partition, g = 0, . . . , q.

Theorem 1. Let Assumptions D1-D3, F, M and T hold. Moreover, suppose that the mutual consis-

tency condition max(0, (1− 3κ/2)/(1 + κ/2)) < $ ≤ 2 is satisfied, then, for every sequence of sample

partitions ϕ = (ϕ1, . . . , ϕq)
′, whose elements are in the set Φ, it follows,

√
mλ−bm


B̂(`,m, 0)−B

...

B̂(`,m, q)−B

 =⇒
(
ϑ(b)1/2 ◦

(
G−1
uuV (b)1/2

))
Y (ϕ) .

Theorem 1 extends Andersen & Varneskov (2020a, Theorem 1) to allow for non-overlapping parti-

tions of the sample and demonstrates that subsample LCM estimators enjoy a joint Gaussian uniform

limit. Importantly, the convergence rate depends on whether B 6= 0 and, if this is the case, whether

the system features cointegration. Specifically, the rate is
√
m in its absence (b = 0), consistent with

semiparametric estimators in the frequency domain, e.g., Brillinger (1981, Chapters 7-8). Conversely,

the rate is
√
mλ−bm �

√
m(n/m)b in its presence (b > 0), in analogy with super consistency properties in

11



standard cointegration settings. Moreover, cointegration lowers the asymptotic variance, as reflected

by the scale 1/(2(1 + 2b)). The joint Gaussian uniform distribution theory is remarkable; holding

in scenarios with and without cointegration, across (asymptotically) stationary and non-stationary

variables in the observable persistent system (2), and for both weak (b < 1/2) and strong (b ≥ 1/2)

cointegration settings. This feature is exactly what allows our structural change tests to remain, a

priori, agnostic about the persistence of the system and whether it features cointegration, thus con-

siderably generalizing the scope relative to, e.g., Andrews (1993), Bai & Perron (1998) and Kerjiwal

& Perron (2010), who either rely on standard
√
n asymptotic properties of OLS (or GMM) estimators

in weakly dependent settings or rate-n results in cointegration settings.

3.2 Feasible Inference

The design of our structural change tests below require estimates of the asymptotic covariance matrix

for each sample partition. To this end, we must provide consistent subsample estimators of the long-

run covariance matrix Guu and variance Gηη. The main challenge is that we observe v̂t , not vt –

raising issues similar to those that motivated us to apply the robust MBLS estimator in the second

step of the LCM procedure. The residuals ηt are latent, and we estimate them as,

η̂
(b)
t (g) = êt − B̂(`,m, g)′ ût−1 , η̂t(g) ≡ (1− L)−b̂(g) η̂

(b)
t (g), t ∈ Tg, (16)

for each subsample g = 0, . . . , q, where b̂(g) denotes a consistent estimator of b. The intuition behind

the estimator η̂t(g) is the following; we must undo the (over-)differencing, indicated by b 6= 0, to

recover estimates of the residuals, that are then used to estimate Gηη. This is carried out on each

subsample for our estimates to be valid under the null, H0, and the alternative hypothesis, HA1.

Next, we use v̂t and η̂t(g), g = 0, . . . , q, to define a generic class of subsample estimators of the

asymptotic covariance matrices,

Ĝhh(`G,mG, g) =
1

mG,g − `G,g + 1

mG,g∑
j=`G,g

< (Ihh(λj , g)) , (17)

for some arbitrary vector ht, where mG,g = mG(ng) and `G,g = `G(ng) are other, partition-specific,

bandwidth and trimming functions, which, as for MBLS, are used to eliminate estimation errors from

fractional filtering, low-frequency slippage from D̂(L)µ, as well as estimation errors from both MBLS

and b̂(g). Now, using equation (17), the asymptotic covariance of B̂(`,m, g) is estimated as,

ÂVAR(g, b) = Ĝûû(`G,mG, g)−1 Ĝη̂η̂(`G,mG, g)λ
2b̂(g)
mg (g)

2 (1 + 2b̂(g))mg

, (18)

which implicitly accounts for the scale (ϕg+1−ϕg)2b(κ−1)−κ by applying λmg(g) and mg instead of the

full sample versions λm and m. To retain flexibility in terms of implementing the inference and testing
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procedures, in analogy to our treatment of the estimators d̂i, i = 1, . . . , k+ 1, we assume an estimator

b̂(g) is available, for g = 0, . . . , q, which satisfies mild consistency requirements. For example, these

conditions are satisfied by the TELW estimator of Andersen & Varneskov (2020a). Before proceeding,

we also need to impose restrictions on the new bandwidth and trimming parameters.

Assumption B. Let mb,g � nεg, with g = 0, . . . , q, be a partition-specific sequence of integers where,

for some 0 < ε ≤ 1, the subsample estimators satisfy b̂(g)− b = Op
(
1/
√
mb,g

)
.

Assumption T-G. Let mG,g � nκGg and `G,g � nνGg with 0 < νG < κG ≤ % ≤ 1, for g = 0, . . . , q, and

define the sequence of integers mg = md ∧mb,g ∧mg, then the following cross-restrictions are imposed

on the trimming and bandwidth parameters: n/(mG,g `
2
G,g) + n2/(mG,g `

2
G,gmg)→ 0, as n→∞.

Finally, to illustrate the use of the subsample inference, we consider general linear hypotheses on

the parameters B as RB = r for some h × k selection matrix R and h × 1 vector r. The following

theorem establishes validity of the feasible inference and partition-specific testing.

Theorem 2. Let the conditions of Theorem 1 and Assumptions B and T-G hold. Then, for every

sequence of partitions ϕ = (ϕ1, . . . , ϕq)
′, whose elements are on the set Φ, it follows,

(a)
∥∥mg λ

−2b
mg (g) ÂVAR(g, b)−C(b)

∥∥ P−→ 0 for all g = 0, . . . , q, and,

(b) LCM(`,m, g) ≡
(
RB̂(`,m, g) − r

)′(R ÂVAR(g, b)R′
)−1 (RB̂(`,m, g) − r

) D−→ χ2
h .

Theorem 2 shows that Wald test statistics may be constructed for every sample partition and,

importantly, have standard χ2-distribution theory. This feature is essential for the design and validity

of our structural break tests, which are introduced next.

4 Testing for Parameter Instability and Structural Change

First, we provide a new test for general parameter instability as well as a single structural break

with unknown break date, exploiting the Gaussian asymptotic limit theory for the LCM approach

along with the sup-Wald testing procedure of Andrews (1993). Second, we extend this test to better

accommodate multiple structural changes, occurring at unknown time points, where the number of

regimes may be known or unknown, a priori, leveraging insights from Bai & Perron (1998).

4.1 Testing for Parameter Instability and a Single Structural Change

We exploit the standard asymptotic properties of the subsample LCM estimators in Theorems 1 and

2 to construct our Wald test statistic for a single structural break, g = 1,

Wn(ϕ1) ≡
(
β̂(`,m, 0)− β̂(`,m, 1)

)′ (
ÂVARβ(0, b) + ÂVARβ(1, b)

)−1 (
β̂(`,m, 0)− β̂(`,m, 1)

)
,
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in line with the alternative hypothesis HA1, where β̂(`,m, g) denotes the first kβ elements of the sub-

sample LCM estimate B̂(`,m, g) and, similarly, ÂVARβ(g, b) denotes the upper-left kβ×kβ submatrix

of ÂVAR(g, b). Then, we introduce a new class of sup-Wald tests,

Pn(1) ≡ sup
ϕ1∈Φ

Wn(ϕ1), (19)

with, again, Φ ∈ (ε, 1 − ε) for some 0 < ε < 1. The asymptotic properties of the Pn(1) class of

parameter instability tests under the null hypothesis are formalized by the following theorem.

Theorem 3. Suppose the conditions of Theorems 1-2 hold. Let ζ = κ/2 + (1− κ) b, and,

Qkβ (ϕ1, ζ) =
Ỹkβ (ϕ1, ζ)′ Ỹkβ (ϕ1, ζ)(

(1− ϕ1)2ζ + ϕ2ζ
1

)
(ϕ1(1− ϕ1 ))

, where

Ỹkβ (ϕ1, ζ) =
(
Ykβ (ϕ1) (1− ϕ1)ζ+1/2 −

(
Ykβ (1)− Ykβ (ϕ1)

)
ϕ
ζ+1/2
1

)
,

and with Ykβ (ϕ1) containing the first kβ elements of the vector of independent Brownian motions,

Y (ϕ1). Then, the following convergence results hold for all ϕ1 ∈ Φ,

Wn(ϕ1) ⇒ Qkβ (ϕ1, ζ) , Pn(1)
D−→ sup

ϕ1∈Φ
Qkβ (ϕ1, ζ).

Despite the challenging setting, where all variables may exhibit different degrees of fractional inte-

gration and the system may feature cointegration, as conveyed by scenarios in (i)-(iii), the LCM-based

sup-Wald test, Pn(1), enjoys asymptotic properties under the null hypothesis, which are identical to

those achieved by the corresponding test in Andrews (1993) under weak dependence. This readily

follows as,

Qkβ (ϕ1, ζ)
D
=

(
Ykβ (ϕ1)− Ykβ (1)ϕ1

)′ (
Ykβ (ϕ1)− Ykβ (1)ϕ1

)
ϕ1 (1− ϕ1 )

, (20)

which is the tied-down Bessel process describing the asymptotic distribution theory in Andrews (1993,

Theo. 3). The standardization in the construction of Wn(ϕ1), thus, eliminates any potential changes

in the asymptotic distribution of the LCM-based sup-Wald test stemming from the, possibly, non-

standard convergence rate of LCM, as signified by ζ, where ζ = 1/2 corresponds to
√
n. Consequently,

our test is readily implementable in practice, with critical values provided in Andrews (1993, Table 1).

Moreover, one may apply the identical arguments, as for Theorems 4-5 and Corollary 2 of the latter,

due to the LCM Gaussian limit theory, to show that Pn(1) has local power against alternatives of the

form HA2. To obtain equivalent results, we simply set Sn(b) =
√
mλ−bm instead of

√
n, in line with the

differences in convergence rates between LCM and GMM in their respective settings.

