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1 Introduction

Standard models assume that agents freely and perfectly solve for their respective optimal

policy functions. In this view, decision-makers face no limitations in their reasoning and are

thus endowed with full knowledge of the mapping of beliefs about their economic environment

(states, structure, etc.) into their best course of action. Our paper is motivated by a long-

standing interest in relaxing this strong assumption of costless reasoning, an interest emerging

in economics as early as Simon (1955) and also spanning behavioral and neuro-sciences.1

Departing from this extreme view of rationality raises two modeling questions, which

constitute the focus of our paper. The first is how to model costly reasoning with a portable

framework that is applicable across different economic environments, while (i) capturing broad

empirical insights on how human reasoning works, and (ii) remaining tractable, flexible, and

parsimonious. Our methodological contribution here is to build on a growing neuroscience,

experimental and computational literature that allows us, as outside analysts, to cast agents’

costly reasoning as a Bayesian non-parametric estimation of the unknown optimal policy

function. The second question is to establish whether the resulting bounded-rationality

mechanism matters for micro and macro behavior. Here, our applied contribution is to use

a standard incomplete markets model as a laboratory to show that, even though reasoning

errors are i.i.d. and agents have no a-priori behavioral biases, costly reasoning endogenously

alters ergodic behavior in a systematic and quantitatively promising way.

Methodological contribution. The typical constrained-rational approach to modeling

limitations in decision-making is to assume agents face uncertainty about the realization

or the law of motion of the relevant state of the world. This uncertainty may reflect a

theoretical interest in putting the agent inside the model on a similar footing as an outside

econometrician.2 Imperfect perceptions of the state may also arise from agents’ limited

attention capacity, as for example in a recent literature inspired by Sims (1998, 2003).3

A common feature of these approaches is that, conditional on beliefs about the state,

the optimal policy function mapping those beliefs into the best perceived action is derived

under no additional cognitive cost. Our complementary, but distinct, interest is to model the

1See Klaes et al. (2005) for a conceptual history of bounded rationality and Conlisk (1996) for an early
review on the evidence and challenges in incorporating human cognition as a scarce resource in economics.

2For example, Sargent (1993) posits the difficulties faced by boundedly rational agents in computing
general equilibrium effects as an estimation problem. Hansen (2007) argues for incorporating in the agents’
decision problem the inherent doubts faced by econometricians when estimating probability distributions.

3Woodford (2003), Reis (2006), Maćkowiak and Wiederholt (2009), van Nieuwerburgh and Veldkamp
(2010), Gabaix (2014), Matějka and McKay (2014) and Stevens (2020) are examples of modeling agents’
choice of attention to their individual or aggregate state (see Sims (2010), Wiederholt (2010) and Gabaix
(2019) for surveys). Angeletos and Lian (2018), Farhi and Werning (2019), and Garćıa-Schmidt and Woodford
(2019) model agents’ limited capacity to compute the law of motion of aggregate variables.
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optimal policy function itself as an unknown object that the agents can estimate via costly

reasoning effort. Intuitively, our agents are imperfect problem solvers as they do not have

immediate access to the optimal solution to their decision-making problem. For example, to

fix ideas and to preview our consumption-saving application, consider the relevant state, y,

to be the available cash-on-hand and c∗(y) the unknown optimal consumption function. Our

agents therefore face uncertainty about the optimal consumption action in a given period t,

ct ≡ c∗(yt), even if the current level of the state, yt, and its law of motion is perfectly known.4

We describe costly reasoning as a tractable and realistic framework by appealing to a

standard problem of functional estimation in Bayesian statistics. In particular, we model

the uncertainty about the unknown optimal policy function, eg. c∗, as a Gaussian Process

(GP) distribution over which agents update beliefs.5 This approach allows us to capture the

accumulation of information about the optimal policy function over time in a parsimonious

and flexible way, while being consistent with three broad motivating properties that emerge

from a large literature on bounded rationality, as follows.

First, at its conceptual core, reasoning is “fact-free” learning, or internal reflection that

helps the agent get closer to the optimal decision without what an outside observed would

register as new objective information.6 Consistent with this view, we model reasoning as the

internal production of noisy and unbiased signals ηt about c∗(yt), that update prior beliefs

over the unknown function c∗.7 The resulting conditional expectation of c∗(yt) is the agent’s

actual time-t action, ct, as it is the best guess of the optimal action given the state value yt.

Second, the general idea that human cognition is a scarce resource subject to cost-benefit

tradeoffs is central to a view, common across the theory, experimental and neuroscience

literature, that economic agents are bounded, but “resource-rational”.8 To this end, we

let the agents optimally choose the precision of their signals, trading off the reduction of

uncertainty about the optimal current-period action c∗(yt) achieved by the new reasoning

signal ηt, and a cognitive cost proportional to the amount of information about the optimal

action carried in the reasoning signal, as measured by Shannon mutual information.

4Our interest is thus also substantially different from a behavioral literature that introduces a departure
from the standard behavior (eg. present focus (Laibson (1997)) or lack of self-control (Gul and Pesendorfer
(2004))) and then allows agents to costlessly optimize over their resulting optimal policy function.

5Intuitively, a GP distribution models a function as a vector of infinite length, where the vector has a
joint Gaussian distribution. Gaussian Processes have been widely used in Bayesian statistics (see Liu et al.
(2011)), and in machine learning over unknown functional relationships (see Rasmussen and Williams (2006)).

6See Aragones et al. (2005) and Alaoui and Penta (2016) as examples of this view in the theory literature.
7The stochastic nature of the reasoning signals implies that our agents exhibit stochastic choice, i.e. even

conditioning on the same observed state their actions may differ. See Mosteller and Nogee (1951) and more
recently Ballinger and Wilcox (1997) and Hey (2001) for experimental evidence of stochastic choice.

8Similar in spirit, Simon (1976) argues for modeling “procedurally rational” agents, who exhibit behavior
that is the outcome of limited but appropriate deliberation. See Lieder and Griffiths (2020) for a recent
survey on the general concept of cognition as “resource-rational”, trading off accuracy and cost.
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Third, the literature also often emphasizes that reasoning appears to be local in nature,

in the sense that in solving their particular problem at hand, people tend to rely more heavily

on past experiences and information derived from “similar” situations.9 Our framework

parsimoniously captures this local nature of reasoning by assuming that agents are not

confident c∗ belongs to a particular parametric family of functions, hence do not extrapolate

infinitely away from available information. As a result, while a signal ηt updates beliefs about

the function c∗ across the whole state space, the signal’s informativeness is decaying when

updating beliefs about c∗(y′) at states y′ further away from yt (recall ηt is centered around

c∗(yt)). Thus, in coming up with the best perceived action today, our agents rely more heavily

on past reasoning signals derived at state values yt−k that are close to the current state yt.

Overall, we interpret reasoning “as if” the agent engages in probabilistic inference, a

view at the heart of the link between cognitive sciences and machine learning (see Barber

(2012)). This interpretation means that we do not literally assume agents engage in statistical

functional estimation in everyday life, but rather we use this abstraction as a modeling device,

rich enough to capture realistic reasoning properties, but also agnostic enough about further

specific deliberation details so to be tractable and portable for us as analysts.10

State- and history-dependent reasoning choice. The key qualitative implications of

our framework are underpinned by the local nature of information, which leads to state and

history dependent residual uncertainty as signals accumulate over time. In particular, for

realizations of the state yt where the beginning-of-period conditional variance over the best

course of action c∗(yt) is relatively high (i.e. few past reasoning signals in that part of the

state space), the agent optimally chooses to acquire a more precise current reasoning signal

to reduce that uncertainty. In contrast, at state realizations where past deliberation has

occurred more often and thus the agent has accumulated substantial information about the

optimal action, much further deliberation is not optimal. Near such “familiar” state values

the updating weight on the new reasoning signals is endogenously low and the resulting action

is primarily driven by the beginning-of-period beliefs about c∗(yt), leading to behavior that

appears to follow past-experience based heuristics in that “familiar” part of the state space.

However, our agents do not follow mechanical rules, since they optimally choose precise

new signals (which lead to significant beliefs revision on average) if the state yt moves in an

unfamiliar territory, where uncertainty over the optimal action is relatively high.11

9This similarity-based view of human reasoning is suggested by a recent experimental and neuroscience
literature (eg. Bornstein et al. (2017) and Gershman and Daw (2017)), which finds that more familiar contexts
make agents more likely to use previous experiences in guiding current decisions.

10Conditional on the class of reasoning properties incorporated in our framework, we do not take a further
stand on the details of the reasoning mode (eg. search and satisficing (Simon (1955)), or a particular
dual-processing structure (Kahneman (2011)).

11Nimark and Pitschner (2017) obtain state-dependency in a model where agents decide which information
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Applied contribution. We inject our proposed framework of costly reasoning into a

standard Aiyagari (1994) general equilibrium incomplete markets model. There is a continuum

of ex-ante identical agents facing i.i.d. labor income shocks. Risk-free capital is the only asset

available for saving, with a borrowing limit set to zero. The relevant economic state for the

consumption decision of agent i is her perfectly observed cash-on-hand yi,t – i.e. the sum of

the exogenous income shock and the endogenously accumulated asset. Agents face the same

reasoning problem and share an identical time-0 prior over the unknown optimal consumption

function c∗. To highlight the role of our costly-reasoning mechanism, we eliminate any ex-ante

behavioral biases by centering the initial prior around the true policy function.

The feedback between the state- and history- dependent reasoning choices and the

endogenous state (wealth) is crucial in shaping the ergodic properties of our model, since

consumption choices affect wealth evolution, which affects the uncertainty facing the agent.

In particular, as long as wealth drifts into new and uncertain parts of the state space, an

agent’s beliefs about the optimal policy function c∗ are likely to continue to evolve, as she

accumulates additional precise reasoning signals. On the contrary, if the reasoning signal

realizations lead to a policy function estimate that establishes stable wealth dynamics, and

thus a high likelihood for the agent’s state variable to remain within a particular neighborhood

of the state space, the evolution of beliefs slows down significantly. As wealth fluctuates in

that familiar, low uncertainty region, the agent has little incentive to reason further. Thus,

she continues to rely heavily on her past information and policy estimate, which perpetuates

the stable dynamics in wealth. This “learning trap” underscores a powerful selection effect of

when agents choose to reason intensely, which in turn endogenously determines which kind of

errors in the policy function estimates are likely to be over-represented on average and thus

characterize the ergodic steady state of the model.

Hand-to-Mouth status. One particular feature of the ergodic steady state is a frequent

and persistent “Hand-to-Mouth” (HtM) status. To see the intuition behind this implication,

consider a mass of agents that have initially received reasoning signals that over-estimate

the consumption function c∗. Acting under these beliefs, agents draw on their individual

assets yi,t and on average drift towards the borrowing constraint. The combination of the

borrowing constraint, which acts as a barrier to the agents’ downward drift in assets, and the

high consumption policy estimate generates stable wealth dynamics. Indeed, for such agents,

positive income shocks increase cash-on-hand away from the constraint, but in doing so the

state moves back into a familiar region, where they just follow their “business-as-usual”,

over-consuming behavior. As a result, agents draw down on their assets again, leading wealth

provider to use in acquiring information over the relevant economic state. Relatedly, in Nimark (2014) the
assumed information structure is such that signals are more likely to be available about more unusual events.

4



to fluctuate within this now-familiar region near the borrowing constraint.

High MPCs for rich, unconstrained agents. Consider now a mass of agents that have

typically received consumption reasoning signals contaminated with negative noise, leading

them to under-estimate c∗. As their assets drift up, these agents eventually enter into

an unfamiliar territory of the state space, where they are likely to decide to reason more

again. In turn, a fraction of these rich agents are bound to obtain new signals on c∗ at their

current (high) state yi,t that are contaminated with positive noise. Due to the local nature of

information, the resulting beliefs revisions from these new signals change the slope of the

estimated policy function. In particular, for these agents their internal reflection that the

best course of action is “high-consumption” at the current, high wealth values, together

with their previously accumulated reasoning signals pointing to “low-consumption” at the

corresponding lower past yi,t−k, leads to a posterior policy estimate with a high local slope.

As a result, these rich agents now exhibit a high marginal propensity to consume (MPC).

The logic of the “learning traps” makes this high MPC behavior the norm, rather than

an exception, because a consumption policy estimate with a high slope establishes locally

stable wealth dynamics. As a result, it is precisely this type of high MPC consumption

behavior that is endogenously and thus systematically selected in the ergodic distribution.

Wealth inequality. A related implication of this “business-as-usual” behavior is that even

if agents are ex-ante identical, their specific history of reasoning errors eventually results in

heterogeneous anchoring points for wealth. At the bottom of the wealth distribution, we

have discussed how agents are likely to get stuck as HtM, with near-zero wealth. At the top

of the distribution, we point out that wealth may stabilize at high levels for those agents

that experience a sequence of reasoning errors that, more repeatedly or more strongly, point

to saving a large fraction of their cash-on-hand as their best course of action.

Quantitative implications. In our numerical analysis we follow Aiyagari (1994) for the

standard set of parameters. For the reasoning friction, we first aim to impose “model-

consistent” priors and thus set the parameters governing the prior uncertainty over c∗(y)

equal to what an outside econometrician would estimate if he were to observe simulations

from the model. Second, we calibrate the marginal cost of reasoning, as the only remaining

degree of freedom, by targeting a particularly challenging fact for the standard model, namely

that empirically the bottom 20% in the US wealth distribution have roughly zero net assets.12

The costly reasoning (CR) model significantly and parsimoniously improves along three

key dimensions upon its full-information (FI) counterpart – the standard model where agents

have perfect knowledge of their optimal policy function. First, the CR version produces more

12See Krueger et al. (2016) for a reference and a discussion on this challenge for the standard models.
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wealth inequality, with the Gini coefficient rising by 50% relative to its FI counterpart. This

higher inequality does not arise only from the (targeted) larger fraction of agents with zero

assets but also from a significantly higher mass of rich agents. Second, the characteristic

learning traps of the CR model imply that HtM status is not only prevalent, but also persistent,

in line with the data. In contrast, because in the FI version agents save aggressively when

they are close to the constraint, being HtM is both a low probability and transitory status.13

Third, the average MPC in the CR model is 0.29, in line with the data, while under FI it

is just 0.05.14 Crucially, while MPCs are naturally high for the HtM agents in both models, we

find that in the CR model MPCs are high even for the rich - e.g. the average MPC across the

richest 20% of agents is still very high, and equal to 0.15. In contrast, in the FI economy away

from the constraint, consumption behavior is similar to the permanent-income-hypothesis,

with a corresponding MPC for the rich agents of just 0.04.15 Therefore, consistent with the

empirical literature, the CR model delivers a high average MPC by generating both a large

mass of constrained agents and high MPCs for the unconstrained agents.

