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1 Introduction

Whether to tax financial transactions or not remains an important open question for public economics
that periodically gains broad relevance after periods of economic turmoil. For instance, the collapse
of the Bretton Woods system motivated James Tobin’s well-known 1972 speech — published as Tobin
(1978) — endorsing a tax on international transactions. The 1987 crash encouraged Stiglitz (1989) and
Summers and Summers (1989) to argue for implementing a transaction tax, while the 2008 financial
crisis spurred further public debate on the issue, leading to a contested tax proposal by the European
Commission. However, with the lack of formal normative studies of this topic, a financial transaction
tax may still seem like “the perennial favorite answer in search of a question”, per Cochrane (2013).

In this paper, I study the welfare implications of taxing financial transactions in an equilibrium model
in which financial markets play two distinct roles. On the one hand, financial markets allow investors to
conduct fundamental trading. Fundamental trading allows the transfer of risks towards those investors
more willing to bear them. It also allows for trading on liquidity or life-cycle considerations, as well
as trading for market-making or limited arbitrage purposes. On the other hand, financial markets also
allow investors to engage in betting or gambling, which I refer to as non-fundamental trading.

I model non-fundamental trading by assuming that investors’ trades are partly motivated by
differences in beliefs, while the planner calculates welfare using a single belief. The discrepancy between
the planner’s belief and investors’ beliefs implies that corrective policies, which can involve taxes or
subsidies depending on the primitives of the economy, are generically optimal. Three main results
emerge from the optimal taxation exercise.

First, the optimal transaction tax can be expressed as a function of investors’ beliefs and equilibrium
portfolio sensitivities to tax changes. Specifically, the optimal tax corresponds to one-half of the difference
between a weighted average of buyers’ beliefs and a weighted average of sellers’ beliefs. Beliefs are the
key determinant of the optimal tax because of the corrective nature of the policy. In general, optimal
corrective policies are designed to correct marginal distortions, which in this case arise from investors’
differences in beliefs.

Second, a simple condition involving the cross-sectional covariance between investors’ beliefs and
their status as net buyers or net sellers in the laissez-faire economy determines the sign of the optimal
corrective policy. Importantly, when investors’ beliefs are not related to their fundamental motives for
trading, this condition implies that the optimal policy is a strictly positive tax. Therefore, as long as the
planner is aware of the existence of some belief-driven trades, under the assumption that these trades
are not related to other fundamental trading motives, a positive transaction tax is optimal.1 Intuitively,
the planner perceives that a reduction in trading, starting from the laissez-faire equilibrium, generates a
first-order welfare gain for those investors who are optimistic buyers and pessimistic sellers.2 When these

1Although independence between trading motives is a plausible sufficient condition for an optimal positive tax, it is by
no means necessary.

2Optimistic (pessimistic) investors are those who believe that the expected asset payoff is high (low) relative to other
investors.
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are the majority of investors, their first-order welfare gains dominate the second-order welfare losses of
those investors who share the planner’s belief and the first-order welfare losses of optimistic sellers and
pessimistic buyers. When instead the economy is populated by many optimistic sellers and pessimistic
buyers, the optimal corrective policy corresponds to a trading subsidy.

Third, the optimal tax turns out to be independent of the belief used by the planner to calculate
welfare under certain conditions. This surprising and appealing result relies on two assumptions: traded
assets are in fixed supply and the planner does not seek to redistribute resources across investors.
Intuitively, because welfare losses in this model arise from a distorted allocation of risk, only the
dispersion in investors’ beliefs — but not its absolute level — determines aggregate welfare and the
optimal tax. Consequently, the planner does not need to know more than the investors’ to determine
the optimal tax.

Because optimal tax characterizations are inherently local to the optimum, I study the convexity
properties of the planner’s problem. The planner’s objective may fail to be quasi-concave, which implies
that there may exist multiple locally optimal transaction tax rates. However, this phenomenon can only
arise when the composition of marginal investors varies with the tax rate. I provide a natural sufficient
condition under which the planner’s problem is well-behaved and has a unique optimum. When investors
exclusively trade for non-fundamental motives, the optimal policy is associated with an infinite tax that
eliminates all trade. This result may help explain why some jurisdictions ban or heavily tax gambling
activities.

Given the significant challenges associated with directly measuring investors’ beliefs, I provide
an implementation of the optimal tax policy that uses trading volume as an intermediate target.
Under this implementation, a planner can simply adjust the tax rate until observed volume equals
fundamental volume. This alternative approach, which relies on a novel decomposition of trading volume
into fundamental volume, non-fundamental volume, and the tax-induced volume reduction, shifts the
planner’s informational requirements from measuring investors’ beliefs to finding an appropriate estimate
of fundamental volume. Building on this volume decomposition, I also derive a simple and easily
implementable approximation for the optimal tax that relies exclusively on two objects of the laissez-faire
economy: the semi-elasticity of trading volume to tax changes and the share of non-fundamental trading
volume.3 This approximation — valid when the optimal tax is close to zero — does not impose any
restrictions on investors’ trading motives.

Next, after parameterizing the distribution of fundamental and non-fundamental trading motives,
I provide explicit comparative static results for the optimal tax with respect to primitives. Consistent
with the main results, when fundamental and non-fundamental trading motives are jointly normally
distributed and uncorrelated, the optimal tax is positive. Moreover, the optimal tax is increasing in

3Given existing estimates of trading volume elasticities to tax changes, this approximation implies an optimal tax of the
same order of magnitude of the share of non-fundamental trading volume, when expressed in basis points. That is, a 10%,
20%, or 40% share of non-fundamental trading volume is associated (approximately) with an optimal tax of 10bps, 20bps,
or 40bps.
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the share of non-fundamental trading volume. Also, when the optimal tax is positive and finite, a
mean-preserving spread of the distribution of investors’ beliefs is associated with a higher optimal tax.

In the context of the parameterized model, a planner who seeks to determine the optimal tax rate
only needs to know two high-level sufficient statistics. These are i) the semi-elasticity of trading volume
to tax changes and ii) the share of non-fundamental trading volume. If the planner also knows the risk-
premium, it is possible to compute the aggregate marginal welfare gains associated with a tax change.
I also describe how to find plausible empirical counterparts of the identified sufficient statistics using
existing evidence. A calibration of the optimal tax that is consistent with empirically estimated volume
semi-elasticities to tax changes and that features a 30% share of non-fundamental trading volume is
associated with an optimal tax of 37bps (0.37%). I conduct a sensitivity analysis and provide a menu of
optimal taxes for different values of the volume semi-elasticity as well as the share of non-fundamental
trading volume. For instance, when the share of non-fundamental trading volume is 10% or 60%, the
model predicts optimal taxes of 10bps (0.1%) or 105bps (1.05%), respectively.

Finally, I establish the robustness of the results. I first characterize the optimal tax for more general
specifications of beliefs and utility. In this more general case, investors’ risk-adjusted beliefs — now
computed using each investor’s stochastic discount factor — and portfolio sensitivities are still the key
determinants of the optimal tax. Importantly, the optimal tax formula of the baseline model remains
valid as an approximation to the optimal tax in the general case when investors’ stochastic discount
factors are approximately constant. This result validates the analysis in the rest of the paper as an
approximation to any specification of beliefs and preferences. I briefly describe in the paper how the
results extend to environments with short-sale constraints, pre-existing trading costs, imperfect tax
enforcement, multiple traded assets, production, and dynamics. The Appendix formally includes these
and other extensions.

This paper belongs to the literature that follows Tobin’s proposal of introducing transaction taxes to
improve the societal performance of financial markets. Although Tobin’s speech largely focused on foreign
exchange markets, it has become customary to refer to any tax on financial transactions as a “Tobin
tax”. Stiglitz (1989) and Summers and Summers (1989) verbally advocate for a financial transaction
tax, with Ross (1989) taking the opposite view. Roll (1989) and Schwert and Seguin (1993) contrast
the costs and benefits of such proposal. Umlauf (1993), Campbell and Froot (1994), several chapters in
ul Haq, Kaul and Grunberg (1996), and Jones and Seguin (1997) are representative samples of empirical
work in the area. See McCulloch and Pacillo (2011) and Burman et al. (2016) for recent surveys and
Colliard and Hoffmann (2017) and Cai et al. (2017) for evidence on the recently introduced transaction
taxes in France and China, respectively.

The theory in this paper differs substantially from that in Tobin (1978). Tobin postulates that prices
are excessively volatile and that a transaction tax is a good instrument to reduce price volatility. This
paper shows instead that transaction taxes are a robust instrument to reduce trading volume but that
their effect on asset prices is a priori indeterminate. The normative results in this paper rely on the fact
that a reduction in trading volume improves the allocation of risk in the economy from the planner’s
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perspective.4

This paper is most directly related to the growing literature that evaluates welfare under belief
disagreements in financial markets. Weyl (2007) is the first to study the efficiency of arbitrage in an
economy in which some investors have mistaken beliefs. Gilboa, Samuelson and Schmeidler (2014) and
Gayer et al. (2014) introduce refinements of the Pareto criterion that identify negative-sum betting
situations. No-betting Pareto requires that there exists a single belief that, if held by all agents, implies
that all agents are better off by trading. Unanimity Pareto requires that all agents perceive to be better
off by trading using each agent’s belief. The welfare criterion proposed by Brunnermeier, Simsek and
Xiong (2014) assesses efficiency by using all possible convex combinations of the beliefs of the investors
in the economy. These papers seek to identify outcomes related to zero-sum speculation, but do not
discuss policy measures to limit trading, which is the raison d’être of this paper. In the same spirit,
Posner and Weyl (2013) advocate for financial regulation grounded on price-theoretic analysis, which is
precisely my goal with this paper.5 Blume et al. (2013) propose a criterion in which a planner evaluates
welfare under the worst-case scenario among a set of belief assignments. They quantitatively analyze
several restrictions on trading but do not characterize optimal policies. Heyerdahl-Larsen and Walden
(2014) propose a criterion in which the planner does not have to take a stand on which belief to use,
within a reasonable set, to assess efficiency. I relate my results to these criteria when appropriate.

Many papers explore the positive implications of speculative trading due to belief disagreements,
following Harrison and Kreps (1978). Scheinkman and Xiong (2003) analyze the positive implications
of a transaction tax in a model with belief disagreements, but they do not draw normative conclusions.
Panageas (2005) and Simsek (2013) study implications for production and risk-sharing of speculative
trading motives. Xiong (2013) surveys this line of work. Since some trades are not driven by fundamental
considerations, this paper also relates to the literature on noise trading that follows Grossman and
Stiglitz (1980). However, the standard noise trading formulation makes it hard to understand how
noise traders react to taxes and how to evaluate their welfare. By using heterogeneous beliefs to model
non-fundamental trading, this paper sidesteps these concerns.

Given the additive nature of corrective taxes (see e.g., Sandmo (1975); Kopczuk (2003)), the
normative conclusions that emerge from explicitly incorporating dispersed information and learning
operate in parallel to the results of this paper. This is an active area of research. In recent work,
Dávila and Parlatore (2020) characterize the conditions under which transaction costs/taxes do not
affect information aggregation, even though they discourage the endogenous acquisition of information.
This is a different margin through which transaction taxes may have an independent effect on welfare.
Along the same lines, Vives (2017) examines an environment in which a positive transaction tax is welfare

4Financial market interventions may be optimal in other environments — see, among others, Scheuer (2013) or Dávila
and Korinek (2018). However, these theories do not imply that transaction taxes of the form studied in this paper are
optimal or even desirable — see the Appendix for an elaboration of this point in a model with pecuniary externalities and
incomplete markets.

5A growing literature exploits market design tools to study normative issues in market microstructure. See, for instance,
Budish, Cramton and Shim (2015) or Baldauf and Mollner (2014).
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improving by correcting investors’ information acquisition choices.
The literature on transaction costs is formally related to this paper, since a transaction tax is similar to

a transaction cost from a positive point of view. This literature studies the positive effects of transaction
costs on portfolio choices and equilibrium variables like prices and volume. I refer the reader to Vayanos
and Wang (2012) for a recent comprehensive survey. While those papers focus on the positive implications
of exogenously given transaction costs/taxes, in this paper I study the welfare effects of a transaction
tax and its optimal determination. I explicitly relate the positive results of the paper to this work in the
text when appropriate.

Finally, this paper contributes to the growing literature on behavioral welfare economics, recently
synthesized in Mullainathan, Schwartzstein and Congdon (2012). This paper is related to Gruber and
Koszegi (2001) and O’Donoghue and Rabin (2006), who characterize optimal corrective taxation when
agents fail to optimize because of self-control or limited foresight. Within this literature, the work
by Sandroni and Squintani (2007) and Spinnewijn (2015), who study optimal corrective policies when
agents have distorted beliefs, is closely related. While those papers respectively study optimal policies in
insurance markets and frictional labor markets, this paper derives new insights in the context of financial
market trading. Farhi and Gabaix (2015) have recently studied optimal taxation with behavioral agents,
while Campbell (2016) advocates for incorporating behavioral insights into optimal policy prescriptions.

Section 2 introduces the model and Section 3 studies its positive predictions. Section 4 conducts the
normative analysis, presenting the main results. Section 5 provides explicit comparative statics for the
optimal tax and explores the quantitative implications of the model. Section 6 discusses the robustness of
the results and Section 7 concludes. The Appendix includes proofs and derivations, as well as additional
extensions.

2 Model

In the absence of transaction taxes, the baseline environment of this paper resembles Lintner (1969),
who relaxes the CAPM by allowing for heterogeneous beliefs among investors.

Investors There are two dates t = 1, 2 and there is a unit measure of investors. Investors (investors’
types) are indexed by i and distributed according to a continuous probability distribution with c.d.f.
F (·) such that

�
dF (i) = 1.

Investors choose their portfolio optimally at date 1 and consume at date 2. They maximize expected
utility with preferences that feature constant absolute risk aversion. Therefore, each investor maximizes

Ei [Ui (W2i)] with Ui (W2i) = −e−AiW2i , (1)

where Equation (1) already imposes that investors consume all terminal wealth, that is, C2i = W2i. The
parameter Ai > 0, which represents the coefficient of absolute risk aversion Ai ≡ −

U ′′i (·)
U ′i(·)

, can vary across
the distribution of investors. The expectation in Equation (1) is indexed by i because investors hold
heterogeneous beliefs, as described below.
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Market structure and beliefs There is a risk-free asset in elastic supply that offers a gross interest
rate normalized to 1. There is a single risky asset in exogenously fixed supply Q ≥ 0. The price of the
risky asset at date 1 is denoted by P1 and is quoted in terms of an underlying good (dollar), which acts
as numeraire. To simplify the exposition, and without loss of generality, I assume that the fundamentals
of the economy are such that the equilibrium price of the risky asset is always strictly positive, that
is, P1 > 0.6 The initial holdings of the risky asset at date 1, given by X0i, are arbitrary across the
distribution of investors. Investors’ initial holdings of the risky asset must add up to the total asset
supply Q, therefore

�
X0idF (i) = Q. Investors face no constraints when choosing portfolios: they can

borrow and short sell freely.
The risky asset yields a dividend D at date 2, which is normally distributed with an unspecified

mean and a variance Var [D]. An investor i believes that D is normally distributed with a mean Ei [D]
and a variance Var [D], that is,

D ∼i N (Ei [D] ,Var [D]) .

