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1 Introduction

The decisions of judges, employers, police officers, teachers, doctors, lenders, landlords, journal

editors, admissions committees, and other gatekeepers often lead to significant disparities across

groups. An important question is whether, and to what extent, these disparities are driven by

group-level differences in relevant underlying individual characteristics, or by biased decision makers

employing favoritism, animus, or inaccurate stereotypes that unfairly privilege particular groups.

To answer this question, it is necessary to first define what it means for a decision to be unbiased.

This requires specifying what an unbiased decision maker in a particular setting is supposed to be

optimizing, what constraints they face, and what they should know at the time they make their

decision. Once this is specified, the analyst can derive optimality conditions for the decision maker’s

problem, and then attempt to check whether these conditions are consistent with data, separately

for different groups affected by the decision. If these checks suggest that an unbiased decision

maker could do better by changing how they treat members of a particular group, the analyst may

conclude that this group is subject to bias.

This idea forms the basis of the outcome test of bias proposed by Becker (1957, 1993). Becker

(1957)’s key insight is that a biased decision maker “must act as if he were willing to pay something”

to exercise bias. Frequently used benchmark tests, which compare decision rates across groups,

need not be informative about such bias, as differences in decision rates may simply reflect group

differences in relevant individual characteristics that are unobserved by the analyst. Observing

the downstream outcomes that result from a decision, on the other hand, could potentially be

more informative about bias, as differences in these outcomes across groups may reveal the decision

maker’s “willingness to pay” to favor some groups over others. Becker (1993) offers an intuitive

example in the context of mortgage lending: if a bank’s loans to approved black applicants tend

to generate higher profits than its loans to approved white applicants, this may (under certain

assumptions) indicate racially biased lending decisions that hold black applicants to a stricter

standard beyond what unbiased profit maximization would imply.

In this paper, we carefully examine what researchers can learn about bias in decision making

from outcome tests, which compare post-decision outcomes across different groups. The chief goal

is to offer a methodological blueprint for empirical work that seeks to use outcome tests to detect
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bias. Much of the discrimination literature since Becker (1957) has focused on identification issues

that arise when individuals differ along dimensions beyond the group membership of interest.1 In

outcome tests, such heterogeneity is known to render average outcomes across groups generally

uninformative about the marginal cases that may reveal a decision maker’s differential standards,

as average comparisons confound any differences at the margin with distributional differences away

from the margin (Peterson, 1981; Heckman, 1998; Ayres, 2002).2 Innovative solutions to such “infra-

marginality bias” include equilibrium models in which the average individual endogenously behaves

like, and thus identifies, the marginal (Knowles et al., 2001); partial identification approaches that

derive testable implications of bias in comparisons of decision rates and average outcomes across

different decision makers (Anwar and Fang, 2006; Alesina and La Ferrara, 2014); and instrumental

variable strategies that use exogenous assignment of cases to decision makers of varying leniency

to directly identify the outcomes of marginal cases (Arnold et al., 2018; Dobbie et al., 2021).

While addressing inframarginality bias is an essential input into a viable outcome test, we

initially take a step back to ask a more fundamental question: under what conditions are the

outcomes of marginal cases, even if known perfectly, actually informative about decision maker

bias? To answer this question, we first lay out a modeling framework in Section 2 that describes

decision maker behavior and sets the stage for defining and detecting bias in decision making. We

focus on settings where a standalone decision maker makes a binary decision by maximizing the

expected net benefit of that decision.3 For concreteness, we ground our exposition in the context

of racial bias in pre-trial release, where a bail judge decides whether to release or detain defendants

of different races who are awaiting trial, as this setting features prominently in the recent outcome

test literature (e.g. Kleinberg et al., 2018; Arnold et al., 2018, 2022). Our analysis generalizes,

however, to a wide range of empirical settings and dimensions of bias, as we discuss throughout the

paper.

We show that models of decision making underpinning outcome tests can be usefully recast as

1See recent reviews by Bertrand and Duflo (2017) and Lang and Spitzer (2020).
2See also Brock et al. (2012), who study the mapping from average outcome comparisons to racial bias, and

thus focus on the inframarginality complications that arise when distributions of unobservable characteristics differ
by race. In contrast, we study the distinct and more fundamental mapping from marginal outcomes to bias; our
main results are therefore insensitive to racial differences in the distribution of unobservables among inframarginal
individuals, which is a central concern in Brock et al. (2012) and the entire literature on average-based outcome tests.

3For examples of outcome tests in settings with continuous, rather than binary, decision variables, see Ayres and
Waldfogel (1994), Anwar and Fang (2012), Anwar and Fang (2015), and Mechoulan and Sahuguet (2015).
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Roy models, since heterogeneous potential outcomes of the individuals subject to the decision—

in the case of pre-trial release, the risk of flight or additional crimes (“misconduct”) a defendant

may commit before trial—enter directly into the decision maker’s choice equation. Indeed, the

intuitive motivation for the outcome test rests on an implicit assumption of some link between

potential outcomes and decisions; otherwise, there would be no reason to expect outcomes to be

informative about (bias in) decision making. Different members of the Roy model family, however,

are distinguished by the tightness of the link between potential outcomes and decisions. At one

extreme of the Roy spectrum, decision makers in the original Roy (1951) model simply choose the

option with the most advantageous potential outcome, forging a very tight link between potential

outcomes and decisions. At the other end of the spectrum is the Generalized Roy Model (Björklund

and Moffitt, 1987; Heckman and Vytlacil, 2005), in which potential outcomes are allowed to, but

not required to, influence decisions, as other factors unobservable to the econometrician are allowed

to determine choices in unrestricted ways.

For the purposes of the outcome test, we show that a constructive middle ground between

these two extremes is the Extended Roy Model (Heckman and Vytlacil, 2007; D’Haultfœuille and

Maurel, 2013). In this model, a decision maker acts as if she follows a cutoff rule, comparing the

expected effect of her decision on the outcome against a cutoff value. This cutoff value is allowed to

vary across different decision makers (e.g. judges with different levels of leniency), and potentially

across the group membership of interest in the outcome test (e.g. the race of the defendant), but

not across any dimensions of heterogeneity unobserved by the econometrician, which is the key

restriction of the Extended Roy Model that distinguishes it from the Generalized Roy Model. We

show that these two members of the Roy model family implicitly underlie nearly all of the existing

outcome test literature, and we show how their distinction has important implications not only for

decision maker behavior, but also for the task of defining bias (Section 3), for the logical validity

of the outcome test as an indicator of such bias (Section 4), and for the econometric identification

of the marginal outcomes that the test requires (Section 5).

In Section 3, we use the models laid out in Section 2 to define bias and its absence, and discuss

how our definitions relate to and nest notions of bias from the previous literature. Our framework

explicitly distinguishes taste-based bias from other unrelated factors that can end up being empiri-

cally indistinguishable from it, including errors in the decision maker’s outcome predictions, errors
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in the econometrician’s measurement or specification of the outcome variable, and other decision

maker objectives beyond the measured outcome. Our various definitions of bias also show how the

task of defining bias necessarily interacts with the task of choosing a decision model, revealing a

tradeoff between simpler definitions of bias versus richer models of decision making.

In Section 4, we formally describe the outcome test, which aims to detect decision maker bias

by comparing the post-decision outcomes of marginal individuals from different groups.4 We then

present two sets of results on the logical validity of this test. The first set of results show that the

test is logically invalid in the context of the Generalized Roy Model. We show this by generating

broad classes of counterexamples which prove that the outcome test may conclude that a decision

maker is unbiased even if she is biased, or conclude bias even if the decision maker is unbiased, or

even conclude bias against one group when the decision maker is actually biased against another.

These logical invalidations arise because the Generalized Roy Model is not sufficiently restrictive

to deliver an optimality condition in which an unbiased decision maker must equalize marginal

outcomes across groups, since other factors unobserved to the econometrician can also influence

decisions. One perhaps surprising lesson from our analysis is that these unobserved factors can

invalidate the outcome test even if they are completely independent of the group membership

potentially subject to bias, going beyond typical concerns in the discrimination literature about

correlated confounders.

These findings raise the question of what additional restrictions are needed for the decision

model to generate an optimality condition in which an unbiased decision maker equalizes marginal

outcomes across groups, and thereby enable a logically valid outcome test. Our second set of results

in Section 4 establish logical validity of the outcome test when restricting decision maker behavior

to the Extended Roy Model, as this restriction shuts down the confounding channels present in

the Generalized Roy Model. Imposing the Extended Roy Model has substantive implications for

admissible decision maker behavior, so careful consideration must be paid to the credibility of those

implications in any given empirical environment. We also discuss alternative ways to generate

logically valid outcome tests, including changing the parameter of interest to alternative notions of

bias or discrimination (e.g., Arnold et al., 2020, 2022), or restricting the data generating process

4Our analysis applies to examining not only whether bias exists, but also its magnitude, as well as heterogeneity
in bias across different decision makers, including groups of decision makers. This has implications, for example, for
the literature on in-group bias (e.g., Shayo and Zussman, 2011; Anwar et al., 2012; Knepper, 2018; Ash et al., 2022).
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to eliminate any statistical relationship between potential outcomes and the group membership of

interest.

Since all of our results on the logical validity of outcome tests in Section 4 assume that the

outcomes of marginal members of each group are perfectly known, these results are distinct from,

and prior to, challenges that arise in attempting to identify marginal outcomes from observed data,

which we turn to in Section 5. Since the analyst rarely observes which particular individuals are

marginal, we begin in Section 5.1 by considering the best-case econometric scenario of local instru-

mental variation across continuously distributed and exogenously assigned decision makers. We

show that under the Extended Roy Model of decision maker behavior, the local instrumental vari-

ables estimand of Heckman and Vytlacil (2005) successfully recovers the outcome test’s parameters

of interest as group-specific marginal treatment effects, enabling both a logically valid and econo-

metrically viable outcome test.5 We also show that the Extended Roy Model has clear testable

implications, establishing necessary conditions for its suitability in any given empirical setting.