Remark 2. Due to the standard asymptotic behavior of the Wald test statistics, Wn(ϕ1), one may

also consider exp-Wald and mean-Wald tests in the spirit of Andrews & Ploberger (1994), using the

former as building blocks. However, Kim & Perron (2009) show that tests for structural change based
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on either sup-Wald or exp-Wald formulations compares favorably to mean-Wald tests as well as tests

based on Langrange Multiplier (LM) and Likelihood Ratio (LR) measures, according to an approximate

Bahadur measure of efficiency. Hence, we abstain from pursuing such extensions here.

4.2 Testing for Multiple Structual Changes with Unknown Break Points

The LCM-based sup-Wald test in equation (19) is asymptotically valid against alternative hypotheses

involving multiple structural changes, as shown Andrews (1993, Theo. 4-5, Cor. 2). Its finite sample

power may be lacking, however; see, e.g., Vogelsang (1997). To alleviate concerns about the latter,

we amend our LCM approach with the tests for multiple structural changes in Bai & Perron (1998),

designed in weakly dependent settings and absent cointegration, to explicitly account for (q+1) regimes

with unknown break dates. To this end, let us define,

R
(
β̂, q

)
≡
(
β̂(`,m, 0)′ − β̂(`,m, 1)′, . . . , β̂(`,m, q − 1)′ − β̂(`,m, q)′

)′
, (21)

A
(
β̂, q

)
≡ diag

(
ÂVARβ(0, b) + ÂVARβ(1, b), . . . , ÂVARβ(q − 1, b) + ÂVARβ(q, b)

)
, (22)

of dimensions qkβ × 1 and qkβ × qkβ, respectively. Then, we apply our subsample LCM framework

and generalize the Wald statistic and sup-Wald test in equation (19) as,

Pn(q) ≡ sup
ϕ∈Φ
Wn(ϕ), Wn(ϕ) = R

(
β̂, q

)′A(β̂, q)−1R
(
β̂, q

)
/ (qkβ), (23)

This class of tests requires specifying the number of structural changes under the alternative, which

may not be desirable in some applications. Hence, as also considered by Bai & Perron (1998), we

further introduce a “double maximum” version of our LCM-based sup-Wald test,

Dn(qmax) ≡ max
1≤q≤qmax

Pn(q), (24)

for some upper bound qmax. The main advantage of “double maximum” tests, as thoroughly discussed

by Bai & Perron (2006) in a weakly dependent setting, is that they alleviate problems with non-

monotonic power, if the true number of breaks is larger than what was implemented in the testing

procedure, e.g., if we implement Pn(1) when q = 2. Moreover, the power of the former is almost as

high as what can be achieved by Pn(q) in cases where q is known.

Next, as for our sup-Wald test in equation (19), the properties of the Pn(q) and Dn(qmax) classes

of structural change tests are characterized under the null hypothesis in the following theorem.

Theorem 4. Suppose the conditions of Theorems 1-2 hold. Let ζ = κ/2 + (1− κ)b and

Qkβ (ϕ, ζ, g) =
Ỹkβ (ϕ, ζ, g)′ Ỹkβ (ϕ, ζ, g)(

(ϕg+1 − ϕg)2ζ + (ϕg+2 − ϕg+1)2ζ
)(

(ϕg+1 − ϕg)(ϕg+2 − ϕg+1)
) , where

Ỹkβ (ϕ, ζ, g) =
(

∆Ykβ (ϕg+1)(ϕg+2 − ϕg+1)ζ+1/2 − ∆Ykβ (ϕg+2)(ϕg+1 − ϕg)ζ+1/2
)
,
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for g = 0, . . . , q − 1, and with ∆Ykβ (ϕg+1) = Ykβ (ϕg+1) − Ykβ (ϕg), with Ykβ (ϕg) containing the first

kβ elements of the vector of independent Brownian motions, Y (ϕg). Moreover, define,

Qkβ (ϕ, ζ, q) =
1

qkβ

q−1∑
g=0

Qkβ (ϕ, ζ, g) .

Then, the following convergence results hold, for all ϕ ∈ Φ,

Pn(q)
D−→ sup

ϕ∈Φ
Qkβ (ϕ, ζ, q) , Dn(qmax)

D−→ max
1≤q≤qmax

sup
ϕ∈Φ
Qkβ (ϕ, ζ, q) .

Theorem 4 shows that the LCM-based sup-Wald tests for multiple structural breaks with unknown

break dates deliver an asymptotic distribution theory, which is equivalent to the corresponding limits

in Bai & Perron (1998, Proposition 6), despite our more challenging setting. The latter is readily seen

by each partition satisfying distributional equivalence with a multi-break extension of representation

(20). Hence, we may apply the critical values in Bai & Perron (1998, Table 1) to implement our

LCM-based tests. Moreover, the power of the latter against alternatives of the form HA2 follow by

the inequalities Pn(1) ≤ 2Pn(2) ≤ qPn(q), and consistency of our test in equation (19).

The results in Theorems 3 and 4 significantly broaden the applicability of sup-Wald tests for struc-

tural changes and parameter instability. Contrary to prior studies, such as Andrews (1993), Hansen

(1992), Bai & Perron (1998), Hansen (2003), and Kerjiwal & Perron (2010), we accommodate the

following dynamic features: (i) all variables of the system may be fractionally integrated of potentially

different orders; (ii) the predictive relation may be fractionally cointegrated, covering I(1)-I(0) cointe-

gration as a special case; (iii) we remain agnostic about the persistence and cointegration properties,

ex ante.4 These empirically relevant extensions are rendered feasible by our utilization of LCM, and

its Gaussian limit theory, in the design of the tests.

Remark 3. An interesting alternative to applying the critical values in Andrews (1993) and Bai & Per-

ron (1998) for structural change testing is to use bootstrap techniques such as those in Diebold & Chen

(1996) and Hansen (2000), who document favorable size properties of their tests. Moreover, Georgiev

et al. (2018) and Boldea, Cornea-Madeira & Hall (2019) show that bootstrap procedures are critical

for valid testing of parameter instability in OLS regressions, if the predictors are persistent, modeled

as local-to-unity processes, and endogenous, respectively. In contrast, we accommodate persistence

through reliance on the flexible class of fractionally integrated processes, cointegration and endogenous

regressors (cf., Remark 1). The primary distinction of our approach from theirs is that they correct

biases in the asymptotic theory for OLS in such settings, whereas we eliminate corresponding biases

via the LCM procedure, rendering our asymptotic theory Gaussian.

4See also the recent review in Casini & Perron (2019) for a discussion of the state of the literature.
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5 Simulation Study

This section complements the asymptotic analysis by exploring the finite sample properties of the

LCM-based sup-Wald test for parameter instability, Pn(1), through realistic simulations. Specifically,

Section 5.1 describes the simulation setup, which is designed to mimic quantitative features of our

empirical application in Section 6. Whereas Section 5.2 and 5.3 provide the main numerical results,

we have included additional tables in Appendix B to supplement the analysis

5.1 Simulation Setting

We consider testing for parameter instability in an setting reminiscent of the ones in Hong (1996),

Shao (2009) and Andersen & Varneskov (2020a), albeit allowing for time-varying predictive power of

the regressors. In particular, we restrict attention to the “pure” structural break model, Bt = βt,

and consider the univariate regressor case, thus writing xt−1 and βt for the predictor and regression

coefficient, respectively. Then, we generate fractional ARMA(1, 0) processes as,

(1− L)d1(yt − µy) = βt ut−1 + (1− L)bηt, (1− L)d2(xt−1 − µx) = ut−1, (25)

where ηt and ut−1 are AR(1) processes with persistence parameters φη = φu = 0.2 and mean-zero

Gaussian errors with volatility ση = 0.5 and σu = 1, respectively. Moreover, we fix the means

µy = µx = 1/2, the integration orders d1 = d2 = d and consider selections d ∈ {0.30, 0.60, 1.00} as

well as models with (b = d) and without (b = 0) fractional cointegration. These configurations nest

long memory regressions with variables that are (asymptotically) stationary, non-stationary and it

covers standard unit root regressions and cointegration models. For each specification, we consider

sample sizes n ∈ {350, 700}, noting that the case d = b = 0.60 and n = 350 corresponds well with our

empirical application to the IV-RV forecast relation in Section 6.

To analyze the size and power properties of Pn(1), we simulate the system (25) under the null

hypothesis without breaks in the predictive relation H0 : βt = β = 1 as well as examine various alter-

natives. For specificity, the alternative hypotheses stipulate a single break in the regression coefficient,

that is, we consider parameters of the form βt(ϕ1) = β01{t∈T0(ϕ1)} + β11{t∈T1(ϕ1)}, for different values

of the break fraction, ϕ1, and regime-dependent coefficients, β0 and β1. Our baseline set of alterna-

tives feature β0 = 0.50, β1 = 1.50 as well as H1 : ϕ1 = 0.25, H2 : ϕ1 = 0.50, and H3 : ϕ1 = 0.75,

thus capturing sizable breaks in the beginning, middle and end of the sample. In addition, we con-

sider an equivalent set of small break alternatives, where β0 = 0.90, β1 = 1.10 and H4 : ϕ1 = 0.25,

H5 : ϕ1 = 0.50 and H6 : ϕ1 = 0.75, thus providing a very challenging set of tests in finite samples.5

We need to select an estimator of the fractional integration order along with a few tuning parameters

5In addition to the single break models, we have considered three different alternatives. First, βt = 0.50× 1{t≤b0.25nc} +
1{b0.25nc<t≤b0.75nc} + 1.50 × 1{t>b0.75nc} has two structural breaks. Second, βt = 0.50(1 − t/n) + 1.50(t/n) captures
a trending regression coefficient. Finally, we have examined a predictive relation with regression parameter exhibiting
periodic fluctuation of the form βt = 1 + sin(t/(n/10)). The power results are indistinguishable from those reported for
the baseline set of alternatives and, thus, omitted for brevity.
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to implement the LCM-based sup-Wald test. First, we carry out the fractional filtering and estimation

of the cointegration strength parameter using the TELW estimator of Andersen & Varneskov (2020a),

as it applies to all of our testing scenarios (i.e., values of d and b).6 To this end, we follow the latter and

use trimming `d = bn0.20c and a bandwidth md = bn0.75c. In addition, we will initially use the tuning

parameters ν = νG = 0.20, κ = 0.70 and κG = 0.90 for all configurations of the predictive model. To

verify that these selections, indeed, correspond well with the restrictions implied by Assumption T

and equation (12), we have explicated the requisite bounds on the trimming and bandwidth rates for

the different values of d and b in Table 1. Moreover, we examine to what extend the tuning parameter

selections are robust in Section 5.3. Finally, we set ε = 0.20, controlling the length of the search space

for the sup-Wald test, Φ, the nominal size of the test to 5% (again, see Andrews (1993, Table 1) for

critical values) and consider simulations with 1000 replications.