For now, the distribution of mean beliefs Ei [D] across the population of investors, which is a key primitive
of the model, is arbitrary.7 Nothing prevents investors from having correct beliefs; those investors can
represent market makers or (limited) arbitrageurs. Investors do not learn from each other, or from the
price, and agree to disagree in the Aumann (1976) sense.

Two arguments justify the assumption of investors who disagree about the mean — not other moments
— of the distribution of payoffs. First, it is commonly argued that second moments are easier to learn. In
particular, with Brownian uncertainty, second moments can be learned instantly. Second, as formalized
in Section 6, in a precise approximate sense, only the mean of investors’ beliefs enters explicitly in the
optimal tax formula.

Hedging needs Every investor has a stochastic endowment at date 2, denoted by M2i, which is
normally distributed and potentially correlated with D. This endowment captures the fundamental
risks associated with the normal economic activity of the investor. The quantity of endowment risk that
an investor i faces is captured by the covariance Cov [M2i, D], which is known to all investors. For now,
the sign and magnitude of investors’ hedging needs are arbitrary across the distribution of investors.
Without loss of generality, I assume that E [M2i] − Ai

2 Var [M2i] = 0 and normalize investors’ initial
dollar endowment to zero.

Trading motives Summing up, there are four motives to trade in this model:

(i) Different hedging needs: captured by Cov [M2i, D] (fundamental)

(ii) Different risk aversion: captured by Ai (fundamental)
6The Appendix provides a sufficient condition that guarantees that P1 is strictly positive in equilibrium.
7A common prior model in which investors receive a purely uninformative signal (noise), but pay attention to it, maps

one-to-one to the environment in this paper. Alternatively, investors could neglect the informational content of prices,
as in the cursed equilibrium model of Eyster and Rabin (2005). In general, belief disagreements among investors can be
interpreted as modeling departures from full rationality in information processing.
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(iii) Different initial asset holdings: captured by X0i (fundamental)

(iv) Different beliefs: captured by Ei [D] (non-fundamental)

The first three correspond to fundamental motives for trading: sharing risks among investors, transferring
risks to those more willing to bear them, or trading for life cycle or liquidity needs. Trading on different
beliefs is the single source of non-fundamental trading in the model. All four trading motives can
equally determine the positive properties of the model: the assumed welfare criterion makes the last
trading motive non-fundamental. Having multiple sources of fundamental trading, while not necessary,
is important to show that all fundamental trading motives enter symmetrically in optimal tax formulas.
I assume throughout that all four cross-sectional distributions have bounded moments and that the
cross-sectional dispersion of risk aversion coefficients is small.

At times, to sharpen several results, I impose the following symmetry assumption on the cross-
sectional joint distribution of primitives. I explicitly state when Assumption [S] is used in the paper.8

Assumption. [S] (Symmetry) Investors have identical preferences: Ai = A, ∀i. The cross-sectional
distribution of the following linear combination of investors’ mean beliefs, hedging needs, and initial asset
holdings, Ei [D]−ACov [M2i, D]−AVar [D]X0i, is symmetric.

Assumption [S] simplifies the solution of the model by making the equilibrium price independent
of the tax rate, which allows for sharper characterizations. As it will become clear in Section 5, this
assumption does not restrict the levels of fundamental trading, non-fundamental trading, or the cross-
sectional correlation between fundamental and non-fundamental trading motives.

Policy instrument: a linear financial transaction tax This paper follows the Ramsey approach
of solving for an optimal policy under a restricted set of instruments. The single policy instrument
available to the planner is an anonymous linear financial transaction tax τ paid per dollar traded in the
risky asset. A change in the net asset holdings of the risky asset of |X1i −X0i| shares at a price P1 faces
a total tax in terms of the numeraire, due at the time the transaction occurs, for both buyers and sellers,
of

τP1 |∆X1i| , (2)

where |∆X1i| ≡ |X1i −X0i|. The total tax revenue generated by the transaction is thus 2τP1 |∆X1i|.
The tax rate τ can in principle take any value on the extended real line R = [−∞,∞]. Consequently,
investors may face negative taxes, i.e., subsidies.

In the Appendix, I discuss in detail how investors’ portfolio decisions change when facing a subsidy
instead of a positive tax. I also formally show there that trading subsidies can be implemented when
paid on the net change of asset holdings over a given period, but cannot be implemented when paid on
every purchase or sale.

8A probability distribution is said to be symmetric if and only if there exists a value µ such that f (µ− x) = f (µ+ x),
∀x, where f (·) denotes the p.d.f. of the distribution.
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Linearity, anonymity, and enforcement I restrict the analysis to linear taxes with the intention
of being realistic. The conventional justification for the use of linear (as opposed to non-linear) taxes in
this environment is that linear taxes are the most robust to sophisticated trading schemes. For example,
a constant tax per trade creates incentives to submit a single large order. Alternatively, quadratic taxes
create incentives to split orders into infinitesimal pieces. These concerns, which are shared with other
non-linear tax schemes, are particularly relevant for financial transaction taxes, given the high degree
of sophistication of many players in financial markets and the negligible costs of splitting orders given
modern information technology.

I assume that transaction taxes must apply across-the-board to all market participants and cannot
be conditioned on individual characteristics, which implies that the planner’s problem is a second-best
problem. A planner with the ability to distinguish good trades from bad trades could achieve the first-
best outcome by taxing investors perceived to engage in welfare-reducing trades on an individual basis:
this is a highly implausible scenario.

Furthermore, I assume that investors cannot avoid paying transaction taxes, either by trading secretly
or by moving to a different exchange. This behavior is optimal when the penalties associated with evasion
are sufficiently large, provided the taxable event is appropriately defined. I discuss the implications of
imperfect tax enforcement for the optimal tax policy in the Appendix.

Revenue rebates and welfare aggregation Lastly, since this paper focuses on the corrective
(Pigouvian) effects of transaction taxes and not on the ability of this tax to raise fiscal revenue, I
assume that tax proceeds are rebated lump-sum to investors.9 All results in the paper are derived
under an arbitrary rule for tax rebates across investors. Formally, an investor indexed by i receives a
rebate T1i that simply must satisfy budget balance on the aggregate:

�
T1idF (i) =

�
τP1 |∆X1i| dF (i).

When needed, I consider either a uniform rebate rule, in which all investors receive the same transfer,
or an individually-targeted rebate rule, in which each investor i receives a transfer equal to the tax
liability paid by that investor. The uniform rebate rule respects the anonymity assumption, while the
individually-targeted rule mutes the redistributional effects of the policy and is useful for theoretical
purposes. Since investors are small, they never internalize the impact of their actions on the rebate they
receive. It is important that tax revenue is rebated and not wasted.10

Finally, until I revisit this issue in Section 6, I assume that the planner seeks to maximize the sum of
investors’ certainty equivalents, which is a conventional approach in normative problems. Assuming that

9Broadly defined, there are two types of taxes: those levied with the aim of raising revenue and those levied with the
aim of correcting distortions. This paper exclusively studies corrective taxation. Sandmo (1975) shows that corrective
taxes and optimal revenue raising taxes are additive; see also Kopczuk (2003). This paper does not consider the additional
benefits of corrective taxes generated by “double-dividend” arguments. Those arguments, surveyed by Goulder (1995) in
the context of environmental taxation, apply directly to transaction taxes. Biais and Rochet (2020) have recently studied
the desirability of transaction taxes as a revenue-raising instrument.

10Public debates surrounding transaction taxes often discuss how to spend tax revenues. Barring political economy
considerations, it should be clear that the problem of how to spend tax revenues is orthogonal to the problem of characterizing
the optimal tax.
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the planner has access to lump-sum transfers to redistribute wealth across investors ex-ante, separating
efficiency from distributional considerations, yields identical results. The Appendix includes a detailed
discussion of this welfare aggregation approach and how it relates to other approaches.

Investors’ budget/wealth accumulation constraint The consumption/wealth of a given investor
i at date 2 consists of the stochastic endowment M2i, the stochastic payoff of the risky asset X1iD, and
the return on the investment in the risk-free asset. This includes the proceeds from the net purchase/sale
of the risky asset (X0i −X1i)P1, the total tax liability −τP1 |∆X1i|, and the lump-sum transfer T1i. It
can be expressed as

W2i = M2i +X1iD + (X0iP1 −X1iP1 − τP1 |∆X1i|+ T1i) . (3)

Definition. (Equilibrium) A competitive equilibrium with taxes is defined as a portfolio allocation
X1i, ∀i, a price P1, and a set of lump-sum transfers T1i, ∀i, such that: i) given the price P1, each
investor i finds the allocation X1i optimal by maximizing expected utility subject to their budget/wealth
accumulation constraint, respectively introduced in Equations (1) and (3), ii) the price P1 is such that the
market for the risky asset clears, that is,

�
∆X1idF (i) = 0, and iii) tax revenues are rebated lump-sum

to investors, so that
�
T1idF (i) =

�
τP1 |∆X1i| dF (i).

3 Equilibrium

I initially solve for investors’ optimal portfolio decisions. Subsequently, I characterize the equilibrium
price and allocations.

Investors’ problem In this model, investors effectively choose their risky asset demand to maximize
the certainty equivalent of their expected future wealth. Formally, investor i’s risky asset demand is
given by the solution to the following mean-variance problem:

max
X1i

[Ei [D]−AiCov [M2i, D]− P1]X1i + P1X0i − τP1 |∆X1i| −
Ai
2 Var [D]X2

1i. (4)

As formally shown in the Appendix, the problem solved by investors is well-behaved. Given a price P1
and a tax rate τ > 0, investor i’s optimal net asset demand ∆X1i (P1) = X1i (P1)−X0i is given by

∆X1i (P1) =


∆X+

1i (P1) = Ei[D]−AiCov[M2i,D]−P1(1+τ)
AiVar[D] −X0i, if ∆X+

1i (P1) > 0 Buying

0 , if ∆X+
1i (P1) ≤ 0, ∆X−1i (P1) ≥ 0 No Trade

∆X−1i (P1) = Ei[D]−AiCov[M2i,D]−P1(1−τ)
AiVar[D] −X0i, if ∆X−1i (P1) < 0 Selling.

(5)

Figure 1 illustrates the optimal portfolio demand X1i (P1) for an investor i as a function of the asset
price P1. The presence of linear transaction taxes modifies the optimal portfolio allocation along two
dimensions. First, a transaction tax is reflected as a higher price P1 (1 + τ) paid by buyers and a lower
price P1 (1− τ) received by sellers. Hence, for a given price P1, a higher tax reduces the net demand of
both buyers and sellers at the intensive margin.
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Asset price P1

X1i(P1, τ0)

X1i(P1, τ1 >τ0)
X0i

0

Net Buyer Net Seller

Risky asset demand X1i(P1, τ)

Figure 1: Risky asset demand

Note: Figure 1 illustrates the optimal portfolio demand X1i (P1), characterized in Equation (5), for an investor i as a
function of the asset price P1 for two tax rates, τ0 and τ1, such that τ1 > τ0 > 0. A linear transaction tax τ > 0 is
reflected as a higher price P1 (1 + τ) paid by buyers, a lower price P1 (1− τ) received by sellers, and an inaction region that
is increasing in τ , all else equal.

Second, a linear tax implies that some investors decide not to trade altogether, creating an inaction
region. If the initial holdings of the risky asset X0i are not too far from the optimal allocation without
taxes Ei[D]−AiCov[M2i,D]−P1

AiVar[D] , an investor decides not to trade. Only when τ = 0 the no-trade region ceases
to exist. The envelope theorem, which plays an important role when deriving the optimal tax results, is
also key to generating the inaction region, as originally shown in Constantinides (1986). Intuitively, an
investor with initial asset holdings close to his optimum experiences a second-order gain from a marginal
trade but suffers a first-order loss when a linear tax is present, making no-trade optimal.11

Equilibrium characterization Given the optimal portfolio allocation characterized in Equation (5)
and the market clearing condition

�
∆X1i (P1) dF (i) = 0, the equilibrium price of the risky asset satisfies

the following implicit equation for P1:

P1 =

�
i∈T (P1)

(
Ei[D]
Ai −A (Cov [M2i, D] + Var [D]X0i)

)
dF (i)

1 + τ
(�

i∈B(P1)
1
AidF (i)−

�
i∈S(P1)

1
AidF (i)

) , (6)

where A ≡
(�

i∈T (P1)
1
Ai
dF (i)

)−1
is the harmonic mean of risk aversion coefficients for active investors

and Ai ≡ Ai
A is the quotient between the risk aversion coefficient of investor i and the harmonic mean.12

The notation i ∈ T (P1) indicates that the domain of integration is the set of investors who actively
trade in equilibrium at a price P1. Analogously, B (P1) and S (P1) respectively denote the set of buyers

11If taxes were quadratic, the marginal welfare loss induced by the tax around the optimum would also be second-order,
eliminating the inaction region.

12It should be clear from their definitions that Ai and A are also functions of P1 and τ through the set of active investors.
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and sellers at a given price P1. Equation (5) determines the identity of the investors in each of the
sets. Because the sets T (P1), B (P1), and S (P1), as well as A and Ai, depend on the equilibrium price,
Equation (6) provides an implicit characterization of P1. Intuitively, only marginal investors directly
determine the equilibrium price. As shown in Lemma 1 below, Equation (6) has a unique solution for
P1 whenever there is trade in equilibrium.

The numerator of the equilibrium price in Equation (6) has two components. The first term is a
weighted average of the expected payoff of the risky asset. The second term is a risk premium, determined
by the product of price and quantity of risk. The price of risk is given by the harmonic mean of risk
aversion coefficients A. The quantity of risk consists of two terms. The first one is the sum of covariances
of the risky asset with the endowments

�
i∈T (P1) Cov [M2i, D] dF (i). The second one is the product of the

variance of the risky asset Var [D] with the number of shares initially held by investors
�
i∈T (P1)X0idF (i).