Finally, we use two experiments to highlight the importance of modeling bounded,

but “resource-rational” agents. We first discuss a counter-factual where agents have full-

information about the optimal policy function c∗ but every period make idiosyncratic mistakes

(“trembles”) in their actions. In this case, because errors are not systematically selected

in the ergodic steady state, they tend to wash out and the model ends up resembling its

standard FI version. In the second experiment we consider a one-time uncertainty shock that,

partly motivated by the current COVID-19 crisis, renders useless the agents’ accumulated

information about c∗. We find that the average MPC falls substantially on impact, as agents

abandon their “business-as-usual” consumption patterns. We then compute how an aggregate

income increase has a significant impact on the economy in normal, high MPC times, but is

considerably weaker in very uncertain times, showcasing the relevance of modeling behavioral

“mistakes” that respond to changes in environment.

Section 2 describes the general framework of costly reasoning. Section 3 introduces the

reasoning friction into the Aiyagari (1994) environment and analyzes its qualitative insights.

A numerical analysis of the model is discussed in Section 4.

13This aggressive build up of wealth also implies that HtM status predicts unusually high future consumption
growth in the FI model. However, Aguiar et al. (2020) find no evidence of this prediction in the PSID. The
CR model is consistent with this evidence, due to the characteristic persistence of “learning traps” behavior.

14See Jappelli and Pistaferri (2010) for a survey on the measurement of MPCs. As detailed by Carroll et al.
(2017) the results are varied, with credible estimates of annual MPCs appearing to range from 0.2 to 0.6.

15In Kaplan et al. (2014) rich agents may have high MPCs because they are HtM in terms of liquid wealth.
Still, in the data, even agents with high-liquid wealth appear to have MPC levels significantly higher than
implied by standard models (see Parker (2017), Olafsson and Pagel (2018) and Fagereng et al. (2019)).
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2 General framework

We model deliberation as a problem of estimating an unknown optimal policy function c∗

that maps the current state yt to an action ct. We represent uncertainty over the space of

functions using a tractable, yet flexible Bayesian non-parametric approach. For simplicity,

we restrict our exposition to the case where the state y is a scalar, hence c∗ : R → R is a

univariate function. The framework readily generalizes to multivariate settings.

2.1 The Gaussian Process distribution

A Gaussian Process (GP) distribution is the generalization of the Gaussian distribution to

infinite-sized collections of real-valued random variables, and it is often used as a prior for

Bayesian inference on functions (Liu et al. (2011)).16 For our purposes, we assume that the

agent’s prior beliefs over the unknown function c∗ are given by a GP distribution

c∗ ∼ GP(ĉ0, σ̂0), (1)

where ĉ0 : R→ R and σ̂0 : R2 → R. A Gaussian Process distribution has the defining feature

that for any arbitrary pair of inputs y and y′, the joint distribution of the resulting function

values c∗(y) and c∗(y′) is Gaussian:[
c∗ (y)

c∗ (y′)

]
∼ N

([
ĉ0(y)

ĉ0(y
′)

]
,

[
σ̂0(y, y) σ̂0(y, y

′)

σ̂0(y, y
′) σ̂0(y

′, y′)

])
,

where ĉ0 is known as the “mean function” and specifies the prior mean of c∗(y) for any y,

ĉ0(y) = E(c∗(y)),

and the “covariance function” σ̂0(y, y
′) specifies the unconditional covariance between the

values of the function c∗ at any pair of inputs y and y′:

σ̂0(y, y
′) = E ((c∗(y)− ĉ0(y))(c∗(y′)− ĉ0(y′))) .

16Ilut et al. (2020) use a Gaussian Process setup to model firms learning about the unknown demand
function, leading to state-dependent uncertainty about their relevant state. However, there firms continue to
use the mapping from that imperfect information about the state to the optimal pricing action derived under
no cognition constraints. Similar recent approaches based on non-parametric learning about the state, but
assumed knowledge of the mapping to the optimal actions, include Dew-Becker and Nathanson (2019) and
Kozlowski et al. (2020).
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A computational interpretation

Modeling the uncertainty over c∗ as a GP distribution has a formal link to the common

computational approach of expressing the policy function as a linear combination of a set of

basis functions φk indexed by k. Assuming the set of {φk} forms a complete basis for the

class of functions c∗ belongs to, we can obtain an arbitrarily good approximation by including

a large enough number of basis functions so that (with slight abuse of notation) we can write

c∗(y) =
N∑
k=1

θkφk(y). (2)

Projecting on a set of basis transforms the problem of solving for the function c∗ into finding

the optimal weights θk – they are the “unknown” variables that one needs to solve for.

If the unknown θk’s have a joint-Gaussian distribution, then the function c∗ itself has a

Gaussian Process distribution. Of particular interest to us is the case where the priors over

the different θk are independent Normal distributions, which is formally treated in Lemma 1.

Lemma 1. If θk
iid∼ N(µk, σ

2
c ), equation (2) implies that c∗ ∼ GP(ĉ0, σ̂0), with

ĉ0(y) =
N∑
k=1

µkφk(y); σ̂0(y, y
′) = σ2

c

N∑
k=1

φk(y)φk(y
′)

Proof. Details are in Appendix A.

Thus, the mean and variance functions that characterize the GP prior in equation (1)

can be interpreted as arising from specific choices for µk and the set of basis functions {φk}.17

The formal link between the underlying source of uncertainty over θk and the implied

uncertainty over c∗ is conceptually useful when thinking about the fundamental source of

uncertainty. However, we follow the Bayesian statistics literature (as detailed in Rasmussen

and Williams (2006)) and treat the θk’s as “nuisance” parameters, integrate them out as in

Lemma 1 and work directly with the resulting GP distribution over the space of functions.

The reason is the same as in the standard problem faced by statisticians – ultimately

the agent (and we as modelers) is interested in estimating the function c∗ itself, and the

coefficients θk are just an intermediate step. To this end it is both more tractable and

transparent to work directly with the implied GP distribution of the function c∗. Therefore,

throughout we focus on specifying priors and signal structures directly over c∗ itself.

17The conceptual framework is thus quite general, and encompasses a number of different solution techniques,
from Chebyshev polynomials to neural networks, as different choices of bases sets {φk}, all of which can be
represented as special cases of Gaussian Processes (for formal details see Rasmussen and Williams (2006)).
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2.2 Reasoning as fact-free learning

The agent does not simply act on her prior beliefs about the optimal action c∗(yt), but can

expend costly cognitive resources to obtain a better handle of the unknown optimal action.

This is modeled by giving the agent access to unbiased signals about the actual optimal

action at the current state yt,

ηt = c∗(yt) + εt,

where εt
iid∼ N(0, σ2

η,t), and allowing the agent to choose the precision of those signals, i.e. σ2
η,t.

The choice σ2
η,t reflects the agent’s intensity of deliberation – the more time and effort

spent on thinking about the optimal behavior, the more precise is the resulting signal, and

thus the more accurate are the posterior beliefs. The subjective reasoning signals embody

the idea of reasoning as “fact-free” learning, one of our motivating properties exposed in the

introduction. Moreover, the stochastic nature of ηt implies that our agents exhibit stochastic

choice, i.e. even conditioning on the same observed state their actions may differ.

The reasoning signals update the agent’s beliefs about the unknown function c∗, with

the conditional distribution of beliefs following a Kalman-filter like recursion.

Lemma 2. Given the time-0 prior belief c∗ ∼ GP(ĉ0, σ̂0), the time-t conditional beliefs are

c∗
∣∣{ηt, yt} ∼ GP(ĉt, σ̂t) with moments evolving according to the recursive expressions

ĉt(y) = ĉt−1(y) +
σ̂t−1(y, yt)

σ̂2
t−1(yt) + σ2

η,t

(ηt − ĉt−1(yt)), (3)

σ̂t(y, y
′) = σ̂t−1(y, y

′)− σ̂t−1(y, yt)σ̂t−1(y
′, yt)

σ̂2
t−1(yt) + σ2

η,t

(4)

where ĉt(y) ≡ Et(c
∗(y)|ηt) and σ̂t(y, y

′) ≡ Cov(c∗(y), c∗(y′)|ηt) are the posterior mean and

covariance functions. Lastly, σ̂2
t (y) ≡ σ̂t(y, y) denotes the posterior variance at a given y.

Proof. Details are in Appendix A.

The framework represents an abstract description of deliberation about the policy

function c∗ as a Bayesian inference from “fact-free” reasoning signals by using the tractability

and flexibility of a GP distribution. Given priors ĉ0, σ̂0 and signal-noise variance σ2
η,t, the

recursively-determined mean and covariance functions in formulas (3) and (4) fully characterize

the posterior distribution of beliefs about c∗. Next we discuss our approach to impose structure

on ĉ0, σ̂0 and σ2
η,t so as to capture the broad motivating properties of reasoning as (i) local in

nature, and (ii) an outcome of a cost-benefit tradeoff, as motivated in the introduction.

We first note that any difference between the unknown, to the agent, optimal policy

function c∗ and the prior mean ĉ0 represents an ex-ante bias in beliefs. Our motivating

9



properties of reasoning do not impose structure on this bias and so it represents a degree of

freedom for us as analysts. In that sense, selecting the prior mean ĉ0 is the part of our costly

reasoning model where “the wilderness of bounded rationality” may arise.

While our conceptual framework allows for any prior mean, we are generally interested

in eliminating the role of this degree of freedom. To this end and in the spirit of Rational

Expectations, throughout the rest of the analysis we assume that the prior mean coincides

with the truth and set

ĉ0(y) = c∗(y)

for all y. Nevertheless, even though prior beliefs are centered at the actual optimal policy, the

agent still faces uncertainty about c∗(y), as encoded by the covariance function of the prior

σ̂0. Intuitively, the prior mean belief is correct, but the agent does not know that for certain.

We now turn to the objects that characterize the structure of this uncertainty, and

hence are key to the dynamics of beliefs and their long-run behavior in our costly reasoning

model. In particular, we describe a restriction on σ̂0 designed to capture the local nature of

reasoning and then we model a cost-benefit tradeoff in the choice of σ2
η,t.

2.3 Local nature of reasoning

The prior covariance function σ̂0 determines how new information about c∗ is interpreted and

combined with prior information to form posterior beliefs. In particular, it determines the

extent to which the agent is willing to extrapolate the information contained in ηt to update

beliefs about the optimal action c∗(y) at state realizations different than yt.

The local nature of reasoning emerges from imposing the restriction that σ̂0(y, y
′) is

declining in the distance ||y−y′||. Interestingly, while this restriction helps us as economists to

generate the empirically appealing local nature of reasoning, it is also widely used in Bayesian

statistics purely for estimation and computational reasons (see Rasmussen and Williams

(2006)). Such “stationary” covariance functions are flexible enough to ensure asymptotic

consistency for a wide variety of functional forms of the unknown c∗, and thus impose few

ex-ante structural restrictions (see Rasmussen and Williams (2006) for details).

Specifically, drawing on this literature we assume the covariance function belongs to

the popular squared exponential family, i.e.

σ̂0(y, y
′) = σ2

c exp(−ψ(y − y′)2).

This is a commonly-used prior in Bayesian statistics because it offers an efficient

trade-off between flexibility and degrees of freedom. It also connects to the computational

10



interpretation of our framework, as using this covariance function is equivalent to assuming

that the agent approximates c∗ with Gaussian radial basis functions – i.e. assuming the

functions φk in equation (2) are Gaussian kernels. In fact, this is a popular choice of basis

functions in the machine learning literature, because this class of “local” basis function allows

a modeler to use “solve-as-you-go” methods, where the solution is computed recursively over

time. Those methods offer an efficient trade-off between time and accuracy, since the goal in

each computational step is to only approximate the optimal policy function in a neighborhood

of the current state (i.e. the most relevant region for the current objective), with knowledge

about the global behavior of the function gradually building over time (see Bertsekas (2019)).

The squared exponential covariance function is characterized by just two parameters.

First, σ2
c controls the prior uncertainty about the value of c∗(y) at any given point y. We can

think of this as the “quantity” of uncertainty agents face around ĉ0(y). Second, ψ controls

the extent to which information about the value of the function at a point y is informative

about its value at a different point y′. Formally, ψ controls the prior probability that the

unknown function c∗ has a shape that deviates from the prior mean ĉ0, as per Lemma 3.

Lemma 3. Let αt(y) ≡ σ̂t−1(y,yt)

σ̂2
t−1(yt)+σ

2
η,t

be the weight put on ηt in the time-t estimate ĉt(y).

� If ψ = 0, then αt(y) is just a constant – i.e. αt(y) = αt for all y ∈ R, and thus

ĉt(y) = ĉ0(y) +
t∑

k=1

αk

t∏
j=k+1

(1− αj)uk

where uk = ηk − ĉ0(yk) is the deviation of signal ηk from the time-0 prior mean belief.

� If ψ > 0, then the informativeness of the signal ηt is state-dependent – ∂αt(y)
∂y
6= 0 – and

hence the shape of the time-t estimate ĉt differs from the time-0 prior, i.e.:

ĉt(y) = ĉ0(y) +
t∑

k=1

αk(y)
t∏

j=k+1

(1− αj(y))uk

∂ (ĉt(y)− ĉ0(y))

∂y
6= 0

The effect of the information in ηt is also local to yt, since lim||y−yt||→∞ αt(y) = 0

Proof. Details are in Appendix A.