In Section 5.2, we examine whether these results extend to other data environments and iden-

tification approaches. We first consider settings where point-identifying marginal outcomes is chal-

lenged by discretely distributed decision makers. We then study the frequent case where no valid

instrumental variation across decision makers is available, and the analyst attempts to compare av-

erage outcomes across groups for a given decision maker or group of decision makers. We highlight

the additional challenges to identification that arise in these environments and discuss potential

solutions.

2 Framework

In this section, we lay out a modeling framework that describes decision maker behavior and sets

the stage for defining and detecting bias in decision making. We focus on settings where a single

agent makes a binary decision through a cost-benefit analysis. For concreteness, we ground our

exposition in the context of racial bias in pre-trial release, where a bail judge decides whether to

5In contrast, we show in Appendix B that the Generalized Roy Model not only fails to deliver a logically valid
test, but also does not permit identification of the marginal outcomes of interest without additional restrictions.
Importantly, imposing such restrictions to ensure identification of MTEs does not address the issues of logical failure
that we identify in Section 4. Without a sufficiently restrictive decision model, an analyst may therefore successfully
identify marginal outcome differences across groups that are nevertheless uninformative about decision maker bias.
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release or detain defendants of different races who are awaiting trial. Our analysis generalizes,

however, to a wide range of empirical settings and dimensions of bias, as we discuss throughout.

2.1 Setup and Notation

The random vector (Z,D,R, V, Y1, Y0, C) captures the relevant variables in the decision model.

Each draw from this vector represents a case exogenously assigned to a decision maker Z who

makes a binary decision D regarding an individual characterized by (R, V, Y1, Y0, C), defined below.

Depending on the setting, the set of decision makers Z could be viewed as a continuum in R or

a discrete set with few or many elements. The cardinality of Z does not affect our results on

logical validity of the outcome test, which only concerns the behavior of a given decision maker z

arbitrarily chosen from Z. In Section 5, we discuss econometric viability of the outcome test using

variation across both continuous and discrete Z.

In the pre-trial release environment, D = 1 if the bail judge decides to release the defendant

prior to trial, and D = 0 if the defendant is detained. The judge observes the race R of each

defendant, with R = w denoting a white defendant and R = b denoting a black defendant, as well

as non-race characteristics V like criminal history, employment status, and family structure. We

use lower case letters (r, v) to refer to the characteristics of a specific defendant.

The defendant’s measured outcome Y , which is used to conduct the outcome test, takes values

in Y ⊆ R, with potential outcome Y1 occurring if the decision is D = 1 and Y0 occurring if D = 0.

Throughout, we maintain the exclusion restriction that a judge only affects defendant outcomes

through her release decision, not through any direct effects on potential outcomes. Existing empir-

ical work on bias in the pre-trial setting typically restricts (Y1, Y0) in two additional ways. First,

Y is binarized, with Y1 indicating whether the defendant would commit any pre-trial misconduct if

released. Second, detention is assumed to prevent any misconduct from occurring, such that Y0 ≡ 0

for all defendants. We do not need to impose these setting-specific restrictions in our framework,

since they are immaterial for our results on logical validity and econometric viability of outcome

tests. Instead, we work more generally with ∆ ≡ Y1 − Y0, the causal effect of release on a given

defendant’s measured misconduct outcome. This generality can be useful in other settings where

Y is not binary or Y0 is not equal to zero.6

6Under the restrictions typically imposed in the pre-trial release literature, ∆ = Y1 ∈ {0, 1}. In other settings,
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To capture bias, we denote by β(z, r, v) the taste for discrimination parameter that judge z has

for a defendant with characteristics (r, v). We devote Section 3 to formal definitions of bias using

this parameter and discuss how they relate to previous definitions from the literature.

Finally, C denotes the cost of detaining a given defendant prior to trial. This cost captures

both defendant-invariant considerations like local jail capacity and judge z’s general level of leniency,

as well as any defendant-specific costs of detention the judge might consider, including job loss,

family instability, increased likelihood of conviction due to reduced bargaining power, and long-run

criminogenic effects (Leslie and Pope, 2017; Dobbie et al., 2018). In general, C serves to collect

other decision maker considerations beyond bias β and the specific outcome Y used to conduct the

outcome test, i.e. “omitted payoffs” in the language of Kleinberg et al. (2018).

Remark 2.1. We purposefully defer discussing which of these variables are observable and unob-

servable to the econometrician until turning our attention to identification in Section 5. In doing

so, we emphasize that the results we derive on logical validity of the outcome test are distinct from

issues about econometric identification.

Remark 2.2. We also need not be concerned at this point whether information sets and beliefs

may differ across judges. This is because logical validity of the outcome test is solely concerned

with the mapping between the bias of any given judge and the outcomes of that specific judge’s

marginal black and white defendants.

2.2 Decision Model

Judge z makes a decision by minimizing expected cost, given her information at the time of the

bail hearing. With the notation set out above, the problem solved by judge z can be written as

min
d∈{0,1}

Ez[Y ∗d + (1− d)(C + β(z,R, V )) | R = r, V = v] , (1)

where Ez[·|R = r, V = v] denotes the judge’s subjective conditional expectation, and Y ∗d is the

potential outcome that judge z takes into account to make a decision, which potentially differs

from the measured Yd as we discuss below.

decision makers may focus only on Y0, like disability insurance examiners assessing an applicant’s potential for gainful
employment in the absence of DI receipt D. Our framework incorporates all of these variations by defining ∆ as
whatever level or contrast of potential outcomes is relevant for the decision maker.
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Judge z releases a defendant with characteristics (r, v) whenever the perceived misconduct cost

of releasing the defendant, Ez[Y ∗1 −Y ∗0 |R = r, V = v], does not exceed the perceived cost of detaining

the defendant Ez[C|R = r, V = v] ≡ c(z, r, v), where the cost of detention is shifted by the taste for

discrimination parameter β(z, r, v):

Dz = I {Ez[Y ∗1 − Y ∗0 |R = r, V = v] ≤ c(z, r, v) + β(z, r, v)} . (2)

In this way, a high value of β(z, r, v) means that judge z exacerbates the cost of detaining a

defendant with characteristics (r, v).7

This model captures important features of bail judge decision making, and more generally,

makes precise three key elements that describe how a given decision maker is assumed to behave

in a given setting. The first key element is the specification of the objectives of the decision maker.

In most jurisdictions, bail judges are instructed to detain defendants who “pose a substantial risk

of flight, or threat to the safety of the community, victims or witnesses or to the integrity of the

justice process,” while simultaneously minding the costs of such detention: “Deprivation of liberty

pending trial is harsh and oppressive, subjects defendants to economic and psychological hardship,

interferes with their ability to defend themselves, and, in many instances, deprives their families of

support” (American Bar Association, 2007). The model captures this tradeoff between misconduct

Y ∗d and detention costs C in the objective function, while also allowing for the possibility of biases

β that tilt the scales of this tradeoff to unfairly favor of some types of defendants over others.

The second key element is the specification of the information that the decision maker uses to

assess these objectives. Bail judges are typically given broad discretion to use “any facts justifying

a concern that a defendant will present a serious risk of flight or of obstruction, or of danger to the

community or the safety of any person” if released (American Bar Association, 2007). The model

naturally captures this broad use of “any facts” through the conditioning set (R = r, V = v), which

by definition includes all of the defendant and case characteristics that the judge is able to observe

at the time of the hearing.

The final key element is the specification of how the decision maker forms beliefs about the

7In our formulation, the taste for discrimination parameter β(z, r, v) enters additively in the objective function
in (1). This is the formulation adopted, for example, by Knowles et al. (2001) and Anwar and Fang (2006). An
alternative formulation would introduce β(z, r, v) multiplicatively, similar to Persico (2009). This modeling choice
does not affect the substantive points we make in this paper.
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objectives given the information she observes. The term Ez[Y ∗1 − Y ∗0 |R = r, V = v] denotes the

expected misconduct cost of release given the beliefs of judge z, with the notation explicitly allowing

for this subjective expectation to deviate from E[Y1 − Y0|R = r, V = v], which we hereafter write

more succinctly as E[∆|r, v]. To make this distinction clear, we explicitly define such deviations as

λ(z, r, v) ≡ E[∆|r, v]− Ez[Y ∗1 − Y ∗0 |r, v] . (3)

The function λ(z, r, v) captures a variety of factors that may drive a wedge between the mean

effect of release on misconduct among defendants with characteristics (r, v) and judge z’s prediction

of that effect.8 First, λ(z, r, v) captures any systematic measurement error in the outcome by

allowing for Y ∗d 6= Yd. Defendants with more criminal experience, for example, may be more likely

to commit additional crimes while awaiting trial that go unsolved by law enforcement, driving a

wedge between measured misconduct Y and the actual misconduct the judge tries to predict, Y ∗.

Similarly, λ(z, r, v) captures any specification error in the analyst’s definition of Y , e.g., when Y is

a binarized measure of any pre-trial misconduct but judge z considers a more continuous measure

of misconduct severity. Lastly, even if Y ∗d = Yd, judge z may make prediction errors that vary

systematically with defendant characteristics, i.e. E[∆|r, v] 6= Ez[∆|r, v]. The results in Kleinberg

et al. (2018), for example, suggest that bail judges overestimate misconduct among defendants

who face a serious current charge but have little criminal history, and conversely underestimate

misconduct among defendants who face a minor current charge but have serious prior convictions.

Remark 2.3. Many seminal papers in the outcome test literature, including Knowles et al. (2001),

Anwar and Fang (2006), and Persico (2009), implicitly or explicitly assume λ(z, r, v) to be zero.

In both Knowles et al. (2001) and Anwar and Fang (2006), for example, a police officer’s expected

benefit of stopping a driver equals the true probability that the driver is carrying contraband.

Likewise, in the framework of Persico (2009), decision makers know the true expected profits of

every action. More recent studies of racial bias in pre-trial release, e.g., Arnold et al. (2018), Arnold

et al. (2022), and Hull (2021), discuss judge prediction error and measurement error as potential

confounders in detecting taste-based bias, but only to the extent that these confounders correlate

8Analogous to β(z, r, v), we model λ(z, r, v) additively, though our results could be easily adapted to a multiplica-
tive formulation with minor modifications.
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with defendant race. In Section 4, we show that prediction and measurement errors embedded in

λ(z, r, v) can invalidate the logic of the outcome test even if they are independent of defendant race.