Trading volume is another relevant equilibrium object. I denote trading volume, measured in shares
of the risky asset and expressed as a function of the tax rate, by V (τ). Trading volume formally
corresponds to

V (τ) =
�
i∈B(τ)

∆X1i (τ) dF (i) , (7)

where ∆X1i (τ) denotes equilibrium net trades for a given tax rate τ and where only the net trades of
buyers are considered, to avoid double counting. At times, it is useful to compute asset turnover, which
expresses trading volume as a function of the total number of shares Q. Formally, turnover is given by
Ξ (τ) = V(τ)

Q .
Lemma 1 synthesizes the main positive results of the model. Lemma 1 shows that the model is

well-behaved and that a transaction tax is a robust instrument to reduce trading volume. More broadly,
Lemma 1 implies that theories in which transaction taxes are desirable must rely on a mechanism through
which reducing trading volume is welfare improving.13

Lemma 1. (Competitive equilibrium with taxes)
a) [Existence/Uniqueness] An equilibrium always exists for a given τ . The equilibrium is (essentially)

unique.
b) [Volume response] Trading volume is decreasing in τ .
c) [Price response] The asset price P1 increases (decreases) with τ if

�
i∈B(P1)

1
Ai
dF (i) ≤ (≥)

�
i∈S(P1)

1
Ai
dF (i) . (8)

Under Assumption [S], the asset price P1 is invariant to the level of the transaction tax.
13Existing empirical evidence is consistent with the prediction that trading volume decreases after an increase in

transaction taxes/costs, although tax evasion may be at times a confounding factor. The empirical evidence regarding
the effect of transaction taxes/costs on prices is mixed. Some studies find an increase in price volatility, but others find
no significant change or even a reduction. Asset prices usually fall at impact following a tax increase, but seem to recover
over time. See the review articles by Campbell and Froot (1994), Habermeier and Kirilenko (2003), McCulloch and Pacillo
(2011), Burman et al. (2016), and the recent work on the European Transaction Tax by Colliard and Hoffmann (2017) and
Coelho (2014).
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Lemma 1 shows that an equilibrium always exists and that it is essentially unique. Equilibrium
existence is effectively guaranteed because risky asset demands are everywhere downward sloping.
Equilibrium portfolio allocations and trading volume are uniquely pinned down in any equilibrium.
The equilibrium price P1 is also uniquely pinned down in any equilibrium with positive trading volume.
Every no-trade equilibrium is associated with a range of prices consistent with such an equilibrium. There
are also many sets of individual lump-sump transfers consistent with any unique equilibrium allocation.
Therefore, because of both dimensions of indeterminacy, I refer to the equilibrium as essentially unique.

Trading volume always goes down when transaction taxes increase. Even though a change in the
transaction tax can change the asset price and indirectly induce some sellers to sell more or some buyers
to buy more, this effect is never strong enough to overcome the direct effect of the tax, which always
discourages trading.

The condition that determines the sign of dP1
dτ in Equation (8) corresponds to the difference between

the aggregate buying and selling price elasticities. When this term is positive, increasing τ reduces the
buying pressure by more than the selling pressure, reducing the equilibrium price, and vice versa — see
the Appendix for a simulation of the model that illustrates these effects. When the difference between
aggregate buying and selling elasticities is zero, the equilibrium price is independent of the tax. In
particular, for the symmetric benchmark in which Assumption [S] holds, aggregate buying and selling
price elasticities are everywhere identical, implying that the equilibrium price is invariant to the tax rate.

4 Normative analysis

After solving for the equilibrium allocations and the equilibrium price for a given tax, I first introduce
the welfare criterion used by the planner to compute social welfare and then characterize the optimal
tax policy.

4.1 Welfare criterion

In order to aggregate individual preferences, I assume that the planner maximizes the sum of investors’
certainty equivalents. This is a standard approach in normative problems, and corresponds to maximizing
a particular set of welfare weights, as explained in detail in the Appendix. However, to conduct any
normative analysis in this paper, one must also take a stand on how to evaluate social welfare when
investors hold heterogeneous beliefs, which is a controversial issue.14

In this paper, the planner computes social welfare as follows. In any dimension in which investors’
beliefs agree, I assume that the planner shares the investors’ beliefs. Whenever investors disagree, I

14In addition to the work discussed in the literature review, see Kreps (2012), Cochrane (2014), and Duffie (2014) for
some reflections on this topic. Duffie (2014), in particular, poses both philosophical/axiomatic challenges and a practical
challenge to policy treatments of speculative trading motivated by differences in beliefs. This paper provides an explicit
solution to the practical challenge raised in that paper, which questions the ability of enforcement agencies to set policies
when some trades are belief-motivated while other trades arise from welfare enhancing activities.
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assume that the planner computes investors’ welfare (certainty equivalents) using a single belief. Hence,
when many investors disagree, the belief used by the planner will be necessarily different from the beliefs
held by most investors. Given a planner’s belief, I follow a two-step approach. First, I characterize the
optimal tax policy for a given planner’s belief. Subsequently, I identify the conditions under which the
optimal policy does not depend on the planner’s belief. In those cases, only the consistency requirement
that investors’ welfare is computed using a single common belief is relevant.

The two-step normative approach used in this paper can be applied more generally. In every
normative problem with belief heterogeneity among investors it is possible to first characterize the
solution to a planning problem for a given planner’s belief and then seek to find conditions under which
the optimal policy is independent of the planner’s belief. When an optimal policy independent of the
planner’s belief cannot be found, the results simply characterize the optimal paternalistic policy.

This approach is paternalistic, because it ignores investors’ subjective beliefs when finding the optimal
policy. However, when the optimal policy is independent of the specific belief chosen by the planner,
conventional criticisms of paternalistic policies on the grounds that the planner must be better informed
than the individuals in the economy do not apply. Although overruling investors’ beliefs when computing
welfare creates a mechanical rationale for intervention, the welfare impact of belief distortions, the
sign and magnitude of the optimal intervention, as well as the informational requirements needed to
implement the optimal policy are far from obvious, as shown in this paper.

Two arguments support the welfare criterion adopted in this paper. First, since there is a single
distribution of payoffs, but different investors hold different beliefs about such distribution, all of them
(but one) must be wrong. In that case, it may be reasonable to argue that a planner need not respect
investors’ beliefs when they are almost surely incorrect. Alternatively, a veil of ignorance interpretation
can also support the welfare criterion used in this paper. If investors acknowledge that they may wrongly
hold different beliefs when trading, they would be willing to implement ex-ante a tax policy that corrects
their trading behavior.15

After presenting the main results of the paper in Proposition 1, I explain how the welfare criterion
introduced in this paper relates to those proposed by Brunnermeier, Simsek and Xiong (2014) and
Gilboa, Samuelson and Schmeidler (2014) in Section 4.3 and in the Appendix.

4.2 Optimal transaction tax

After introducing the welfare criterion used by the planner, I characterize the properties of the optimal
tax policy. The planner’s objective is a function of the investors’ certainty equivalents from the planner’s
perspective. The certainty equivalent of investor i from the planner’s perspective, denoted by V p

i (τ),
corresponds to

V p
i (τ) ≡ (Ep [D]−AiCov [M2i, D]− P1 (τ))X1i (τ) + P1 (τ)X0i −

Ai
2 Var [D] (X1i (τ))2 + T̃1i (τ) , (9)

15The Appendix includes a formal discussion of how altruistic investors in this model always prefer an optimal tax of the
same sign as the optimal tax chosen by the planner.
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where X1i (τ) and P1 (τ) represent equilibrium outcomes that are in general functions of τ and
T̃1i (τ) = T1i (τ) − τP1 (τ) |∆X1i (τ)| denotes the net transfer received by investor i. The assumed
welfare criterion implies that the expectation about the payoff of the risky asset used to calculate V p

i (τ)
does not have an individual subscript i because it is computed using the planner’s belief, denoted by
Ep [D].16

Social welfare, denoted by V p (τ), corresponds to the sum of investors’ certainty equivalents and is
formally given by

V p (τ) =
�
V p
i (τ) dF (i) .

The optimal tax corresponds to τ∗ = arg maxτ V p (τ), where τ must lie in the extended real line
[−∞,+∞]. Before characterizing the optimal tax, it is worth finding the marginal welfare impact of a
tax change on investor i and on the aggregate from the planner’s perspective.

Lemma 2, which formally introduces both, is helpful to understand the form of the optimal tax policy,
characterized in Proposition 1 and illustrated in Figures 2 and 3 below.

Lemma 2. (Marginal welfare impact of tax changes)
a) [Individual welfare impact] The individual marginal welfare impact of a change in the tax rate from

the planner’s perspective is given by

dV p
i

dτ
= [Ep [D]− Ei [D] + sgn (∆X1i (τ))P1 (τ) τ ] dX1i (τ)

dτ
−∆X1i (τ) dP1 (τ)

dτ
+ dT̃1i (τ)

dτ
, (10)

where sgn (·) denotes the sign function.
b) [Aggregate welfare impact] The aggregate marginal welfare impact of a change in the tax rate from

the planner’s perspective is given by

dV p

dτ
=

�
i∈T (τ)

[−Ei [D] + sgn (∆X1i (τ))P1 (τ) τ ] dX1i
dτ

(τ) dF (i) , (11)

where T (τ) denotes the set of active investors for a given tax rate τ .

The individual marginal welfare impact of a tax change, which is expressed in dollars, features three
terms. The first term in Equation (10) captures the impact of a tax change on an investor’s portfolio
allocation. A change in the allocation dX1i

dτ only affects welfare through the wedges in investors’ portfolio
demands perceived by the planner. A first wedge arises when Ep [D] 6= Ei [D], through the difference
in beliefs between the planner and an investor i. If the planner computed welfare respecting investors’
beliefs, the envelope theorem would guarantee that this wedge is exactly zero. A second wedge arises
because investors face the tax at the margin. The second term in Equation (10) captures distributive
pecuniary effects — using the terminology of Dávila and Korinek (2018). If P1 increases with τ , the
buyers (sellers) of the risky asset are worse (better) off, since the terms-of-trade of their transaction have
worsened (improved). The opposite occurs when P1 decreases with τ . The third term in Equation (10)
simply accounts for the change in investor i’s tax rebate net of the tax liability.

16The planner and all investors agree on the second moments of the distribution of asset payoffs. The Appendix includes
an extension of the model in which investors disagree about the second moments of the distribution of payoffs.

14



Equation (11) shows that three elements cancel out after aggregating the individual welfare effects.
First, and crucial for the results in this paper, the planner’s belief Ep [D] drops out after the aggregation
step. Intuitively, a planner with a very high (low) Ep [D] may find it desirable for all investors to hold
more (less) shares of the risky asset. However, this is not possible in equilibrium: market clearing implies
that the portfolio changes induced by a tax change must add up to zero on the aggregate; formally,� dX1i(τ)

dτ dF (i) = 0. Second, the distributive pecuniary effects cancel out, as in any competitive model.
Finally, because all tax revenues are rebated to investors, the net government transfers also add up to
zero. Consequently, the aggregate marginal welfare impact of a tax change will simply depend on the
distribution of investors’ beliefs and on the way in which taxes impact investors’ portfolio allocations.

Proposition 1 introduces the main results of the paper. I first present Proposition 1 and then elaborate
on each of its results below.

Proposition 1. (Optimal financial transaction tax)
a) [Optimal tax formula] The optimal financial transaction tax τ∗ satisfies

τ∗ =
ΩB(τ∗) − ΩS(τ∗)

2 , (12)

where ΩB(τ) is a weighted average of buyers’ expected returns, given by

ΩB(τ∗) ≡
�
i∈B(τ∗)

ωB
i (τ∗) Ei [D]

P1 (τ∗)dF (i) , with ωB
i (τ∗) ≡

dX1i(τ∗)
dτ�

i∈B(τ∗)
dX1i(τ∗)

dτ dF (i)
, (13)

and ΩS(τ) is a weighted average of sellers’ expected returns, analogously defined.
b) [Sign of the optimal tax] A positive tax is optimal when optimistic investors are net buyers and

pessimistic investors are net sellers in the laissez-faire economy. Formally,

if dV p

dτ

∣∣∣∣
τ=0

= CovF
(
Ei [D] , −dX1i

dτ

∣∣∣∣
τ=0

)
> 0, then τ∗ > 0, (14)

where CovF (·, ·) denotes a cross-sectional covariance. As long as some investors have heterogeneous
beliefs and fundamental and non-fundamental trading motives are independently distributed across the
population of investors, this condition is endogenously satisfied, implying that the optimal corrective
policy is a strictly positive tax.17

c) [Irrelevance of planner’s belief] The optimal financial transaction tax does not depend on the belief
used by the planner to calculate welfare.

Optimal tax formula Proposition 1a) shows that the optimal tax formula can be written exclusively
as a function of investors’ beliefs, Ei[D]/P1, and portfolio sensitivities, dX1i

dτ . Because the equilibrium
price, portfolio sensitivities, and the identity of the active investors are endogenous to the level of the
tax, Equation (12) only provides an implicit representation for τ∗. This is a standard feature of optimal

17Formally, fundamental and non-fundamental trading motives are independently distributed across the population of
investors when the distributions of Cov [M2i, D], Ai, X0i, and Ei [D] are independent.
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taxation exercises. Below, I provide conditions under which the optimal tax formula has a unique
solution.

The corrective (Pigouvian) nature of the tax explains why investors’ beliefs and portfolio sensitivities
are the relevant variables that determine the optimal tax. Pigouvian logic suggests that corrective taxes
must be set to target marginal distortions, which in this particular case arise from investors’ differences in
mean beliefs about asset payoffs. Ideally, the planner would like to target each individual belief distortion
with an investor-specific tax.18 However, because the planner employs a second-best policy instrument
— a single linear tax — the portfolio sensitivities dX1i

dτ determine the weights given to individual beliefs
in the optimal tax formula. The planner gives more weight to the distortions of the most tax-sensitive
investors.19 Note that the weights assigned to buyers ωB

i and sellers ωS
i add up to one and that investors

who do not trade do not affect the optimal tax at the margin.
When Assumption [S] holds, the optimal tax satisfies the simpler condition

τ∗ =
EB(τ∗)

[
Ei[D]
P1

]
− ES(τ∗)

[
Ei[D]
P1

]
2 , (15)

where EB(τ∗)
[
Ei[D]
P1

]
and ES(τ∗)

[
Ei[D]
P1

]
respectively denote the cross-sectional average of expected returns

of buyers and sellers at the optimal tax rate τ∗. In this case, portfolio sensitivities drop out of the optimal
tax formula, providing a tractable benchmark in which the optimal tax is exclusively a function of the
average belief of active buyers and sellers.

If all investors agree about the expected payoff of the risky asset, so that Ei [D] is constant, the
optimal tax is τ∗ = 0. Equations (12) and (15) suggest that an increase in the dispersion of beliefs
across investors, by widening the gap between buyers’ and sellers’ expected returns, calls for a higher
optimal transaction tax. In Section 5, I explicitly link the value of the optimal tax to primitives of the
distribution of fundamental and non-fundamental trading motives.