Intuitively, in the limiting case of ψ = 0 the prior beliefs only entertain functions c∗

that are generated by a constant shift of the prior mean ĉ0 – hence there is no uncertainty

about the shape of c∗(y), only its level. On the other hand, ψ > 0 allows for shapes that are

11



Figure 1: Conditional beliefs ψ = 0 vs ψ > 0
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different from the prior mean ĉ0. In particular, as ψ increases, information about the optimal

action at some value of the state y is decreasingly useful for inferring the optimal action at a

different value y′, and this is because the agent is less willing to extrapolate away from y

based on the shape of the prior mean ĉ0. Overall, when ψ > 0 the agent’s estimate of the

optimal action at y, c∗(y), puts more weight on reasoning signals obtained at states y′ that

are close to y itself, consistent with the similarity-based view of reasoning described in the

introduction.

To illustrate the basic result, in Figure 1 we plot an example update of beliefs conditional

on observing a single signal η centered at a value of the state y (e.g. we can interpret this as

being period one). We show the resulting updated mean and variance functions ĉ1 and σ̂2
1 for

both ψ = 0 and ψ > 0 as a function of the state y. While in this example there is only one

signal to update with, it changes beliefs about the policy function throughout the state space.

In the case of ψ = 0, it is clear that the resulting conditional estimate ĉ1 is simply a level

shift of ĉ0, and naturally the posterior variance of the unknown function c∗ is reduced equally

for all values of the state – there is no uncertainty about the shape of c∗, just its level.

On the other hand, in the case of ψ > 0 the signal η only exerts local influence on

the estimate ĉ1, with the agent updating her beliefs that the function is higher and more

curved in the neighborhood of the signal. The local effect of information is also reflected in

the posterior variance σ̂2
1(y) – the signal η primarily reduces uncertainty about the optimal

action at y itself, c∗(y), and is less informative at other state values y′ 6= y. This showcases

how in our benchmark case of ψ > 0, uncertainty is state and history dependent.
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2.4 Cost-benefit tradeoff of reasoning

In any given period t, the agent faces an intuitive cost-benefit tradeoff in choosing the

reasoning noise variance σ2
η,t. The benefit comes from a standard tracking problem where,

given the state yt, the agent wants to choose her action, ct, to be as close as possible to the

action implied by the unknown optimal policy function – i.e. c∗(yt). Thus, she minimizes the

expected squared deviations

min
ct,σ2

η,t

Et(ct − c∗(yt))2, (5)

where Et denotes the conditional expectation over the distribution of c∗ with moments

recursively determined by equations (3) and (4). The solution to the tracking problem is

to act according to the conditional expectation of the unknown optimal action, i.e. to set

ct = ĉt(yt). Substituting in this choice of ct in equation (5), the agent’s objective simplifies to

choosing σ2
η,t to reduce the resulting posterior variance σ̂2

t (yt).

A tradeoff emerges because the cognitive effort needed to produce precise reasoning

signals is costly. We model this as a cost on the amount of information about the optimal

action c∗(yt) carried in the signal ηt. We measure information flow with the reduction in

entropy, i.e. Shannon mutual information, about c∗(yt), defined as

I(c∗(yt); ηt|ηt−1) = H(c∗(yt)|ηt−1)−H(c∗(yt)|ηt, ηt−1), (6)

where H(X) denotes the entropy of a random variable X, and is the standard measure of

uncertainty in information theory.18 Thus, equation (6) measures the reduction in uncertainty

about the unknown optimal action c∗(yt) from seeing the new signal ηt, given the history of

past deliberation signals ηt−1. For analytical tractability, we further assume that the agent

faces a simple reasoning cost linear in I(c∗(yt); ηt|ηt−1).
Given prior information entering the current period, summarized by ĉt−1 and σ̂t−1, and

the state yt, by equation (4) a choice over σ2
η,t is equivalent to selecting a posterior variance

σ̂2
t (yt). Thus, the cost-benefit tradeoff of reasoning can be cast as the information problem

min
σ̂2
t (yt)

σ̂2
t (yt) + κ ln

(
σ̂2
t−1(yt)

σ̂2
t (yt)

)
. (7)

s.t.

σ̂2
t (yt) ≤ σ̂2

t−1(yt),

The first component is the benefit of reasoning, in the form of a lower dispersion of the

18Following Sims (2003) a large literature has studied the choice properties of information costs based on
the Shannon mutual information. See for example Caplin et al. (2016) and Woodford (2014).
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action ct = Et(c∗(yt)) around the unknown optimal action c∗(yt), which is equal to σ̂2
t (yt).

The second represents the cost of reasoning, where we use the analytical expression for the

mutual information in a Gaussian framework as equal to one half of the log-ratio of prior and

posterior variances. The parameter κ controls the marginal cost of a unit of information. For

example, κ will be higher for individuals with a higher cost of deliberation – either because

they have a higher opportunity cost of time or because their particular deliberation process

takes longer to achieve a given improvement in precision. In addition, κ would also be higher

if the economic environment facing the agent is more complex, and thus the optimal action is

objectively harder to figure out – for example solving an objectively difficult math problem.

Lastly, the minimization in (7) is subject to the “no forgetting constraint” σ̂2
t (yt) ≤

σ̂2
t−1(yt) which ensures that the chosen variance of the noise in the signal, σ2

η,t, is non-negative.

Otherwise, the agent can gain utility by “forgetting” some of her prior information.

2.5 Optimal deliberation choice

The optimal deliberation choice that solves equation (7) is given by

σ̂∗2t (yt) = min
[
κ, σ̂2

t−1(yt)
]
,

meaning that the optimal target level for the posterior variance that equates the marginal

benefit and cost of reasoning is simply κ. Intuitively, the desired precision in actions (and

thus deliberation effort) is larger when the deliberation cost κ is lower. The min function

enforces the no-forgetting constraint – if the agent’s beginning-of-period conditional variance

over the optimal action at yt is lower than the optimal target κ, then she does not acquire

any further information and the posterior variance at time t remains equal to σ̂2
t−1(yt). This

leads to the following optimal behavior.

Proposition 1. The optimal signal noise variance is given by

σ∗2η,t =


κσ̂2
t−1(yt)

σ̂2
t−1(yt)−κ

, if σ̂2
t−1(yt) ≥ κ

∞ , if σ̂2
t−1(yt) < κ

(8)

and this in turn implies the time-t action

ct = ĉt(yt) = ĉt−1(yt) + α∗t (yt)(c
∗(yt) + εt − ĉt−1(yt)), (9)

where the optimal weight put on the new reasoning signal, α∗t (yt) depends on the current state
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yt and the history {yt−1, σt−1η } of past signals’ location and precision:

α∗t (yt) ≡
σ̂2
t−1(yt)

σ̂2
t−1(yt) + σ∗2η,t

= max

[
1− κ

σ̂2
t−1(yt)

, 0

]
. (10)

Proof. Details are in Appendix A.

Thus, since posterior uncertainty σ̂2
t (y) is state and history dependent (when ψ > 0),

both the optimal reasoning choice, in the form of signal-noise variance σ2
η,t, and the effective

action ct are also state- and history-dependent.

Put together, the qualitative features of our general reasoning framework offer a narrative

that connects to our basic motivation in the introduction. In particular, similar to us modelers,

economic agents do not have costless cognitive access to the the optimal policy function c∗(y).

Agents invest costly cognitive effort into reasoning, as a form of fact-free learning, to reduce

uncertainty about the best course of action. Reasoning leads to rich heterogeneity in beliefs,

since even agents that are otherwise ex-ante identical end up with different views about the

optimal conditional action.

The key qualitative implications of our framework are driven by the endogenous state

and history dependence of actions and beliefs. First, for state realizations yt where the

precision of initial beliefs is relatively far from its target (high σ̂2
t−1(yt)), the agent chooses to

acquire a more precise current signal and hence puts a bigger weight on it in the resulting

action ĉt(yt) (high α∗t (yt)). In contrast, for state realizations close to the position of previous

signals ηt−k, the precision of initial beliefs is high (low σ̂2
t−1(yt)) and the agent finds it optimal

to not acquire much additional information. At such “familiar” state values the optimal

α∗t (yt) is relatively small, and the resulting action will be primarily driven by the prior beliefs

ĉt−1(yt). This can give rise to behavior that appears to follow past-experience based heuristics

in the “familiar” part of the state space, where prior deliberation has reduced uncertainty

about the optimal action sufficiently so that α∗t (yt) is small. However, agents do not follow

mechanical rules, since beliefs are likely to be revised if the state yt moves into unfamiliar

territory, where uncertainty over the optimal action is relatively high.

Second, while α∗t (yt) is a deterministic function of the state yt and history {yt−1, σt−1η },
the reasoning signal ηt and the subsequent effective action is stochastic, even conditional on

yt. Therefore, even if agents are ex-ante identical, i.e. they face the same reasoning problem,

states yt and enter period t with the same prior beliefs, they take different actions ĉt(yt).
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3 A consumption-savings model with costly reasoning

The characteristic state and history dependence of the general framework suggests that it is

particularly interesting to consider economic settings where the state yt is endogenous. To

this end, in this section we study the implications of our costly reasoning model of behavior

in the context of an otherwise standard consumption-savings problem. This is a setting that

features an endogenous state (wealth), and the feedback between states, reasoning and the

resulting actions is crucial in understanding the ergodic properties of the model.

We consider a standard Aiyagari (1994) economy populated by a continuum of ex-

ante identical agents that share the same preferences. Agents are indexed by i and derive

non-satiable and concave felicity u(ci,t) from the consumption of a numeraire good. Each

agent inelastically supplies her stochastic endowment of labor si,t at a constant wage w.

The idiosyncratic income shocks si,t, are iid across time and agents and drawn from a time-

invariant distribution S with a mean of one. The agents’ ability to reduce the consumption

exposure to this risk is limited because there is only one asset, in the form of a homogeneous

physical capital that earns a constant rental rate r̃. The asset holdings of the agent evolve as

ai,t = (1− δ)ai,t−1 + xi,t

where ai,t−1 is the amount of capital held by agent i at the end of period t− 1, δ ∈ (0, 1) is a

depreciation rate and xt is gross investment. The resulting budget constraint is

ci,t + xi,t = (1 + r̃)ai,t−1 + wsi,t.

The capital accumulation and the budget constraint can be combined to obtain

ci,t + ai,t = (1 + r)ai,t−1 + wsi,t,

where r ≡ r̃ − δ. As in standard models of incomplete markets, the optimal asset choice is

subject to a borrowing constraint a ≥ 0 such that

ai,t ≥ −a.

The aggregate production function is also standard - it takes as input the average

capital K =
∫
aidi and employment H =

∫
si,tdi, and produces KαH1−α, with α ∈ (0, 1).

The role of this side of the economy is to determine the rental rate and the wage from the

static first-order conditions r̃ = αKα−1H1−α and w = (1 − α)KαH−α, respectively. Given

the assumed inelastically supplied labor and i.i.d. labor supply shocks sit, we have H = 1.
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We organize the rest of this section as follows. First, we introduce the agents’ decision

problem and then define the stationary equilibrium Second, we illustrate the basic mechanics

of the evolution of beliefs and the feedback between information and actions through a simple

example. Third, in section 4, we describe the properties of the general equilibrium stationary

distribution in an illustrative numerical simulation.

3.1 Decision problem

The consumption-savings problem is a specific example of the general recursive dynamic

problem introduced in Section 2. Our assumption of i.i.d. exogenous income shocks si,t means

that the sufficient state for the agent’s decision is the available “cash-on-hand” defined as

yi,t ≡ (1 + r)ai,t−1 + wsi,t.

The key property here is that the future state yi,t+1 is determined partly endogenously from

the current choice of consumption ci,t, as well as by the random realization of si,t+1.

Each agent is interested in solving the same problem

V (yi,t) = max
ci,t,ai,t

u(ci,t) + βEtV (yi,t+1), (11)

subject to the budget constraint ai,t + ci,t = yi,t and the borrowing limit ai,t ≥ −a.

Reasoning

The consumption policy function that solves the problem in (11) can be written as

c̃∗(yi,t) = min(yi,t + a, c∗(yi,t)), (12)

where the kink at yi,t +a arises from the borrowing limit. The policy c∗(yi,t) gives the optimal

action taking into account future borrowing constraints, but ignoring today’s constraint.

The agents in our economy do not have free cognitive access to the full-information

policy function c∗. However, they do perfectly observe yi,t and a, hence the only uncertainty

about optimal consumption is in the second component of equation (12) - the current-period

borrowing constraint itself is a technological restriction that the agent can directly observe.

Applying the framework laid out in Section 2, the agents are uncertain about c∗ and obtain

costly reasoning signals about the unknown optimal action c∗(yt)

ηi,t = c∗(yi,t) + εi,t, εi,t ∼ N(0, ση,i,t). (13)
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Agents have the common time-0 prior that c∗ ∼ GP(ĉ0, σ̂0), which as discussed earlier is

centered at the truth, i.e. ĉ0 = c∗, and has a squared exponential covariance function σ̂0.

An agent i at time t makes two choices: reasoning intensity, by selecting the desired

variance σ2
η,i,t, and consumption choice ci,t. In choosing the precision of the reasoning signal

ηi,t, the agent optimally trades off its cost and benefit, as described in detail in Section 2,

and optimally selects a signal precision that generates the posterior variance

σ̂2
i,t(yi,t) = min

[
κ, σ̂2

i,t−1(yi,t)
]
. (14)

By Proposition 1, the optimal choice of σ2
η,i,t, together with beginning-of-period beliefs

ĉi,t−1(yi,t) and σ̂i,t−1(yi,t), lead to the following conditional expectation of c∗(yi,t):

ĉi,t(yi,t) = ĉi,t−1(yi,t−1) + αi,t(yi,t)(c
∗(yi,t) + εi,t − ĉi,t−1(yi,t−1)),

where the optimal weight put on the current reasoning signal ηi,t can be expressed as

αi,t(yi,t) = max
[
1− κ/σ̂2

i,t−1(yi,t), 0
]
. (15)

Lastly, taking into account the borrowing limit, the agent sets the consumption level 19

ci,t = min(yi,t + a, ĉi,t(yi,t)).