2.3 Roy Model Representation

The decision model laid out above nests a family of Roy models, since heterogeneous potential

outcomes enter directly into the decision maker’s choice equation. At one extreme of the Roy

spectrum, a decision maker in the original Roy (1951) model solely considers potential outcomes Yd

when choosing D, forging a very tight link between potential outcomes and decisions. In the pre-

trial setting, such a model would require a judge to release only those defendants with the lowest

causal effect of release on measured misconduct, with no other considerations. At the other end of

the spectrum is the Generalized Roy Model (Björklund and Moffitt, 1987; Heckman and Vytlacil,

2005), in which potential outcomes are allowed to, but not required to, influence decisions, as factors

other than the measured outcome Yd can determine choices. In the pre-trial setting, this model

would allow a judge to consider not only the effect of release on measured misconduct Y1− Y0, but

also defendant-level variation in detention costs C, bias β, and the phenomena captured in λ like

prediction error (Ez 6= E) and measurement error (Y ∗d 6= Yd). A middle ground between these two

extremes is the Extended Roy Model (Heckman and Vytlacil, 2007; D’Haultfœuille and Maurel,

2013), where other factors beyond potential outcomes are allowed to enter decisions but only in

restricted ways, as we make precise below.

Generalized Roy Model

Without further restrictions, the judge’s decision problem in (1) is a Generalized Roy Model (GRM),

since it depends on expectations of not only the measured potential outcomes Yd but also the (so

far unrestricted) terms Y ∗d , C, and β. We can combine (2) and (3) and rearrange to make this

representation explicit in our framework.

Definition 2.1 (Generalized Roy Model). In the Generalized Roy Model (GRM), the decision rule

of judge z facing a defendant characterized by (r, v) is given by

Dz = I {E[∆|r, v] ≤ τ(z, r, v)} where τ(z, r, v) ≡ c(z, r, v) + λ(z, r, v) + β(z, r, v) . (4)
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In the GRM, the left side of the inequality is the mean effect of releasing a defendant with

characteristics (r, v) on the measured misconduct outcome Y . The right side captures all other

factors that influence the judge’s decision of whether to release such a defendant. We collect these

factors in the function τ(z, r, v), and refer to it as the perceived benefit of release. This benefit

function τ(z, r, v) captures not only the expected detention costs c(z, r, v) avoided by not detaining

the defendant, but also any misalignment λ(z, r, v) between the mean effect of release and the

judge’s prediction of it as defined in (3), as well as the taste for discrimination parameter β(z, r, v).

The key elements of the GRM in (4) can therefore be summarized as follows. First, the cost

of release E[∆|r, v] is tied directly to defendant potential outcomes, which do not depend on the

identity of the judge making the decision. Second, the benefit of release τ(z, r, v) contains all other

factors that influence the judge’s decision, including those that intrinsically depend on judge z via

her beliefs and preferences. Third, both race R and non-race characteristics V enter both sides of

the decision equation.

Remark 2.4. We could have started the description of the judge’s decision problem with the

GRM in (4) directly, without defining the optimization problem in (1). However, since many of our

results in Sections 4 and 5 on the logical validity and econometric viability of the outcome test, as

well as the task of defining bias in Section 3, hinge on properties of the benefit function τ(·), the

optimization problem is useful for showing explicitly how this function can arise as a composite of

several conceptually distinct components, each of which may influence the properties of τ(·). This

derivation also allows us to demonstrate explicitly how our framework nests and relates to other

papers in the outcome test literature.

Extended Roy Model

One of the key features of the GRM in Definition 2.1 is that both sides of the cost/benefit

comparison—the expected misconduct cost on the left side, and the perceived benefits of release

on the right side—are allowed to vary across all defendant characteristics in the judge’s informa-

tion set. This makes the GRM rich and flexible, but Sections 4 and 5 show that such flexibility

introduces challenges to both the logical validity and econometric viability of outcome tests of bias.

We show these challenges can be nullified, however, by restricting the benefit function τ(·) in
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(4) to vary across only a subset of the defendant characteristics observed by the judge, narrowing

the decision model from a Generalized Roy Model to an Extended Roy Model (ERM). Specifically,

the expected misconduct cost E[∆|r, v] on the left side of the decision inequality can continue

to depend arbitrarily on all judge observables. However, the perceived benefit on the right side

now depends only on the identity of the judge Z and the group stratification variable involved

in the outcome test, namely race R, thus excluding all non-race defendant characteristics V from

τ(·).9 Through the lens of the decision model, this means the expected cost of detention c(z, r, v),

the misalignment λ(z, r, v) between the mean effect of release and the judge’s prediction of it,

and the taste for discrimination parameter β(z, r, v) are all invariant across all non-race defendant

characteristics v:

c(z, r, v) = c(z, r), λ(z, r, v) = λ(z, r), and β(z, r, v) = β(z, r) . (5)

This restriction leads to the Extended Roy Model, as defined below.

Definition 2.2 (Extended Roy Model). The decision rule of judge z in the Extended Roy Model

(ERM) is given by

Dz = I {E[∆|r, v] ≤ τ(z, r)} where τ(z, r) ≡ c(z, r) + λ(z, r) + β(z, r) . (6)

Remark 2.5. The restrictions in (5) are sufficient for τ(z, r, v) not to depend on v. Of course,

there exist functional forms of c(z, r, v), λ(z, r, v), and β(z, r, v) such that τ(z, r, v) may not depend

on v even when c(z, r, v), λ(z, r, v), and β(z, r, v) do, but we do not view such specific cases as

particularly insightful and so do not devote special attention to them.

Remark 2.6. In this framework, we could write the original Roy (1951) model as D = I {∆ ≤ 0},

augmented to include a fixed threshold as D = I {∆ ≤ τ}. The Extended Roy Model thus extends

the original Roy model in two ways: it allows the decision maker to have ex ante uncertainty over

the potential outcomes ∆, and it allows the threshold τ to vary across different decision makers and

9More generally, the Extended Roy Model allows all variables commonly observed by the judge and the econo-
metrician to drive variation in the benefit function τ(·), but eliminates any variation in τ(·) from variables observed
by the judge but not the econometrician. We discuss in Section 5.1 how this accommodates empirical settings with
observed covariates X and outcome tests of bias against other characteristics besides race.
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defendant races (as well as any covariates X observed by both the judge and the econometrician,

which we suppress here but discuss in Section 5.1).

Intuitive Comparison of the Models

The distinguishing feature of the ERM in (6) relative to the GRM in (4) is the exclusion of non-

race defendant characteristics V from the benefit function τ(·). This distinction has important

implications for decision maker behavior. In the ERM, fixing z and r fixes the value of the benefit

function τ(z, r). Thus, a given ERM judge z facing a pool of defendants of the same race r acts

as if she sets a fixed cutoff of allowable misconduct risk equal to this fixed benefit value, and then

releases all defendants with expected misconduct effects below this cutoff and detains all defendants

above it. This cutoff can vary across different judges, and across different defendant races for a

given judge, but is fixed for all defendants of a given race facing a given judge. Judge z’s variation

in release decisions within this pool of defendants is thus entirely driven by variation in expected

measured misconduct, which in turn is driven by variation in non-race defendant characteristics V .

It is thus important to observe that non-race defendant characteristics in the ERM play a starkly

asymmetric role in a judge’s cost-benefit analysis: such characteristics can shift the expected cost of

release in terms of measured misconduct, but cannot shift any of the other decision factors collected

in the benefit function, including detention costs, bias, prediction errors, and measurement errors.

The GRM, by contrast, does not impose this asymmetry: non-race defendant characteristics

are allowed to shift both costs and benefits. Specifically, allowing the benefit function τ(z, r, v)

to vary with V allows the judge to perceive different benefits of releasing defendants who share

the same race but differ in their non-race characteristics, like employment status and number of

dependents. Unlike in the ERM, the GRM would therefore allow a judge to set a higher cutoff of

permissible misconduct risk among employed black defendants with children, for example, compared

to unemployed black defendants without children. We next show how these modeling choices

interact with the task of defining decision maker bias.

Remark 2.7. As we discuss in detail in Section 4.5, the family of Roy models we have laid out

in this section underlie nearly all of the existing literature on outcome tests of bias. Arnold et al.

(2018), for example, write down a model of bail judge behavior equivalent to the GRM in (4), while
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Anwar and Fang (2006)’s model of police officer behavior in traffic stops is a special case of the

ERM in (6). Knowles et al. (2001) consider a two-sided model of police behavior with endogenous

driver responses, but the decision model of police officers—whose behavior is the object of interest

in the outcome test—again represents a special case of the ERM.

3 Defining Bias

Section 2 laid out a family of decision models that describe the behavior of decision makers. In this

section, we use these models to define racial bias and its absence, and discuss how our definitions

relate to and nest notions of bias from the previous literature.

3.1 Absence of Racial Bias

The parameter β(z, r, v) in the decision model (2) captures judge z’s personal taste for releasing a

defendant of race r and non-race characteristics v, distinct from considerations of misconduct risk

and detention costs. It is natural, then, to first define the absence of racial bias in terms of this

parameter as follows.

Definition 3.1 (Absence of racial β-bias). We say judge z is racially β-unbiased if

β(z, r, v) = β(z, v) for all v ∈ V .

This definition implies that a judge is racially unbiased if she has equal preferences for white

and black defendants who share the same non-race characteristics v. Through its dependence on

z and v, Definition 3.1 nests notions of unbiasedness from previous papers in the literature. The

bias parameter in Knowles et al. (2001), for example, does not vary across decision makers (z

here) or any non-race characteristics (v here) of drivers (defendants), which in turn simplifies their

definition of unbiasedness. In Anwar and Fang (2006, Definition 1), bias is allowed to vary across

decision maker race, but again not across drivers’ (defendants’) non-race characteristics. Definition

3.1 is similar to the definition of unbiasedness proposed by Brock et al. (2012, Equation (13)),

where preferences are required to be invariant by race for each value of the non-race characteristics

observed by the decision maker.
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Defining absence of bias in terms of the preference parameter β(z, r, v) is not the only option

in a Generalized Roy decision model like (4). For example, Arnold et al. (2018, Definition 1)

define absence of bias via the broader benefit function τ(·) in (4), instead of the specific taste for

discrimination parameter β(·), which is just one component of τ(·). To contrast with Definition 3.1,

we refer to absence of bias though the function τ(z, r, v) as “absence of racial τ -bias,” and formally

define it as follows.