Sign of the optimal tax Proposition 1b) shows that the optimal policy corresponds to a strictly
positive tax when, in the laissez-faire economy, optimistic investors (those with a high Ei [D]) are on
average net buyers (those for which −dX1i

dτ

∣∣∣
τ=0

> 0) of the risky asset, while pessimistic investors are on
average net sellers. If all trading is driven by disagreement, Equation (14) trivially holds — optimists
buy and pessimists sell. However, because investors may also trade due to fundamental motives, it is
possible for an optimistic investor to be a net seller in equilibrium and vice versa. When Assumption
[S] holds, Equation (14) simplifies to the more intuitive condition for a positive tax:

if EB(τ=0)

[Ei [D]
P1

]
> ES(τ=0)

[Ei [D]
P1

]
, then τ∗ > 0,

18See the Appendix for a characterization of the first-best policy with unrestricted instruments, which calls for investor-
specific corrective policies.

19The presence of demand/portfolio sensitivities in optimal corrective tax formulas goes back to Diamond (1973), who
analyzes corrective taxation with restricted instruments in a model of consumption externalities. See also Rothschild and
Scheuer (2016) for a recent application of similar principles.
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Figure 2: Individual marginal welfare impact (planner’s and investors’ perspective)

Note: Figure 2 shows the normalized individual marginal welfare impact of a tax change for specific investors from the
perspective of the planner (left plots) and from the perspective of the each individual investor (middle plots), for different
values of τ . These respectively correspond to Equations (10) and (30). All plots in Figure 2 satisfy Assumption [G],
described on page 25, which explicitly defines εdi and εhi. The right plots show individual asset turnover for specific
investors for different values of τ . The top row plots show a buyer (εhi > 0 and εdi = 0) and a seller (εhi > 0 and εdi = 0)
who only trade for non-fundamental reasons. The middle row plots show a buyer (εhi = 0 and εdi < 0) and a seller
(εhi = 0 and εdi > 0) who only trade for fundamental reasons. The bottom plots show a buyer (εhi > 0 and εdi < 0) who
buys for non-fundamental and fundamental reasons and a seller (εhi < 0 and εdi > 0) who sells for non-fundamental and
fundamental reasons. The values of εhi and εhi correspond to one standard deviation of the distributions of εdi

P1
and εhi

P1
,

respectively.
All plots use the baseline calibration from Section 5, that is, δNF = 0.3 (share of non-fundamental trading volume),
εlog V
τ

∣∣
τ=0

= 100 (laissez-faire semi-elasticity of volume to taxes), and Π = 1.5% (quarterly risk premium). The plots in
Figure 2 assume i) that the planner’s mean belief Ep [D] equals the average mean belief µd, and ii) an individually targeted
rebate rule. See Figures A.8 and A.10b in the Appendix for an illustration of how the results change after relaxing both
assumptions.



which highlights that identifying the difference in beliefs between buyers and sellers in the laissez-faire
economy is sufficient to establish the sign of the tax.

Proposition 1b) not only establishes a necessary condition for the optimal tax to be positive, but
it also provides a natural sufficient condition for Equation (14) to be satisfied. Hence, as long as some
investors hold heterogeneous beliefs, and if the distribution of beliefs across investors is independent of
the distribution of fundamental trading motives (risk aversion, hedging needs, and initial positions), a
strictly optimal tax is positive.

Alternatively, one could argue on empirical grounds that Equation (14) holds. The evidence
accumulated in the behavioral finance literature, surveyed in Barberis and Thaler (2003) and Hong and
Stein (2007), suggests that investors’ beliefs drive a non-negligible share of purchases/sales. Intuitively,
in expectation, an optimistic (pessimistic) investor is more likely to be a buyer (seller) in equilibrium.
Hence, unless the pattern of fundamental trading specifically counteracts this force, it is natural to expect
the covariance in Equation (14) to be positive. Independence between fundamental and non-fundamental
trading motives is a sufficient condition for an optimal positive tax, but it is not necessary.

This result puts fundamental and non-fundamental trading motives on different grounds when setting
the optimal tax. The mere presence of non-fundamental trading motives unrelated to fundamental
trading motives implies that it is optimal to have a positive tax, regardless of the relative magnitude of
both types of trading motives. That is, a positive tax is optimal in that situation even when most trades
are driven by fundamental motives.20 Intuitively, the planner perceives that a reduction in trading,
starting from the laissez-faire equilibrium, generates a first-order welfare gain for those investors who
are optimistic buyers and pessimistic sellers. When these are the majority of investors (Equation (14)
holds), their first-order welfare gains dominate the second-order welfare losses of those investors who
share the planner’s belief and the first-order welfare losses of optimistic sellers and pessimistic buyers.

The first column in Figure 2 illustrates this logic. The left three plots in Figure 2 illustrate the
(normalized) marginal welfare gain/loss dV pi

dτ for three different types of investors from the planner’s
perspective. The top left plot shows the welfare impact on a set of investors who trade purely due
to non-fundamental motives (belief differences). The planner perceives that increasing the tax rate at
τ = 0 is welfare improving for these investors. The middle left plot shows the welfare impact on a
set of investors who trade purely for fundamental motives. The planner perceives that increasing the
tax rate at τ = 0 does not affect the welfare of these investors’ up to a first-order. The bottom left
plot shows the welfare impact on a set of investors who are buyers (sellers) for fundamental motives
but that are also optimistic (pessimist). Similarly to the first case, the planner perceives a positive but
smaller gain from increasing the tax rate around τ = 0. In all three cases, the marginal welfare gains
from taxation decrease in τ whenever the investors actively trade. Figure 3, which shows the aggregate
marginal welfare impact of a tax change, aggregates these effects in dollar terms, and illustrates how the
planner determines the optimal tax.

20Proposition 2 provides an explicit decomposition of total trading volume in fundamental and non-fundamental trading
volume.
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Figure 3: Aggregate marginal welfare impact
Note: Figure 3 shows the normalized aggregate marginal welfare impact of a tax change,

dV p

dτ
P1Q

, defined in Equation (11), for
different values of τ . Figure 3 satisfies Assumption [G], described on page 25, and uses the baseline calibration from Section
5, that is, δNF = 0.3 (share of non-fundamental trading volume), εlog V

τ

∣∣
τ=0

= 100 (laissez-faire semi-elasticity of volume
to taxes), and Π = 1.5% (quarterly risk premium). The optimal tax, represented by a vertical dotted line, is τ∗ = 0.37%.

The middle column in Figure 2 shows instead the normalized individual marginal welfare impact of
a tax change for the same investors when computed using their own belief. Leaving aside relative price
changes and net transfers, these plots clearly illustrate that every investor perceives to be worse off using
his own belief to compute his own welfare when facing a positive tax.

Under which conditions could a trading subsidy be optimal? If many optimists happen to be sellers
of the risky asset in the laissez-faire equilibrium, instead of buyers, the optimal policy may be a subsidy.
An example of this trading pattern involves workers who are overoptimistic about their own company’s
performance and who fail to sufficiently hedge their labor income risk. They are natural sellers of the
risky asset, as hedgers, but they sell too little of it. In that case, a transaction tax, by pushing them
towards no-trade, has a negative first-order welfare effect. When Equation (14) holds, this phenomenon
is not too prevalent among investors.

Irrelevance of planner’s belief Proposition 1c) establishes that the optimal tax is independent of
the belief used by the planner to calculate welfare. This is a surprising and appealing result because,
even though the planner does not respect investors’ beliefs when assessing welfare, aggregate welfare
assessments and the optimal tax policy do not depend on the planner’s belief, but only on the consistency
condition that there exists a single common payoff distribution.

Two features of the economic environment are essential for this result to hold. First, it is key that
the risky asset is in fixed supply, which implies that if one investor holds more shares of the risky asset,
some other investor must be holding fewer shares. Formally, it is essential that

�
dX1i
dτ dF (i) = 0. In

that case, only relative asset holdings matter for welfare. Intuitively, the key economic outcome of this
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model corresponds to the allocation of risk among investors, which is determined by the dispersion on
investors’ beliefs, but not by the average belief.

Second, the planner does not use the transaction tax with the purpose of redistributing resources
across investors. Intuitively, the linearity of investors’ certainty equivalents on the planner’s expected
payoff combined with the fact that the planner gives equal weight to the welfare gains/losses across
investors in dollar terms guarantee that, after aggregating across investors, the optimal tax does not
depend on the differences between investors’ beliefs and the planner’s belief, but only on the belief
dispersion among investors.

4.3 Welfare criteria comparison/Non-convexity/Pure betting

Welfare criteria comparison It is useful to compare the welfare criterion used in this paper with
the welfare criteria of Brunnermeier, Simsek and Xiong (2014) and Gilboa, Samuelson and Schmeidler
(2014), respectively referred to as BSX and GSS in this subsection.

The belief-neutral social welfare criterion proposed by BSX is the closest to the one used in this
paper. Their criterion compares two allocations by aggregating investors’ welfare using a set of social
welfare weights and requiring that the preferred allocation is so for a planner who computes investors’
welfare using every convex combination of agents’ beliefs. The optimal tax characterized in Proposition 1
selects the best competitive equilibria with taxes according to their belief-neutral social welfare criterion
for a specific set of welfare weights.21 Because the optimal tax is independent of the belief selected
by the planner, the restriction that the planner’s belief must be in the convex hull of investors’ beliefs
is automatically satisfied. In fact, as highlighted in Proposition 1c), the optimal tax maximizes social
welfare for any belief chosen by the planner, not only those in the convex hull of agents’ beliefs. Because
the policy-instrument considered in this paper is a second-best instrument, even though the optimal tax
maximizes a belief-neutral social welfare criterion, this does not necessarily corresponds with a belief-
neutral Pareto efficient allocation. The planner would need additional instruments to implement such
allocation.

The conceptual differences between the no-betting Pareto criterion proposed by GSS and the criterion
used in this paper are more significant. Importantly, the criterion in GSS refines the traditional Pareto
criterion. For an allocation to no-betting dominate another one, it must be that all investors prefer the
former allocation to the latter and that there exists a single belief that, if held by all agents, makes the
former allocation to be preferred by all agents. Because the welfare criterion used in this paper computes
welfare without respecting investors’ beliefs, the allocation implemented by the optimal tax will typically
fail to no-betting Pareto dominate the laissez-faire allocation, since at least some investors will perceive
to be worse off under the optimal tax policy. However, at times, the allocation implemented by the
optimal tax policy may no-betting Pareto dominate the no-trade allocation. The Appendix includes

21I show in the Appendix that maximizing investors’ certainty equivalents is identical to using generalized social welfare
weights, using the terminology of Saez and Stantcheva (2016), which in turn can be mapped to traditional social welfare
weights, as those used in the criterion of Brunnermeier, Simsek and Xiong (2014).

20



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Failure of quasi-concavity of planner’s objective

Note: Figure 4 shows the normalized aggregate welfare impact of a tax change from the planner’s perspective in a scenario
in which the planner’s objective fails to be quasi-concave. This figure corresponds to an environment in which there are
two groups of investors with the same degree of risk aversion and the same initial asset holdings. 90% of investors belong to
group 1, while the remaining 10% belong to group 2. Group 1 investors have turnover of 1/4 and a share of non-fundamental
trading volume of 0.3. Group 2 investors have turnover of 1 and a share of non-fundamental trading volume of 0.65. The
risk premium is 1.5%. In this example, the planner’s objective has three critical points, with two local maxima at τ = 0.67%
(the globally optimal tax) and τ = 3.66%, and local minimum at τ = 1.72%.

several informative examples that illustrate scenarios in which the no-betting Pareto criterion can and
cannot rank i) the no-trade allocation, ii) the competitive equilibrium allocation under the optimal tax,
and iii) the laissez-faire competitive equilibrium allocation.

Failure of quasi-concavity of planner’s objective Although Equation (12) must hold at the tax
level that maximizes the planner’s objective function, without further restrictions on the distribution
of trading motives, the planner’s problem may have multiple local optima. I formally show that the
planner’s objective function is quasi-concave at tax rates in which investors only adjust their trading
behavior on the intensive margin. The planner’s objective function can only fail to be concave when
the composition of investors who actively trade varies with the tax rate. I provide a sufficient condition
under which the planner’s objective function is quasi-concave, implying that there exists a uniquely
optimal tax. I summarize these results in the following Lemma.

Lemma 3. (Failure of quasi-concavity of planner’s objective)
a) The planner’s objective function may fail to be quasi-concave. Non-concavities can only arise if

the composition of active investors varies in response to tax changes.
b) A sufficient condition for the planner’s objective to be quasi-concave, is that i) Assumption [S] is

satisfied, and ii) investors’ tail beliefs satisfy

∂EB(τ)
[
Ei[D]
P1

]
∂τ

−
∂ES(τ)

[
Ei[D]
P1

]
∂τ

< 2, ∀τ (16)

21



where EB(τ)
[
Ei[D]
P1

]
and ES(τ)

[
Ei[D]
P1

]
respectively denote the average expected returns of buyers and sellers

for a given tax rate τ .

Since the set of marginal investors varies with the tax rate, the desirability of varying the tax rate
may significantly change depending on which investors remain active. The sufficient condition for quasi-
concavity is intuitive: it requires that the difference between buyers’ and sellers’ expected returns does
not grow too fast when the tax increases, which implies that the change in the marginal benefit of
increasing the tax level cannot become too large as the tax increases.

Beyond its technical interest, the fact that the planner’s objective may have multiple local optima
is of economic significance. Figure 4 illustrates this possibility by considering an example in which
there are two groups of investors. The first group of investors has low turnover and a low share of
non-fundamental trading volume. The second group of investors has high turnover and a high share
of non-fundamental trading volume. In this case, the planner perceives a welfare gain for both groups
when initially increasing the tax level starting from τ = 0, but it soon finds it costly to further increase
the tax rate without discouraging the fundamental trades of the first group of investors. However, for a
sufficiently high tax level, most of the investors of the first group have stopped trading and cease to enter
the planner’s marginal welfare assessments. At that point, the planner only finds large welfare gains
from reducing the non-fundamental trades of the second group of investors at the margin, generating a
second local optimum.

Pure betting Finally, I formally show that when investors exclusively trade for non-fundamental
motives, the optimal policy is associated with an infinite tax, eliminating trade altogether.

Lemma 4. (No-trade is optimal if all trade is belief-motivated) If investors exclusively trade
on belief differences, that is, Ai = A and X0i = X0, ∀i, and Cov [M2i, D] is identical for all investors,
τ∗ =∞ is optimal and there is no-trade in equilibrium under the optimal tax policy.

The pure betting case is an interesting benchmark conceptually and in practice. Conceptually,
Lemma 4 shows that whenever τ∗ is finite, there must be at least some investors with fundamental
trading motives. In practice, this result can be used to justify why, in many jurisdictions, activities that
are clearly identified as relying exclusively on differences in beliefs, including casino-style gambling or
horse races, are heavily taxed or even banned completely, as implied by Lemma 4. Lemma 4 connects
with Proposition 2 in Gilboa, Samuelson and Schmeidler (2014), which shows that when all trading is
due to belief differences, as in Lemma 4, it cannot be that allocations that involve trading no-betting
Pareto dominate the no-trade allocation.