Heterogeneity and equilibrium

Agents in our economy are heterogeneous for two reasons. The first is the idiosyncratic

income shocks si,t, which are a common feature of standard models too. The second reason is

that agents obtain stochastic histories of reasoning errors εi,t, leading to different information

sets Ωi,t and perceived optimal decision rules ĉi,t(y). Therefore, the distribution of agent types

in the costly reasoning model is richer than in the standard full information Aiyagari (1994)

model. In particular, an agent’s type at time t is characterized by the following: (i) prior

conditional variance function σ̂2
i,t−1; (ii) prior conditional mean function ĉi,t−1, (iii) observed

cash on hand (yi,t = (1 + r)ai,t−1 + wsi,t) and (iv) current period reasoning error εi,t. We

denote the set of objects that determine an agent state at time t as τi,t ≡ (σ̂i,t−1, ĉi,t−1, yi,t, εi,t) ,

The type of heterogeneity in actions produced by our costly reasoning model is novel

compared to a full-information model, where the state τi,t is simply yi,t, since there agents

act under the same policy function c∗(y). Moreover, we will show that the beliefs-driven

19The Gaussian noise in signals suggests that extreme signals can lead to a negative estimate: ĉi,t(y) < 0.
In the numerical implementation we prevent this by imposing another constraint that ci,t > 0. In practice,
we find that this is not a problem at our calibration.
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heterogeneity of our model matters in the aggregate, in the sense that it systematically

changes properties of the average behavior and outcomes in the long-run as compared to the

full-information model. To do so, we denote by λt(τ) the time-t probability distribution over

the agent types τi,t and note that the constraint optimal behavior of the agents induces a law

of motion for λt(τ). We are interested in characterizing the properties of this distribution at

the stationary equilibrium, which we define below.

Definition 1. A stationary equilibrium is a full-information policy function c∗(y), a probability

distribution λ(τ) and positive real numbers (K, r, w) , such that

(1) prices (r, w) satisfy

r = αKα−1 − δ; w = (1− α)Kα

(2) the policy function c∗(y) solves the full-information problem in equation (11)

(3) the reasoning choice σ2
η,i,t and the consumption choice ci,t satisfy Proposition 1,

while conditional beliefs ĉi,t(y) and σ̂i,t(y, y
′) follow Lemma 2.

(4) given yi,t and a consumption choice ci,t, cash on hand evolves as yi,t+1 = (1 +

r) (yi,t − ci,t) + wsi,t+1, where si,t+1 is an iid draw from the time-invariant distribution S.
(5) the distribution λ(τ) is time-invariant, with a law of motion induced by (1)-(4).

(6) aggregate capital equals the average of the households’ asset decisions

K =

∫
τ

[y − c (τ)] dλ(τ)

3.2 Evolution of Beliefs

The key force behind the stationary equilibrium is the feedback between reasoning and wealth

dynamics. Noisy consumption policy function estimates affect the endogenous evolution of

wealth, while movements in wealth cause shifts in the uncertainty facing the agents, and in

turn this generates different reasoning choices, both over time and across agents.

This feedback is crucial in shaping the ergodic properties of λ(τ) and is underpinned by

a powerful selection force in regards to when agents choose to reason more or less intensely,

which determines the kind of estimation errors that persist through time. In particular,

learning and beliefs updating dramatically slows down once an agent accumulates a sequence

of reasoning signals that imply wealth is locally stable in the neighborhood of those same

signals’ positions. In this case, the state yi,t cycles through familiar states at which uncertainty

is already low (due to past learning), hence the agent perceives little need for further costly

reasoning, and thus chooses to acquire little new information. We call this situation a
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“learning trap”, and it characterizes the stochastic steady state at the individual level, since

agents’ beliefs keep trending (as described below), unless the agent settles into such a stable,

familiar region. As we will see, a necessary condition for stable wealth dynamics is a relatively

steep estimate ĉi,t, hence a prominent feature of the stochastic steady state of the model is a

high marginal propensity to consume (MPC) across the wealth distribution.

We illustrate the basic mechanism by following the evolution of beliefs of two agents

that are perfectly identical except for the realization of their very first reasoning signal errors,

εi,1. Otherwise, the agents have the same initial wealth, ai,0 = a0, receive the same sequence

of reasoning signal innovations after time-1 (εi,t = εt for t > 1), and same income shocks,

si,t = st, ∀t ≥ 1. We use this example to showcase two results. First, how the interaction

between the endogenous state and reasoning errors leads to a particular kind of stable and

systematically biased beliefs. Second, how the differing initial reasoning errors can lead to

different long-run economic outcomes, even though the agents are otherwise ex-ante identical.

Period 1: ex-post heterogeneous beliefs

At the beginning of time-1 agents are identical as they (i) face the same cash on hand

yi,1 = y1 = (1 + r)a0 + ws1 and (ii) have the same prior beliefs centered around c∗(y). As a

result, both agents choose the same reasoning effort, i.e. the same σ2
η,i,1 which by equation

(14) is such that the posterior posterior variance σ̂2
i,1(y1) = κ. Thus, the reasoning signals

the agents draw have the identical distribution ηi,1 = c∗(y1) + εi,1 , εi1 ∼ N(0, κ/α∗1). Here

α∗1 ≡ α1(y1) = 1− κ
σ2
c

is the resulting signal-to-noise ratio, which is the same for both agents,

and does not depend on the value of y1 since σ̂2
0(y) = σ2

c for all y.

Agents are ex-ante identical and choose the same reasoning strategy, but make different

consumption choices due to the idiosyncratic reasoning errors, leading to the effective action

ci,1 = min[y1 + a, c∗(y1) + α∗1εi,1].

At this stage, behavior is not systematically different across agents - it only differs due to the

iid shock εi,1 which on average is zero across agents. However, the reasoning signals do not

only generate stochastic choice in the current period, but also lead to systematic differences

in the policy function estimates ĉi,1(y) across the state space. In particular, using equation

(3) agent i’s conditional estimate of the policy function for any value of y is

ĉi,1(y) = c∗(y) + exp(−ψ(y − y1)2)α∗1εi,1.

For expositional purposes, we now assume that agent 1 receives a signal with a positive
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Figure 2: Conditional beliefs at t = 1
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error (ε1,1 ≡ ε > 0), while agent 2 receives a symmetrically biased signal with a negative error

(ε2,1 = −ε < 0). To simplify exposition and intuition, we assume throughout this illustration

that ε is small enough so that agent 1 does not hit the borrowing constraint. As the reasoning

error ε makes the two agents over- or under-estimate, respectively, optimal consumption at

all states y, we label agent 1 as a “consumer” or C, and similarly label agent 2 a “saver” or S.

To illustrate, in Figure 2 panel (a) we plot the updated estimates of the policy function

ĉi,1, for agent C (in blue) and agent S (in red), as induced by the reasoning errors εi,1. The

blue and red circles represent the respective actions taken at time-1, ci,1, and also mark the

position of y1 in this example. We also plot the full-information policy c∗ (solid black line),

which is also the mean prior belief, and two other objects that are helpful for gaining some

geometric intuition. First, with the dot-dashed black line we plot the consumption policy

cRW (yi,t) =
r

1 + r
yi,t +

1

1 + r
w,

which induces a random walk process for cash-on-hand yi,t, i.e. if the agent was to follow this

consumption rule, her wealth would be a random walk: Et(yi,t+1) = yi,t. Second, the dotted

line plots the action implied by the borrowing constraint, i.e. c(yi,t) = yi,t.

Figure 2, panel (a) shows that agent C updates beliefs upward and hence ends up with

an “over-consumption” bias relative to c∗(y) throughout the state space, while the opposite

is true for agent S. The plot also showcases that the shifts in the estimated policy functions

ĉC,1(y) and ĉS,1(y), relative to the common prior belief of c∗(y), are strongest at cash-at-hand

values y close to y1 – e.g. notice that both policy estimates converge to c∗(y) for large y.
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This reflects the local nature in the reduction of uncertainty – since we assume ψ > 0, agents

face uncertainty in the shape of c∗ and thus their signals ηi,1 primarily update beliefs locally.

To see the local reduction in uncertainty directly, consider the resulting posterior

variance function σ̂2
i,1, which is the same for both agents due to their identical choice of σ2

η,1:

σ̂2
i,1(y) = σ̂2

1(y) = σ2
c (1− α∗1 exp(−2ψ(y − y1)2)). (16)

This function is plotted in Figure 2, panel (b) and has a characteristic U-shape that signifies

the state and history dependence of posterior uncertainty. The state-dependence is embodied

in the the fact that σ̂2
1(y) is not a constant function, but varies with the value of the state y.

The history dependence is due to the fact that σ̂2
1(y) is increasing in the distance between y

and y1, the state at which the time-1 signal is most informative.

Period 2: selection effects

The state and history dependence of uncertainty interacts with the endogenous dynamics of

yi,t, because it depends on past consumption choices – for example, entering time-2

yi,2 = (1 + r) (y1 − ci,1) + ws2. (17)

Even when income shocks are common across agents (i.e. si,2 = s2), the dispersion in the initial

reasoning signals leads to wealth dispersion in period 2. We can infer the specific dynamics

of cash-on-hand for each agent i by comparing their chosen level of time-1 consumption, ci,1,

to the consumption level implied by the RW-wealth policy function cRW (y), at the same level

of cash-on-hand y1. A consumption action below (above) the line cRW (y) implies an expected

increase (decrease) in savings and thus an average drift up (down) in future assets.

The key property of this second period is a selection effect in how much each agent

chooses to reason. As summarized in Proposition 2 below, the optimal time-2 reasoning

intensity is increasing in the distance between the current state yi,2 and y1 – intuitively, if

an agent finds herself facing a significantly different level of cash-on-hand than the level at

which she reasoned previously, then uncertainty about the current optimal action is higher

and will warrant further reasoning than otherwise.

Proposition 2. The optimal reasoning intensity and the weight of the new signal in updating

beliefs are both increasing in distance from location of the previous reasoning signal:

∂σ2
η,i,2

∂||yi,2 − y1||
< 0 and

∂αi,2(yi,2)

∂||yi,2 − y1||
> 0.
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Therefore, agent C reasons more than agent S, i.e. αC,2(yC,2) > αS,2(yS,2), if and only if

s2 < 1 +
(1 + r)

w
(c∗(y1)− cRW (y1)) ≡ s̄

Proof. Details are in Appendix A.

These results build on Proposition 1, where the optimal variance of the reasoning error

was derived as σ2
η,i,2 =

κσ̂2
1(yi,2)

σ̂2
1(yi,2)−κ

and the resulting signal to noise ratio is αi,2(yi,2) = 1− κ
σ̂2
1(yi,2)

.

Given that the variance function σ̂2
1(y) is lowest at y1 and U-shaped around it, an agent i

chooses to reason more the larger is the distance ||yi,2 − y1||. Taking into account the ex-post

heterogeneity in yi,2, we can show that ||yC,2 − y1|| > ||yS,2 − y1|| if an only if si,2 = s2 < s̄,

and hence for such “low” realizations of income agent C perceives more uncertainty at his

respective time-2 state, and thus a stronger incentive to reason about c∗ than agent S.

We illustrate the implications of Proposition 2 in Figure 3, panel (a). There we plot

again the posterior variance function entering time-2, σ̂2
1(y), but now zoom in on the region

of the state space around y1, and mark on the x-axis two possible time-2 cash-on-hand

positions for each agent. First, we indicate the expected values ȳi,2 ≡ E1(yi,2), obtained by

setting si,2 = 1 in equation (17). Naturally, the “consumer” type who over-estimates optimal

consumption, has lower time-2 wealth on average: ȳC,2 < ȳS,2. But even though the reasoning

signals ηi,1 are symmetric around c∗(y1), time-2 assets ȳi,2 are not symmetric around y1.

The reason is that the full-information policy c∗ is below cRW in that region of the state

space, reflecting a precautionary savings motive. Thus, the reasoning errors disperse actions

around a positive drift in assets. In this illustration, the initial under-estimation of optimal

consumption by agent S therefore further magnifies that positive drift, making it on average

more likely for her to see a larger change in the time-2 state. Thus, σ̂2
1(ȳC,2) < σ̂2

1(ȳS,2)

implying agent S faces more uncertainty about the optimal action and thus choose to reason

more at the average future wealth. Through the lenses of Proposition 2, it follows that in

this case the threshold s̄ is lower than the mean of the labor income shocks (i.e. one). Absent

the systematic difference between c∗(y) and cRW (y), as for example in a standard PIH model,

s̄ = 1 and agents would reason the same at their respective average states ȳi,2.

The key message of Proposition 2 is the state-dependence of the agents’ optimal

reasoning choices, which depend on the specific income shock realization. To illustrate, in

the same panel (a) we also indicate the resulting cash-on-hand positions yi,2 for the case of a

below-average income shock realization s2 < s̄. Naturally, this results in lower than average

cash-on-hand levels, as indicated by the two equal leftward arrows. However, the crucial

observation is that this shock affects asymmetrically the distance ||yi,2 − y1||, and through it,

perceived uncertainty and thus the optimal reasoning choices of the two agents.