5.2 Simulation Results

The size and power results for the baseline alternatives are reported in Table 2 and deserve a few

comments. First, the size of the test in the absence of cointegration (b = 0) is 6.9-8.5%, thus close

to the nominal 5% level. Moreover, it improves for the cointegration case (b = d) when d ≤ 0.60 due

to a faster rate of convergence of the LCM estimator (cf. Theorem 1), whereas the test is slightly

conservative for unit root persistence, d = 1.00. Second, the test is very powerful, as evidenced by

the 100% rejection rates for all baseline alternatives. The corresponding rejection rates for the small

break alternatives in Table 3 underscores its considerable finite sample power, which improves when

the sample size is increased from n = 350 to n = 700. These results further show that the test has

higher power to detect breaks in the middle of the sample than in the beginning or the end, for which,

however, the rejection rates remain high. Finally, the simulations show that the power is generally

higher for cointegrating regressions, not surprisingly, as these induce a faster rate of convergence.

The supplementary tables in Appendix B show that the full sample LCM estimate converges to

a weighted average of the regime-dependent coefficients under the break alternative and that breaks

generates higher variance of the coefficient estimates. Moreover, they demonstrate that the LCM-

based sup-Wald procedure precisely estimates the break fraction for the baseline alternatives, yet have

a bias for the small break alternatives, consistent with the power properties of the test.

5.3 Tuning Parameter Robustness

To assess the robustness of the LCM-based sup-Wald test for parameter instability, Pn(1), with re-

spect to its tuning parameters, we consider various combinations with ν ∈ {0.10, 0.20, 0.30}, κ ∈
{0.50, 0.60, 0.70, 0.75} and κG ∈ {0.75, 0.80, 0.90}, while fixing the remaining TELW configurations.

Moreover, in order keep the exposition simple, we focus on predictive regressions where d = 0.60 and

n = 350, which, as mentioned above, is closely aligned with our empirical application below, and we

6Note that estimation of the integration order and fractional filtering are performed using the full sample of observations
before implementing the sup-Wald testing procedure on different partitions of the observations.
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consider settings with (b = d) and without (b = 0) cointegration. The results are provided in Tables 4

and 5 for the baseline and small break alternatives, respectively. Whereas the properties of the sup-

Wald testing procedure is robust to changes in the trimming rate, ν, as well as the bandwidth of the

long-run covariance estimator, κG, we find the test properties to display some sensitivity to the MBLS

bandwidth parameter, κ. Specifically, when κ = 0.50, we observe both size distortions and lower power

of the procedure. The finite sample properties improve for κ = 0.60, and the test performs very well

when κ ≥ 0.70. This pattern is not particularly surprising given that the effective number of Fourier

frequencies used to construct the MBLS estimator and sup-Wald test statistic over each subinterval

is substantialler smaller when κ = 0.50 compared with κ = 0.70, as evidence by the corresponding

“effective” full sample sizes of frequencies b3500.50c = 18 and b3500.70c = 60, respectively.

Generally, we find the LCM-based sup-Wald test, Pn(1), to perform very well across realistic persis-

tence configurations and sample sizes. Moreover, the procedure is robust to changes tuning parameters,

except when selecting the bandwidth parameter, κ, too low.

6 Empirical Analysis: Stability of the IV-RV Relation

As detailed in the introduction, and going back to Andersen & Bollerslev (1997), many empirical

studies have documented the presence of long memory persistence in RV. Moreover, there is an ex-

tensive literature finding: (i) IV is an unbiased predictor of future RV after correcting for various

methodological issues, and it subsumes the information content in historical RV, e.g., Christensen

& Prabhala (1998) and Jiang & Tian (2005); (ii) IV and RV are fractionally cointegrated and their

long-run relation is unbiased, e.g., Christensen & Nielsen (2006) and Bandi & Perron (2006); (iii) the

fractionally cointegrating equilibrium between IV and RV carry information about the variance risk

premium and forecast asset returns, e.g., Bollerslev et al. (2013) and Li et al. (2020).

In this section, we revisit the long-run relation between IV and RV by first examining the relative

efficiency of the long-run information in IV for RV, comparing it to forecasts constructed from a long-

memory model exploiting high-frequency data, thereby providing a more challenging benchmark than

historical volatility, which the literature typically has relied upon. Second, we examine the stability

of the fractional cointegrating relations using our new LCM-based sup-Wald tests. Finally, we explore

the impact of “instability” on the forecasting prowess of the variance risk premium for returns.

6.1 Data and Summary Statistics

Our main dataset consists of three monthly series; implied volatility (IV) and realized volatility (RV)

on the S&P 500 as well as a long-memory (LM) forecast of RV. We construct the RV series from one-

minute observations of S&P 500 futures over January 1988 - December 2019. On each trading day, we

use the flat-top realized kernel estimator of Varneskov (2016, 2017) to compute the intra-day quadratic

variation, and we add the squared close-to-open return from the preceding trading day to account for

the overnight return variation. We construct the RV series by summing all daily quadratic variation
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estimates across the trading days in a given month, then apply a square-root transform, and annualize.

The IV is proxied by the VIX. Finally, the LM forecasts are obtained using an ARFIMA(1, d, 0) model.

Specifically, we fit the model to daily log-transformed quadratic variation estimates and apply a log-

normal correction to map the forecast back into levels. The latter is motivated by Andersen, Bollerslev,

Diebold & Ebens (2001) and Andersen, Bollerslev, Diebold & Labys (2001, 2003), who show that RV is

approximately log-normal and that long-memory models capture their dynamic properties well.7 The

ARFIMA model is estimated using a two-year rolling window.8 The first two years of the sample are

used to initialize the LM forecasts, so our final dataset spans January 1990 through December 2019,

featuring n = 360 monthly observations. The series and their autocorrelation functions are depicted

in Figure 1. Clearly, they are all highly persistent and strongly comoving, consistent with a large

literature stipulating that IV and RV are fractionally cointegrated.

We further assess the properties of the series in Table 6, providing standard unconditional summary

statistics and estimates of their degree of fractional integration. For the latter, we exploit the TELW

estimator of Andersen & Varneskov (2020a) and the local polynomial Whittle with noise (LPWN)

estimator by Frederiksen, Nielsen & Nielsen (2012), which is more robust against short-memory dy-

namics and measurement errors. The TELW estimator is implemented using a trimming parameter

`d = bn0.30c and a bandwidth md = bn0.75c, whereas the LPWN estimator is implemented with a

bandwidth md = bn0.85c and short-memory polynomials of orders zero and one. From Table 6, we

observe that the unconditional mean of IV is larger than for RV, consistent with the presence of a

volatility risk premium; see, e.g., Carr & Wu (2009) and Bollerslev et al. (2011). Second, RV is more

volatile and has fatter tails than LM and IV, consistent with the former being a realization and the

latter capturing volatility expectations. Finally, we confirm that the series are fractionally integrated,

with orders falling in the range 0.5-0.6, when assessed through their LPWN estimates.

6.2 Econometric Issues and Implementation

There is an extensive literature exploring the IV–RV relation and correcting for various methodological

issues. Although our exposition focuses on VIX, our adopted proxy for the risk-neutral expectation

of IV, the following decomposition summarizes the econometric issues more broadly. We define the

volatility risk premium for the coming month to be the difference between the expectation of RV under

the risk-neutral measure, Q and the objective measure, P, yielding,

VIXt = EQ
t

[
RVt+1

]
+ Et = EP

t

[
RVt+1

]
+ EQ

t

[
RVt+1

]
− EP

t

[
RVt+1

]︸ ︷︷ ︸
volatility risk premium

+ Et , (26)

where Et captures a Jensen’s inequality bias from the square-root transformation and measurement

errors in VIX, generated by a (time-varying) truncation of the strike range in the construction of the

7To corroborate this, we report unconditional summary statistics for both RV and log-RV in Table 6 below, which show
that the logarithmic transformation alleviates skewness and kurtosis, rendering the series much closer to Gaussian.

8We have tested several different window lengths. The results are robust and, thus, omitted for brevity.
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index and observation errors in the underlying options; see, e.g., Jiang & Tian (2005), Andersen &

Bondarenko (2007), Andersen, Bondarenko & Gonzalez-Perez (2015) and Andersen, Fusari, Todorov

& Varneskov (2020).9 Hence, we have two sources of errors; one arising from standard measurement

errors and another from the volatility risk premium. The latter is known to be positive on average (per

our definition above), correlated with the level of volatility and weakly dependent; see, e.g., Bandi &

Perron (2006), Chernov (2007), Bollerslev, Tauchen & Zhou (2009), Carr & Wu (2009) and Bollerslev

et al. (2011). Next, we complement equation (26) with a decomposition of the latent P-measure

forecast of RV,

EP
t

[
RVt+1

]
≡ Vt,1 + Vt,2 , (27)

where Vt,1 ∈ I(dVIX) and Vt,2 ∈ I(dRES) with 0 ≤ dRES < dVIX. That is, the latent RV forecast embedded

in VIX has a two-factor structure, and the most persistent component is fractionally integrated, as

documented in Table 6.10 The decompositions imply that VIX is fractionally integrated of order

I(dVIX), with the remaining components being of strictly smaller orders (often assumed to be I(0)).

This motivated Bandi & Perron (2006), Christensen & Nielsen (2006), Nielsen (2007), Kellard et al.