4.4 Trading volume implementation

As described above, the distribution of beliefs is the key determinant of the optimal tax. However,
empirically recovering credible measures of investors’ beliefs is a challenging task. To avoid the direct
measurement of beliefs, I now introduce an alternative approach that implements the optimal policy
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using trading volume as an intermediate target.22 Under this alternative approach, the planner must
adjust the tax rate until total trading volume equals fundamental volume. Proposition 2 provides a
decomposition of trading volume into different components and describes a new implementation of the
optimal policy that compares total trading volume with fundamental volume.

Proposition 2. (Trading volume implementation)
a) [Trading volume decomposition] Trading volume in dollars, P1V (τ), where V (τ) is defined in

Equation (7), can be decomposed as follows

P1V (τ)︸ ︷︷ ︸
Total volume

= ΘF (τ)︸ ︷︷ ︸
Fundamental volume

+ ΘNF (τ)︸ ︷︷ ︸
Non-fundamental volume

− Θτ (τ)︸ ︷︷ ︸
Tax-induced volume reduction

,

where ΘF (τ), ΘNF (τ), and Θτ (τ) are defined in the Appendix for the general case. Under Assumption

[S], they correspond to

ΘF (τ) = 1
2

∣∣∣dX1i

dτ

∣∣∣A(�
i∈S(τ)

(Cov [M2i, D]− Var [D]X0i) dF (i)−
�
i∈B(τ)

(Cov [M2i, D]− Var [D]X0i) dF (i)
)

ΘNF (τ) = 1
2

∣∣∣dX1i

dτ

∣∣∣(�
i∈B(τ)

Ei [D] dF (i)−
�
i∈S(τ)

Ei [D] dF (i)
)

Θτ (τ) = τP1

∣∣∣dX1i

dτ

∣∣∣ �
i∈B(τ)

dF (i) .

b) [Alternative optimal policy implementation] The planner can implement the optimal corrective policy
by adjusting the tax rate until trading volume equals fundamental volume. Formally,

τ∗ is optimal ⇐⇒ P1V (τ∗) = ΘF (τ∗) .

c) [Small-tax approximation] For values of the optimal tax close to zero, knowledge of two variables from
the laissez-faire economy is sufficient to approximate the optimal tax. These variables are i) the share of
non-fundamental trading volume and ii) the semi-elasticity of trading volume to the tax rate. Formally,
τ∗ must satisfy

τ∗ ≈

Non-fundamental volume share︷ ︸︸ ︷
ΘNF (0)

ΘF (0) + ΘNF (0)

− d logV
dτ

∣∣∣∣
τ=0︸ ︷︷ ︸

Volume semi-elasticity

(17)

Proposition 2a) provides a novel decomposition of trading volume into three components. The first
component of trading volume is a function of investors’ initial asset holdings, risk aversion, and hedging
needs. I refer to this component as fundamental volume. The second component of trading volume
is a function of investors’ beliefs. I refer to this component as non-fundamental volume. The third
component of trading volume is a function of the tax rate. I refer to this component as the tax-induced
volume reduction. Note that when τ = 0, this last component is zero, and all volume can be attributed

22I use the intermediate target nomenclature by analogy to the literature on optimal monetary policy. In this model,
equilibrium trading volume becomes an intermediate target to implement optimal portfolio allocations.
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to fundamental and non-fundamental components. This decomposition of trading volume allows us to
develop alternative implementations of the optimal policy.

Proposition 2b) shows that, if the planner can credibly predict the amount of fundamental trading
volume, it can adjust the optimal tax until observed volume is commensurate with the appropriate
amount of fundamental trading. This new approach is appealing because it shifts the informational
requirements for the planner from recovering investors’ beliefs to constructing a model that predicts
the appropriate amount of fundamental volume. Alternatively, one can also reinterpret the optimal
policy as setting a tax rate such that the tax-induced volume reduction equals non-fundamental volume,
that is, setting τ∗ so that Θτ (τ∗) = ΘNF (τ∗). This alternative implementation, which is not a direct
consequence of classic Pigouvian logic, relies on the ability to relate total trading volume to belief
differences (the marginal distortion) and to the impact of the tax on trading (the direct effect of the
policy instrument on investors’ portfolios).

Finally, Proposition 2c) provides a new alternative implementation that exploits the definition
of trading volume. The upshot of this new approximation is that it provides a simple and easily
implementable characterization of the optimal tax based exclusively on information from the laissez-
faire economy: the semi-elasticity of trading volume to a tax change and the share of non-fundamental
trading volume. Intuitively, Equation (17) equalizes the reduction in trading volume caused by a tax
change of size τ with the share of non-fundamental trading volume: this insight is far from obvious,
since trading that occurs between investors with only fundamental motives is also distorted by the tax.
In practical terms, an economy in which a 20bps tax increase reduces trading volume by 20%, implying
a semi-elasticity of −20%

20(%)2 = −100, and whose share of non-fundamental trading volume is 30% features
an approximately optimal tax of 30bps. Section 5, which further explores the quantitative implications
of the model, also shows that the non-fundamental volume share and the volume semi-elasticity are
sufficient to find the optimal tax in an environment with fully specified trading motives.

Remark. (Practical advantage of trading volume implementation) The trading volume implementation of
the optimal policy has two distinct practical advantages relative to directly using the optimal tax formula
characterized in Equation (12). First, instead of having to explicitly recover or estimate investors’
beliefs to set the optimal policy, it is sufficient to rely on a model that predicts the level of fundamental
volume in the economy and then adjust the tax level under observed total volume reaches that level.
Second, Equation (17) provides a tractable and intuitive approximation for the optimal tax with minimal
informational requirements for a planner and under no restrictions regarding investors’ trading motives.

5 Quantitative assessment

The results derived in Sections 3 and 4 are valid for any distribution of trading motives. In this section,
I parameterize the cross-sectional distribution of trading motives with a dual goal. The first goal is to
derive comparative statics results on primitives to understand how changes in the composition of trading
motives affect the optimal tax. The second goal is to explore the quantitative implications of the model.
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Initially, I show that knowledge of two high-level variables is sufficient to set the optimal tax. Next, I
show how to compute estimates of the optimal tax using the best existing empirical counterparts of the
identified variables.

Formally, I assume that investors’ beliefs and hedging needs are jointly normally distributed, as
described in Assumption [G].

Assumption. [G] (Gaussian trading motives) Investors’ beliefs and hedging needs are jointly
distributed across the population of investors according to

Ei [D] ∼ µd + εdi

ACov [M2i, D] ∼ µh + εhi,

where µd ≥ 0 and µh = 0. The random variables εhi and εdi are jointly normally distributed as follows,
where ρ ∈ [−1, 1] and σ2

d, σ
2
h ≥ 0.23 εdi

εhi

 ∼ N
 0

0

 ,
 σ2

d ρσdσh

ρσdσh σ2
h

 . (18)

Investors have identical preferences Ai = A and hold identical initial asset positions X0i = X0.

The cross-sectional dispersion of investors’ mean beliefs σ2
d and hedging needs σ2

h respectively
parameterize the relative importance of non-fundamental and fundamental trading. The share of non-
fundamental trading volume, which I denote by δNF = ΘNF (τ)

ΘF (τ)+ΘNF (τ) , where ΘNF (τ) and ΘF (τ) are
defined in Proposition 2, turns out to be a key object of interest. As shown in the Appendix, the share of
non-fundamental trading volume δNF , which is constant for any tax rate in this model, can be expressed
in terms of primitives as follows:

δNF = σ2
d − ρσdσh

σ2
d + σ2

h − 2ρσdσh
=

σd
σh
− ρ

σh
σd
− ρ+ σd

σh
− ρ

. (19)

Note that δNF is exclusively a function of the ratio σd
σh

— equivalently σ2
d

σ2
d
+σ2

h
— and the correlation

between trading motives across the population of investors — see Figure A.3 in the Appendix for an
illustration of the different combinations of σd

σh
and ρ that generate the same value of δNF . When ρ = 0

and δNF = 0, investors have identical beliefs and all trade is fundamental. When ρ = 0 and δNF = 1,
all trade is driven by investors’ beliefs and hence non-fundamental. The parameter ρ determines the
correlation between both motives to trade across the population. A negative (positive) value of ρ implies
that optimistic investors are also more likely to be buyers (sellers) for fundamental motives. Making
investors’ preferences identical and assuming that they have identical asset holdings of the risky asset
eliminates other motives for trading, although both assumptions can be relaxed without impact on the
insights. Finally, note that when ρ > 0, δNF can take values outside of the interval [0, 1], which prevents
us from interpreting δNF as a share in those extreme cases. As shown below, the optimal tax is infinite
or negative in those cases.

23Note that Var [D] denotes the variance of the payoff of the risky asset while σ2
d corresponds to the cross-sectional

dispersion of investors’ beliefs about the expected payoff of the risky asset.
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5.1 Theoretical results

Note that Assumption [G] implies that Assumption [S] is satisfied, since the random variable Ei [D] −
ACov [M2i, D] − AVar [D]X0 is normally distributed and consequently symmetric. Therefore, the
equilibrium price does not vary with the value of τ and can be expressed as a function of primitives.
Formally, it corresponds to

P1 = µd −AVar [D]Q. (20)

The Appendix provides explicit characterizations of equilibrium asset allocations, trading volume and
turnover, as well as the share of buyers, sellers, and inactive investors. The Appendix also includes
explicit characterizations of fundamental and non-fundamental trading volume, as well as the tax-induced
volume reduction. The planner’s objective is quasi-concave in this case, and the optimal tax satisfies a
non-linear equation involving the inverse Mills ratio of the normal distribution. The following results
emerge under Assumption [G].

Proposition 3. (Optimal tax and comparative statics)
a) As long as some investors have heterogeneous beliefs (σd > 0) and investors’ beliefs and hedging

needs are not positively correlated (ρ ≤ 0), it is optimal to set a strictly positive tax.
b) When positive and finite, the optimal tax is increasing in the ratio of non-fundamental trading to

fundamental trading σd
σh

for any correlation level ρ. Consequently, a mean-preserving spread in investors’
beliefs is associated with a higher optimal tax.

c) If the share of non-fundamental trading volume δNF ≥ 1, then τ∗ = ∞; if 0 ≤ δNF < 1, then
τ∗ ∈ [0,∞); while if δNF < 0, then τ∗ < 0.

The result for the case in which ρ = 0 in Proposition 3a) is a particular case of the general result
in Proposition 1b), which guarantees the optimality of a positive tax when fundamental and non-
fundamental motives for trade are independent of each other and there exists some non-fundamental
trading. With Gaussian trading motives, assuming that fundamental and non-fundamental trading
motives are negatively correlated further increases the rationale for taxation, since it implies that
optimistic (pessimistic) investors are also more likely to be buyers (sellers) for fundamental motives.
Figure A.3 in the Appendix illustrates that in many instances in which ρ > 0, the optimal tax can still
be positive and finite.

Proposition 3b) shows that the optimal tax increases with the share of non-fundamental trading
volume in the more relevant region in which the tax is positive and finite. Consequently, a mean-
preserving spread of investors’ beliefs is associated with a higher optimal tax. Intuitively, an increase
in belief dispersion makes optimistic (pessimistic) investors more likely to be buyers (sellers), increasing
non-fundamental trading volume and the motive to tax by the planner.

Finally, Proposition 3c) shows that knowing the value of δNF , which is exclusively a function of σd
σh

and ρ, is sufficient to fully determine the sign of the optimal tax. When δNF ∈ [0, 1), the optimal tax
is non-negative and finite. Outside of this interval, the optimal policy features either a subsidy or an
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infinite tax. As described above, these extreme scenarios can only arise when the correlation between
trading motives ρ is sufficiently large. Next, as the last step before quantifying the model, I show that
additional information besides δNF is needed to find the magnitude of the optimal tax.

5.2 Quantitative assessment

Optimal tax identification A significant challenge for any theory of optimal taxation is to clearly
identify the informational requirements that a planner would need to actually implement the optimal
tax and to measure the welfare consequences of a change in the tax rate. Proposition 4 shows that a
small number of high-level variables are sufficient to answer both questions in this case. Interestingly,
the same two variables that locally approximate the optimal tax in Proposition 2c) turn out to be the
same two variables needed to find the globally optimal tax under Assumption [G].

Proposition 4. (Optimal tax identification/Sufficient statistics)
a) [Optimal tax] Knowledge of two variables is sufficient to determine the optimal tax. These variables

are i) the share of non-fundamental trading volume, δNF , defined in Equation (19), and ii) the semi-
elasticity of trading volume to the tax rate, given by εlogV

τ = d logV
dτ .24

b) [Marginal welfare impact of a tax change] Knowledge of three variables is sufficient to determine
the normalized aggregate marginal welfare impact of a tax change,

dV p

dτ
P1Q

. These variables are i) the share
of non-fundamental trading volume, δNF , defined in Equation (19), ii) the semi-elasticity of trading
volume to the optimal tax, given by εlogV

τ = d logV
dτ , and iii) the risk premium, given by Π ≡ AVar[D]Q

P1
.

Proposition 4a) shows that in addition to knowing the share of non-fundamental trading volume
δNF , which Proposition 3 determined to be sufficient to pin down the sign of the optimal tax, a planner
must also know the sensitivity of total trading volume to a change in the tax rate to fully determine the
magnitude of the optimal tax. As discussed below, when finding empirical counterparts, this elasticity
can be directly estimated from tax policy changes.

Proposition 4b) shows that in order to assess the marginal welfare impact of a tax change (normalized
in terms of the total capitalization of the risky asset), a planner needs to also take a stance on the
risk premium, which is invariant to the tax rate in this model. Intuitively, the risk premium contains
information on investors’ willingness to pay for the ability to share risks. The Appendix shows that a
planner with separate knowledge of σd

σh
and ρ, in addition to the three variables identified in 4b), can

also fully recover the distribution of marginal welfare impacts for each individual, dV pi
dτ .

Proposition 4 is the most relevant result from the perspective of implementing the optimal tax
characterized in this paper. Importantly, by showing that only two high-level variables are needed to
find the optimal tax, it avoids the need to specify the parameters of the model. For instance, while
it may be hard to separately estimate σd

σh
and ρ, it may be easier to find different approaches that

can help discipline δNF , as discussed below. In this context, it is also important that the sufficient
24As implied by Equation (50) in the Appendix, it is sufficient to know this semi-elasticity for any given value of τ . The

quantitative results in this section are based on empirical counterparts of εlog V
τ

∣∣
τ=0

.
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statistics identified, e.g., the risk premium, the volume semi-elasticity to tax changes, and the share
of non-fundamental trading volume, are scale-invariant variables. The use of scale-invariant variables
sidesteps common concerns associated with CARA calibrations (see, e.g., Campbell (2017)) and allows
us to conjecture that the quantitative insights should remain valid, at least in approximate form, in more
general quantitative models that match the relevant sufficient statistics.