23



Figure 3: Conditional beliefs: evolution from t = 1 to t = 2
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In particular, note that this low income realization s2 essentially compounds the “over-

consumption” bias of agent C, and thus pushes his cash-on-hand even further away from

y1 than otherwise. On the other hand, the same shock acts to counter-balance the “under-

consumption” bias of agent S, leaving her cash-on-hand relatively unchanged compared to

y1. Thus, in this situation, agent C faces significantly higher uncertainty about his time-2

optimal action than agent S, i.e. σ̂2
1(yC,2) > σ̂2

1(yS,2), and hence agent C chooses to reason

with a higher intensity. As a result, agent C updates his beliefs by more, as seen in panel (b),

where we also plot for comparison the previous period estimates ĉi,1(y) (dashed lines). As

predicted by Proposition 2, because in this case αC,2(yC,2) > αS,2(yS,2), the change in beliefs

of agent C is substantially bigger than the revision in agent S’s beliefs, which hardly change

(red dashed line vs solid red line) as the latter chooses to acquire little new information.

Naturally, by Proposition 2, the reverse type of behavior would emerge when s2 > s̄. In that

case, agent S faces a more unfamiliar part of the state space than agent C, for whom the

shock effectively constitutes a return towards the familiar state y1.

This analysis highlights a fundamental selection effect in which agents’ beliefs get

significantly updated and when. While a “saver” type is more likely to revise beliefs when

experiencing a high income shock, a “consumer” type behaves in the opposite way. This

selection reinforces the effects of the time-1 errors on agents’ wealth, and helps generate

persistent economic differences, which we illustrate next by following the agents’ beliefs

dynamics through time.
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Learning traps: remaining hand-to-mouth

Notice that in our illustration the combination of a high consumption policy estimate and a

negative income shock leads agent C to hit the borrowing constraint in period 2, seen from

the fact that the blue-circle (current action) is on the 45-degree line and below the blue solid

line in panel (b) of Figure 3. In this situation, negative income shocks will necessarily have a

muted impact on cash-on-hand, as there is no borrowing. On the other hand, positive income

shocks will move the agent in the part of the state space where his policy function estimate

ĉi,t(y) lies above cRW (y). Importantly, this over-estimate of optimal consumption means that

even if positive income shocks increase cash-on-hand, wealth is likely to remain high only

temporarily as agent C draws down his assets ai,t and drifts back towards the constraint.

Therefore, the combination of the borrowing constraint, which acts as a barrier to the

agents’ downward drift in assets, and the high consumption estimate in the adjacent part

of the state space generates stable wealth dynamics for agent C. As he is hit by income

shocks in the future, his cash-on-hand is likely to fluctuate in the same familiar region where

uncertainty is already low thanks to previous reasoning done in the neighborhood of y1. Hence

new signals are not likely to change the policy function estimate by much locally, because

he will not choose very informative new signals ηC,t unless there is a dramatic change in his

cash-on-hand yC,t, at which point the new signal will be primarily informative for a different

part of the state space. As a result, on average his wealth fluctuates in a familiar region near

the borrowing constraint, and the agent follows his established “over-consumption” behavior.

Figure 4: Policy estimate evolution, agent C
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This type of dynamic is illustrated by Figure 4, where we plot two snapshots of beliefs
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and actions further into the future, for period-5 on the left and period-10 on the right. In both

pictures, the dashed line, representing the agent’s beliefs entering the period, lies virtually

under the solid blue line of the end-of-period beliefs, signifying a small update in the policy

function estimate. Similarly, there is little change in the policy estimate between periods five

and ten, seen by comparing across panels (a) and (b). In fact, in the latter period agent C

hits the borrowing constraint again, similar to his experience in period two, per panel (b) in

Figure 3, illustrating how this agent settle into a low-wealth, “hand-to-mouth” status.

We label this situation a “learning trap”. Its defining feature is a sequence of reasoning

errors that establishes stable wealth dynamics, and thus a high likelihood for the agent’s state

variable to remain within a particular neighborhood of the state space. As wealth fluctuates

in that familiar, low uncertainty region, the agent has little incentive to reason further.

Learning traps: becoming and remaining rich

The “saver” agent is also subject to similar learning traps. However, her eventual steady state

wealth level is different, owing to her different early life experiences and choices. First, the

initial negative reasoning error generates an upward drift in assets. Second, this upward drift

is compounded by the asymmetric effects of income shocks discussed earlier, where this agent

is likely to draw new informative signals, and thus change her “under-consumption” bias,

only at higher levels of wealth. Third, as her wealth drifts up over time, she accumulates new

signals that revise her policy function estimate ĉS,t(y) largely locally, due to the local nature

of information. Thus, rather than a uniform shift of beliefs up, the revisions will instead

change the estimated slope of the policy function at high y.

This dynamic is illustrated in Figure 5 which plots several snapshots of this agent’s

policy estimate and respective action at four periods further into this example simulation:

for t = 5, 60, 69, 87. Panel (a) shows that as time has progressed the agent has collected new

information which has left to a revised policy estimate, mainly through an increase in the

slope of ĉS,5(y). In panel (b), we show the eventual estimate and action taken at t = 60, the

last period (in this simulation run) before the agent settles into a stable slow-learning region.

By that time, the agent has acquired numerous signals at lower levels of cash-on-hand,

hence if wealth drifts down she will find little need for further reasoning. Meanwhile, her

relatively steep estimate of the policy function ensures that it crosses the cRW (y) policy from

below. This upward crossing establishes stable wealth dynamics because: (1) any action

above the cRW (y) line leads to dis-saving and a downward drift in assets, and (2) in turn,

dis-saving moves cash-on-hand back to a familiar region, where the agent’s best estimate is

to consume less than implied by the cRW (y) line and to build assets back up. Therefore, the

resulting back-and-forth leads to a steady-state level of wealth given by the intersection of
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Figure 5: Policy estimate evolution, agent S

(a) t = 5

Cash on hand (y)

C
o

n
s
u

m
p

ti
o

n

(b) t = 60

Cash on hand (y)
C

o
n

s
u

m
p

ti
o

n

(c) t = 69

Cash on hand (y)

C
o

n
s
u

m
p

ti
o

n

(d) t = 87

Cash on hand (y)

C
o

n
s
u

m
p

ti
o

n

cRW (y) and ĉS,t(y). We illustrate this stable, “business-as-usual” behavior in panels (c) and

(d) as two more snapshots of the agent’s beliefs and actions, showing that they have started

fluctuating around the upward crossing point, with little further changes. We also note that

this upward crossing point is specific to the history of reasoning signals experienced by agent

S and is therefore different with probability one from the intersection of cRW (y) with c∗(y)

(which defines the steady-state level of wealth under full-information).

Taking stock of qualitative implications

As long as wealth drifts into previously uncertain parts of the state space, an agent’s beliefs

about the optimal policy function c∗ are likely to continue to evolve, as she accumulates
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new reasoning signals. Eventually, reasoning errors lead to a policy function estimate ĉi,t(y)

that establishes stable wealth dynamics in the neighborhood of past reasoning signals, and

in such “learning traps” cash-on-hand starts cycling in a familiar, low uncertainty region.

Such a situation can happen in two ways – either an agent gets stuck against the borrowing

constraint while carrying an overly high estimate of the consumption function, or if away

from the constraint, her estimate ĉi,t(y) forms an upward crossing with the cRW (y) policy.

These belief dynamics have important implications about the stochastic steady state of

the model, which we analyze numerically in Section 4. First, agents’ beliefs are on average

trending towards policy function estimates that imply high MPCs across all agents, both rich

and poor. The reason for the high MPCs for the poor agents are standard – they are close to

the borrowing constraint, and hence beliefs there are likely to inherit the steepness of the

full-information c∗(y). The reason for the high MPCs for rich agents is unique to our model

– those arise from the fact that beliefs endogenously stabilize around an upward crossing

between the policy estimate ĉi,t(y) and the cRW (y) policy.

A second characteristic feature is illustrated by agent C’s near-zero steady-state wealth.

This outcome is very unlikely under full-information, where agents save aggressively when

low on assets. In our model, however, being close to the constraint can be stable behavior.

Intuitively, Bayesian agents have no reason to question their conditional policy estimates and

some are bound to end up with estimates that push them close to the constraint.

A third fundamental implication of the model is the significantly larger wealth hetero-

geneity relative to the full-information case. This arises from agents effectively establishing

individual stable levels of wealth that are dispersed across the whole state space, in contrast to

the single steady-state level under c∗(y). Hence, under full information, wealth heterogeneity

is entirely due to income shocks, as wealth is trending to the same steady-state level for all

agents. In our model, instead, the specific history of reasoning errors of each agent results in

heterogeneous anchoring points for wealth. This is starkly illustrated by the experiences of

agents S and C – two agents that are identical except for their reasoning errors in the first

period, yet have very different long-run average wealth levels.

In closing, we make two further literature comparisons. First, changing the focus

from imperfect perception of the state yi,t to imperfect perception of the optimal action

conditional on the state allows the model to easily and robustly handle budget (and borrowing)

constraints. Our agents both observe yi,t and understand how the budget constraint imposes a

deterministic restriction between any given consumption policy function c(y) and the implied

savings rule a(y) = y − c(y). As a result, given primitive informational parameters (eg. σ2
c

and ψ), our model produces the same ergodic behavior whether reasoning occurs over c∗(y)

or over the optimal savings rule a∗(y). The latter case is simply a deterministic translation of
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the Gaussian Process distribution over c∗(y) to one over a∗(y) = y− c∗(y), and hence there is

no change in the structure of uncertainty facing the agent. Intuitively, the ergodic behavior

will again be characterized by a situation in which assets have stable dynamics, implying a

high MPC, or equivalently, a relatively flat effective savings policy function ât(y).

In contrast, if the state yi,t would be imprecisely perceived, as it is often assumed in

the canonical literature on imperfect information, such equivalence may not hold. In that

case, given signals about yi,t, behavior may be substantially different whether consumption

ci,t or savings ai,t is assumed to be the “residual” action that is imposed to ex-post clear the

otherwise imperfectly perceived budget constrained.20

Second, in an environment with ex-ante identical agents and in the absence of any

a-priori biases, costly reasoning about the optimal action endogenously generates two types of

results that are typically challenging to produce, especially jointly. In particular, the higher

MPCs and larger wealth heterogeneity than in the standard model, with both more poor and

rich agents, indicates that our economy is different both in terms of the local slope of the

consumption function as well as the dispersion of asset levels across the wealth distribution.21

4 Numerical analysis

Next we turn to a numerical implementation of the Aiyagari (1994) economy augmented with

our reasoning friction as described above. We evaluate the key properties of the stationary

equilibrium and contrast with the standard full-information version of the model.

4.1 Parametrization

Whenever possible, we follow the standard parametrization considered in Aiyagari (1994).

Households have log-utility with a discount factor of β = 0.96. The i.i.d. labor income shock

is drawn from a log-normal distribution ln(si,t) ∼ N(−σ2
s

2
, σ2

s), with σs = 0.2, and there is

no borrowing allowed, i.e. a = 0. On the production side, the capital share and the annual

20The typical assumption in the consumption-savings literature on imperfect perception of wealth is to
let savings be the residual action (see for example Sims (2003), Maćkowiak and Wiederholt (2015) and Luo
(2008)). In a model of inattention, Reis (2006) obtains different behavior if the residual action is consumption
or savings. Gabaix (2014) discusses assumptions for how to model multiple actions within the sparse-max
operator in the presence of budget constraints.

21The typical departures from the standard model are largely aimed to specifically explain one of these
challenging properties. On the one hand, heterogeneity in preferences or rates of return are typical extensions
to generate more wealth dispersion (see De Nardi and Fella (2017) for a survey). On the other hand, high
MPCs for rich agents that hold low liquid wealth emerge from Kaplan et al. (2014), while a range of behavioral
models can lead to high MPCs even for highly-liquid agents (see Lian (2020) for a general analysis).
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depreciation are set to standard values of α = 0.36 and δ = 0.08, respectively. We now turn

to the parameters governing the reasoning friction.

First, as suggested by the discussion in the previous section, the beliefs of individual

agents can evolve very slowly for long periods of time. To help with the computation of

the stationary steady state, we introduce a form of discounting of past reasoning signals.

We opt for the tractable modeling assumption that agents face i.i.d. Poisson information

shocks, where with probability θ an agent’s history of accumulated reasoning signals becomes

obsolete and that agent’s beginning-of-period beliefs reset to the time-0 prior.

One interpretation of this discounting scheme is based on viewing agents as finitely lived,

where conditional on death, the agent transfers his assets and the resulting continuation utility

off to the offspring. However, the transfer of reasoning information about the optimal policy

is imperfect across generations, which for simplicity we assume leads to full discounting of

past information. In our parametrization we set θ = 0.02, so that the economy is continuously

repopulated with agents that on average re-start their learning problem every 50 years.

Second, as also discussed in Section 2, we aim to reduce the degrees of freedom intrinsic

in specifying the prior beliefs, through restrictions that resemble the rational-expectations idea

of utilizing “model-consistent” priors. These restrictions constrain the inherent “wilderness of

bounded rationality” as follows. First, the common prior mean function ĉ0(y) is set equal to

the full-information policy function c∗(y). This leaves us with the parameters σ2
c and ψ of the

covariance function σ̂0(y, y
′), which govern the uncertainty around ĉ0(y). We aim to impose

a model-consistent value for those, by setting them equal to what an econometrician would

estimate if he were to observe simulations from the model. In particular, we look for a fixed

point such that given the values of {σ2
c , ψ}, if an econometrician uses the resulting ergodic

distribution of reasoning signals ηi,t as data, he would recover the same values of {σ2
c , ψ} as

used to simulate ηi,t. This essentially restricts the assumption on prior uncertainty to be

model consistent, and also has a connection with the practice of estimating hyper-parameters

in Bayesian statistics. More details on this fixed-point procedure are given in the Appendix.

Employing this model-consistent priors strategy, we are left with one remaining degree

of freedom, namely the marginal cost of reasoning κ. We calibrate this last parameter by

exploiting the tendency for agents in our model to settle in “learning traps”. Among other

things, these traps link our mechanism to one particularly challenging fact - while empirically

the bottom 20% in the US wealth distribution have roughly zero net assets, standard model

predicts that very few agents should be in that position due to strong precautionary saving

motives.22 This insight motivates us to set κ to target this moment, given the fixed-point

22See Krueger et al. (2016) as a reference for this moment and for a detailed discussion on how the standard
model has a difficult time in predicting it.
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restriction over {σ2
c , ψ} and the rest of parameters described above.