(2010), and Nielsen & Frederiksen (2011) to assess whether IV is “long-run unbiased” for RV, i.e.,

whether the most persistent forecast component, Vt,1, achieves a coefficient BIV = 1. These studies

take advantage of the differing persistence among the VIXt components and use NBLS-type estimators

to identify the accuracy of the most persistent component. By the same logic, Bollerslev et al. (2011),

Bollerslev et al. (2013), Osterrieder et al. (2019) and Li et al. (2020) specify fractional cointegration

models between IV and RV to estimate the volatility risk premium component associated with this

long-run equilibrium and use it to forecast asset returns.

While these studies, indeed, demonstrate that IV is long-run unbiased, they do not assess the effi-

ciency of its predictions for the low-frequency movements in RV.11 Our analysis goes one step further

by examining the relative information embedded in the persistent IV component against a competing

ARFIMA forecast constructed using high-frequency data, in addition to their associated biases. More-

over, we use our new testing framework to assess whether these long-run relations, exploring bias and

efficiency, are invariant over time. To this end, we test for parameter (in)stability using our new LCM-

based sup-Wald test, Pn(1). As explained above, the LCM procedure is robust to errors-in-variables

(cf., Remark 1), as long as they are less persistent than the signal of interest. Hence, it facilitates

robust inference and testing in this fractional cointegration setting.

We implement the LCM procedure using the LPWN estimator in the fractional filtering step with a

bandwidth bn0.85c, since it achieves a slightly faster convergence rate than TELW, and all the variables

have d < 1. In addition, we follow existing semi-parametric studies of fractional cointegration and

take the average integration order as a global d estimate. Table 6 verifies that this is innocuous, as

9The Jensen’s inequality bias arises, because VIX2t captures expectations about EQ
t

[
RV2t+1

]
.

10Naturally, EP
t

[
RVt+1

]
may have more than two components, as long as Vt,1 remains the more persistent one.

11Among others, Christensen & Prabhala (1998), Jiang & Tian (2005) and Chernov (2007) find IV to subsume the infor-
mation content in historical volatility for S&P 500, applying inference techniques resting on weakly dependent dynamics.
Chraoenwong et al. (2009), Taylor et al. (2010) and Cheng & Fung (2012) extend these findings to other assets.
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the individual estimates are close for LPWN. The MBLS estimator in the second step is configured

with trimming and bandwidth rates (ν, κ) ∈ {(0.2, 0.5), (0.2, 0.6), (0.3, 0.6), (0.3, 0.7)}, both for the full

sample fractional cointegration analysis and for the LCM-based sup-Wald testing. Whereas the choice

of ν is well-aligned with the recommendation in Andersen & Varneskov (2020a), the bandwidth rate

is slightly smaller to emphasize robustness rather than efficiency, when estimating the cointegrating

relation, by alleviating the impact of high-frequency components. These choices are in line with the

values considered in the simulation study as well as the bounds provided by Table 1.12

In computing the asymptotic variance, we further set νG = ν and κG = κ+ 0.2, and use the TELW

estimator to find b with corresponding trimming and bandwidth rates, νb = 0.30 and κb = 0.75. The

Pn(1) test is applied with ε = 0.2, determining the search space Φ, to initialize the LCM estimates in

the beginning and the end of the sample. The test results are, however, robust to this selection.

6.3 Implied and Realized Volatility

First, we carry out a full sample fractional cointegration analysis of the predictive relation between

RV and either IV or LM. The regression results, assessing whether the two respective forecasting

procedures are long-run unbiased, are reported in Table 7. The IV results, in particular, confirm the

findings from the literature, demonstrating that its relation to RV is fractionally cointegrated with

strength 0.4 ≤ b ≤ 0.5. Moreover, we cannot reject that IV is long-run unbiased, BIV = 1. Note that

the bounds on b imply convergence rates of Sn(b) � nκ/2+ 2
5

(1−κ) and Sn(b) �
√
n, respectively, as

cointegration improves on the semi-parametric rate,
√
m, obtained for b = 0. The corresponding LCM

results for the LM forecasts similarly demonstrate fractional cointegration with equivalent strength.

However, these forecasts may be slightly upward biased at the lowest frequencies, as the Wald test

rejects BLM = 1 at a 5% significance level, when κ < 0.7. This bias disappears for κ = 0.7.

Second, we provide full sample multivariate predictive regression results in Table 8. These show the

LM forecasts emerging as more efficient than IV for capturing the low-frequency movements in RV. In

particular, we reject BLM = BIV at a 5% significance level for all combinations of tuning parameters

and even fail to reject (BLM,BIV) = (1, 0) in two of the four configurations. While these results appear

to contradict Christensen & Prabhala (1998), Jiang & Tian (2005) and Chernov (2007), who find

IV to be informationally efficient when assessed against historical volatility, it is important to note

the subtle difference in interpretation. Our analysis only speaks to the relative quality of the low-

frequency signals in the variables. Hence, IV may have important high-frequency information, which

is not captured by our cointegration analysis. Our empirical results, on the other hand, demonstrate

that the most persistent component of IV may be well-approximated by an ARFIMA(1, d, 0) process,

generating more efficient predictions of the low-frequency variation in RV relative to IV.

Third, we test the stability of the predictive relations using the LCM-based sup-Wald test, with

12Whereas the lower bandwidth provides unbiased, yet less efficient, full sample LCM estimates, as seen in Andersen
& Varneskov (2020a), our simulations show that the sup-Wald test will exhibit poor size properties when κ = 0.50.
However, as the sup-Wald test size and the LCM coefficient estimate are both accurate when κ = 0.70, the use of
multiple bandwidth parameters will allow us to assess robustness across different frequency ordinates.
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results reported in Table 9. Importantly, the test overwhelmingly rejects the null hypothesis (4) for

both univariate and multivariate predictions.13 These rejections imply that full sample coefficient

estimates obtained from the LCM procedure in Tables 7-8 will reflect the average coefficients across

regimes in the sample, as conveyed by Tables 11 and 15 in Appendix B (from the simulation study).

Unfortunately, they will conceal any regime-specific information from the forecasting variables over the

course of the sample. Hence, to explore the nature of the rejections in greater detail, we depict rolling

window LCM coefficient estimates (with 95% confidence bands) in Figure 2. The window length is

five years (n = 60), and LCM is implemented with (ν, κ) = (0.3, 0.6). The figure illustrates parameter

instability associated with the Asian crisis in 1997, the global financial crisis 2008-2009, and the

low-volatility bull-market environment after 2013. In fact, from the rolling multivariate regressions we

observe that both LM and IV carry important low-frequency information about RV during the periods

from 1990 through 2004 and again from 2014 through 2019. However, the low-frequency information

embedded in IV is completely subsumed in the period leading up to and including the financial crisis.

These results have implications for volatility forecasting, indicating a shift in the low-frequency RV

characteristics over the 30-year period, particularly during periods of financial turmoil.

Finally, these results have ramifications for asset pricing and return predictions. Specifically, most

studies measure the volatility risk premium as VRPt = IVt−RVt. Other studies estimate the correspond-

ing cointegrating relation between IVt and RVt to more accurately recover the “long-run” component

of the volatility risk premium; see, e.g., Bollerslev et al. (2011), Bollerslev et al. (2013), Osterrieder

et al. (2019) and Li et al. (2020).14 Our rejection of stability of the cointegration models for RV,

thus, suggest that such measures may convey different information across predictive regimes. That is,

since the equillibrium cointegrating relation and “long-run” risk premium may differ across the sample,

the forecast variable VRPt may contain different information across such regimes, being a mixture of

long- and short-run components. As a simple gauge of this conjecture, we predict monthly returns

for the S&P 500 using the VRPt measure and standard OLS regressions.15 Specifically, we consider

full sample predictions as well as subsamples from 1990.1-2004.12, 2005.1-2013.12 and 2014.1-2019.12,

where IV either provides incremental low-frequency information about RV (first and third interval) or

is subsumed by LM (second interval). Summary statistics for the return and VRPt series are provided

in Table 10 together with the predictive regressions results. Interestingly, we find that all predictive

power from VRPt materializes during the subsample 2005.1-2013.12, where the low-frequency informa-

tion from IV is subsumed by time series forecasts. This suggests that it is the information from IV

associated with high-frequency movements in RV, and thus the short-run component of the volatility

13Hence, despite the size distortions of the sup-Wald test Pn(1) for κ = 0.50, the results using the remaining tuning
parameter configurations provide strongly significant evidence against stability of the cointegration parameter.

14Importantly, this does not change the definition of the volatility risk premium, EQ
t

[
RVt+1

]
− EP

t

[
RVt+1

]
. Indeed, the

alternative ways of constructing the empirical forecast measures reflect an emphasis on identifying different components
of the risk premium; namely, those associated with variation operating at different frequencies.

15Note that we implement the predictive return regressions assuming that both returns and the volatility risk premium are
weakly dependent. A rigorous treatment of return regression using fractionally integrated forecast variables is given by
Andersen & Varneskov (2020b). A related analysis of such issues is beyond the scope of this paper.
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risk premium, which generates significant forecasting power for returns.

Hence, in addition to accommodating regime-dependent low-frequency dynamics in forecasting

models for RV, our empirical results suggests that a potentially fruitful avenue for future research

would be to extend existing asset pricing models with a volatility risk premium to allow for regime-

dependent cointegration between IV and RV as well as corresponding return predictability. Moreover,

since, among others, Bollerslev & Todorov (2011), Andersen, Fusari & Todorov (2015) and Kilic &

Shaliastovich (2019) have shown that the volatility risk premium is mainly associated with downside

risk and/or left-tail jumps, it would be interesting to examine potential parameter instabilities in such

persistent forecast variables as well. Again, this is left for future research.