Optimal tax calibration Proposition 4 shows that finding an empirical counterpart of the optimal tax
exclusively requires measures of εlogV

τ and δNF , and that an estimate of the risk premium is necessary
to compute welfare gains. Next, I describe how to find the plausible empirical counterparts of these
objects, given the existing evidence. I continue to set the gross risk-free rate to 1 in the calibration —
the results are virtually indistinguishable for reasonable values of the risk-free rate.

The evidence in Colliard and Hoffmann (2017), who precisely estimate the necessary volume semi-
elasticity to tax changes using the recent implementation of a financial transaction tax in France,
is best suited to discipline the choice of εlogV

τ . They find, starting from τ = 0, that a 20bps tax
increase (0.2%) persistently reduced trading volume for stocks by 20%, which corresponds to a semi-
elasticity εlogV

τ

∣∣∣
τ=0

= d logV
dτ

∣∣∣
τ=0

= −20%
0.2% = −100.25 As shown in the Appendix, in this model there

is a tight relation between the semi-elasticity of trading volume, the risk premium, and the amount
of asset turnover. I use this relation to choose the frequency at which to calibrate the model. By
choosing a quarterly calibration, the model is able to jointly match a standard quarterly risk premium
Π = 6%/4 = 1.5%, the turnover ratio of domestic shares for US stocks, which I compute to be Ξ (0) = 33%
of total asset float in a quarter, using information from the World Federation of Exchanges database
between 1990 and 2018, and the volume semi-elasticity εlogV

τ

∣∣∣
τ=0

= −100.
Providing an appropriate estimate of the share of non-fundamental trading volume δNF is certainly

more challenging. For instance, Hong and Stein (2007) argue that “the bulk of volume must come from
differences in beliefs that lead traders to disagree about the value of a stock.” The Appendix includes
an estimation procedure for δNF in this model that uses information on individual investors’ portfolio
choices and hedging needs. Importantly, this procedure does not use any information on investors’ beliefs.
I show that this procedure yields an unbiased estimate of δNF when ρ = 0, and explicitly characterize
the potential bias when ρ 6= 0.

The recent work by Koijen and Yogo (2019) maps closely to the estimation procedure described in
the Appendix and seems best suited to shed light on the value of δNF . They seek to explain investors’
portfolio holdings using a rich characteristics-based model of investors’ asset demands, which can be
interpreted as modeling investors’ hedging/fundamental trading motives. Their flexible approach is able
to explain 40% of the variation in investors’ portfolio holdings, leaving 60% of investors’ portfolio holdings
unexplained. Since we cannot guarantee that their explanatory variables include all possible hedging

25I adopt as reference the average estimate in Colliard and Hoffmann (2017) for stocks outside the Euronext’s SLP
program, although they find a range of semi-elasticities for different investors and market structures, with volume reductions
between 10% to 40%. Alternatively, using data from the Swedish experience in the 80’s, Umlauf (1993) finds that a 1% tax
increase is associated with a decline in turnover of more than 60%, which corresponds to a volume semi-elasticity of −60.
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Figure 5: Optimal tax (sensitivity analysis)
Note: The left panel in Figure 5 shows the optimal tax τ∗ as a function of the share of non-fundamental trading volume
δNF , defined in Equation (19). The right panel in Figure 5 shows the optimal tax τ∗ as a function of the magnitude of
volume semi-elasticity εlog V

τ = d log V
dτ

, evaluated at τ = 0. The set of reference parameters are δNF = 0.3 (used in the
right plot) and εlog V

τ

∣∣
τ=0

= −100 (used in the left plot). In both figures, the optimal tax for the reference parameters,
represented by a vertical dotted line, is τ∗ = 0.37%.

motives, 60% can be interpreted as an upper bound for δNF . Conservatively, I adopt δNF = 0.3 as the
reference value for the share of non-fundamental trading volume. This choice corresponds to imposing
a uniform prior for δNF on the interval [0%, 60%]. This choice implies that a non-negligible share of
trading is non-fundamental, while erring on the side of attributing most trades to fundamental motives.
A reader who perceives that different values of εlogV

τ

∣∣∣
τ=0

and δNF are more plausible or may be more
appropriate in alternative contexts, can refer to the sensitivity analysis in Figure 5.

Quantitative results Under the parameterization just described, Figures 5 and 6 illustrate the
magnitudes implied by the model for the optimal tax and also provide a sensitivity analysis.

Figure 5a illustrates how the optimal tax varies as a function of the ratio of the share of non-
fundamental trading volume δNF , for the reference level of the volume semi-elasticity to tax changes,
εlogV
τ

∣∣∣
τ=0

= −100. For a given volume semi-elasticity, the optimal tax is increasing in δNF . Consistent
with the theoretical results, when δNF = 0, the optimal tax is also 0. For values of δNF close to 0, the
optimal tax increases almost linearly with δNF . When δNF approaches 1, the optimal tax tends sharply
to ∞. For reference, when δNF = 0.1, τ∗ = 0.11%, and when δNF = 0.6, τ∗ = 1.05%.

Figure 5b illustrates how the optimal tax varies as a function of the volume semi-elasticity to tax
changes evaluated at τ = 0, for the reference level of the share of non-fundamental trading volume,
δNF = 0.3. For a given share of non-fundamental trading volume, the optimal tax is decreasing
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Figure 6: Trading volume implementation

Note: Figure 6 illustrates the volume decomposition established in Proposition 2 when εlog V
τ

∣∣
τ=0

= −100 and δNF = 0.3. It
shows total turnover, given by Ξ (τ) = P1V(τ)

Q
, fundamental turnover, given by ΞF (τ) = ΘF (τ)

Q
, non-fundamental turnover,

given by ΞNF (τ) = ΘNF (τ)
Q

, and the tax induced turnover reduction Ξτ (τ) = Θτ (τ)
Q

. The optimal tax, represented by a
vertical dotted line, is τ∗ = 0.37%. Note that this line goes through to the points in which Ξ (τ) and ΞF (τ), as well as
ΞNF (τ) and Ξτ (τ), intersect, which is consistent with Proposition 2b).

in
∣∣∣εlogV
τ

∣∣∣
τ=0

∣∣∣. Intuitively, when the magnitude of the semi-elasticity is high (low), a small (large)
transaction tax is needed to eliminate the same amount of non-fundamental trading volume. For
reference, when εlogV

τ

∣∣∣
τ=0

= −50, τ∗ = 0.75%, and when εlogV
τ

∣∣∣
τ=0

= −150, τ∗ = 0.23%. Note that the

optimal tax is convex both in the level of δNF and
∣∣∣εlogV
τ

∣∣∣
τ=0

∣∣∣, which suggests that uncertainty about
the level of both determinants of the optimal tax may call for higher optimal taxes.

While Figure 5 illustrates the results of Propositions 1 and 3, Figure 6 graphically illustrates how
to make use of the results of Proposition 2 in practice. It shows the differential behavior of the three
components of trading volume to changes in the tax rate for the baseline calibration. The reduction in
fundamental and non-fundamental volume, which is monotonic, is driven by extensive margin changes
in the composition of active investors. Meanwhile, the tax-induced component of volume grows rapidly
at first before it starts decreasing monotonically, due to the overall trading reduction on the extensive
and intensive margins. Total and fundamental volume intersect at the optimal tax rate of τ∗ = 0.37%.
Consistent with Proposition 2, non-fundamental volume and the tax-induced volume component intersect
as well at the same tax rate.

We can also verify the validity of Proposition 2c) in this particular calibration. Given a volume
semi-elasticity εlogV

τ

∣∣∣
τ=0

= −100, and a share of non-fundamental trading volume δNF = 0.3, the
(approximate) optimal tax rate given in Equation (17) becomes τ∗ ≈ 0.3

100 = 0.3%, close to the exact
value found. Given a volume semi-elasticity of −100, 2c) associates the percentage of non-fundamental
trading to the optimal tax, when expressed in basis points. That is, a 20%, 40%, or 60% share of
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non-fundamental trading volume is approximately associated with an optimal tax of 20, 40, or 60bps.
Finally, it is also possible to compute the aggregate marginal welfare gain associated with a given

tax change relying exclusively on the observables identified in Proposition 4. Starting from the laissez-
faire equilibrium, I show in the Appendix that

dV p

dτ
P1Q

∣∣∣∣
τ=0

= 1
Π

1
| εlog V
τ |

τ=0|
δNF , which for the reference

calibration of the model corresponds to 1
1.5% ·

1
100 · 0.3 = 0.2. This result implies that introducing a 10

basis points transaction tax is associated with a quarterly welfare gain of approximately 2 basis points
of the capitalization of the risky asset. Taking the value of the US stock market as reference, of roughly
30 trillion dollars, introducing a 10bps tax is associated with a welfare gain of approximately 6 billion
per quarter, or 24 billion per year, which roughly corresponds to 10 basis points of US GDP.

It is worth concluding with two remarks. First, allowing investors to trade dynamically at different
frequencies or introducing technological trading costs may change the positive predictions of the model.
However, after calibrating to match the observed semi-elasticity of volume to tax changes, one would
expect to find comparable values for the optimal tax for a given share of non-fundamental trading volume.
Second, the quantitative results in this Section assume that the volume reduction associated with a tax
increase represents a behavioral response and not tax avoidance. This is consistent with most of the
derivations in the paper and is a reasonable assumption for small taxes. However, if tax enforcement is
imperfect, one must interpret the optimal taxes reported in this section as upper bounds, and refine the
analysis along the lines of Section F.3 in the Appendix.

6 Robustness of the results

Before concluding, I characterize the optimal financial transaction tax under more general assumptions
on preferences and beliefs. Proposition 5 shows that investors’ expectations of asset payoffs — now
computed using investors’ own stochastic discount factor — and portfolio sensitivities are still the key
variables that determine the optimal tax in this more general framework. It also shows that the results
derived in the rest of the paper remain valid as an approximation to more general models. Finally, based
on results derived in the Appendix, I discuss several extensions to the baseline model.

6.1 General utility and arbitrary beliefs

This section extends the main results of the paper to an environment in which investors also face
a consumption/savings decision, have general utility specifications, and disagree about probability
assessments in an arbitrary way. Investors’ beliefs are now modeled as a change of measure with respect
to the planner’s probability measure, which (jointly) determines the realization of all random variables
— asset payoffs and endowments — in the model. The beliefs of investor i about date 2 uncertainty
are represented by a Radon-Nikodym derivative Zi, which is absolutely continuous with respect to the
planner’s probability measure and satisfies Ep [Zi] = 1. This random variable Zi flexibly captures any
discrepancy between the probability assessments made by the planner and those made by investors.
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Formally, for a given random variable X, I use the notation Ei [X] = Ep [ZiX].
In this case, investors maximize

max
C1i,C2i,X1i,Yi

Ui (C1i) + βiEi [Ui (C2i)] ,

where Ui (·) satisfies standard regularity conditions, subject to the following budget constraints

C1i +X1iP1 + Y1i = M1i +X0iP1 − τP1 |∆X1i|+ T1i

C2i = M2i +X1iD +RY1i,

where Y1i denotes the amount invested in the risk-free asset and R denotes the risk-free rate, now an
equilibrium object. As in the baseline model, both D and M2i are random and potentially correlated. I
consider the same competitive equilibrium definition as in Section 3, now augmented to include market
clearing of the risk-free asset.

In this model, when active, investors’ optimal portfolio decisions satisfy the following pair of Euler
equations

1 = REi [mi] (21)

P1 (1 + τ sgn (∆X1i)) = Ei [miD] , (22)

where mi = βiU
′(C2i)

U ′(C1i) denotes investor i’s stochastic discount factor. Again, some investors may decide
not to trade the risky asset at all when their optimal asset holdings are close to their initial asset holdings.
In that case, ∆X1i = 0, and Equation (22), which is the counterpart of Equation (5), does not hold.

As in the baseline model, the planner computes social welfare under a single belief. In this case,
the planner uses uniform generalized welfare weights — using the terminology of Saez and Stantcheva
(2016). As described in detail in the Appendix, this is equivalent to maximizing a weighted sum of
investors’ utilities. Proposition 5 characterizes the exact optimal tax in the general case, as well as
its approximation when investors’ stochastic discount factors are roughly constant. Importantly, the
approximated optimal tax characterization in this general model turns out to be identical to the optimal
tax characterization in the baseline model.

Proposition 5. (General utility and arbitrary beliefs) a) [Optimal tax formula] The optimal
financial transaction tax τ∗ satisfies

τ∗ = τ∗risky + θ (τ∗) τ∗risk-free,

where τ∗risky and τ∗risk-free are given by

τ∗risky =
ΩrB(τ∗) − ΩrS(τ∗)

2 and τ∗risk-free =
ΩfB(τ∗) − ΩfS(τ∗)

2 ,

where Ωr
B(τ∗) is a weighted sum of the difference between risky-asset buyers’ expected returns and the

planner’s expected returns, computed using the investors’ stochastic discount factor mi, given by

ΩrB(τ∗) ≡
�
i∈B(τ∗)

ωB
i,r (τ∗)

(
Ei
[
mi (τ∗) D

P1 (τ∗)

]
− Ep

[
mi (τ∗) D

P1 (τ∗)

])
dF (i) , with ωB

i,r (τ∗) ≡
dX1i(τ∗)

dτ�
i∈B(τ∗)

dX1i(τ∗)
dτ dF (i)

,
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where Ωr
S(τ∗) is analogously defined for sellers, and where Ωf

B(τ∗) is a weighted sum of the difference
between risk-free asset buyers’ and the planner’s valuation of the risky-free asset, computed using the
investors’ stochastic discount factor mi, given by

ΩfB(τ∗) ≡
�
i∈Bf (τ∗)

ωB
i,f (τ∗) (Ei [mi (τ∗)R (τ∗)]− Ep [mi (τ∗)R (τ∗)]) dF (i) , with ωB

i,f (τ∗) ≡
dY1i(τ∗)

dτ�
i∈Bf (τ∗)

dY1i(τ∗)
dτ dF (i)

,

where Ωf
S(τ∗) is analogously defined for sellers, and where θ (τ∗) denotes the relative marginal change in

trading volume of the risk-free asset relative to the risky asset, given by

θ (τ∗) =
dVs(τ∗)
dτ

dVr(τ∗)
dτ

,

where Vr (τ∗) =
�
i∈B(τ∗) ∆X1i (τ∗) dF (i) and Vs (τ∗) =

�
i∈Bf (τ∗) ∆Y1i (τ∗) dF (i), and where B (S) and

Bf (Sf ) respectively denote the sets of buyers (sellers) of the risky and risk-free assets.
b) [Approximation] In the limit in which investors’ stochastic discount factors are approximately

constant, formally, when mi → m, where m ∈ R+ the optimal financial transaction tax τ∗ satisfies

τ∗ ≈
ΩB(τ∗) − ΩS(τ∗)

2 ,

where ΩB(τ∗) and ΩS(τ∗) are described in Equations (12) and (13). This expression is identical to the
one in Proposition 1a).