Putting everything together, the resulting calibration for the reasoning parameters

is {σ2
c , ψ, κ} = {0.77, 0.05, 0.48}. Those values suggest that agents indeed face non-trivial

amount of uncertainty in the optimal policy (σ2
c > 0) and its shape (ψ > 0). The particular

numerical values do not have a direct interpretation, however, and are best understood in

the context of the resulting moments we discuss below.

4.2 Stationary equilibrium

We argue that the stationary distribution of our costly reasoning model significantly improves

upon its full-information counterpart along three key dimensions: (1) larger wealth inequality;

(2) more frequent and persistent hand-to-mouth (HtM) status, and (3) higher marginal

propensities to consume (MPC), especially for rich, unconstrained agents. In our discussion,

we connect to the existing empirical literature and show that our model tilts an otherwise

standard incomplete markets model a-la Aiyagari (1994) towards a closer empirical fit.

To compute the stationary distribution we iteratively simulate an economy with 10,000

periods and 5,000 agents, and search for the value of the interest rate r which satisfies the

definition of stationary equilibrium in Section 3. We compute the reported moments over the

last 5,000 periods of the simulation. We compare the stationary distribution of our costly

reasoning (CR) model to a standard full-information (FI) model driven by the same sequence

of income shocks, but where there is no uncertainty about c∗ (i.e. σ2
c = 0). Naturally, the

two models achieve equilibrium at different levels of the interest rate r, as discussed below.

Wealth distribution

As foreshadowed by the discussion in Section 3, the stationary distribution of assets in the CR

model is influenced by the underlying distribution of individual agent wealth “steady-states”.

Those vary across agents and depend on the location of the upward crossing pattern between

individual policy estimates ĉi,t(y) and the cRW (y) policy. Around such crossings wealth

dynamics are stable and agents do not change behavior much, as their respective state

remains in a familiar, low uncertainty region. In contrast, in the FI model the wealth steady

state is common to all agents, since they follow the same c∗(y) policy. As a result, the CR

model features both more wealth heterogeneity, and a greater persistence in assets (i.e. lower

social mobility).

Figure 6 plots the stationary distribution of assets ai in the benchmark CR economy

(red line) and the counter-factual FI economy (blue line). A striking visual difference between

the two distributions is the large mass of low wealth agents in the costly reasoning model.
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Figure 6: Wealth distribution in stationary equilibrium. Solid red line (ACR) is for the benchmark costly
reasoning economy, while the solid blue line (AFI) is for the full information version.

The FI policy c∗(y) is characterized by a strong precautionary savings motive which directs

agents away from the borrowing constraint. In contrast, as discussed in the example of

Section 3, our model has the potential to explain why agents acting under their best estimate

of the optimal course of action could consistently maintain low levels of wealth.

The second qualitative difference between the two economies is the larger density of

rich agents in the CR model as compared to the FI economy, exemplified by the slower decay

of the right tail in the asset distribution – i.e. red line is consistently above the blue one in

the right tail. The reason is again the presence of learning traps, which creates a mass of

persistently rich agents that remain in the right tail, while the very rich agents in the FI

model tend to spend down their wealth (since c∗(y) > cRW (y) for large y).

The net effect of the larger left and right tails can be deduced by the equilibrium interest

rate, which is significantly lower in the CR economy – 3.87% versus 4.15% in the FI model.

This indicates that the larger accumulation of assets by rich agents more than compensates

the larger mass of poor agents, as compared to the FI model, resulting in higher mean level of

assets for a given interest rate. Put together, our reasoning mechanism leads to an economy

with more assets on average, where those are also more unequally distributed due to an

increase in both the left and right tails of wealth.

As a summary statistic of the wealth inequality, in Panel (A) of Table 1 we show that our

benchmark model (column (2)) produces a significantly higher Gini coefficient, bringing the

model half-way from its full-information counter-part (column (3)) to the US data (column

(1)). Consistent with the intuition discussed above, this increased inequality comes from

more mass both in the left tail and in the right tail of the distribution. To see this, we split
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the wealth distribution by its quintiles and compute the amount of assets held by agents as a

share out of the total. The asset share of the first quintile (Q1) is targeted by our calibration,

and Table 1 shows that the model successfully achieves zero net assets for those agents.23

Given the rich cross-equation restrictions on the joint stationary distribution of beliefs and

actions, we view this match as success into itself. In contrast, as also illustrated by Figure 6,

the standard FI version of the model is at odds with this moment - it predicts that agents in

Q1 have largely managed to save away from the borrowing constraint and have accumulated

assets that amount to 5% of the total.

In terms of the right tail of the wealth distribution, we note that while in the FI model

the top quintile of agents holds 44% of all assets in the economy, in our benchmark model

agents in the top quintile hold 57% of all assets. This share is still lower than the extreme

concentration of wealth at the top that we see in the data, but our costly reasoning mechanism

still brings the standard model closer to reality without the use of fat-tailed shocks.24

Moments Data Benchmark Full info Trembles

(1) (2) (3) (4)

(A) Wealth Distribution
Gini coefficient 0.77 0.58 0.39 0.39
Bottom 20%: share of total assets -0.01 0 0.05 0.04
Top 20%: share of total assets 0.83 0.57 0.44 0.46

(B) Hand-to-Mouth (HtM)
Fraction of Hand-to-Mouth 0.23 0.23 0.01 0.02

HtM persistence: P (HtMt+4|HtMt)
P (HtMt+2|HtMt)

0.9 0.99 0.66 0.66

Future ∆ in consumption | HtMt 0 0.001 0.015 0.028

(C) MPC
Unconditional Mean 0.2-0.6 0.29 0.05 0.06
Mean | top 20% of assets 0.2-0.6 0.15 0.04 0.04

Table 1: We report moments from data in column (1) and the stationary distribution in our benchmark costly
reasoning model in column (2). In our counterfactuals we keep parameters at their benchmark values but set
σ2
c = 0 in column (3), or assume agents make iid mistakes around their known optimal policy function, per

equation (18), in column (4), respectively. The data moments in Panel (A) are reported by Krueger et al.
(2016) for PSID (in 2006), and in Panel (B) by Aguiar et al. (2020) who use the PSID panel structure. In
Panel (C) we report a range summarized in Carroll et al. (2017) as credible empirical estimates of MPCs.

23In the data people in Q1 actually have slightly negative wealth: -0.9% as a share of total assets. Since in
our model, as in Aiyagari (1994), the borrowing limit is set to zero, we have simply targeted a zero asset
share for Q1. Introducing a negative borrowing limit would allow the model to obtain negative net wealth in
Q1, but the data is so close to zero it makes little difference.

24See Benhabib and Bisin (2018) for a review on model extensions to generate more wealth concentration.
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Hand-to-Mouth Status

In section 3 we discussed an example simulation of a “high consumption” agent (type C)

whose reasoning experience lead to a low steady-state wealth, and the intuition behind that

example underpins the model’s ability to generate a large mass of low-wealth agents as

observed in the data. Here we zoom-in on the ergodic behavior of such agents, and connect

our model to the widely-used concept of “Hand-to-Mouth” (HtM) by using empirical moments

reported in Aguiar et al. (2020). Implementing their measure of HtM based on net-worth

(which follows Zeldes (1989)) we define an agent i at time t as being in HtM status if ai,t−1 is

less than two months of labor earnings.25

In the stationary distribution of the costly reasoning model 23% of agents are HtM, in

line with the data. In contrast, under full-information agents save aggressively when they

find themselves close to the constraint so the ergodic mass of HtM agents is essentially zero,

a typical result in standard incomplete markets models. In such models, HtM status is the

outcome of an unlikely long sequence of low income shocks, which is both a low probability

and transitory status, as agents quickly build up their wealth once income shocks mean-revert.

However, in the data HtM status is not only prevalent, but also very persistent at the

individual level, as is also true in our model. In particular, the probability of an agent being

in a HtM status at t+ 2 conditional on currently being HtM is 90% in the CR model, while

that probability is only 36% under full information. Furthermore, these probabilities become

89% and 24%, respectively, when we predict the future HtM status at t+ 4 instead. Aguiar

et al. (2020) compute the same moments in their biannual PSID panel data and find high

persistence of HtM status, which they also note is a challenge to the standard model. Their

empirical estimates of that persistence are lower than in our model (65% for t+ 2 and 58%

for t+ 4, respectively), but as they note, survey reporting errors for income and wealth are

likely to create spurious transitions. Given this measurement error concern, we therefore

emphasize that the HtM status in the data is remarkably persistent in relative terms – the

probability of staying HtM over the next four years is 90% of the probability of staying HtM

over the next two years, showing a very low rate of decay. The second row of Panel (B) of

Table 1 shows that this high persistence is close to the costly reasoning model’s implication,

but significantly larger than the 66% delivered by the full information version.

Aguiar et al. (2020) also look at the dynamic properties of HtM status from another

angle, by computing the expected future consumption growth of HtM agents, E(∆ct+2|HtMt),

which we also report in Panel (B) of Table 1. Empirically, they find that this growth rate is

essentially zero. As they note, this runs counter to the standard model’s implication that HtM

25With i.i.d. risk, in our annual model this threshold is w/6, where w is the stationary equilibrium wage.
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agents are on average expected to grow out of the constraint quickly, and thus experience

high future consumption growth. Indeed, consistent with this intuition, we find that in the FI

version of the model consumption growth conditional on current HtM status is 1.5% higher

than otherwise. In contrast, in the CR model, the HtM agents are also characterized by a low

wealth steady state, and their savings and assets are likely to bounce back and forth around

that familiar low-wealth region. Therefore, consistent with the data, these agents appear

to an outsider as having a low “target wealth”. While this behavior could be interpreted

as ex-ante differences in preferences, as in Aguiar et al. (2020), in our model it reflects the

reality of costly reasoning for otherwise ex-ante identical agents.

Marginal Propensity to Consume

The empirical measurement of MPCs has been the object of a large literature, which uses

various identifying approaches (see Jappelli and Pistaferri (2010) for a survey). As detailed by

Carroll et al. (2017) the results are varied, with credible estimates of annual MPCs appearing

to range from 0.2 to 0.6. Panel (C) of Table 1 reports the average MPCs computed from the

considered models. The CR model is well in line with the data – with a mean MPC of 0.29 –

while under full information the mean MPC is counter-factually low and just 0.05.

In our costly reasoning model there are two forces behind the high average MPC. The

first one is a compositional effect. As in standard models, agents close to the constraint (e.g.

Hand-to-Mouth agents) are less able to smooth out income shocks and are thus inherently

characterized by high MPCs. Having a large mass of such agents in the ergodic distribution

is an important contributor to the large average MPC the model generates. The HtM agents

in the full-information model have similarly high MPCs, but unlike in the CR model, they

are a negligible fraction of the population as a whole.

In addition to the composition effect, the CR model also features high individual

MPCs for the rich, unconstrained agents. This is because the typical agent at the stationary

equilibrium is likely in the midst of a “learning trap”. As discussed qualitatively in Section

3, this occurs when an agent’s wealth dynamics are sufficiently stable, which requires an

upward crossing of the policy estimate ĉi,t(y) and the cRW (y) policy line. In practice, this

means that the typical agent’s policy function estimate is relatively steep, and this holds true

for agents across the wealth distribution. Quantitatively, we find that the median MPC is

0.17. Moreover, we report in Table 1 that even for agents in the top quintile of the wealth

distribution the average MPC is still very high, and equal to 0.15. In contrast, in the FI

economy we find the standard result that away from the constraint, the consumption response

to income shocks is muted and similar to the permanent-income-hypothesis, with an average

MPC for the richest 20% of just 0.04 .
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The empirical literature provides increasing support in favor of a model that delivers

both a large mass of constrained agents and high MPCs for the unconstrained agents. Being

“constrained” may be interpreted in terms of the overall net worth, as in the one asset economy

that we study, or more specifically in terms of liquid wealth in a model that differentiates

assets by liquidity, like in Kaplan et al. (2014). Still, Parker (2017), Olafsson and Pagel

(2018) and Fagereng et al. (2019) point out that even for agents with high liquid wealth the

MPC level is significantly higher than implied by standard models. Therefore, the costly

reasoning friction brings an otherwise standard incomplete markets model closer to the data.

4.3 Endogenous patterns of mistakes

Motivated by the broad literature reviewed in the introduction, our model generates behavioral

“mistakes“ that are not mechanical, but the outcome of a constrained maximization. As a result,

our “resource rational” agents make errors but not in an invariant, exogenous way. Instead,

their reasoning intensity and patterns of mistakes depends on changes in the environment.

We highlight these properties in this section through two additional experiments.

Costly reasoning vs simple mistakes

We first discuss a counter-factual model where agents have full-information about the optimal

policy function but make idiosyncratic mistakes in their actions.26 Namely, we consider that

agents are suffering from a simple “trembling-hand” kind of control problem, where they set

an approximately accurate action that is contaminated with i.i.d. noise:

ctrmbi,t = c∗(yi,t) + σ2
τεi,t. (18)

When simulating this model, we use the exact same sequence of noise shocks εi,t that

affect the reasoning signals in the costly-reasoning model. Hence, the stochastic choice of

agents in this alternative model is driven by the same source of exogenous disturbances that

generates contemporaneous dispersion in our benchmark model. We calibrate the standard

deviation of these shocks, στ = 0.18, so as to match the dispersion of actions around the

full-information action in the benchmark CR model – i.e. to match V ar(ci,t − c∗(yi,t)).
In this counterfactual “trembles” model, with moments reported in column (4) of Table

1, agents similarly display stochastic choice and make mistakes in their actions, as in the CR

26A related ‘near-rational’ approach (eg. Akerlof and Yellen (1985) and Hassan and Mertens (2017)) assumes
a constant cost of implementing the otherwise known optimal action and studies the general equilibrium
effects of the resulting individual errors. While those models typically assume some correlation in the errors,
in this counter-factual we impose that they are iid across time and agents.
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model. This creates some additional wealth heterogeneity compared to the FI model, but

that is quantitatively negligible – the share of assets held by the top 20% of agents increases

from 44% to 46%, and the fraction of HtM agents increases from 1% to 2%. Overall, the

Gini coefficient remains the same at 0.39.