7 Conclusion

This paper develops parameter instability and structural change tests for predictive regressions in

economic systems governed by persistent vector autoregressive dynamics. Specifically, in a setting

where all – or a subset – of the variables may be fractionally integrated, and the predictive relation

may feature cointegration (possibly unknown, ex-ante), we provide sup-Wald break tests using the

LCM approach of Andersen & Varneskov (2020a). The new tests cover both parameter variation

and multiple structural changes with unknown break dates, and allows for the number of breaks to

be unknown. The adoption of LCM ensures the tests, asymptotically, avoid problems associated with

spurious inference, regression balance and endogenous variation in the predictors, which typically arise

in such settings. We establish limit theory for the tests, showing it coincides with those for standard

break testing procedures in, e.g., Andrews (1993) and Bai & Perron (1998), implying that existing

critical values may be applied, without modification. Hence, the tests are easy to implement.

We apply the new structural change tests to explore the stability of the fractionally cointegrating

relation between option implied and realized volatility. Moreover, we assess the relative efficiency of the

low-frequency information embedded in IV forecasts against a challenging benchmark, a time series

long-memory model-based forecast constructed from high-frequency data. Unlike existing studies,

we find evidence that the IV-RV cointegrating relation is unstable, rejecting the null hypothesis of

parameter stability at all conventional significance levels, and that carefully constructed time-series

forecasts are more efficient than IV in capturing low-frequency movements in RV. Finally, we show

that such parameter instabilities manifest themselves as instabilities in the forecasting relation between

asset returns and the volatility risk premium.
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Tuning Parameter Bounds in Simulations

no cointegration: b = 0 cointegration: b = d

d = 0.30 d = 0.60 d = 1.00 d = 0.30 d = 0.60 d = 1.00

νmin 0.240 0.180 0.125 0.125 + 0.125 + 0.125 +

0.30 (1− κ) 0.60 (1− κ) (1− κ)

νmax κ κ κ κ κ κ

κmin ν ν ν ν ∨ 0.375 ν ∨ 6/11 ν ∨ 2/3

κmax 4/5 4/5 4/5 4/5 4/5 4/5

Table 1: Tuning parameter bounds. This table compiles the lower and upper bounds on the trimming and
bandwidth rates required by Assumption T for the different configurations of d and b considered for the simulation
study in Section 5. Specifically, the bounds are derived using % = 0.75 for the TELW estimator. Moreover, for
simplicity of exposition, the lower trimming rate bound, νmin, is derived under the assumption κ ≥ 1/2 to avoid
the appearance of multiple terms, as in equation (12). The lower bound νmin for d ≤ 0.60 and b = 0 follows
from the first restriction in equation (12), that is, from (3/5 − (2d − b)/5)/2 < ν, and the remaining cases from
(1− %)/2 + b(1− κ) < ν.

Size and Power of the LCM-based Sup-Wald Test: Baseline

no cointegration: b = 0

H0, n = H1, n = H2, n = H3, n =

350 700 350 700 350 700 350 700

d = 0.30 0.0850 0.0690 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

d = 0.60 0.0850 0.0690 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

d = 1.00 0.0850 0.0690 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

cointegration: b = d

H0, n = H1, n = H2, n = H3, n =

350 700 350 700 350 700 350 700

d = 0.30 0.0610 0.0640 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

d = 0.60 0.0610 0.0470 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

d = 1.00 0.0260 0.0200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2: Size and power: Baseline. This table provides size and power results for the LCM-based sup-Wald
test (19), which is robust against general forms of parameter instability. Specifically, the test is implemented using
trimming ` = bnνc, bandwidth m = bnκc and a corresponding covariance estimator bandwidth mG = bnκGc, for
(ν, κ, κG) = (0.2, 0.7, 0.9)′. Robustness towards the tuning parameters is studied in Table 4. As described in the
main text, {yt, xt−1} ∈ I(d), with xt−1 predicting yt. H0 describes the null hypothesis without parameter instability,
i.e., it speaks to test size. H1, H2, H3 describes three baseline predictive models with breaks, thus illustrating the
power of the test. The predictive model is specified with (b = d) and without (b = 0) cointegration. The sample size
is either n = 350 or n = 700, and the nominal test size is 5%. Simulations are implemented with 1000 replications.
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Size and Power of the LCM-based Sup-Wald Test: Small Breaks

no cointegration: b = 0

H0, n = H4, n = H5, n = H6, n =

350 700 350 700 350 700 350 700

d = 0.30 0.0850 0.0690 0.4740 0.7010 0.5840 0.8110 0.4830 0.7160

d = 0.60 0.0850 0.0690 0.4740 0.7010 0.5840 0.8110 0.4830 0.7160

d = 1.00 0.0850 0.0690 0.4740 0.7010 0.5840 0.8110 0.4830 0.7160

cointegration: b = d

H0, n = H4, n = H5, n = H6, n =

350 700 350 700 350 700 350 700

d = 0.30 0.0610 0.0640 0.4870 0.8120 0.6060 0.8770 0.4310 0.7420

d = 0.60 0.0610 0.0470 0.5470 0.8850 0.6320 0.9480 0.4310 0.7930

d = 1.00 0.0260 0.0200 0.4860 0.8960 0.5630 0.9500 0.3370 0.7440

Table 3: Size and power: Small breaks. This table provides size and power results for the LCM-based sup-Wald
test (19), which is robust against general forms of parameter instability. Specifically, the test is implemented using
trimming ` = bnνc, bandwidth m = bnκc and a corresponding covariance estimator bandwidth mG = bnκGc, for
(ν, κ, κG) = (0.2, 0.7, 0.9)′. Robustness towards the tuning parameters is studied in Table 5. As described in the
main text, {yt, xt−1} ∈ I(d), with xt−1 predicting yt. H0 describes the null hypothesis without parameter instability,
i.e., it speaks to test size. H4, H5, H6 describes three predictive models with small breaks, thus illustrating the
power of the test. The predictive model is specified with (b = d) and without (b = 0) cointegration. The sample size
is either n = 350 or n = 700, and the nominal test size is 5%. Simulations are implemented with 1000 replications.

Size and Power of the LCM-based Sup-Wald Test: Tuning Parameters, Baseline

no cointegration: b = 0 cointegration: b = d

(ν, κ, κG) = H0 H1 H2 H3 H0 H1 H2 H3

(0.10, 0.70, 0.90) 0.0710 1.0000 1.0000 1.0000 0.0530 1.0000 1.0000 1.0000

(0.20, 0.70, 0.90) 0.0850 1.0000 1.0000 1.0000 0.0610 1.0000 1.0000 1.0000

(0.30, 0.70, 0.90) 0.0890 1.0000 1.0000 1.0000 0.0750 1.0000 1.0000 1.0000

(0.20, 0.50, 0.90) 0.1580 1.0000 1.0000 0.9990 0.2020 1.0000 1.0000 1.0000

(0.20, 0.60, 0.90) 0.1090 1.0000 1.0000 1.0000 0.0970 1.0000 1.0000 1.0000

(0.20, 0.75, 0.90) 0.0800 1.0000 1.0000 1.0000 0.0450 1.0000 1.0000 1.0000

(0.20, 0.70, 0.75) 0.0800 1.0000 1.0000 1.0000 0.0710 1.0000 1.0000 1.0000

(0.20, 0.70, 0.80) 0.0750 1.0000 1.0000 1.0000 0.0580 1.0000 1.0000 1.0000

Table 4: Size and power: Tuning parameters, baseline. This table provides size and power results for the
LCM-based sup-Wald test (19), which is robust against general forms of parameter instability. Specifically, the test
is implemented using several combinations of the tuning parameters; trimming ` = bnνc, bandwidth m = bnκc and
a corresponding covariance estimator bandwidth mG = bnκGc. As described in the main text, {yt, xt−1} ∈ I(d),
with xt−1 predicting yt. H0 describes the null hypothesis without parameter instability, i.e., it provides size results.
H1, H2, H3 describes three baseline predictive models with breaks, thus speaking to the power of the test. The
predictive model is specified with (b = d) and without (b = 0) cointegration. The sample size is n = 350, the
integration order is d = 0.60, and the nominal test size is 5%. Simulations are implemented with 1000 replications.
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Size and Power of the LCM-based Sup-Wald Test: Tuning Parameters, Small Breaks

no cointegration: b = 0 cointegration: b = d

(ν, κ, κG) = H0 H4 H5 H6 H0 H4 H5 H6

(0.10, 0.70, 0.90) 0.0710 0.4710 0.5780 0.4720 0.0530 0.5360 0.6330 0.4210

(0.20, 0.70, 0.90) 0.0850 0.4740 0.5840 0.4830 0.0610 0.5470 0.6320 0.4310

(0.30, 0.70, 0.90) 0.0890 0.4890 0.5950 0.4970 0.0750 0.5450 0.6420 0.4470

(0.20, 0.50, 0.90) 0.1580 0.3350 0.4150 0.3610 0.2020 0.6530 0.7080 0.5060

(0.20, 0.60, 0.90) 0.1090 0.3750 0.4550 0.3780 0.0970 0.5800 0.6680 0.4620

(0.20, 0.75, 0.90) 0.0800 0.5650 0.6870 0.5670 0.0450 0.5560 0.6590 0.4330

(0.20, 0.70, 0.75) 0.0800 0.4810 0.5880 0.4840 0.0710 0.6280 0.7200 0.5190

(0.20, 0.70, 0.80) 0.0750 0.4770 0.5860 0.4720 0.0580 0.5850 0.6880 0.4800

Table 5: Size and power: Tuning parameters, small breaks. This table provides size and power results for
the LCM-based sup-Wald test (19), which is robust against general forms of parameter instability. Specifically, the
test is implemented using several combinations of the tuning parameters; trimming ` = bnνc, bandwidth m = bnκc
and a corresponding covariance estimator bandwidth mG = bnκGc. As described in the main text, {yt, xt−1} ∈ I(d),
with xt−1 predicting yt. H0 describes the null hypothesis without parameter instability, i.e., it speaks to the test
size. H4, H5, H6 describes three predictive models with small breaks, thus illustrating the power of the test. The
predictive model is specified with (b = d) and without (b = 0) cointegration. The sample size is n = 350, the
integration order is d = 0.60, and the nominal test size is 5%. Simulations are implemented with 1000 replications.