Definition 3.2 (Absence of racial τ -bias). We say judge z is racially τ -unbiased if

τ(z, r, v) = τ(z, v) for all v ∈ V .

Definitions 3.1 and 3.2 are conceptually and mathematically different unless further restrictions

are imposed. In order to appreciate the differences, it is helpful to recall that the benefit function

τ(·) captures three different terms:

τ(z, r, v) ≡ c(z, r, v) + λ(z, r, v) + β(z, r, v) . (7)

Two alternative interpretations immediately arise. First, one may interpret the two notions of

unbiasedness in Definitions 3.1 and 3.2 as equivalent under the implicit assumption that the other

two confounding functions, c(z, r, v) and λ(z, r, v), are absent, or at least independent of race. If

that is the case, then any dependence of τ(·) on race must come from the taste for discrimination

parameter β(·), and the two notions would coincide. Second, one may proceed by being agnostic

about the distinct mechanisms comprising the benefit function τ(·) and define bias with a broad

brush that goes beyond the taste for discrimination parameter β(·). Under this broader interpreta-

tion, for a judge to be labeled unbiased would require not only the personal taste for discrimination

(β) to be race invariant; it would also require prediction/measurement errors (λ) to be independent

of race, and require the expected cost of detention (c) to be independent of race.10 Since these are

a broader set of requirements, if judge z is racially τ -unbiased in the sense of Definition 3.2, she

would also be racially β-unbiased in the sense of Definition 3.1, but the converse does not hold.

Definitions 3.1 and 3.2 simplify when preferences β(z, r, v) and total release benefits τ(z, r, v),

10Analogous to Remark 2.5, throughout the paper we abstract away from functional singularities that may make
the function τ(·) race invariant even when its three components are not.
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respectively, do not depend on non-race characteristics v. In that case, judge z is racially unbiased

in the sense of Definition 3.1 when

β(z, r) = β(z) ,

and is racially unbiased in the sense of Definition 3.2 when

τ(z, r) = τ(z) .

With few exceptions, notably Brock et al. (2012) and Arnold et al. (2018), the literature on outcome

tests typically proceeds under such restrictions, assuming (explicitly or implicitly) that decision

maker bias is solely a function of defendant race, and thus invariant to all other non-race character-

istics. Persico (2009, Equation (3)), for example, explicitly imposes such a restriction at the outset

under the premise that it simplifies identification. Other papers, including Knowles et al. (2001)

and Anwar and Fang (2006), do not highlight this restriction but impose it in their frameworks,

which in turn is one of the points raised by Brock et al. (2012).

Recall that in order for τ(z, r, v) not to depend on v, one needs to restrict the Generalized Roy

Model to an Extended Roy Model. Defining racially unbiased behavior in the ERM is therefore

simpler than in the GRM, but requires a more restrictive model of how decision makers treat

individuals with different non-race characteristics.

3.2 Types of Racial Bias

The subtleties associated with the preference parameter β(z, r, v) generally depending on non-race

characteristics and generally differing from the benefit function τ(z, r, v) are also present when

formally defining the presence of bias. We start with the following set of definitions.

Definition 3.3 (Racial β-bias).

We say judge z is locally β-biased against black defendants if

β(z, w, v) ≥ β(z, b, v) for all v ∈ V with strict inequality for some open subset Vsi ⊆ V . (8)

16



We say judge z is globally β-biased against black defendants if

β(z, w, v) > β(z, b, v) for all v ∈ V . (9)

Definition 3.3 labels judge z as biased against black defendants if she prefers white defendants

over black defendants who have the same non-race characteristics v. As with Definition 3.1, the

presence of non-race characteristics v introduces layers that are not present when bias only depends

on (z, r), as in Knowles et al. (2001), Anwar and Fang (2006), and Persico (2009), among others.

Our definition distinguishes between two degrees of bias, local and global. Decision makers may

also exhibit “crossing” in their racial preference, i.e. β(z, w, v) > β(z, b, v) for v in some subset of

V and β(z, w, v) < β(z, b, v) for v in some other subset of V. In our formal results below, we refer

to such a decision maker as “unclassified,” which we define as any behavior that cannot be labeled

as unbiased, locally biased, or globally biased.

As with the absence of bias, the presence of bias could alternatively be defined in terms of the

overall benefit function τ(z, r, v) instead of its subcomponent β(z, r, v).

Definition 3.4 (Racial τ -bias). We say judge z is locally τ -biased or globally τ -biased against

black defendants if (8) or (9), respectively, hold with τ(z, r, v) replacing β(z, r, v).

Such a definition again admits two interpretations. One may interpret the two notions of bias in

Definitions 3.3 and 3.4 as equivalent under the implicit assumption that the other two confounding

components of τ(z, r, v)—c(z, r, v) and λ(z, r, v)—are independent of race. Alternatively, one may

interpret bias in terms of τ(z, r, v) in a broad sense that goes beyond the taste for discrimination

parameter β(·). Under this broader interpretation, there are multiple ways for a judge to be labeled

as τ -biased: she may directly harbor a personal taste for discrimination (captured by β), but even

if not, she may make prediction/measurement errors (λ) that vary by race, or expect the costs

of detention (c) to vary by race, all of which would fall under the broader umbrella of τ -bias. A

prominent example of τ -bias in the literature is Arnold et al. (2018, Definition 1), which defines

judge j as racially biased against black defendants if tjw(vi) > tjb(vi), where the function tjr(v) is

τ(z, r, v) in our notation, with judge j corresponding to our z and i indexing defendants. Since

non-race defendant characteristics vi are identical on both sides of the inequality (confirmed in the

text of the definition), Definition 1 as published in Arnold et al. (2018) corresponds to our definition
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of globally τ -biased in Definition 3.4.11

Definitions 3.3 and 3.4 simplify considerably when β(z, r, v) and τ(z, r, v) do not depend on v.

In that case, judge z is β-biased against black defendants if

β(z, w) > β(z, b) , (10)

and is τ -biased against black defendants if

τ(z, w) > τ(z, b) . (11)

It follows immediately that in the Extended Roy Model, there is no distinction between local and

global bias. Furthermore, the possibility of “crossing” previously discussed does not arise and, as

a result, judges cannot be labeled as unclassified. This again highlights a tradeoff between simpler

definitions of bias (ERM) and richer models of decision making (GRM), which is important to keep

in mind when comparing definitions of bias across the literature, studying the logical validity and

econometric viability of outcome tests, and formulating new tests of bias in decision making.

4 Logical Validity of Outcome Tests of Bias

We now describe the outcome test, which aims to detect decision maker bias by comparing the

post-decision outcomes of marginal individuals from different groups. In this section, we abstract

away from the challenges of identifying marginal outcomes from data, and ask a more fundamental

question: under what conditions are marginal outcome differences, even if known perfectly, actually

informative about decision maker bias? We present two sets of results on the logical validity of the

outcome test. The first set of results show that the test is logically invalid in the context of the

Generalized Roy Model. We show this by generating broad classes of counterexamples which prove

that the outcome test may conclude a judge is unbiased even if she is racially biased, or conclude

bias even if the judge is racially unbiased, or even conclude bias against one race when the judge

is biased against another race. The second set of results establish logical validity of the outcome

11In an unpublished correction appendix (Arnold et al., 2020), the authors change their definition of bias. We
discuss this new definition in Section 4.5.
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test when restricting decision maker behavior to the Extended Roy Model, as this restriction shuts

down the confounding channels present in the Generalized Roy Model.

4.1 The Outcome Test of Racial Bias

To properly define the outcome test, we start with a precise notion of marginal defendants. For a

given judge z and defendant race r, we denote by v∗z,r ∈ int(V) a value of v such that

E[∆|r, v∗z,r] = τ(z, r, v∗z,r) . (12)

That is, defendants of race r with non-race characteristics equal to v∗z,r are marginal for judge z

in the sense that the judge acts as if the costs and benefits of releasing such a defendant exactly

offset each other. An implicit minimal assumption we keep throughout our analysis is that such

marginal values of v exist. For now, we also assume v∗z,r is unique for each (z, r) for simplicity, and

discuss further complications from multiple crossing points in Section 5.

With this notation in hand, the marginal outcome test proceeds as follows. The test infers that

judge z is racially biased against black defendants if

E[∆|w, v∗z,w] > E[∆|b, v∗z,b] , (13)

i.e. if judge z’s marginal white defendants have a higher mean effect of release on misconduct

than her marginal black defendants. In this first case, the test is based on the premise that racial

differences in misconduct outcomes among a judge’s marginal defendants indicate that the judge is

racially biased, specifically against the race with the lower marginal misconduct effect, as a result

of holding that group to a stricter standard. Likewise, the test concludes there is no evidence of

racial bias if

E[∆|w, v∗z,w] = E[∆|b, v∗z,b] , (14)

i.e. if judge z’s marginal white and marginal black defendants have equal mean effects of release on

misconduct. In this second case, the test is based on the premise that equal misconduct outcomes

among a judge’s marginal white and marginal black defendants indicates that the judge is unbiased,

holding each race to the same standard.
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4.2 Logical Invalidity in the GRM

Our first result below shows that the marginal outcome test is logically invalid in the context of the

GRM. At a conceptual level, the difference in the misconduct outcomes of marginally released black

defendants versus marginally released white defendants is uninformative about whether the judge’s

cutoff depends directly on race because the GRM allows this cutoff to also vary with non-race

defendant characteristics. We formally present this result in layers, by considering an increasing

number of restrictions on the functions E[∆|r, ·] and τ(z, r, ·) that enter the decision in (4). For

simplicity, we focus on the case where v is a scalar, though this is not necessary for our results as

we discuss in Appendix A. The intuition of our results is captured in Figure 1, which we discuss in

detail after presenting the theorem.