The optimal tax characterized in Proposition 5a) has a similar structure to the optimal tax
characterized in Proposition 1a) for the baseline model, since it also involves investors’ beliefs and
portfolio sensitivities. There are three major differences. First, the optimal tax formula now includes
risk-adjusted expectations — through investors’ stochastic discount factors mi — of asset returns. By
computing this risk-adjustment, the planner can flexibly account for how investors’ beliefs affect their
portfolio decisions. Second, the terms Ωr

B(τ∗) and Ωr
S(τ∗) now include a weighted average of differences

between investors’ beliefs and the planner’s belief about expected asset returns. In this case, the planner’s
belief does not drop out of the optimal tax formula, since now Ep [miD] (also Ep [miR]) takes different
values for each investor i. Intuitively, even though portfolio reallocations induced by a tax change still
must add up to zero, the fact that different investors value cash-flows differently in different states fails to
make the aggregate sum of the induced welfare changes zero-sum in this case. Third, since now investors
also have a consumption-savings decision, the planner finds it desirable to adjust the optimal tax of
the risky asset to try to counteract the perceived distortions in investors’ risk-free portfolio decisions.
Consistent with the second-best Pigouvian logic of the tax, the value of θ (τ∗) modulates how important
the belief distortions in consumption-savings decisions are for τ∗ depending on the relative sensitivities
of trading volume to a tax change in the risky and risk-free asset markets. The expression for τ∗risk-free

mimics that of τ∗risky, in that it reflects one-half of the difference between buyers and sellers differences
between investors’ and the planner’s risk-adjusted risk-free returns. Intuitively, when risk-free asset
volume does not change with the tax, that is, when dVs(τ∗)

dτ = 0, then θ (τ∗) = 0.
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When investors stochastic discount factors are approximately constant, Proposition 5b) finds that the
optimal tax in the general case collapses to the optimal tax in the baseline model. This approximation
corresponds to a scenario in which the risks faced by investors are not too large in comparison to their
risk-bearing capacity.26 Proposition 5b) allows us to interpret the results of the baseline model as an
approximation to more general models. Note that only the first moment of the distribution of beliefs
about the payoff of the risky asset appears explicitly in the approximated optimal tax formula, which
motivates the sustained assumption in the paper restricting belief differences to the first-moment of the
distribution of the payoffs of the risky asset.

Finally, the Appendix includes several additional results. In particular, it shows that investors’
optimal portfolios in the general case map to those in the baseline model after linearly approximating
investors’ stochastic discount factor around their mean. This result implies that the volume
decomposition characterized in Proposition 2 is also approximately valid more generally. The Appendix
also includes a simulation of the non-linear model that aims to match the same high-level variables
identified in Section 5.2, comparing and relating its quantitative findings to those in that section.

6.2 Discussion of extensions

The Appendix of this paper includes multiple extensions. These show that the characterization of the
optimal tax formula remains valid identically or suitably modified in more general environments.

First, I introduce the possibility that investors face short-sale or borrowing constraints that limit
their portfolio decisions. I show that the optimal tax formula from Proposition 1 remains valid in
that case, and show in a simulated version of the model that the optimal tax becomes lower when
investors face short-sale constraints. Second, I show that the optimal tax formula from Proposition 1
remains valid when there are pre-existing trading costs, as long as these are compensation for the use
of economic resources, not economic rents. Perhaps counter-intuitively, when pre-existing trading costs
reduce the share of fundamental trading, the optimal transaction tax can be increasing in the level of
trading costs and vice versa. Third, I show that the sign of the optimal tax is independent of whether tax
enforcement is perfect or imperfect. However, I show that the magnitude of the optimal tax is decreasing
in the investors’ ability to avoid paying taxes. Fourth, in an environment with multiple risky assets, the
optimal tax becomes a weighted average of the optimal tax for each asset, with higher weights given to
those assets whose volume is more sensitive to tax changes. This result follows from the second-best
Pigouvian nature of the policy. Fifth, I show that investor-specific taxes are needed to implement the
first-best outcome. Sixth, I provide a formula for the upper bound of welfare losses induced by a marginal
tax change when all trading is fundamental. Seventh, I derive an optimal tax characterization in the
case in which investors and the planner disagree about second moments.

26This result is related to the classic Arrow-Pratt approximation (Arrow (1971); Pratt (1964)), which shows that the
solution to the CARA-Normal portfolio problem approximates the solution to any portfolio problem for small gambles, but
it is not identical, since Proposition 5 directly approximates the optimal tax formula, while the standard approximation is
done over investors’ optimality conditions.
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Finally, in a q-theory production economy, I show that a transaction tax generates additional first-
order gains/losses as long as the planner’s belief differs from the average belief of investors. In addition
to the allocation of risk among investors, the level of aggregate risk and investment in a production
economy also affects welfare. If a marginal tax increase reduces (increases) investment at the margin
when investors are too optimistic (pessimistic) relative to the planner, a positive tax is welfare improving,
and vice versa. In principle, the optimal tax formula in a production economy depends on the belief
used by the planner. However, if the planner uses the average belief of investors in the economy to
calculate welfare, there is no additional rationale for taxation due to production. Access to an additional
policy instrument that targets aggregate investment would be optimal in this environment, allowing the
planner to set the optimal transaction tax as in the baseline model, for any planner’s belief.27

7 Conclusion

This paper studies the welfare implications of taxing financial transactions in an equilibrium model in
which financial market trading is driven by both fundamental and non-fundamental motives. While a
transaction tax is a blunt instrument that distorts both fundamental and non-fundamental trading, the
welfare implications of reducing each kind of trading are different. As long as a fraction of investors hold
heterogeneous beliefs that are unrelated to their fundamental motives to trade, a planner who weights
investors equally and computes social welfare using a single belief will find a strictly positive tax optimal.
Interestingly, the optimal tax may be independent of the belief used by the planner to calculate welfare.

The optimal transaction tax can be expressed as a function of investors’ beliefs and portfolio
sensitivities. Alternatively, the planner can determine the optimal tax rate by directly equating the
level of total trading volume to the level of fundamental trading volume. Knowledge of two variables,
the share of non-fundamental trading volume and the semi-elasticity of trading volume to the tax rate, is
sufficient to compute the magnitude of the optimal tax, as shown and illustrated in this paper by using
the best existing estimates of both variables.

Although the paper includes many extensions, there are related questions worth exploring.
Understanding the normative implications of taxing financial transactions in models with endogenous
learning dynamics or with rich wealth dynamics, when markets are decentralized, or when some investors
have market power are fruitful avenues for further research.

27An earlier version of this paper studied how dynamic trading affects the determination of the optimal tax. Consistent
with Tobin’s insight, a transaction tax affects more forward-looking investors who buy and sell at high frequencies, since
the anticipation of future taxes reduces their incentives to trade. However, buy-and-hold investors are barely sensitive to a
transaction tax. Portfolio sensitivities endogenously capture both possibilities.
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Appendix

A Proofs and derivations: Section 3

Properties of investors’ portfolio problem Given a price P1 and a tax τ , investors solve
maxX1i J (X1i), where J (X1i) denotes the objective function of investors, introduced in Equation (4) in
the text, and reproduced here:

J (X1i) = [Ei [D]−AiCov [M2i, D]− P1]X1i + P1X0i − τP1 |∆X1i|+ T1i −
Ai
2 Var [D]X2

1i (23)

The first and second order conditions in the regions in which the problem is differentiable are respectively
given by

J ′ (X1i) = Ei [D]−AiCov [M2i, D]− P1 − τP1 sgn (∆X1i)−AiVar [D]X1i = 0 (24)

J ′′ (X1i) = −AiVar [D] < 0. (25)

When the tax rate is strictly positive, limX1i→X−0i
J ′ (X1i) > limX1i→X+

0i
J ′ (X1i), so the transaction tax

generates a concave kink for investors’ objective function at X1i = X0i. The existence of a concave kink
combined with the fact that J ′′ (·) < 0 and limX1i→±∞ J

′ (X1i) = −∞, jointly imply that the solution
to the investors’ problem is unique, and that it can be reached either at an interior optimum or at the
kink. Equation (5) provides a full characterization of the solution. When taxes are positive, for a given
price P1, an individual investor i decides not to trade when∣∣∣∣Ei [D]−AiCov [M2i, D]−AiVar [D]X0i − P1

P1

∣∣∣∣ ≤ τ.
When the tax rate is negative (a subsidy), limX1i→X−0i

J ′ (X1i) < limX1i→X+
0i
J ′ (X1i), so the transaction

subsidy generates a convex kink for investors’ objective function at X1i = X0i. The existence of a convex
kink combined with the fact that J ′′ (·) < 0 and limX1i→±∞ J

′ (X1i) = −∞, jointly imply that the
solution to the investors’ problem is reached at an interior optimum. See Figure A.7 for a graphical
illustration of both cases.

Lemma 1. (Competitive equilibrium with taxes)

Proof. a) [Existence/Uniqueness] For given set of primitives and a tax rate τ , let us define an aggregate
excess demand function Z (P1) ≡

�
i∈T (P1) ∆X1i (P1) dF (i), where individual net demands ∆X1i (P1) are

determined by Equation (5) and T (P1) denotes the set of investors with non-zero net trading demands
for a given price P1. A price P ?1 is part of an equilibrium if Z (P ?1 ) = 0, which guarantees that market
clearing is satisfied. The continuity of Z (P1) follows trivially. It is equally straightforward to show that
limP1→∞ Z (P1) = −∞ and limP1→−∞ Z (P1) = ∞. These three properties are sufficient to establish
that an equilibrium always exist, applying the Intermediate Value Theorem.
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To establish uniqueness, we must study the properties of Z ′ (P1), which can be explicitly computed
as follows

Z ′ (P1) =
�
i∈T (P1)

∂X1i (P1)
∂P1

dF (i) = −
�
i∈T (P1)

1 + sgn (∆X1i) τ
AiVar [D] dF (i) ≤ 0,

where the first equality follows from Leibniz’s rule. Because the distribution of investors is continuous,
Z (P1) is differentiable.28 Note that Z ′ (P1) is strictly negative when the region T (P1) is non-empty.
This is sufficient to conclude that if there exists a price P ?1 that i) satisfies Z (P ?1 ) = 0 and ii) is such
that the set active investors has positive measure, the equilibrium must be unique, because Z ′ (P ?1 ) < 0
at that point and Z ′ (P1) ≤ 0 everywhere else. However, a price P ?1 that satisfies Z (P ?1 ) = 0 but that
implies that the set of investors who actively trade has zero measure can also exist. In that case, there
is generically a range of prices that are consistent with no-trade.

Therefore, trading volume is always pinned down, although there is an indeterminacy in the set of
possible asset prices in no-trade equilibria. In that sense, the equilibrium is essentially unique.

b) [Volume response] The change in trading volume is given by dV
dτ =

�
i∈B(P1)

dX1i
dτ dF (i). It follows

that dX1i
dτ = ∂X1i

∂τ + ∂X1i
∂P1

dP1
dτ can be expressed as

dX1i
dτ

= ∂X1i
∂τ

1− (sgn (∆X1i) + τ)
�
i∈T (P1)

sgn(∆X1i)
Ai

dF (i)�
i∈T (P1)

1+sgn(∆X1i)τ
Ai

dF (i)


︸ ︷︷ ︸

≡εi

, (26)

where ∂X1i
∂τ = −P1 sgn(∆X1i)

AiVar[D] , ∂X1i
∂P = −(1+sgn(∆X1i)τ)

AiVar[D] , and it is straightforward to show that εi > 0 for both
buyers and sellers. Equation (26) implies that dX1i

dτ < 0 for buyers, while dX1i
dτ > 0 for sellers, implying

that trading volume decreases with τ .
c) [Price response] The price P1 is continuous and differentiable in τ when the distribution of investors

is continuous. Using again Leibniz’s rule, the derivative dP1
dτ can be expressed as

dP1
dτ

=
�
i∈T (P1)

∂X1i
∂τ dF (i)

−
�
i∈T (P1)

∂X1i
∂P dF (i)

=
−
(�

i∈B(P1)
P1

AiVar[D]dF (i)−
�
i∈S(P1)

P1
AiVar[D]dF (i)

)
�
i∈T (P1)

1+sgn(∆X1i)τ
AiVar[D] dF (i)

. (27)

It follows that dP1
dτ < 0 if

�
i∈B(P1)

1
Ai
dF (i) >

�
i∈S(P1)

1
Ai
dF (i) and vice versa. Under Assumption [S],

which implies that 1
Ai

is constant and that the share of buyers equals the share of sellers, the numerator
of Equation (27) is zero, implying that dP1

dτ = 0.

A sufficient (but not necessary) condition for P1 to be strictly positive is that the expected dividend
of every investor is large enough when compared to his risk-bearing capacity, that is: Ei [D] >

Ai (Cov [M2i, D] + Var [D]Q), ∀i. Note also that one must assume that Var [M2i] is sufficiently large
to guarantee that the variance-covariance matrix of the joint distribution of M2i and D is positive
semi-definite. If we allowed for P1 to take negative values, Equation (2) becomes τ |P1| |∆X1i|.

28When the distribution of investors F (·) is continuous, P1 (τ), X1i (τ), and V (τ) are continuously differentiable whenever
trading volume is positive in equilibrium. All the economic insights from this paper remain valid when the distribution of
investors can have mass points, as shown in earlier versions of this paper. Assuming a continuous probability distribution
simplifies all formal characterizations by preserving differentiability.
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B Proofs and derivations: Section 4

To simplify the exposition, I suppress the explicit dependence on τ of many variables and sets at times,
e.g., X1i, P1, B, and S, instead of X1i (τ), P1 (τ), B (τ), and S (τ).

Lemma 2. (Marginal welfare impact of tax changes)

Proof. a) [Individual welfare impact] The derivative of the planner’s objective function is given by
dV p

dτ =
� dV pi

dτ dF (i), where investor i’s certainty equivalent from the planner’s perspective V p
i (τ) is

defined in Equation (9). Consequently, dV pi
dτ corresponds to

dV p
i

dτ
= [Ep [D]− Ei [D] + sgn (∆X1i)P1τ ] dX1i

dτ
−∆X1i

dP1
dτ

+ dT̃1i
dτ

. (28)

The derivation of Equation (28) uses the envelope theorem for the choice of X1i and for the extensive
margin choice between trading and no trading, which are both made optimally. Note that dV pi

dτ = dT̃1i
dτ

for investors who do not trade at the margin, because dX1i
dτ = 0 and ∆X1i = 0. Hence, a marginal tax

change has no effect on the welfare of those investors who decide not to trade, besides potential tax
rebates.

b) [Aggregate welfare impact] We can aggregate across investors to express the change in social
welfare as follows

dV p

dτ
=

�
i∈T (τ)

[−Ei [D] + sgn (∆X1i)P1τ ] dX1i
dτ

dF (i) , (29)

where Equation (29) follows from market clearing, which implies
�

∆X1idF (i) = 0 and
�
dX1i
dτ dF (i) = 0,

and from the assumption that tax revenues are rebated to investors, which implies that
�
dT̃1i
dτ dF (i) =

0.