Figure 1: Volatility Series and Autocorrelation Functions (ACFs.) This figure depicts the series and the

ACFs for the realized volatility (RV) series as well as the ARFIMA (LM) and model-free implied volatility (IV)

forecasts. All variables are in square-root form. The sample spans January 1990 through December 2019 (n = 360).

The sample autocorrelation functions are computed for the first 100 lags for each variable in the full sample.
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Summary Statistics for Volatility Measures

mean StDev Skewness Kurtosis TELW LPWN0 LPWN1

RV 0.1509 0.0826 2.9141 18.0456 0.5566
(0.0552)

0.4763
(0.0809)

0.5098
(0.1217)

LM 0.1403 0.0667 1.9758 9.6354 0.6309
(0.0552)

0.6167
(0.0751)

0.6101
(0.1118)

IV 0.1919 0.0737 1.7536 7.7572 0.6957
(0.0552)

0.5904
(0.0720)

0.5423
(0.1181)

log-RV -1.9978 0.4392 0.6457 3.6146 0.5297
(0.0552)

0.5478
(0.0766)

0.5731
(0.1150)

Table 6: Summary statistics. This table displays summary statistics for the realized volatility (RV) series as
well as the ARFIMA (LM) and model-free implied volatility (IV) forecasts. Furthermore, we include corresponding
summary statistics for log-RV, since the monthly LM forecast are generated from daily log-transformed RV estimates.
In addition to the standard unconditional statistics, we present estimates of the fractional integration order for all
variables using the trimmed exact local Whittle (TELW) estimator from Andersen & Varneskov (2020a) and the local
polynomial Whittle with noise (LPWN) estimator from Frederiksen et al. (2012), with standard errors indicated in
parentheses. The TELW estimator is implemented using trimming `d = bn0.30c and bandwidth md = bn0.75c. The
LPWN estimator is implemented with bandwidth md = bn0.85c. The respective numbers for the LPWN signifies
the order of the short-memory polynomial. All variables are in square-root form. The sample spans January 1990
through December 2019 (n = 360).

Univariate LCM Cointegration Analysis

LM, (ν, κ) = IV, (ν, κ) =

(0.2, 0.5) (0.2, 0.6) (0.3, 0.6) (0.3, 0.7) (0.2, 0.5) (0.2, 0.6) (0.3, 0.6) (0.3, 0.7)

B 1.1717
(15.0419)

1.1664
(14.7894)

1.1736
(14.8583)

1.0616
(12.5238)

0.9638
(11.8750)

0.9421
(11.2118)

0.9540
(11.3776)

0.8787
(9.6458)

b 0.4906
(8.8855)

0.4898
(8.8855)

0.4909
(8.8909)

0.4620
(8.3677)

0.4478
(8.1099)

0.4388
(7.9462)

0.4438
(8.0368)

0.4106
(7.4363)

WALD 4.8587 4.4523 4.8322 0.5288 0.1993 0.4750 0.3010 1.7738

p-WALD 0.0275 0.0349 0.0279 0.4671 0.6552 0.4907 0.5832 0.1829

Table 7: Univariate LCM analysis. This table displays results from a univariate LCM analysis, where RV is
predicted using either ARFIMA (LM) or model-free implied volatility (IV) forecasts. Specifically, the coefficient
estimate and associated t-statistic (in parenthesis) is provided along with a TELW estimate of the fractional coin-
tegration strength, b, and associated t-statistics (in parenthesis) and, finally, a Wald test of B = 1 together with its

p-values. The results are provided for B̂(`,m), where several combinations of trimming ` = bnνc and bandwidth
m = bnκc parameters are considered. The TELW estimator is implemented as described in Table 6. All variables
are in square-root form. The sample spans January 1990 through December 2019 (n = 360).
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Multivariate LCM Cointegration Analysis

(ν, κ) = BLM BIV b W1 p-W1 W2 p-W2 W3 p-W3

(0.2, 0.5) 1.0627
(6.1677)

0.0969
(0.6130)

0.5077
(9.1946)

4.6694 0.0968 38.198 0.0000 11.783 0.0006

(0.2, 0.6) 0.8389
(6.4918)

0.2905
(2.2244)

0.5097
(9.2310)

5.8705 0.0531 42.219 0.0000 6.3382 0.0118

(0.3, 0.6) 0.8170
(6.3337)

0.3198
(2.4524)

0.5125
(9.2812)

6.9762 0.0306 40.132 0.0000 5.2258 0.0223

(0.3, 0.7) 0.9232
(8.1353)

0.1326
(0.9696)

0.4813
(8.7168)

0.9401 0.6250 67.009 0.0000 14.732 0.0001

Table 8: Multivariate LCM analysis. This table displays results from a multivariate LCM analysis, where RV
is predicted using ARFIMA (LM) and model-free implied volatility (IV) forecasts. The coefficient estimates and
t-statistics (in parentheses) are provided along with a TELW estimate of the fractional cointegration strength, b,
and associated t-statistics (in parenthesis). Finally, the Wald test statistics and p-values from the three hypotheses
(BLM,BIV) = (1, 0), (BLM,BIV) = (0, 1) and BLM = BIV are reported, labeled W1, W2 and W3 as well as p-W1, p-

W2 and p-W3, respectively. The results are provided for B̂(`,m), where several combinations of trimming ` = bnνc
and bandwidth m = bnκc parameters are considered. The TELW estimator is implemented as in Table 6. All
variables are in square-root form. The sample spans January 1990 through December 2019 (n = 360).

Testing Stability of IV-RV Relations

Sup-Wald test, (ν, κ) =

(0.2, 0.5) (0.2, 0.6) (0.3, 0.6) (0.3, 0.7)

LM 16.5755∗∗∗ 19.3363∗∗∗ 19.6658∗∗∗ 15.8335∗∗∗

IV 9.4495∗∗ 10.7750∗∗ 13.7734∗∗∗ 11.3375∗∗

LM + IV 25.7693∗∗∗ 41.4712∗∗∗ 37.5787∗∗∗ 28.1861∗∗∗

Table 9: Stability testing. This table displays results of the sup-Wald test for stability of univariate and
multivariate LCM cointegrating regressions for RV. The latter is predicted using either ARFIMA (LM) and/or
model-free implied volatility (IV) forecasts. Specifically, the sup-Wald test is implemented using ε = 0.2. The
critical values of the test may be found in Andrews (1993, Table 1) for both univariate and multivariate regressions,

with degrees of freedoms equal to k = 1 and k = 2, respectively. The results are provided for B̂(`,m), where several
combinations of trimming ` = bnνc and bandwidth m = bnκc parameters are considered. The TELW estimator is
implemented as described in Table 6, and the variables are fractionally filtered using the full-sample global estimate
of the integration order prior to sample splits and MBLS estimation. All variables are in square-root form. The
sample spans January 1990 through December 2019 (n = 360). Finally, ∗∗ and ∗∗∗ signify rejection of the null
hypothesis, H0, of parameter stability at the 5% and 1% significance level, respectively.
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Figure 2: LCM parameter estimates. This figure depicts rolling window LCM estimates and 95% confidence

bands from regressions of realized volatility (RV) series on ARFIMA (LM) and model-free implied volatility (IV)

forecasts. All variables are in square-root form. The sample spans January 1990 through December 2019 (n = 360).

The window length is 5 years (n = 60), and LCM is implemented with (ν, κ) = (0.3, 0.6).

Return Predictions using VRP

Panel A: Summary mean StDev Skewness Kurtosis

returns 0.0063 0.0412 -0.8109 4.7860

VRP 0.0407 0.0376 -1.5217 11.0565

Panel B: Regressions T T1 T2 T3
constant −0.0003

(−0.0945)
0.0051
(1.1293)

−0.0093
(−1.8588)

0.0083
(1.5307)

BVRP 0.1641
(2.5570)

0.0478
(0.6217)

0.3430
(4.9452)

−0.0191
(−0.1656)

adj. R2 0.0170 -0.0098 0.1009 -0.0287

Table 10: Return regressions. This table displays summary statistics for monthly S&P 500 returns and volatility
risk premium (VRP) estimates in Panel A along with standard predictive return regression results in Panel B.
Specifically, the latter is based on OLS estimates and the heteroskedasticity and autocorrelation consistent (HAC)
inference procedure by Andrews (1991) using the Parzel kernel and a bandwidth b4(n/100)2/9c. The summary
statistics and regressions results for “T ” are based on the full sample from January 1990 through December 2019
(n = 360). Regression results are also provided for three subsamples from 1990.1-2004.12, 2005.1-2013.12 and
2014.1-2019.12, labeled T1, T2 and T3, respectively. These subsamples correspond approximately to the periods in
Figure 2, where the multivariate coefficient estimate on IV is positive, turns negative, and then back to positive.
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A Proofs

This section contains the proofs of the asymptotic results in the paper. Before proceeding, we introduce

some notation. For a generic vector V , let V (i) index the ith element, and, similarly, for a matrix

M , let M(i, q) denote its (i, q)th element. Moreover, denote by K ∈ (0,∞) a generic constant, which

may take different values from line to line or from (in)equality to (in)equality. Finally, we remark that

sometimes the (stochastic) orders refer to scalars, sometimes to vectors and matrices.