To state the theorem, let F denote the space of all pairs of functions E[∆|r, ·] and τ(z, r, ·)

mapping V to R. Then, for V0 being a non-empty open subset of V, let Fm(V0) denote the space

of functions E[∆|r, ·] and τ(z, r, ·) mapping V to R that are monotone (increasing or decreasing) on

V0, and let Fcm(V0) denote the subset of Fm(V0) where these functions are also continuous. With

this notation, Fm(V) is the space of monotone functions, and Fcm(V) is the space of continuously

monotone functions. Definitions A.1-A.3 provide formal definitions of each of these spaces, including

a few minor regularity conditions.

The space of functions Fm(V0) is quite general and flexible enough to accommodate a variety of

cases, including step functions. The space does not restrict the functions outside V0, but working

with Fm(V) the restrictions become global. The space of functions Fcm(V) is the most restrictive

one, requiring both E[∆|r, ·] and τ(z, r, ·) to be continuously monotone functions of v on the entire

domain V.

Our first result can then be stated as follows.

Theorem 4.1. Consider the GRM in Definition 2.1, a given judge z ∈ Z, and let v∗z,r be defined

as in (12). Then, for each of the following four cases,

(i) Judge z is racially τ -unbiased,

(ii) Judge z is globally τ -biased against black or white defendants,

(iii) Judge z is locally τ -biased against black or white defendants,
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(iv) Judge z is unclassified,

there exist functions E[∆|r, ·] and τ(z, r, ·) in F such that the difference

E[∆|w, v∗z,w]− E[∆|b, v∗z,b] (15)

could be positive, negative, or zero. The result continues to hold when F is replaced by Fm(V0),

Fcm(V0), or Fcm(V).

The theorem has multiple conclusions. First, the marginal outcome test may conclude bias even

if the judge is racially unbiased. Second, the outcome test may conclude no bias even if the judge

is locally or globally racially biased. Third, the outcome test may conclude bias in the opposite

direction; for example, it may conclude bias against white defendants when the judge is locally or

globally racially biased against black defendants. Importantly, the second and third conclusions

continue to hold in the locally racially biased case regardless of whether v∗z,r ∈ Vsi or not, where Vsi

is the subset in Definition 3.4 in which the judge strictly prefers one race over the other. Finally,

the outcome test may conclude bias in any direction, or conclude no bias, in the case where the

judge is unclassified, where by unclassified we mean that the function τ(z, w, v) may be higher or

lower than τ(z, b, v) depending on the value of v (i.e., they may cross at possibly multiple points).

Each of these results hold regardless of whether the functions E[∆|r, ·] and τ(z, r, ·) are left mostly

unrestricted (as when they belong to the space F), or are assumed to be well-behaved in some

local area V0, or are assumed to be well-behaved globally (as when they belong to Fcm(V)), which

demonstrates these results do not rely on pathological cases of cost and benefit functions. We

relegate the proof of Theorem 4.1 to Appendix A and offer instead a graphical interpretation of its

content in the next subsection.

Remark 4.1. Given the level of generality of Theorem 4.1, it is not difficult to see that a similar

result applies when τ -bias is replaced with β-bias, as defined in Definitions 3.1 and 3.3. That is,

differences in the misconduct outcomes of marginally released black defendants versus marginally

released white defendants are uninformative about whether a GRM judge is β-biased or not. The

reason is that any restriction imposed on β(·) will necessarily lead to τ(·) falling into one of the

four cases considered in Theorem 4.1, and from there the result will follow. Note that this includes
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restricting β(·) to be invariant to non-race characteristics, thus allowing for the simpler definition

of (racial-only) taste-based bias used by much of the previous literature, but leaving the other

components of τ(·) unrestricted. Thus, the results in Theorem 4.1 are not sensitive to any of these

alternative definitions of bias.

Remark 4.2. In the context of police searches, Brock et al. (2012) show that the arguments

underlying the comparison of average post-decision outcomes across groups in both Knowles et al.

(2001) and Anwar and Fang (2006) break down if the search cost function (our τ) depends on

non-race characteristics that are unobserved by the analyst (our v). This observation is similar in

spirit to our Theorem 4.1, but Brock et al. (2012), reacting to the state of the literature at the

time, study the mapping from average outcome comparisons to racial bias, and thus focus on the

inframarginality complications that arise when the distribution of V differs by race, since average

comparisons integrate over these distributions. In contrast, our results in Theorem 4.1 concern the

more fundamental mapping from marginal outcomes to bias, which only involves individuals with

specific values of v—namely those with v = v∗z,r, i.e. marginal individuals of race r facing decision

maker z. None of our results, therefore, are affected by whether V is distributed differently across

races, which is a central concern in Brock et al. (2012) and the entire literature on average-based

outcome tests.

Remark 4.3. In a context where the analyst is interested in testing the null hypothesis H0 : “judge

z is racially τ -unbiased,” an immediate implication of Theorem 4.1 is that the marginal outcome

test will not control size and will have no power against certain alternatives. This point holds

independently of how well the analyst is able to estimate the difference E[∆|w, v∗z,w]−E[∆|b, v∗z,b].

4.3 Graphical Representation of the Formal Results

In Figure 1, we explain the intuition behind the formal results of logical invalidity of the outcome

test in the GRM by drawing examples of cost and benefit functions for black and white defendants

facing a given judge. The functions E[∆|r, ·] and τ(z, r, ·) in the figures belong to Fcm(V) to

illustrate how logical invalidity obtains even with globally well-behaved cost and benefit functions.

Figure 1a illustrates a case where the benefit function does not depend on race, τ(z, r, v) =

τ(z, v), so judge z is racially τ -unbiased according to Definition 3.2. However, the cost function
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E[∆|·],τ(·)

τ(z, v)

E[∆|b, v]
E[∆|w, v]

v∗z,b

E[∆|b, v∗z,b]

v∗z,w

E[∆|w, v∗z,w]

(a) Intuition with no racial bias

v

E[∆|·],τ(·)

τ(z, w, v)

τ(z, b, v)

E[∆|w, v]
E[∆|b, v]

v∗z,w

E[∆|w, v∗z,w]

v∗z,b

E[∆|b, v∗z,b]

(b) Intuition with local racial bias

Figure 1: Intuition behind Theorem 4.1

E[∆|r, v] does vary with race, consistent with the GRM in (4). In this case, E[∆|w, v] is greater

than E[∆|b, v] for all v. So, even though judge z is not biased against black defendants, the fact

that black defendants have a lower expected effect of release on misconduct for a given value of the

non-race characteristics v leads to the marginal black defendant having a strictly lower misconduct

effect than the marginal white defendant, E[∆|b, v∗z,b] < E[∆|w, v∗z,w]. Thus, Figure 1a illustrates

a case in which condition (i) of Theorem 4.1 holds with (15) being positive. That is, the marginal

outcome test may erroneously conclude racial bias when in fact the judge is racially τ -unbiased.

Figure 1b illustrates a case where race enters both the benefit function τ(z, r, v) and the cost

function E[∆|r, v]. In this case, E[∆|b, v] is greater than E[∆|w, v] for all v, while τ(z, w, v) is

strictly greater than τ(z, b, v) for low values of v, consistent with condition (iii) in Theorem 4.1.

Even though judge z is locally biased against black defendants in the sense of Definition 3.4, the

fact that black defendants have a sufficiently higher expected effect of release on misconduct for a

given value of the non-race characteristics v leads to the marginal black defendant having a strictly

higher misconduct effect than the marginal white defendant, E[∆|b, v∗z,b] > E[∆|w, v∗z,w]. Thus,

Figure 1b illustrates a case in which condition (iii) of Theorem 4.1 holds with (15) being negative.

In other words, the marginal outcome test may erroneously conclude bias against one race when in

fact the judge is racially biased against another race.
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4.4 Logical Validity in the ERM

The logical invalidity of the marginal outcome test arises because the GRM defined in Definition

2.1 does not require an unbiased judge to equalize misconduct outcomes across marginal white and

marginal black defendants. This requirement, however, turns out to hold in the context of the ERM

defined in Definition 2.2. Our next result shows that the difference in the misconduct outcomes

of marginally released black defendants versus marginally released white defendants immediately

informs whether an ERM judge’s cutoff depends directly on race, since a given judge’s cutoff only

depends on race in the ERM.12 In other words, the marginal outcome test is indeed logically valid

when the decision model conforms to the ERM, as formalized in the next result.

Theorem 4.2. Consider the ERM in Definition 2.2 for a given judge z. Then, the difference in

the misconduct outcomes of marginally released black defendants versus marginally released white

defendants equals the difference in the expected benefit function τ(z, r) between black and white

defendants, i.e.,

E[∆|w, v∗z,w]− E[∆|b, v∗z,b] = τ(z, w)− τ(z, b) . (16)

The outcome test is then logically valid in the sense that

E[∆|w, v∗z,w] > E[∆|b, v∗z,b] ⇐⇒ τ(z, w) > τ(z, b) and

E[∆|w, v∗z,w] = E[∆|b, v∗z,b] ⇐⇒ τ(z, w) = τ(z, b) = τ(z) .

The logical validity of the outcome test is fully restored in the ERM: it would correctly conclude

(no) bias if judges are in fact (un)biased. The intuition for this follows from Figure 1 by letting the

functions τ(z, r, v) be flat, i.e. invariant across non-race characteristics v, in which case each must

intersect the two cost functions at the same vertical value. In fact, Theorem 4.2 not only shows

that outcome tests are logically valid in the ERM, but also shows through (16) that the magnitude

of judge z’s racial τ -bias, τ(z, w)− τ(z, b), is identified by the magnitude of the marginal outcome

difference E[∆|w, v∗z,w]− E[∆|b, v∗z,b]. In the language of Becker (1957), this difference succeeds in

revealing judge z’s “willingness to pay” to discriminate, measured in terms of excess misconduct:

the amount of additional misconduct among white defendants that the judge is willing to allow in

12Potentially conditional on covariates X observed by both the judge and the analyst, as we discuss in Section 5.1.
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order to express her τ -bias against black defendants, or vice versa.13

Remark 4.4. While the ERM can deliver a logically valid test of bias in terms of τ(·), consistent

with our τ -bias Definitions 3.2 and 3.4, the decomposition

τ(z, r) = β(z, r) + λ(z, r) + c(z, r)

is still present in the ERM. Without further restrictions, then, the three components entering

τ(z, r)—preferences, prediction/measurement errors, and detention costs (i.e. other judge con-

siderations beyond misconduct)—are indistinguishable from each other in the marginal outcome

difference E[∆|w, v∗z,w] − E[∆|b, v∗z,b]. This illustrates how difficult it is to isolate the taste com-

ponent β(z, r) from other confounding factors captured by λ(z, r) and c(z, r) without direct mea-

sures of each (e.g., Bohren et al., 2021) or further theoretical restrictions like λ(z, r) = λ(z) and

c(z, r) = c(z).