Similarly, while the “trembles” generate consumption volatility, on average an agent

behaves as under c∗, hence the MPCs for the unconstrained agents are also low. There

is a slight increase in the average MPC (0.06 vs 0.05), but that is completely due to the

compositional effect of more HtM agents – the MPC of the unconstrained agents are equivalent

in the “trembles” and the full-information models. This showcases that the endogeneity in

the reasoning intensity choice and the implied selection effect we have discussed in Section

3.2 are crucial for obtaining the systematically higher MPCs in our benchmark model.

The key to these results is that the errors in this counter-factual are not systematic, hence

they tend to wash out over the long-run. For example, an agent might under-consume a few

times, but he is not likely to become a “saver” type that persistently under-consumes, like it is

possible in the CR model due to the endogenous, state-dependent choice of reasoning intensity.

This is exemplified by the expected consumption growth of HtM agents in the “trembles”

version of the model, which is even higher than under FI (2.8% vs 1.5%), underscoring the

strong mean-reversion in actions in this counter-factual model.

The fact that the ergodic implications of this “trembles” counter-factual are similar

to the full-information model illustrates a standard justification in the literature that the

latter model may still be a good approximation for an underlying model where agents do

end up making errors. In contrast, our mechanism shows that when behavioral “mistakes”

are modeled in a “resource rational” way, the joint-distribution of beliefs and actions differ

qualitatively and quantitatively from its full-information version.

Uncertainty shock and policy effects

In the second experiment we compute the effect of an aggregate uncertainty shock on the

endogenous reasoning choices and their importance for a policy maker. In particular, partly

motivated by the current COVID-19 crisis, we consider a shock that, starting at the ergodic

steady state of the CR economy, resets all agents’ beliefs back to the time-0 prior.27 There is

no fundamental change in the economic structure, hence over time the economy converges

back to the same stationary distribution.

On impact, all agents perceive a large increase in uncertainty about c∗, leading to

temporary aggregate dynamics that showcase the endogenous nature of the behavioral

27We chose a simple, but stark, example of an uncertainty shock for illustration purposes. Naturally, a
shock where only some, but not all, information is rendered useless has qualitatively similar implications.
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Figure 7: Conditional beliefs following an uncertainty shock

(a) Evolution of HtM share and MPC
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“mistakes” of our agents. To visualize these effects, in Figure 7, panel (a) we plot the impulse

responses of three key moments – (i) share of HtM agents (blue line), (ii) average MPC (red

line) and (iii) average MPC among richest 20% of agents (yellow line).

There are two key forces that shape the response of the economy. On the one hand, all

agents perceive significantly increased uncertainty and hence choose to reason intensely. On

the other hand, since both the time-0 priors and the new reasoning signals are centered at the

full-information policy c∗, on impact aggregate consumption behaves as under full-information.

This is underscored by the dramatic fall in the MPC across agents. We can see that

both in the mean MPC in the economy, which is essentially halved to 0.15, and in the mean

MPC of the richest agents, which falls to 0.04. The economy-wide average MPC does not

fall all the way to its level under FI, because of the wealth distribution, which is inherited

from the stationary distribution of the CR economy. In particular, even though upon the

shock all agents start with a clean slate of beliefs, there is still a large fraction of agents with

virtually no assets, and for those “hand-to-mouth” agents, MPCs are high even under the

full-information policy. Over time, the economy transitions back to the stochastic steady

state described earlier, with the average MPC rising back to 0.29.

The sharp fall in MPCs on the impact of the uncertainty shock is of particular interest

to policy makers. High MPCs are often seen as important in the propagation of policy efforts

to affect the economy, and thus our model suggests that policy becomes less effective during

uncertain times, as our agents abandon their “business-as-usual”, high MPC consumption

patterns. To make this point concrete, in the panel (b) of Figure 7 we plot the impulse

response of a one-time, transitory aggregate income shock equal to 1% of income, both with
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and without a concurrent uncertainty shock. The income shock can be interpreted as a simple

implementation of expansionary fiscal or monetary policy (under sticky prices).

Without a concurrent uncertainty shock, a 1% increase in average income leads to

a significant response in our benchmark costly-reasoning economy, increasing aggregate

consumption by 0.26% on impact. Meanwhile, as it is well known, the impact in the full-

information economy is muted, with consumption increasing by just 0.04%. However, if the

income shock happens at the same time as an uncertainty shock, the effect on aggregate

consumption in the CR model is roughly halved, with aggregate consumption increasing by

only 0.15% in this case. Thus, while a policy maker can expect to have a significant impact

on the economy in normal times, the same policy will be considerably weaker in times of

high uncertainty, showcasing the relevance of modeling behavioral “mistakes” that respond

to changes in environment.

5 Conclusion

This paper is motivated by a long-standing interest in the economics literature of relaxing

the typically convenient, but otherwise extreme, assumption of decision-makers having free

cognitive access to their optimal policy function. In this context, the first contribution of

the paper is methodological in nature, as we propose a framework to model costly reasoning

that is (i) tractable and portable across specific economic models, and (ii) well grounded in

a broad neuroscience, experimental and computational literature. The second contribution

is applied. We show that the proposed costly reasoning framework is a parsimonious and

novel mechanism that generates rich and intuitive joint dynamics of beliefs and actions in a

standard incomplete markets model. These dynamics can help bring the model closer to the

data, and also hold important lessons for policy makers.
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Appendix

A Proofs

Lemma 1. If θk
iid∼ N(µk, σ

2
c ), equation (2) implies that c∗ ∼ GP(ĉ0, σ̂0), with

ĉ0(y) =
N∑
k=1

µkφk(y); σ̂0(y, y
′) = σ2

c

N∑
k=1

φk(y)φk(y
′)

Proof. Given that θk
iid∼ N(µk, σ

2
c ), it immediately follows that for any pair of real scalars,

y, y′ ∈ R, the vector
[∑N

k=1 θkφk(y),
∑N

k=1 θkφk(y
′)
]′

has the following joint Gaussian distri-

bution:

[ ∑N
k=1 θkφk(y)∑N
k=1 θkφk(y

′)

]
∼ N

([ ∑N
k=1 µkφk(y)∑N
k=1 µkφk(y)

]
,

[
σ2
c

∑N
k=1(φk(y))2 σ2

c

∑N
k=1 φk(y)φk(y

′)

σ2
c

∑N
k=1 φk(y)φk(y

′) σ2
c

∑N
k=1(φk(y

′))2

])
,

Assuming a complete set of basis functions {φk}Nk=1 that is big enough to achieve an
arbitrarily good approximation of c∗ so that

c∗(y) ≈
N∑
k=1

θkφk(y) ∼ GP(ĉ0, σ̂0)

where

ĉ0(y) =
N∑
k=1

µkφk(y)

σ̂0(y, y
′) = σ2

c

N∑
k=1

φk(y)φk(y
′)

Lemma 2. Given the time-0 prior belief c∗ ∼ GP(ĉ0, σ̂0), conditional beliefs are given by
c∗
∣∣{ηt, yt} ∼ GP(ĉt, σ̂t) with moments evolving according to the recursive expressions

ĉt(y) = ĉt−1(y) +
σ̂t−1(y, yt)

σ̂2
t−1(yt) + σ2

η,t

(ηt − ĉt−1(yt)), (19)

σ̂t(y, y
′) = σ̂t−1(y, y

′)− σ̂t−1(y, yt)σ̂t−1(y
′, yt)

σ̂2
t−1(yt) + σ2

η,t

(20)

where ĉt(y) ≡ Et(c
∗(y)|ηt) and σ̂t(y, y

′) ≡ Cov(c∗(y), c∗(y′)|ηt) are the posterior mean and
covariance functions. Lastly, σ̂2

t (y) ≡ σ̂t(y, y) denotes the posterior variance at a given y.
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Proof. We prove this by way of induction. Consider the first update of beliefs at t = 1. By
the definition of the Gaussian Process distribution, and the fact that η1 = c∗(y1) + ε1 where
ε1 is Gaussian scalar and independent of the Gaussian Process c∗, it follows that for any
y, y′ ∈ R  c∗(y)

c∗(y′)
η1

 ∼ N

 ĉ0(y)
ĉ0(y

′)
ĉ0(y1)

 ,
 σ̂2

0(y) σ̂0(y, y
′) σ̂0(y, y1)

σ̂0(y
′, y) σ̂2

0(y′) σ̂0(y
′, y1)

σ̂0(y1, y) σ̂0(y1, y
′) σ̂2

0(y1) + σ2
η,1

 ,

where we have used the short-hand notation σ2
0(y) ≡ σ0(y, y).

By the standard property of multivariate Gaussian distributions (and given that y1 is a

known, deterministic scalar), the conditional distribution

[
c∗(y)
c∗(y′)

] ∣∣∣∣η1 is also Gaussian:[
c∗(y)
c∗(y′)

] ∣∣∣∣η1 ∼ N

([
ĉ1(y)
ĉ1(y

′)

]
,

[
σ̂2
1(y) σ̂1(y, y

′)
σ̂1(y

′, y) σ̂2
1(y′)

])
,

where by standard Bayesian updating formulas[
ĉ1(y)
ĉ1(y

′)

]
=

[
ĉ0(y)
ĉ0(y

′)

]
+

[
σ̂0(y, y1)
σ̂0(y

′, y1)

]
η1 − ĉ0(y1)
σ̂2
0(y1) + σ2

η,1

[
σ̂2
1(y) σ̂1(y, y

′)
σ̂1(y

′, y) σ̂2
1(y′)

]
=

[
σ̂2
0(y) σ̂0(y, y

′)
σ̂0(y

′, y) σ̂2
0(y′)

]
−
[
σ̂0(y, y1)
σ̂0(y

′, y1)

]
1

σ̂2
0(y1) + σ2

η,1

[
σ̂0(y, y1)
σ̂0(y

′, y1)

]′
which is simply equations (19) and (20) in matrix form, evaluated at t = 1. Thus, c∗|η1 ∼
GP(ĉ1, σ̂1), where the functions ĉ1 and σ̂1 are defined above. This confirms the result for
t = 1.

For the induction step, assume that equations (19) and (20) hold for t − 1 and that
c∗|ηt−1 ∼ GP(ĉt−1, σ̂t−1). Now consider the update at time t, again it follows that for any
y, y′ ∈ R, the joint distribution [c∗(y), c∗(y′), ηt]|ηt−1 is Gaussian, with means given by the
ĉt−1 function and a variance-covariance matrix fully characterized by the σ̂t−1 function. Then,
by steps similar to those above[

c∗(y)
c∗(y′)

] ∣∣∣∣ηt ∼ N

([
ĉt(y)
ĉt(y

′)

]
,

[
σ̂2
t (y) σ̂t(y, y

′)
σ̂t(y

′, y) σ̂2
t (y
′)

])
,

where by the same standard Bayesian updating formulas for any y, y′ ∈ R[
ĉt(y)
ĉt(y

′)

]
=

[
ĉt−1(y)
ĉt−1(y

′)

]
+

[
σ̂t−1(y, yt)
σ̂t−1(y

′, yt)

]
ηt − ĉt−1(yt)
σ̂2
t−1(yt) + σ2

η,t

[
σ̂2
t (y) σ̂t(y, y

′)
σ̂t(y

′, y) σ̂2
t (y
′)

]
=

[
σ̂2
t−1(y) σ̂t−1(y, y

′)
σ̂t−1(y

′, y) σ̂2
t−1(y

′)

]
−
[
σ̂t−1(y, yt)
σ̂t−1(y

′, yt)

]
1

σ̂2
t−1(yt) + σ2

η,t

[
σ̂t−1(y, yt)
σ̂t−1(y

′, yt)

]′
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Lemma 3. Let αt(y) ≡ σ̂t−1(y,yt)

σ̂2
t−1(yt)+σ

2
η,t

be the weight put on ηt in the time-t estimate ĉt(y).

� If ψ = 0, then αt(y) is just a constant – i.e. αt(y) = αt for all y ∈ R, and thus

ĉt(y) = ĉ0(y) +
t∑

k=1

αk

t∏
j=k+1

(1− αj)uk

where uk = ηk − ĉ0(yk) is the deviation of signal ηk from the time-0 prior mean belief.