A.1 Proof of Theorem 1

The proof relies heavily on asymptotic results and stochastic bounds from the corresponding proof

of the full sample LCM result in the Online Appendix to Andersen & Varneskov (2020a). We will

henceforth refer to the latter as AVOA (2020). First, by applying the decomposition in AVOA (2020,

equation (A.2)) in conjunction with AVOA (2020, Lemma A.2(b)), we may write,

√
mgλ

−b
mg(g)

∥∥∥B̂(`,m, g)−B − F̂ûû(`,m, g)−1 F̂ (t,1,b)
u,η (1,m, g)

∥∥∥ P−→ 0, (A.1)

for all partitions g = 0, . . . , q, where F̂
(t,1,b)
u,η (1,m, g) is the TDAC between ut−1 and η

(b)
t . Moreover,

by applying AVOA (2020, Lemma A.2(a)), we have,∥∥∥λ−1
mg(g)F̂ûû(`,m, g)−Guu

∥∥∥ P−→ 0, (A.2)

similarly, for all g = 0, . . . , q, where Guu is positive definite by Assumption D1. Next, define

F̃ (t,1,b)
u,η (1,m, g) ≡ 2π

ng

mg∑
j=1

<
(
Ĩ(t,1,b)
uη (λj , g)

)
, Ĩ(t,1,b)

uη (λj , g) = wu(λj , g)λbj(g)e(π/2)biw̄η(λj , g), (A.3)

where wu(λj , g) and wη(λj , g) are the discrete Fourier transforms of ut−1 and η
(b)
t , respectively. More-

over, define some arbitrary vector ψ = (ψ1, . . . , ψk)
′ as well as,

U4(g, b) ≡
∑
t∈Tg

ε′t

t−1∑
s=1

Cn
t−s(g, b)εs, Cn

t (g, b) ≡ 1

2πng
√
mg

mg∑
j=1

λbj(g)χj(g, b), (A.4)

where the sequence of coefficients, χj(g, b), is defined as χj(g, b) ≡
∑k

i=1 λ
−b
mg(g)ψiAj(g, b, i), with

Aj(g, b, i) ≡ <
((
A(λj(g), i)′Ā(λj(g), k + 1)′e−i(t−s)λj(g)

)
e(π/2)bi

)
+ <

((
A(λj(g), k + 1)′Ā(λj(g), i)′ei(t−s)λj(g)

)
e(π/2)bi

)
.
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Then, by applying AVOA (2020, Lemma A.11), we have,

√
mgλ

−b
mg(g)

∥∥∥F̂ (t,1,b)
u,η (1,m, g)− F̃ (t,1,b)

u,η (1,m, g)
∥∥∥ P−→ 0, (A.5)

for all partitions g = 0, . . . , q. Moreover, by using the decomposition in AVOA (2020, Equation (A.16))

in conjunction with the same arguments for their terms U1, U2, U3 and U4, it follows,∣∣∣√mgλ
−b
mg(g)ψ′F̃ (t,1,b)

u,η (1,m, g)− U4(g, b)
∣∣∣ P−→ 0, (A.6)

similarly, for all g = 0, . . . , q. Hence, since Mt(g, b) ≡ ε′t
∑t−1

s=1C
n
t−s(g, b)εs in U4(g, b) is a martingale

difference sequence with respect to the filtration Ft−1, we use the same arguments as for AVOA (2020,

Lemma A.3) to show,

U4(g, b)
D−→ N

(
0,ψ′Guuψ

Gηη
2(1 + 2b)

)
, (A.7)

which applies, again, for all g = 0, . . . , q. Next, asMt(g, b) is a martingale difference sequence and the

sample partitions Tg, g = 0, . . . , q, are non-overlapping, it readily follows that the covariance between

U4(g, b) and U4(h, b) is trivial, when g 6= h. Hence, we may apply (A.1)-(A.7) in conjunction with the

continuous mapping theorem, Slutsky’s theorem and the Cramér-Wold theorem to show that,

√
mλ−bm


B̂(`,m, 0)−B

...

B̂(`,m, q)−B

 D−→ N
(
0, ϑ̃(b) ◦C(b)

)
, where (A.8)

ϑ̃(b) = diag
[
(ϕ1 − ϕ0)2b(κ−1)−κ, . . . , (ϕq+1 − ϕq)2b(κ−1)−κ

]
, (A.9)

holds finite-dimensionally. Next, we establish tightness in the sample partition ϕ of the functional

limit sequence. To this end, let us define Ũ4(g, b) ≡ (
√
m/mgλ

b
mgλ

−b
m )U4(g, b). Then, since it follows

that
√
m/mgλ

b
mgλ

−b
m → (ϕg+1−ϕg)b(κ−1)−κ/2 > 0 for all partitions g = 0, . . . , q on the set Φ, we have

that the convergence results in (A.1), (A.2), (A.5) and (A.6) still apply when taking the supremum

over the partition vector ϕ on the set Φ. Hence, we may study tightness of the joint limit theory via

the re-scaled variable Ũ4(g, b). By the law of iterated expectations and conditional independence of

the martingale difference sequences over disjoint sets of observations, we have

E
[(
Ũ4(g, b)− Ũ4(h, b)

)2
]
≤ K

(
(ϕg+1 − ϕg)b(κ−1)−κ/2 − (ϕh+1 − ϕh)b(κ−1)−κ/2

)2

≤ K((ϕg+1 − ϕg)− (ϕh+1 − ϕh))2b(κ−1)−κ, (A.10)

where the second inequality follows from the algebraic relation |a + b|p − |a|p ≤ |b|p for p ∈ (0, 1),

along with addition and subtraction. Hence, by applying (A.10) together with (A.8) and Ibragimov &

Hasminskii (1981, Theorem 20), the sequence is tight and the joint uniform limit theory holds, whose

representation in terms of independent Brownian motions follows by Wooldridge & White (1988,
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Corollary 4.2), with their conditions D.1 and D.2 being satisfied by (A.8), tightness, and Assumptions

D1-D3. Finally, the mutual consistency condition follows exactly as in AVOA (2020, p. 2).

A.2 Proof of Theorem 2

Part (a) follows by applying Assumption B and AVOA (2020, Lemma A.4) in conjunction with the

continuous mapping theorem for all partition g = 0, . . . , q of every sequence of ϕ on Φ. (b) follows by

applying (a), Theorem 1, the continuous mapping theorem and Slutsky’s theorem.

A.3 Proof of Theorem 3

First, by applying Theorem 1, we may write,

Sn(b)
(
β̂(`,m, 0)− β̂(`,m, 1)

)
⇒ Ckβ (b)1/2

(
Y (ϕ1)

ϕ
ζ+1/2
1

− (Y (1)− Y (ϕ1))

(1− ϕ1)ζ+1/2

)

= Ckβ (b)1/2

(
Y (ϕ1)(1− ϕ1)ζ+1/2 − (Y (1)− Y (ϕ1))ϕ

ζ+1/2
1

ϕ
ζ+1/2
1 (1− ϕ1)ζ+1/2

)
(A.11)

with, again, Sn(b) =
√
mλ−bm , and where Ckβ (b) is the upper-left kβ × kβ submatrix of C(b). Next, by

applying Theorem 2 and the continuous mapping theorem,

Sn(b)2
(
ÂVARβ(0, b) + ÂVARβ(1, b)

)
P−→

(
1

ϕ2ζ
1

+
1

(1− ϕ1)2ζ

)
Ckβ (b) =

(
(1− ϕ1)2ζ + ϕ2ζ

1

ϕ2ζ
1 (1− ϕ1)2ζ

)
Ckβ (b). (A.12)

Hence, the final convergence results follow by combining (A.11) and (A.12) with the continuous map-

ping theorem and Slutsky’s theorem, for both statements.

A.4 Proof of Theorem 4

The result follows by applying the same arguments used to establish Theorem 3 for each partition

g = 0, . . . , q on Φ in conjunction with asymptotic independence between partitions, by Theorem 1.

B Additional Simulation Results

Tables 11-14 provide supplementary results for H0 and the baseline alternatives H1, H2 and H3.

Specifically, they display the mean and standard deviation of the “full sample” LCM coefficient esti-

mates to gauge the impact of breaks under the alternative hypotheses as well as the bias and RMSE

for the estimated break fraction, ϕ1, using the LCM-based sup-Wald procedure. Tables 15-18 contain

corresponding results for the small break alternatives.
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Mean LCM Estimate: Baseline

No Cointegration: b = 0

H0, n = H1, n = H2, n = H3, n =

350 700 350 700 350 700 350 700

d = 0.30 0.9978 0.9983 1.2493 1.2477 0.9955 0.9966 0.7469 0.7463

d = 0.60 0.9978 0.9983 1.2493 1.2477 0.9955 0.9966 0.7469 0.7463

d = 1.00 0.9978 0.9983 1.2493 1.2477 0.9955 0.9966 0.7469 0.7463

Cointegration: b = d

H0, n = H1, n = H2, n = H3, n =

350 700 350 700 350 700 350 700

d = 0.30 0.9984 0.9992 1.2498 1.2486 0.9960 0.9974 0.7473 0.7470

d = 0.60 0.9987 0.9997 1.2500 1.2491 0.9962 0.9979 0.7475 0.7475

d = 1.00 0.9990 1.0002 1.2503 1.2496 0.9965 0.9983 0.7477 0.7479

Table 11: Mean estimate: Baseline. This table reports the mean of the full-sample LCM estimates for different
predictive models. Specifically, the estimator is implemented using trimming ` = bnνc and bandwidth m = bnκc,
for (ν, κ) = (0.2, 0.7)′. As described in the main text, {yt, xt−1} ∈ I(d), with xt−1 predicting yt. H0 describes the
null hypothesis without parameter instability. H1, H2, H3 describes three different baseline predictive models with
breaks. The predictive model is specified with (b = d) and without (b = 0) cointegration. The sample size is either
n = 350 or n = 700, and the nominal test size is 5%. Simulations are implemented with 1000 replications.