Remark 4.5. The ERM allows marginal black and white defendants to have different values of

their non-race characteristics, i.e., v∗z,w 6= v∗z,b, even when the judge is racially τ -unbiased. In Figure

1(a), for example, if judge z satisfied both the ERM and τ -unbiasedness such that the benefit

function were a constant τ(z), we would still have v∗z,w < v∗z,b. This would be consistent with

statistical discrimination: the judge would release a black defendant with non-race characteristics

v somewhere between v∗z,w and v∗z,b, since E[∆|b, v] < τ(z) for v ∈ (v∗z,w, v
∗
z,b), but would detain an

otherwise identical white defendant, since E[∆|w, v] > τ(z) for the same value of v. This would be

entirely driven by racial differences in the outcome function E[∆|r, v] rather than bias, as τ(z) is

constant across race (and all other defendant characteristics as well).

4.5 Discussion and Implications for the Literature

The main takeaway from Theorem 4.1 and Remark 4.1 is that sufficiently flexible models of decision

making do not deliver logically valid outcome tests of bias under any of the definitions of bias

discussed in Section 3. Theorem 4.2 offers a clear solution, in the form of restricting the model of

13Since τ -bias τ(z, w)− τ(z, b) is specific to a given decision maker z, these results readily apply to outcome tests
of in-group bias, which aim to examine whether the presence and magnitude of bias differs across different decision
makers grouped by some observable characteristic like race or gender (e.g., Shayo and Zussman, 2011; Anwar et al.,
2012; Knepper, 2018; Ash et al., 2022).
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decision maker behavior to an Extended Roy Model. Together, these results provide a clarifying

lens through which to understand the existing literature on outcome tests, and a guide for empirical

research that aims to test for or quantify bias in decision making.

Most immediately, our results tell a cautionary tale for approaches that simultaneously attempt

to maintain the flexibility of the Generalized Roy Model, which is a workhorse in modern applied

economics (Heckman, 2010), while also attempting to test for bias. An illustrative case study is

Arnold et al. (2018), who write down a model of bail judge decision making that satisfies our

Definition 2.1 of a GRM. By studying a decision environment that features exogenously assigned

decision makers who vary progressively in their decision tendencies, Arnold et al. (2018) build on a

rapidly growing literature that employs these institutional features to identify causal consequences

of an array of policy-relevant decisions.14 An important innovation of Arnold et al. (2018) is their

recognition that these institutional features may also help address two perennial identification

challenges faced by the discrimination literature: selection bias (as judges are randomly assigned

to cases) and inframarginality (as judges vary progressively in their decision tendencies, potentially

facilitating marginal comparisons). Furthermore, decision makers in most of these environments are

public officials who do not need to compete for cases, so there is little potential for market forces to

erode the consequences of bias in equilibrium (e.g., Arrow, 1973). Despite these methodologically

amenable institutional features, the logic of the outcome test proposed in the GRM framework of

Arnold et al. (2018) is invalidated by Theorem 4.1, as the definition of racial bias in Arnold et al.

(2018) corresponds to τ -bias in our Definition 3.4, as noted in Section 3.2.

An important lesson to draw from this case is that addressing selection and inframarginality is

not sufficient for a valid outcome test. The reason is that selection and inframarginality are issues

of identification, which we turn to in Section 5. These issues arise when attempting to use observed

variation across decision makers and across cases within decision makers to identify the outcomes

of a given decision maker’s marginal cases. In contrast, the logical validity of the outcome test,

which we have studied in this section, concerns the mapping between these marginal outcomes,

even if known perfectly, and the bias of the decision maker. Theorem 4.1 reveals a lack of such

a mapping for Generalized Roy decision makers under any of the definitions of bias in Section

14This includes criminal sentencing (Kling, 2006; Bhuller et al., 2020), welfare eligibility (Maestas et al., 2013;
Dahl et al., 2014), patent protection (Galasso and Schankerman, 2015; Sampat and Williams, 2019), eminent domain
(Belloni et al., 2012), foster care (Doyle, 2007, 2008), and bankruptcy protection (Dobbie and Song, 2015).
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3. Thus, regardless of whether a given decision environment features exogenous assignment of

decision makers and progressive variation in decision tendencies, or whether a researcher develops

other methods of dealing with selection and inframarginality, avoiding the implications of Theorem

4.1 must involve choosing a different definition of bias beyond those we discuss in Section 3, or

choosing a different model of decision making that is less flexible than the GRM. We now discuss

each of these possibilities in turn.

Choice of Bias Definition

In an unpublished correction appendix (Arnold et al., 2020), the authors of Arnold et al. (2018)

respond to our result in Theorem 4.1. To restore the logical validity of their proposed outcome

test, Arnold et al. (2020) maintain their Generalized Roy decision model but change the definition

of bias. Under the new bias definition, judge z is racially biased against black defendants if

τ(z, w, v∗z,w) > τ(z, b, v∗z,b), (17)

i.e. if judge z perceives greater benefits of releasing her marginal white defendant compared to

her marginal black defendant.15 By the definition of marginal white and black defendants, (17)

is equivalent to E[∆|w, v∗z,w] > E[∆|b, v∗z,b]. Defining bias in this way therefore restores the log-

ical validity of the outcome test, since the sign (and exact magnitude) of the marginal outcome

comparison E[∆|w, v∗z,w]− E[∆|b, v∗z,b] is identical that of τ(z, w, v∗z,w)− τ(z, b, v∗z,b).

To understand the limitations of this new bias definition, it is important to recognize that

(17) compares a judge’s perceived benefits of releasing black and white defendants with different

non-race characteristics, since v∗z,w 6= v∗z,b in general. This contrasts with our definitions of bias in

Generalized Roy Models in Section 3, which hold v fixed, as well as with the seminal discrimination

framework of Becker (1957) that Arnold et al. (2018) cite as motivation for their outcome test.

Becker (1957) analyzed implications of bias against minority workers who were otherwise identical

to non-minority workers; if they were instead “imperfect substitutes, they may receive different

wage rates even in the absence of discrimination” (p. 17). The definition in (17) is also silent about

15In a different setting, Appendix B of Dobbie et al. (2021) uses (17) to define taste-based bias among loan
examiners. In the main text of Dobbie et al. (2021), however, the authors use a different, ERM-based definition of
“incentive-based” bias that satisfies (11), our definition of τ -bias in the ERM.

27



how the functions τ(z, w, v) and τ(z, b, v) relate to each other for any other values of v beyond those

that characterize judge z’s marginal defendants. Thus, a judge labeled as biased under this revised

definition could nonetheless satisfy τ(z, w, v) = τ(z, b, v) for all v ∈ V, i.e. be racially τ -unbiased

according to Definition 3.2. We visualized such a case in Figure 1a: judge z’s perceived benefit

function excludes race entirely as an argument, yet the definition in (17) would label such a judge

as biased. Conversely, a judge who is labeled as unbiased, or biased against white defendants,

according to (17) could nonetheless satisfy τ(z, w, v) > τ(z, b, v) for all v ∈ V, i.e. satisfy the

especially stark notion of global racial τ -bias against black defendants according to Definition 3.4.

Another recent example of avoiding Theorem 4.1 by studying target parameters other than the

definitions of bias in Section 3 is Arnold et al. (2022). In their pre-trial release context, Arnold

et al. (2022) define racial discrimination as “the average release rate disparity between white and

Black defendants with identical misconduct potential.” In our notation, and for D = DZ , this

involves comparing the release rates of white and black defendants facing a given judge Z = z who

have equal misconduct cost ∆ = δ,

E[D|Z = z,R = w,∆ = δ]− E[D|Z = z,R = b,∆ = δ] , (18)

and then averaging over the support of misconduct cost values δ. If this difference is positive, then

the judge is more likely to release white defendants than black defendants with equal misconduct

potential, and is classified as discriminating against black defendants.

Using an identification-at-infinity argument, Arnold et al. (2022) show how the average of (18)

could be recovered without an explicit model of judge behavior. This leads the authors to describe

their definition and test for discrimination as “model-free.” The economic interpretation and policy

implications of such a test, however, unavoidably depend on how judges are assumed to be mak-

ing decisions and generating the data. If we are not willing to go beyond “model-free” quantities

like (18), then we cannot distinguish among the wide range of mechanisms that determine these

quantities. As we illustrate in Appendix D, this includes taste-based bias, prediction/measurement

errors, and detention costs—together comprising τ(z, r, v) in our model—as well as statistical dis-

crimination via differences in E[∆|r, v] by race, and differences in the distribution of V conditional

on R = r and ∆ = δ. Each of these mechanisms clearly has different implications for potential
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policy interventions. In the latter part of their paper, Arnold et al. (2022) indeed end up imposing

a model of judge decision making similar to the ERM in an attempt to distinguish among these

distinct mechanisms.16

Choice of Decision Model

As an alternative to choosing target parameters that differ from the definitions of bias in Section 3,

one may carefully specify a model of decision making that delivers a logically valid outcome test.

Theorem 4.2 offers such a model, the Extended Roy Model. Interestingly, this model of decision

making forms the basis of important prior work that aims to test for bias as defined in Section 3.