� If ψ > 0, then the informativeness of the signal ηt is state-dependent – ∂αt(y)
∂y
6= 0 – and

hence the shape of the time-t estimate ĉt differs from the time-0 prior, i.e.:

∂ (ĉt(y)− ĉ0(y))

∂y
6= 0

The effect of the information in ηt is also local to yt, since lim||y−yt||→∞ αt(y) = 0

Proof. Consider the updated conditional estimate ĉt(y), where by Lemma 2 for any y ∈ R:

ĉt(y) = ĉt−1(y) + αt(y)(ηt − ĉt−1(yt))

Iterating backwards, it follows that

ĉt(y) = ĉ0(y) +
t∑

k=1

αk(y)
t∏

j=k+1

(1− αj(y))uk (21)

where uk = ηk − ĉ0(yk) is the deviation of signal ηk from the prior mean belief.
To prove the two parts of the Lemma, we will proceed by induction. First, if ψ = 0, for

t = 1 we have

α1(y) =
σ̂0(y, y1)

σ̂2
0(y1) + σ2

η,1

=
σ2
c

σ2
c + σ2

η,1

for all y

In this case, α1(y) = α1 is just a constant. Moreover, the updated covariance function is

σ̂1(y, y
′) = σ̂0(y, y

′)− α1σ̂0(y, y
′) = σ̂2

1 = σ2
c (1− α1)

which is again a constant independent of y and y′. Now consider the induction step; assuming
that

αk(y) = αk for all y and k < t,

σ̂t−1(y, y
′) = σ̂2

t−1 ≡ σ2
c

t−1∏
k=1

(1− αk),

it follows that the effective signal-to-noise ratio for the time t signal is again a constant
invariant to y:

αt(y) = αt ≡
σ̂t−1(y, yt)

σ̂2
t−1(yt) + σ2

η,t

=
σ̂2
t−1

σ̂2
t−1 + σ2

η,t
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Similarly, the resulting posterior variance at t is also invariant to y:

σ̂t(y, y
′) = σ̂t−1 − αtσ̂t−1 = σ̂2

t = σ̂2
t−1(1− αt)

Hence, αt+1(y) is also a constant invariant to y and so on. Thus, for any time t the
effective signal-to-noise ratio is invariant to y, hence the conditional estimate is simply a
constant shift away from the time-0 prior, with the value of that shift given by a weighted
average of signal surprises:

ĉt(y) = ĉ0(y) +
t∑

k=1

αk

t∏
j=k+1

(1− αj)uk

To prove the second part, when ψ > 0, we need to show that ∂αt(y)
∂y

6= 0 almost

everywhere and that lim||y−y′||→∞ αt(y) = 0. We will do both by induction, and the key is
the evolution of the conditional covariance σ̂t−1(y, y

′). Starting with the case of t = 1, for
any pair y, y′ ∈ R

σ̂0(y, y
′) = σ2

c exp(−ψ(y − y′)2)

which is decreasing in the distance ||y − y′||, and ∂σ̂0(y,y′)
∂y

6= 0 except for y = y′. The updated
covariance function is

σ̂1(y, y
′) = σ2

c exp(−ψ(y − y′)2)− σ4
c exp(−ψ ((y − y1)2 + (y′ − y1)2))

σ2
c + σ2

η,1

hence similarly ∂σ̂1(y,y′)
∂y

6= 0 outside of a measure 0 set and lim||y−y′||→∞ σ̂1(y, y
′) = 0.

On the other hand, given that

α1(y) =
σ2
c exp(−ψ(y − y1)2)

σ2
c + σ2

η,1

we clearly have ∂α1(y)
∂y
6= 0 except for when y = y1, which is measure 0. Also, lim||y−y1||→∞ α1(y) =

0.
For the induction step, assume that ∂σ̂t−1(y,y′)

∂y
6= 0 except for possibly on a set of measure

0, and that lim||y−y′||→∞ σ̂t−1(y, y
′) = 0. The updated covariance function is

σ̂t(y, y
′) = σ̂t−1(y, y

′)− σ̂t−1(y, yt)σ̂t−1(y
′, yt)

σ̂2
t−1(yt) + σ2

η,1

thus, ∂σ̂t(y,y′)
∂y

6= 0 except for possibly on a set of measure 0, and lim||y−y′||→∞ σ̂t(y, y
′) = 0.

Thus, for any arbitrary t, since αt(y) = σt−1(y,yt)

σ2
t−1(yt)+σ

2
η,t

,

∂αt(y)

∂y
6= 0

lim
||y−yt||→∞

α̂t(y) = 0
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Lastly, by equation (21),

ĉt(y)− ĉ0(y) =
t∑

k=1

αk(y)
t∏

j=k+1

(1− αj(y))uk

and since ∂αt(y)
∂y
6= 0, it follows that

∂ (ĉt(y)− ĉ0(y))

∂y
6= 0

Proposition 1. The optimal signal noise variance is given by

σ∗2η,t =

{
κσ̂2
t−1(yt)

σ̂2
t−1(yt)−κ

, if σ̂2
t−1(yt) ≥ κ

∞ , if σ̂2
t−1(yt) < κ

and this in turn implies the time-t action

ct = ĉt(yt) = ĉt−1(yt) + α∗t (yt)(c
∗(yt) + εt − ĉt−1(yt)),

where the optimal weight put on the new reasoning signal, α∗t (yt) depends on the current state
yt and the history {yt−1, σt−1η } of past signals’ location and precision:

α∗t (yt) ≡
σ̂2
t−1(yt)

σ̂2
t−1(yt) + σ∗2η,t

= max

[
1− κ

σ̂2
t−1(yt)

, 0

]
.

Proof. The agent’s reasoning decision is governed by

min
σ̂2
t (yt)

σ̂2
t (yt) + κ ln

(
σ̂2
t−1(yt)

σ̂2
t (yt)

)
. (22)

s.t.
σ̂2
t (yt) ≤ σ̂2

t−1(yt),

The first-order condition implies that the optimal posterior variance choice is

σ̂2
t (yt) = min

[
κ, σ̂2

t−1(yt)
]

(23)

By Lemma 2,

σ̂2
t (yt) =

σ̂2
t−1(yt)σ

2
η,t

σ̂2
t−1(yt) + σ2

η,t

Using this expression and equation (23), we obtain the expression for the optimal
reasoning noise variance σ2

η,t.
Similarly, using the solution for σ2

η,t, Lemma 2 and the fact that ηt = c∗(yt) + εt, it
follows directly that
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ct = ĉt(yt) = ĉt−1(yt) + max

[
1− κ

σ̂2
t−1(yt)

, 0

]
(c∗(yt) + εt − ĉt−1(yt)),

Proposition 2. The optimal reasoning intensity and the weight of the new signal in updating
beliefs are both increasing in distance from location of the previous reasoning signal:

∂σ2
η,i,2

∂||yi,2 − y1||
< 0 and

∂αi,2(yi,2)

∂||yi,2 − y1||
> 0.

Therefore, agent C reasons more than agent S, i.e. αC,2(yC,2) > αS,2(yS,2), if and only if

s2 < 1 +
(1 + r)

w
(c∗(y1)− cRW (y1)) ≡ s̄

Proof. Consider the time-1 posterior variance function (expressed as a function of the distance
||y − y1||):

σ̂2
1(y) = σ2

c (1−
σ2
c

σ2
c + σ2

η,1

exp
(
−2ψ||y − y1||2

)
Note that this function is the same for both agents i ∈ {S,C}. Moreover,

∂σ̂2
1(y)

∂||y − y1||
=

σ4
c

σ2
c + σ2

η,1

exp
(
−2ψ||y − y1||2

)
4ψ||y − y1||2 > 0

except for the knife-edge case ||y− y1|| = 0 when this derivative is zero. Using the expression
for the optimal signal-noise variance σ2

η,2 from Proposition 1:

σ2
η,i,2 =

κσ̂2
1(yi,2)

σ̂2
1(yi,2)− κ

outside of the measure-zero case yi,2 = y1. Then, it follows directly that

∂σ2
η,i,2

∂||yi,2 − y1||
=

κ

σ̂2
1(yi,2)− κ

∂σ̂2
1(yi,2)

∂||y − y1||

(
1− σ̂2

1(yi,2)

σ̂2
1(yi,2)− κ

)
︸ ︷︷ ︸

<0

< 0

Similarly, outside of the measure-zero case yi,2 = y1:

αi,2(yi,2) = 1− κ

σ̂2
t−1(yi,2)

and thus

∂αi,2(yi,2)

∂||y − y1||
=

κ

(σ̂2
t−1(yt))

2

∂σ̂2
1(y)

∂||y − y1||
> 0

For the last part of the proposition, note that
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αC,2(yC,2)− αS,2(yS,2) =
κ(σ2

c − κ) [exp(−2ψ(yC,2 − y1)2)− exp(−2ψ(yS,2 − y1)2)))]
(σ2

c − (σ2
c − κ) exp(−2ψ(y1 − yC,2)2))(σ2

c − (σ2
c − κ) exp(−2ψ(y1 − yS,2)2))

Hence, αC,2(yC,2) > αS,2(yS,2) if and only if

exp(−2ψ(yC,2 − y1)2) > exp(−2ψ(yS,2 − y21))

⇐⇒

(yC,2 − y1)2 < (yC,2 − y1)2

substituting in the law of motion for cash-on-hand:

yi,2 = (1 + r)(y1 − ĉi,1(y1)) + ws2 = (1 + r)(y1 − c∗(y1)− α1εi,1) + ws2

it follows that αC,2(yC,2) > αS,2(yS,2) if and only if

s2 <
(1 + r)c∗(y1)− ry1

w
+

(1 + r)α1

2w

ε2C,1 − ε2S,1
εC,1 + |εS,1|

and using the definition of cRW (y) and our assumption that εC,1 = −εS,1, it follows that
αC,2(yC,2) > αS,2(yS,2) if and only if

s2 < 1 +
(1 + r)

w
(c∗(y1)− cRW (y1))

B Calibration Strategy

To calibrate the learning-related parameters {σ2
c , ψ, κ} (given values for the rest of the

parameters, which are discussed in Section 4.1) we look for a fixed point, such that (i) an
econometrician trying to estimate the distribution of the reasoning signals ηi,t would indeed
recover the actual values of {σ2

c , ψ} used for the simulation and (ii) the model implies zero
net-assets for the bottom 20% of the wealth distribution (matching the PSID data).

We are motivated to look for a fixed point in {σ2
c , ψ} in order to ensure that agents have

model consistent priors, in the sense that the prior beliefs properly capture the features of the
true c∗(y) policy function. Intuitively, we would like to parameterize the prior in an “efficient”
way so that it does not imply any ex-ante biases that impede the estimation process.

To do so, we consider the problem of an agnostic econometrician who attempts to
estimate the function c∗(y) out of a data set that constitutes the reasoning signals ηi,t
from the simulation of our model. The econometrician uses the same Bayesian methods as
the agents in our model, and has a Gaussian Process prior over the unknown function c∗.
The econometrician is “agnostic”, however, in the sense that instead of treating the prior
distribution of c∗ as a primitive, he treats the prior as a “hyper-parameter” that is optimized
over during the estimation procedure. In this way, the econometrician looks for the “optimal”
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or most efficient prior for the data at hand (which is the simulated reasoning signals from
the ergodic distribution of the model).

In our calibration strategy, we want to ensure that the agents in our model indeed
hold those same “optimal” priors. To do so, we look for a fixed point between the assumed
parameterization of the agents’ priors, i.e. {σ2

c , ψ}, and the values for the prior hyper-
parameters the agnostic econometrician recovers. – which we label {σ̃∗,2c , ψ̃∗}.

In particular, this econometrician

1. is given the history of reasoning signals ηti for all agents in the simulated economy as a
data set which we denote η

2. is aware of the structure of the signals, i.e. that

ηi,t = c∗(yi,t) + εi,t , εi,t ∼ N(0, σ2
η,i,t).

3. Observes yi,t and σ2
η,i,t, which we collect in the observed vector y, but is uncertain about

the function c∗(y) and holds the following Gaussian Process prior over it:

c∗ ∼ GP(0, σ̃0)

As is standard practice in Bayesian statistics, the econometrician assumes that the
prior mean is the constant zero function – in this sense, he is “agnostic” about the
particular functional form of c∗. The econometrician’s prior is also parameterized by a
squared exponential function, just as the agents in our model:

σ̃0(y, y
′) = σ̃2

c exp(−ψ̃(y − y′)2)

To differentiate with the agents’ covariance function, we label the parameters of the
econometrician’s covariance function with tildes.

4. Given the collection of reasoning signals η the econometrician forms the posterior
distribution c∗|η, and finds the optimal hyper-parameters {σ̃∗,2c , ψ̃∗} by maximizing the
resulting marginal likelihood of the data (as a function of {σ̃2

c , ψ̃}):

max
σ̃2
c ,ψ̃

p(η|y, σ̃2
c , ψ̃) = −1

2
y′K1

ηy −
1

2
ln(Kη)−

n

2
ln(2π)

where Kη is the covariance matrix of the econometrician’s data vector η, with (i, j)
element

Kη(i, j) = σ̃2
c exp

(
−ψ̃(y(i)− y(j))2

)
+ 1(i = j)σ2

η(i)

Note: since c∗ has a Gaussian Process distribution with a squared exponential covariance
function, the covariance between two data points η(i) and η(j) depends on the position
of the y state values at which the two respective η signals are observed. The diagonal
entries of Kη are also affected by the variance of the idiosyncratic reasoning noise σ2

η,i,t,
which the econometrician observes and takes into account.
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5. This results in maximized values of the prior hyper-parameters σ̃2
c , ψ̃:

{σ̃∗,2c , ψ̃∗} = arg max
σ̃2
c ,ψ̃

p(η|y, σ̃2
c , ψ̃)

Thus, for any given simulation of our model we can obtain the agnostic econometrician’s
inferred values of σ2

c and ψ by following steps 1-5 above. In addition, we can then vary the
parameter κ, which controls the extent or magnitude of the reasoning friction, in order to hit
the additional target of zero net-wealth for the poorest 20% of agents at the ergodic steady
state of the model.

We use the following numerical strategy to find the necessary fixed-point in {σ2
c , ψ, κ}:

(a) Given an initial guess for {σ2
c , ψ, κ} (taking rest of the parameters as given), we simulate

the model using the benchmark simulation size of T = 10, 000, N = 5, 000.

(b) We discard the first half of the simulated time-series and are left with a 5000x5000 panel
data set η.

(c) This is a very large dataset, so to speed up the hyper-parameter estimation outlined
above (and thus make our fixed point search feasible), we select a random samples of
length 1

θ
(i.e. an average life-cycle of information) out of the full dataset η and perform

steps 1-5 above on each of those samples.

We repeat, with replacement, 500 times and then take the average of the resulting 500
pairs of estimated hyper-parameters which we call {σ̄∗,2c , ψ̄∗}.

(d) We check whether we have achieved a fixed point defined as satisfying both

(i) ||{σ2
c , ψ} − {σ̄∗,2c , ψ̄∗}|| < 1e− 5

(ii) Share of total assets of bottom 20% of agents < 1e− 5

(e) if the two conditions above are satisfied we stop and use those coefficients {σ2
c , ψ, κ}. If

not, we update the guess of the parameter values as needed and go back to step (a).
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