Standard deviation of LCM Estimate: Baseline

No Cointegration: b = 0

H0, n = H1, n = H2, n = H3, n =

350 700 350 700 350 700 350 700

d = 0.30 0.0471 0.0366 0.0730 0.0562 0.0802 0.0603 0.0727 0.0545

d = 0.60 0.0471 0.0366 0.0730 0.0562 0.0802 0.0603 0.0727 0.0545

d = 1.00 0.0471 0.0366 0.0730 0.0562 0.0802 0.0603 0.0727 0.0545

Cointegration: b = d

H0, n = H1, n = H2, n = H3, n =

350 700 350 700 350 700 350 700

d = 0.30 0.0388 0.0295 0.0678 0.0521 0.0760 0.0566 0.0673 0.0502

d = 0.60 0.0335 0.0241 0.0648 0.0494 0.0738 0.0545 0.0643 0.0476

d = 1.00 0.0291 0.0185 0.0625 0.0469 0.0722 0.0530 0.0622 0.0456

Table 12: Standard deviation: Baseline. This table provides the standard deviation of the full sample LCM
estimates for different predictive models. Specifically, the estimator is implemented using trimming ` = bnνc and
bandwidth m = bnκc, for (ν, κ) = (0.2, 0.7)′. As described in the main text, {yt, xt−1} ∈ I(d), with xt−1 predicting
yt. H0 describes the null hypothesis without parameter instability. H1, H2, H3 describes three different baseline
predictive models with breaks. The predictive model is specified with (b = d) and without (b = 0) cointegration.
The sample size is either n = 350 or n = 700, and the nominal test size is 5%. Simulations are implemented with
1000 replications.
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Bias of LCM-based Break Fraction Estimate: Baseline

No Cointegration: b = 0

H1, n = H2, n = H3, n =

350 700 350 700 350 700

d = 0.30 -0.0060 -0.0031 0.0002 -0.0001 0.0023 0.0031

d = 0.60 -0.0060 -0.0031 0.0002 -0.0001 0.0023 0.0031

d = 1.00 -0.0060 -0.0031 0.0002 -0.0001 0.0023 0.0031

Cointegration: b = d

H1, n = H2, n = H3, n =

350 700 350 700 350 700

d = 0.30 -0.0042 -0.0014 -0.0008 -0.0005 -0.0012 0.0003

d = 0.60 -0.0031 -0.0010 -0.0021 -0.0026 -0.0027 -0.0013

d = 1.00 -0.0033 -0.0016 -0.0032 -0.0042 -0.0046 -0.0016

Table 13: Break fraction bias: Baseline. This table reports the bias of the break fraction estimates from the
LCM-based sup-Wald test in equation (19). Specifically, the test is implemented using trimming ` = bnνc, bandwidth
m = bnκc, and a corresponding covariance estimator bandwidth mG = bnκGc, for (ν, κ, κG) = (0.2, 0.7, 0.9)′. As
described in the main text, {yt, xt−1} ∈ I(d), with xt−1 predicting yt. H1, H2, H3 describes three different baseline
predictive models with breaks, whose break fractions are 0.25, 0.50 and 0.75, respectively. The predictive model is
specified with (b = d) and without (b = 0) cointegration. The sample size is either n = 350 or n = 700, and the
nominal test size is 5%. Simulations are implemented with 1000 replications.

RMSE of LCM-based Break Fraction Estimate: Baseline

No Cointegration: b = 0

H1, n = H2, n = H3, n =

350 700 350 700 350 700

d = 0.30 0.0160 0.0107 0.0141 0.0088 0.0162 0.0113

d = 0.60 0.0160 0.0107 0.0141 0.0088 0.0162 0.0113

d = 1.00 0.0160 0.0107 0.0141 0.0088 0.0162 0.0113

Cointegration: b = d

H1, n = H2, n = H3, n =

350 700 350 700 350 700

d = 0.30 0.0161 0.0116 0.0159 0.0099 0.0186 0.0120

d = 0.60 0.0147 0.0092 0.0152 0.0099 0.0190 0.0120

d = 1.00 0.0133 0.0080 0.0155 0.0122 0.0216 0.0128

Table 14: Break fraction RMSE: Baseline. This table reports the bias of the break fraction estimates from the
LCM-based sup-Wald test in equation (19). Specifically, the test is implemented using trimming ` = bnνc, bandwidth
m = bnκc and a corresponding covariance estimator bandwidth mG = bnκGc, for (ν, κ, κG) = (0.2, 0.7, 0.9)′. As
described in the main text, {yt, xt−1} ∈ I(d), with xt−1 predicting yt. H1, H2, H3 describes three different baseline
predictive models with breaks, whose break fractions are 0.25, 0.50 and 0.75, respectively. The predictive model is
specified with (b = d) and without (b = 0) cointegration. The sample size is either n = 350 or n = 700, and the
nominal test size is 5%. Simulations are implemented with 1000 replications.
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Mean LCM Estimate: Small Breaks

No Cointegration: b = 0

H0, n = H4, n = H5, n = H6, n =

350 700 350 700 350 700 350 700

d = 0.30 0.9978 0.9983 1.0482 1.0482 0.9976 0.9981 0.9479 0.9480

d = 0.60 0.9978 0.9983 1.0482 1.0482 0.9976 0.9981 0.9479 0.9480

d = 1.00 0.9978 0.9983 1.0482 1.0482 0.9976 0.9981 0.9479 0.9480

Cointegration: b = d

H0, n = H4, n = H5, n = H6, n =

350 700 350 700 350 700 350 700

d = 0.30 0.9984 0.9992 1.0488 1.0491 0.9982 0.9990 0.9485 0.9489

d = 0.60 0.9987 0.9997 1.0491 1.0497 0.9984 0.9995 0.9488 0.9495

d = 1.00 0.9990 1.0002 1.0494 1.0502 0.9987 1.0000 0.9490 0.9500

Table 15: Mean estimate: Small breaks. This table reports the mean of the full-sample LCM estimates for
different predictive models. Specifically, the estimator is implemented using trimming ` = bnνc and bandwidth
m = bnκc, for (ν, κ) = (0.2, 0.7)′. As described in the main text, {yt, xt−1} ∈ I(d), with xt−1 predicting yt. H0

describes the null hypothesis without parameter instability. H4, H5, H6 describes three predictive models with small
breaks. The predictive model is specified with (b = d) and without (b = 0) cointegration. The sample size is either
n = 350 or n = 700, and the nominal test size is 5%. Simulations are implemented with 1000 replications.

Standard deviation of LCM Estimate: Small breaks

No Cointegration: b = 0

H0, n = H4, n = H5, n = H6, n =

350 700 350 700 350 700 350 700

d = 0.30 0.0471 0.0366 0.0483 0.0376 0.0486 0.0375 0.0482 0.0372

d = 0.60 0.0471 0.0366 0.0483 0.0376 0.0486 0.0375 0.0482 0.0372

d = 1.00 0.0471 0.0366 0.0483 0.0376 0.0486 0.0375 0.0482 0.0372

Cointegration: b = d

H0, n = H4, n = H5, n = H6, n =

350 700 350 700 350 700 350 700

d = 0.30 0.0388 0.0295 0.0403 0.0308 0.0408 0.0307 0.0401 0.0302

d = 0.60 0.0335 0.0241 0.0352 0.0257 0.0359 0.0257 0.0350 0.0252

d = 1.00 0.0291 0.0185 0.0309 0.0206 0.0319 0.0210 0.0308 0.0202

Table 16: Standard deviation: Small breaks. This table reports the standard deviation of the full-sample
LCM estimates for different predictive models. Specifically, the estimator is implemented using trimming ` = bnνc
and bandwidth m = bnκc, for (ν, κ) = (0.2, 0.7)′. As described in the main text, {yt, xt−1} ∈ I(d), with xt−1

predicting yt. H0 describes the null hypothesis without parameter instability. H4, H5, H6 describes three predictive
models with small breaks. The predictive model is specified with (b = d) and without (b = 0) cointegration. The
sample size is either n = 350 or n = 700, and the nominal test size is 5%. Simulations are implemented with 1000
replications.
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Bias of LCM-based Break Fraction Estimate: Small Breaks

No Cointegration: b = 0

H4, n = H5, n = H6, n =

350 700 350 700 350 700

d = 0.30 0.1026 0.0712 -0.0023 0.0055 -0.1062 -0.0591

d = 0.60 0.1026 0.0712 -0.0023 0.0055 -0.1062 -0.0591

d = 1.00 0.1026 0.0712 -0.0023 0.0055 -0.1062 -0.0591

Cointegration: b = d

H4, n = H5, n = H6, n =

350 700 350 700 350 700

d = 0.30 0.0772 0.0363 -0.0270 -0.0167 -0.1231 -0.0769

d = 0.60 0.0572 0.0242 -0.0324 -0.0228 -0.1218 -0.0733

d = 1.00 0.0500 0.0136 -0.0342 -0.0175 -0.1300 -0.0564

Table 17: Break fraction bias: Small breaks. This table reports the bias of the break fraction estimates from
the LCM-based sup-Wald test in (19). Specifically, the test is implemented using trimming ` = bnνc, bandwidth
m = bnκc and a corresponding covariance estimator bandwidth mG = bnκGc, for (ν, κ, κG) = (0.2, 0.7, 0.9)′. As
described in the main text, {yt, xt−1} ∈ I(d), with xt−1 predicting yt. H4, H5, H6 describes three predictive models
with small breaks, whose break fractions are 0.25, 0.50 and 0.75, respectively. The predictive model is specified
with (b = d) and without (b = 0) cointegration. The sample size is either n = 350 or n = 700, and the nominal test
size is 5%. Simulations are implemented with 1000 replications.

RMSE of LCM-based Break Fraction Estimate: Small Breaks

No Cointegration: b = 0

H4, n = H5, n = H6, n =

350 700 350 700 350 700

d = 0.30 0.1992 0.1643 0.1532 0.1286 0.2061 0.1449

d = 0.60 0.1992 0.1643 0.1532 0.1286 0.2061 0.1449

d = 1.00 0.1992 0.1643 0.1532 0.1286 0.2061 0.1449

Cointegration: b = d

H4, n = H5, n = H6, n =

350 700 350 700 350 700

d = 0.30 0.1683 0.1051 0.1396 0.1056 0.2201 0.1641

d = 0.60 0.1373 0.0864 0.1307 0.0926 0.2146 0.1587

d = 1.00 0.1273 0.0604 0.1282 0.0783 0.2220 0.1373

Table 18: Break fraction RMSE: Small breaks. This table reports the bias of the break fraction estimates from
the LCM-based sup-Wald test in (19). Specifically, the test is implemented using trimming ` = bnνc, bandwidth
m = bnκc and a corresponding covariance estimator bandwidth mG = bnκGc, for (ν, κ, κG) = (0.2, 0.7, 0.9)′. As
described in the main text, {yt, xt−1} ∈ I(d), with xt−1 predicting yt. H4, H5, H6 describes three different
predictive models with small breaks, whose break fractions are 0.25, 0.50 and 0.75, respectively. The predictive
model is specified with (b = d) and without (b = 0) cointegration. The sample size is either n = 350 or n = 700,
and the nominal test size is 5%. Simulations are implemented with 1000 replications.
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