One set of studies, launched by Knowles et al. (2001), build on Becker (1957) and the large

follow-on literature using differences in average outcomes across groups to test for discrimination,

but pay careful attention to the threat to this literature posed by inframarginality bias: average

outcomes need not be informative about conditions at the margin, due to group differences in

unobservables among individuals away from the decision margin who are included in average com-

parisons. Knowles et al. (2001) address this issue by endogenizing the behavior of the individuals

subject to the decision process—in this case, drivers deciding whether to carry contraband—and

show how the equilibrium of such a model can discipline average outcomes to reveal marginal

outcomes.17

While this kind of equilibrium model may seem distinct from our single decision maker frame-

work in Section 2, we reiterate the point made earlier that inframarginality is an issue of identifi-

cation, rather than logical validity. Importantly for the discussion at hand, the model of decision

maker behavior in Knowles et al. (2001) compares the expected outcome, conditional on race and

non-race characteristics observed by the decision maker, to a threshold that depends on race but

not on non-race characteristics, exactly as in the ERM. Furthermore, bias (“prejudice”) is defined

as differences in these thresholds by race, as in our ERM-based definition of τ -bias in (11). Regard-

16As in the ERM, the model in Arnold et al. (2022)’s decomposition exercise features a threshold function that
depends on the identity of the judge z and the race of the defendant r, but excludes non-race defendant characteristics
v. On the other side of the decision model, judges form an expectation about defendant misconduct if released, which
depends on defendant race and a noisy “signal” V drawn from a parameterized distribution that varies across judges
and defendant races. Thus Arnold et al. (2022)’s decision model in our notation is Dz = I{Ez[Y1|r, v] ≤ τ(z, r)}, with
parameterizations that yield a known functional form for Ez[Y1|r, v].

17Other papers in this literature relying on equilibrating behavior include Persico (2002), Hernández-Murillo and
Knowles (2004), and Persico and Todd (2006). See Persico (2009) for a review, as well as Dharmapala and Ross
(2004), Dominitz and Knowles (2006), Manski (2006), and Bjerk (2007) for discussions and extensions.
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less of the additional equilibrium structure imposed to identify marginal outcomes from average

outcomes, then, the basic logic of the outcome test in Knowles et al. (2001) is secured by Theorem

4.2, in that the outcomes of marginal individuals are indeed informative about τ -bias when the

decision model is an ERM.

A second set of studies, pioneered by Anwar and Fang (2006), relax the assumption of equili-

brating driver responses to police decision rules by exploiting variation in decision rates and average

outcomes across different decision makers.18 Specifically, Anwar and Fang (2006) show that relative

comparisons of the rates at which police officers of different races decide whether to search stopped

drivers of each race, and the rates at which those searches find contraband, can deliver testable

implications about racial differences in criminal behavior among drivers on the margin of being

searched. Since Anwar and Fang (2006)’s model of police behavior satisfies our Definition 2.2 of an

ERM (with different decision makers z distinguished by their race rp), these marginal outcomes are

in turn informative about decision maker bias by Theorem 4.2, as the definition of bias in Anwar

and Fang (2006) also corresponds to our ERM-based definition of τ -bias in (11).

Remark 4.6. While the Extended Roy Model of decision maker behavior thus underpins much of

the outcome test literature, the ERM is not strictly necessary for a logically valid outcome test of

bias as defined in Section 3. Figure 1 suggests another potential solution: rather than restricting the

benefit/threshold function τ(·), the analyst could restrict the cost/outcome expectation function

to be identical across race, i.e.

E[∆|r, v] = E[∆|v] . (19)

In Appendix C, we show that this restriction can deliver a logically valid outcome test of global

τ -bias, per Definition 3.4, if E[∆|v] is strictly increasing in v and τ(z, r, v) is weakly decreasing

in v. Intuitively, this restriction restores logical validity by assuming away any objective statis-

tical relationship between race and potential outcomes, leaving τ -bias as the only channel in the

decision model that could cause racial disparities in marginal outcomes. To justify such a restric-

18Another prominent example of this approach is Alesina and La Ferrara (2014), who study racial bias in death
penalty sentencing by exploiting variation in reversal rates by higher courts across combinations of defendant race
and victim race. Marx (2022) revisits Anwar and Fang (2006)’s dataset with an absolute, rather than relative, test
of bias among police officers of different races.

30



tion, the analyst would need to not only rule out any direct causal effects of race on potential

outcomes, but also require the decision maker’s information set to encompass all determinants of

potential outcomes that correlate with race, leaving race as an irrelevant predictor conditional on

that information set.

Implications for Logically Valid Outcome Tests across Empirical Settings

We have highlighted two alternative pathways out of the negative result in Theorem 4.1. The first

pathway—changing the parameter of interest to something beyond the definitions of bias in Section

3—amounts to asking a different research question. To the extent that alternative definitions like

(17) and (18) capture relevant questions of interest, they can lead to logically valid outcome tests

despite maintaining highly flexible models of decision maker behavior. On the other hand, if we

are interested in testing for bias as defined in Section 3 and in prior work like Knowles et al. (2001)

and Anwar and Fang (2006), then the other pathway out of Theorem 4.1 is required: restricting the

model of decision making. Such restrictions need to be considered and defended on a case-by-case

basis, depending on the empirical setting.

Consider first our running example of pre-trial release. Here, imposing the Extended Roy Model

restores the logical validity of the outcome test (Theorem 4.2) by eliminating all variation in a given

judge’s perceived benefit of releasing defendants of the same race, leaving racial bias and expected

misconduct as the sole sources of variation in a given judge’s decisions. This restriction has impor-

tant implications for the admissible behavior of bail judges, as well as for the measurement of the

misconduct outcome. To justify it, the analyst would need to rule out any additional judge biases

against any defendant characteristics unobserved by the analyst, like speech patterns, body weight,

disabilities, and physical demeanor. Relatedly, the magnitude of a judge’s racial bias must not

vary across any such characteristics. Errors in judge predictions of misconduct, or in the analyst’s

measurement of misconduct, must also not correlate with any non-race defendant characteristics.

Finally, the analyst must rule out any judge considerations beyond expected misconduct, like em-

ployment or family disruptions, that vary across defendants with different non-race characteristics.

Violations of any of these restrictions would manifest as the benefit function τ(·) varying with v,

reopening the applicability of Theorem 4.1.

Studies of racial bias in pre-trial release like Arnold et al. (2018), Arnold et al. (2022), and Hull
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(2021) often do consider complications to the outcome test posed by prediction error, measurement

error, and omitted judge considerations, but only to the extent that these confounding factors

correlate with defendant race. Such phenomena manifest as τ(·) varying with r for reasons other

than pure racial animus, represented in our framework as λ and c depending on r. But a novel and

perhaps surprising lesson from our analysis is that the presence of any of these confounding factors

can invalidate the outcome test even if they are completely independent of race—as Theorem 4.1

does not depend on the statistical relationship between R and V—as long as they manifest as

τ(·) varying with non-race characteristics. This is precisely why imposing an ERM delivers logical

validity, as the ERM’s exclusion of v from τ(·) shuts down all such possibilities.

The ERM could permit logically valid outcome tests of bias across a range of settings beyond

pre-trial release, with careful consideration paid to the credibility of the ERM’s restrictions in

each environment. We have already discussed how Knowles et al. (2001), Anwar and Fang (2006),

and related papers employ the ERM to test for racial bias among police officers conducting traffic

stops, spurring a lively literature discussing and debating the assumptions behind this approach.19

Building on Becker (1993)’s suggestion of testing for bias in lending markets by studying borrower

outcomes, Dobbie et al. (2021) derive an ERM from a principal-agent model of a loan officer

who compares the short-run expected profitability of a loan application to a fixed threshold. The

ERM may reasonably describe decision maker behavior in such a setting, as loan officers have a

well-incentivized and well-measured objective and detailed data on prior applicants and outcomes.

In the seemingly distant realm of academic peer review, Card and DellaVigna (2020), Card

et al. (2020), and Hengel and Moon (2020) study gender differences in citation outcomes through

the lens of a model in which journal editors publish papers with expected citations above a threshold,

which may vary by author gender and other analyst observables but not by factors unobserved by

the analyst—again as in the ERM. The credibility of this model therefore hinges on the analyst

observing and conditioning on all non-gender factors that may shift around the editor’s threshold,

putting aside the identification challenge of inframarginality bias from using average citations to

try to infer the citation outcomes of marginally accepted papers.

In college admissions, an active literature on “mismatch” studies whether students from different

19E.g., Dharmapala and Ross (2004); Antonovics and Knight (2009); Dominitz and Knowles (2006); Bjerk (2007);
Persico (2009); Brock et al. (2012).
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demographic backgrounds reap different returns to attending more selective institutions.20 Viewed

as an outcome test, an analyst might consider whether outcome differences among marginally ad-

mitted applicants are informative about a college’s preferences over applicant demographics (Bhat-

tacharya and Shvets, 2022), given that differences in admission rates across groups may simply

reflect selection on applicant characteristics unobserved by the analyst. Imposing an ERM in this

setting to satisfy Theorem 4.2 would require ruling out any other college objectives—beyond the an-

alyst’s observed outcome, often degree completion or earnings—that vary with analyst-unobserved

student characteristics.21

A final example is welfare programs with examiner discretion, like disability insurance, where

an analyst might consider testing for bias among case examiners by comparing the subsequent

labor market outcomes of marginally rejected applicants from different groups. Imposing the ERM

in this setting would require an examiner to approve or reject applicants solely by comparing

expected employment or earnings potential to a cutoff, where that cutoff may vary across the group

membership potentially subject to bias but not across any other applicant or case characteristics

excluded from the analyst’s data set.

Regardless of the specific empirical setting, our results highlight that testing for bias according

to the definitions in Section 3 requires the analyst to specify a model of decision maker behavior

that forges a sufficiently tight link between potential outcomes and decisions. Otherwise, logical

validity of outcome tests can fail. Writing down an explicit model of decision making is therefore

a crucial part of testing for bias, as it clarifies exactly how the analyst is defining bias and what,

if anything, the data can reveal about such bias. While this is not a new insight (e.g., Becker,

1957; Heckman, 1998; Knowles et al., 2001; Anwar and Fang, 2006), it is a useful reminder given

that much of the empirical literature on discrimination does not employ explicit models of decision

making, failing to clarify when and why observed disparities should be equated with decision maker

bias.