Note that the marginal welfare impact of a tax change from the perspective of investor i is given by

dV i
i

dτ
= sgn (∆X1i)P1τ

dX1i
dτ
−∆X1i

dP1
dτ

+ dT̃1i
dτ

. (30)

Proposition 1. (Optimal financial transaction tax)

Proof. a) [Optimal tax formula] Starting from Equation (29), it follows that the optimal transaction tax
τ∗ must satisfy the following expression

τ∗ =
�
i∈T (τ)

Ei[D]
P1

dX1i
dτ dF (i)�

i∈T (τ) sgn (∆X1i) dX1i
dτ dF (i)

= 1
2

�
i∈T (τ)

Ei[D]
P1

dX1i
dτ dF (i)�

i∈B(τ)
dX1i
dτ dF (i)

= 1
2


ΩB︷ ︸︸ ︷�

i∈B(τ)

Ei [D]
P1

dX1i
dτ�

i∈B(τ)
dX1i
dτ dF (i)︸ ︷︷ ︸
ωB
i

dF (i)−

ΩS︷ ︸︸ ︷�
i∈S(τ)

Ei [D]
P1

dX1i
dτ�

i∈S(τ)
dX1i
dτ dF (i)︸ ︷︷ ︸
ωS
i

dF (i)

 .

38



This derivation exploits the fact that
�
i∈B(τ)

dX1i
dτ dF (i) = −

�
i∈S(τ)

dX1i
dτ dF (i), as well as the fact that�

i∈T (τ)
Ei[D]
P1

dX1i
dτ dF (i) =

�
i∈B(τ)

Ei[D]
P1

dX1i
dτ dF (i) +

�
i∈S(τ)

Ei[D]
P1

dX1i
dτ dF (i).

b) [Sign of the optimal tax] Given the properties of the planner’s problem, established below, it is
sufficient to show that dV p

dτ

∣∣∣
τ=0

> 0 to guarantee that the optimal policy is a positive tax. We can

express dV p

dτ

∣∣∣
τ=0

as follows

dV p

dτ

∣∣∣∣
τ=0

= −
�
i∈T (0)

Ei [D] dX1i
dτ

∣∣∣∣
τ=0

dF (i) = −CovF
(
Ei [D] , dX1i

dτ

∣∣∣∣
τ=0

)
= P1

Var [D]

[
CovF

(
Ei [D] , I [∆X1i|τ=0 > 0]

Ai

)
εB − CovF

(
Ei [D] , I [∆X1i|τ=0 < 0]

Ai

)
εS

]
,

where the sub-index F denotes cross-sectional moments. Hence, dV p

dτ

∣∣∣
τ=0

is positive if

CovF
(
Ei [D] , I[∆X1i|τ=0>0]

Ai

)
> 0, since that result directly implies that CovF

(
Ei [D] , I[∆X1i|τ=0<0]

Ai

)
<

0. Under the assumption that all cross-sectional distributions are independent, we can decompose
equilibrium net trading volume as

∆X1i = Ei [D]− EF [Ei [D]] +AEF [Cov [M2i, D]] +AVar [D]Q
AiVar [D]︸ ︷︷ ︸
≡Z1

−Cov [M2i, D]
Var [D] −X0i︸ ︷︷ ︸

≡Z2

, (31)

where Z1 and Z2 are defined in Equation (31) and A ≡
(
EF

[
1
Ai

])−1
. For a low cross-sectional dispersion

of risk tolerances/risk aversion coefficients, that is, when Var
[

1
Ai

]
≈ 0, the sign of the covariance of

interest is identical to sign of CovF (Z1, g (Z1 + Z2)), where Z1 and Z2, given their definition above,
are independent random variables, and g (·) is an increasing function. It then follows directly from the
FKG inequality (Fortuin, Kasteleyn and Ginibre, 1971) that CovF (Z1, g (Z1 + Z2)) is positive, which
allows us to conclude that dV

dτ

∣∣∣
τ=0

> 0 when fundamental and non-fundamental motives to trade are
independently distributed across the population.

c) [Irrelevance of the planner’s belief] The claim follows directly from Equation (29). The fact that the
risky asset is in fixed supply, which implies that

�
dX1i
dτ dF (i) = 0, combined with the fact that investors’

welfare (measured as certainty equivalents) are linear in Ep [D]X1i are necessary for the irrelevance result
to hold.

Lemma 3. (Failure of quasi-concavity of planner’s objective)

Proof. The planner’s objective function V p (τ) is continuous as long as the distribution of investors is
also continuous. Hence, the Extreme Value Theorem guarantees that there exists an optimal τ∗. The
first order condition of the planner’s problem is given by Equation (29).

Establishing the uniqueness of the optimum and its properties requires the study of d2V p

dτ2 . I show
that the planner’s objective function is concave (has a negative second derivative) on the intensive
margin, although changes in the composition of marginal investors on the extensive margin cause non-
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concavities.29 Formally, the second order condition of the planner’s problem is given by
d2V p

dτ2 = d (P1τ)
dτ

�
i∈T (τ)

sgn (∆X1i)
dX1i

dτ
dF (i) +

�
i∈T (τ)

[−Ei [D] + sgn (∆X1i)P1τ ] d
2X1i

dτ2 dF (i) +

−
�
B̃(τ)

[−Ei [D] + P1τ ] dX1i

dτ︸ ︷︷ ︸
dV
p
i

dτ

dF (i)−
�
S̃(τ)

[−Ei [D]− P1τ ] dX1i

dτ︸ ︷︷ ︸
dV
p
i

dτ

dF (i) , (32)

where B̃ (τ) and S̃ (τ) correspond to set of buyers and sellers who are indifferent between trading and
not trading, and are defined by the following surfaces

B̃ (τ) = {i : Ei [D]−AiCov [M2i, D]− P1 − τP1 −AiVar [D]X1i = 0}

S̃ (τ) = {i : Ei [D]−AiCov [M2i, D]− P1 + τP1 −AiVar [D]X1i = 0} ,

when τ ≥ 0 (they are empty sets when τ < 0) and
�
B̃(τ) and

�
S̃(τ) denote line/surface-integrals. It

is possible to show that d2X1i
dτ2 = 2dX1i

dτ
dP1
dτ

1
P1

+ e.m., where e.m. denotes extensive margin terms that
involve changes in the composition of investors, similar to the last two terms in Equation (32). The first
term in Equation (32) is always negative. The sign of the second term is ambiguous, but it is always
equal to zero at an interior optimum, leaving aside the extensive margin effects. The final two terms
capture extensive margin effects, and can take on any sign. The last two terms can in general be written
as

�
i∈T̃ (τ)

dV pi
dτ dF (i) > 0, where T̃ (τ) denotes the set of investors indifferent between trading and not

trading. This is sufficient to show part a) of the Lemma.
It follows from Equation (32) that, at any interior optimum without extensive margin effects

d2V p

dτ2

∣∣∣∣∣
τ=τ∗, e.m.=0

= d (P1τ)
dτ

�
i∈T (τ)

sgn (∆X1i)
dX1i
dτ

dF (i)
∣∣∣∣∣
τ=τ∗

≤ 0,

because d(P1τ)
dτ = P1

(
1−

τ
� sgn(∆X1i)

Ai
dF (i)

� 1+sgn(∆X1i)τ
Ai

dF (i)

)
> 0. Because dV p

dτ is differentiable given that the

distribution of investors is continuous and the measure of active investors is non-zero, this result implies
that, when there are no extensive margin effects (or when they are small), any interior optimum must
be a maximum. If extensive margin effects are large, there could potentially be multiple interior optima
as illustrated in Figure 4 in the text. Because there are no extensive margin changes when τ < 0, the
planner’s objective function is concave in that region, implying that dV p

dτ

∣∣∣
τ=0

> 0 is a sufficient condition
for τ∗ > 0.

Note that it is possible to normalize the aggregate marginal impact of a tax change by the number
of active investors’ as follows

dV p

dτ�
i∈T (τ) dF (i) = ET (τ)

[
[−Ei [D] + sgn (∆X1i)P1τ ] dX1i

dτ

]
.

29Note that quadratic taxes, often used as a tractable approximation to linear taxes, do not generate extensive margin
adjustments, since it is generically optimal for all investors to trade. Consequently, quadratic taxes cannot generate failures
of quasi-concavity of the planner’s objective.
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Given that
�
i∈T (τ) dF (i) takes positive values, a sufficient condition for quasi-concavity is that

ET (τ)
[
[−Ei [D] + sgn (∆X1i)P1τ ] dX1i

dτ

]
is decreasing in τ . Under symmetry, it follows that

dV p

dτ�
i∈T (τ) dF (i) = P1

AVar [D]2P1

EB(τ)
[
Ei[D]
P1

]
− ES(τ)

[
Ei[D]
P1

]
2 − τ

 ,
so a sufficient condition for the planner’s objective to be quasi-concave is that

∂EB(τ)
[
Ei[D]
P1

]
∂τ

−
∂ES(τ)

[
Ei[D]
P1

]
∂τ

< 2, (33)

which establishes part b) of the Lemma 3. Since P1 is exclusively a function of primitives under
Assumption [S], and the regions of buyers and sellers are purely a function of primitives once P1 is
determined, Equation (33) provides an explicit restriction on the set of primitives of the model.

Lemma 4. (No-trade is optimal if all trade is belief-motivated)

Proof. The planner’s objective, V p =
�
V p
i dF (i), can be expressed under no-trade as follows

V p
notrade = (Ep [D]−ACov [M2, D])Q− A

2 Var [D] (Q)2 .

The planner’s objective for any other allocations involving X1i 6= Q is given by

V p
trade = (Ep [D]−ACov [M2, D])Q− A

2 Var [D]
�

(X1i)2 dF (i) .

Since
�
X1idF (i) = Q, a straight application of Jensen’s inequality immediately implies that V p

notrade >

V p
trade whenever X1i 6= Q for at least a single investor.

Proposition 2. (Trading volume implementation)

Proof. a) [Trading volume decomposition] Trading volume (in dollars) is defined by

P1V (τ) ≡ P1

�
i∈B(τ)

∆X1idF (i) = 1
2

(�
i∈B(τ)

P1∆X1idF (i)−
�
i∈S(τ)

P1∆X1idF (i)
)
.

We can express the individual net trade (in dollars) as

P1∆X1i = P1
AiVar [D] (Ei [D]−AiCov [M2i, D]− P1 (1 + sgn (∆X1i) τ)−AiVar [D]X0i) ,

which allows us to write trading volume as

P1V (τ) = −1
2

[�
i∈T (τ)

(
∂X1i

∂τ
(Ei [D]−AiCov [M2i, D]− P1 (1 + sgn (∆X1i) τ)−AiVar [D]X0i)

)
dF (i)

]

= −1
2

 �
i∈T (τ)

(
dX1i
dτ (Ei [D]−AiCov [M2i, D]− P1 sgn (∆X1i) τ −AiVar [D]X0i)

)
dF (i)

+dP1
dτ

�
i∈T (τ)

(
−∂X1i

∂P1

)
AiVar [D] ∆X1idF (i)


= −1

2

[�
i∈T (τ)

(
dX1i

dτ
(Ei [D]−AiCov [M2i, D]− P1 sgn (∆X1i) τ −AiVar [D]X0i)

)
dF (i)

]
− d logP1

dτ
τP1V (τ) ,
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using the fact that

−
�
i∈T (τ)

∂X1i

∂P1
AiVar [D] ∆X1idF (i) =

�
i∈T (τ)

(1 + sgn (∆X1i) τ) ∆X1idF (i) = 2τV (τ) .

Therefore, we define κ (P1, τ) ≡ 1
1+τ d logP1

dτ

with κ (P1, 0) = 1, and express trading volume as

P1V (τ) = κ (P1, τ)
2

�
i∈T (τ)

((
−dX1i

dτ

)
(Ei [D]−AiCov [M2i, D]− P1 sgn (∆X1i) τ −AiVar [D]X0i)

)
dF (i)

= ΘF (τ) + ΘNF (τ)−Θτ (τ) ,

where each of the elements is given by

ΘF (τ) ≡ κ (P1, τ)
2

�
i∈T (τ)

(
−dX1i

dτ

)
(−AiCov [M2i, D]−AiVar [D]X0i) dF (i)

ΘNF (τ) ≡ κ (P1, τ)
2

�
i∈T (τ)

(
−dX1i

dτ

)
Ei [D] dF (i)

Θτ (τ) ≡ κ (P1, τ)
2 τP1

�
i∈T (τ)

sgn (∆X1i)
(
−dX1i

dτ

)
dF (i) .

When Assumption [S] holds, dX1i
dτ is constant across investors and κ (P1, τ) = 1, justifying the expressions

in the text.
b) [Optimal policy implementation] Note that the optimality condition for the planner characterized

in Proposition 1 can be expressed as
�
i∈T (τ)

dX1i
dτ

Ei [D] dF (i) = τP1

�
i∈T (τ)

sgn (∆X1i)
dX1i
dτ

dF (i) ,

which is satisfied when ΘNF (τ∗) = Θτ (τ∗) or, alternatively, when V (τ∗) = ΘF (τ∗).
c) [Small tax approximation] First, note that dV

dτ = 1
2
�
i∈T (τ) sgn (∆X1i) dX1i

dτ dF (i) =�
i∈B(τ)

dX1i
dτ dF (i). Consequently, it is possible to express Θτ (τ) as follows

Θτ (τ) = −κ (P1, τ) τP1
dV
dτ
.

Since, at the optimum, ΘNF (τ∗) = Θτ (τ∗), we can write

ΘNF (τ∗)
P1 (τ∗)V (τ∗) = −τ∗κ (P1, τ

∗) d logV
dτ

∣∣∣∣
τ∗
⇒ τ∗ =

ΘNF (τ∗)
ΘF (τ∗)+ΘNF (τ∗)−Θτ (τ∗)

− d logV
dτ

∣∣∣
τ∗

.

Using the fact that κ (P1, 0) = 1 and Θτ (0) = 0, this expression can be approximated around τ∗ ≈ 0 as
follows

τ∗ ≈
ΘNF (0)

ΘF (0)+ΘNF (0)

− d logV
dτ

∣∣∣
τ=0

,

which corresponds to Equation (17) in the paper.
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