20E.g., Arcidiacono and Lovenheim (2016); Bleemer (2022); Mountjoy and Hickman (2021).
21Legacy students, for example, may be more generous in their future donations to the college compared to non-

legacies with the same earnings, incentivizing colleges to lower their admission threshold for applicants with legacy
status (e.g., Arcidiacono et al., 2021).
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5 Econometric Viability of Outcome Tests of Bias

The outcome test of bias requires the analyst to compare the outcomes of marginal individuals

across groups, as formalized in Section 4.1. Our discussion up to this point focused on the logical

validity of this test, which addressed the question of whether group differences in the outcomes of

marginal individuals, even if perfectly known, are informative about the presence and magnitude of

decision maker bias. In this section, we turn to the question of identifying these objects from data,

as outcomes of marginal individuals are rarely observed directly by the analyst. In Section 5.1,

we consider the best-case scenario of local instrumental variation across continuously distributed

and exogenously assigned decision makers. In Section 5.2, we shift attention to other settings and

data environments, including the empirically relevant situations of discrete instruments and no

instruments.

5.1 Best-Case Scenario with Continuous and Exogenous Decision Makers

Depending on the setting, the support of decision makers Z could be modeled as a continuum

in R or as a discrete set with few or many elements. In the best-case scenario of continuous

and exogenous variation in Z, researchers typically invoke the marginal treatment effect (MTE)

framework of Heckman and Vytlacil (2005) and use the local instrumental variables (LIV) estimand

to try to recover the outcome test’s parameters of interest as MTEs. In this subsection, we show

that this approach delivers an econometrically viable outcome test under the ERM. In Appendix

B, we show that the GRM, in contrast, not only fails to deliver a logically valid test, but also

does not permit identification of the marginal outcomes of interest without additional restrictions.

Importantly, imposing such restrictions to ensure identification of MTEs under the GRM does

not address the issues of logical failure identified in Section 4. An analyst who does not impose

the ERM may therefore successfully identify marginal outcome differences across groups that are

nevertheless uninformative about decision maker bias as defined in Section 3.

Observed and Unobserved Variables

Let (Y, Z,D,R,X) be the random vector collecting all the variables observed by the analyst. As

before, Z denotes a decision maker who is exogenously assigned to cases and makes a binary decision
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D = DZ regarding an individual characterized by group membership R. The observed outcome

of interest, Y , relates to the potential outcomes by the relationship Y = DY1 + (1 − D)Y0. For

concreteness, we continue to ground our discussion in the setting of racial bias in pre-trial release,

where Y is a measure of pre-trial misconduct and R denotes the defendant’s race.

More generally, our analysis applies to any outcome variable Y ∈ R, as well as any group

stratification variable R taking finitely many values. With X denoting the set of covariates that

are observed by both the judge and the analyst, the analyst could choose other elements of X as

the group membership of interest for an outcome test, like gender, age, or nationality. In that case,

R would represent this group membership of interest, and race would be an element of the covariate

set X. All of the analysis then proceeds by conditioning on necessary elements of X (which we keep

implicit in the notation) and conducting comparisons across values of R. Importantly, however,

note that the analyst does not observe the random variable V that captures all of the non-race

defendant characteristics that are only observed by the judge.22

Local IV Successfully Implements the Outcome Test under the ERM

We now show that under the ERM, the local IV (LIV) estimand identifies the marginal treatment

effects of interest for the outcome test. The argument proceeds in two steps: (i) the ERM has a

separable index model representation and thus ensures that LIV recovers an MTE for each race, and

(ii) the ERM also ensures that these race-specific MTEs correspond to the parameters of interest

in a logically valid outcome test.

To show (i), we map the decision model into the MTE framework by writing the general release

decision in (4) as a latent index model,

D = I
{
ζ(Z,R, V ) ≤ 0

}
, (20)

where ζ(Z,R, V ) ≡ E[∆|R, V ]− τ(Z,R, V ) represents the net cost of release. Under the ERM, τ(·)
22While the dimension of V did not affect the results in Section 4, here we invoke results from the MTE framework

that are better described for a scalar V . Most of the results could be extended to the vector case at the cost of more
complex notation, but we prefer to focus on the case of a scalar V for the sake of clarity.
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does not depend on V , yielding an index that is separable in Z and V :

ζ(Z,R, V ) ≡ E[∆|R, V ]− τ(Z,R) . (21)

Separability of the latent index between the instrument and unobserved heterogeneity plays an

important role in the identification of MTEs via LIV.23 When the function ζ(Z,R, V ) is separable

in Z and V , as in the ERM, there is a convenient representation of the decision equation in terms

of the propensity score p(z, r) ≡ P{D = 1|Z = z,R = r} and a uniformly distributed random

variable Ur. Specifically, let Fr(·) denote the CDF of E[∆|R, V ] conditional on R = r, which is

assumed to be one-to-one. Then,

D = I{ζ(z, r, V ) ≤ 0} = I{Fr(E[∆|r, V ]) ≤ Fr(τ(z, r))} = I{Ur ≤ p(z, r)} , (22)

where Ur ∼ U [0, 1] and p(z, r) = Fr(τ(z, r)).

With this representation, marginal defendants of race r facing judge z are characterized by

Ur = u∗z,r ≡ p(z, r), and the marginal treatment effect of releasing such defendants is E[∆|R =

r, Ur = u∗z,r].
24 Heckman and Vytlacil (2005) show that this MTE, defined with respect to Ur, is

identified by the LIV estimand,

LIV (r, p̃) ≡ ∂

∂p̃
E[Y |R = r, p(z, r) = p̃] = E[∆|R = r, Ur = u∗z,r] , (23)

which establishes (i) above.

To show (ii), we return to the decision model in terms of V . Denote by {v∗z,r,j : j ∈ Jz,r} the set

of marginal values of V for judge z and defendant race r such that ζ(z, r, v∗z,r,j) = 0, and assume

for simplicity that there are countably many such values. Appendix A.4 then adapts Heckman and

Vytlacil (2001) to show that the LIV estimand in (23) equals a weighted average of MTEs defined

with respect to V :

LIV (r, p(z, r)) =
∑

j∈Jz,r

wj(z, r)E[∆|R = r, V = v∗z,r,j ] , (24)

23As shown by Vytlacil (2002), separability implies the instrument monotoniticy assumption typically invoked in
the LATE framework of Imbens and Angrist (1994).

24Despite being random quantities, we use lowercase letters to denote the marginal defendant u∗z,r (or v∗z,r) below.
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where the weights wj(z, r) add up to one. In the ERM, the weights wj(z, r) are also non-negative,

as additive separability of ζ(Z,R, V ) guarantees that the partial derivatives ζz(z, r, v
∗
z,r,j), which

determine the sign of wj(z, r), must all share the same sign across all marginal values indexed by

j ∈ Jz,r. More importantly, the ERM ensures that E[∆|R = r, V = v∗z,r,j ] = τ(z, r) for all j ∈ Jz,r.

Putting these results together leads to the following result for the ERM:

LIV (r, p(z, r)) = E[∆|R = r, Ur = u∗z,r] = E[∆|R = r, V = v∗z,r,j ] = τ(z, r) ∀j ∈ Jz,r . (25)

In other words, under the ERM, the LIV estimand evaluated at a given z and r identifies the

MTE corresponding to judge z’s marginal defendants of race r, defined in two ways: in terms of

the normalized unobservable Ur typically used in the empirical MTE literature, and also in terms

of the unobservable defendant characteristics V from the underlying decision model. These MTEs,

in turn, identify the constant value of the benefit function used by judge z when facing defendants

of a given race r. The outcome test of τ -bias for a particular judge z can therefore be successfully

implemented under the ERM via comparisons of LIV estimands across race, i.e.,

LIV (w, p(z, w))− LIV (b, p(z, b)) = τ(z, w)− τ(z, b) . (26)

Testable Implications of the Extended Roy Model

Our results up to this point have shown that the ERM delivers both a logically valid and economet-

rically viable outcome test in settings with exogenous and continuous variation across decision mak-

ers. The ERM places substantive restrictions on decision maker behavior, however, so researchers

interested in imposing the ERM to conduct a valid outcome test must justify its applicability in a

given setting. Usefully, the ERM has the following testable implication (not shared by the GRM),

which establishes a necessary condition for the suitability of the ERM in a given environment.

Proposition 5.1. Assume the CDF of E[∆|R, V ] conditional on R = r is one-to-one. Then in the

ERM, E[∆|R = r, Ur = p(z, r)] is strictly increasing in the propensity score for each r ∈ {w, b}.

See Appendix A.3 for the proof. Intuitively, an ERM judge z with a relatively high propensity

score for a given race r must be a judge with a relatively high fixed threshold τ(z, r) of tolerable

misconduct effects for that race. Since marginal defendants are those with misconduct effects equal
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to this tolerance threshold, the MTEs that identify marginal misconduct effects of defendants of

race r facing judge z must be increasing in the judge propensity score p.25 Since these MTEs are

the objects of interest in the outcome test, assessing whether they are strictly increasing—and thus

assessing the suitability of the ERM in a given setting—is a natural next step after their estimation.

Remark 5.1. When E[∆|R = r, Ur = p(z, r)] is strictly increasing in p for each r ∈ {w, b}, the

ERM is not rejected by the data, at least with respect to the testable implication in Proposition

5.1. Hull (2021) builds on our results to interpret the modeling restrictions of the ERM as “without

loss of generality” when MTEs are strictly increasing.26 This interpretation confounds the question

of whether models are rejected given the data at hand with the question of how to choose between

alternative model-based interpretations of a given estimand.

This observation has analogues in many econometric settings. A notable and instructive anal-

ogy is the 2SLS estimand with a binary treatment and valid binary instrument, Cov(Y,Z)
Cov(D,Z) . This

estimand admits at least three alternative interpretations, depending on the underlying model.

First, in a model with homogeneous treatment effects across individuals, i.e. Y1 − Y0 = c for some

constant c, the 2SLS estimand identifies c and thus is interpreted as the constant causal effect of the

treatment on the outcome. Alternatively, in a heterogeneous effect model that assumes instrument

monotonicity, as in Imbens and Angrist (1994), the 2SLS estimand identifies an average effect of

treatment solely among instrument compliers. Finally, in a heterogeneous effects model without

monotonicity, the 2SLS estimand identifies a linear combination of average effects among compliers

and defiers that generally fails to correspond to an average treatment effect for any (group of)

individuals. It is the choice of model—not the data—that ultimately distinguishes between these

three alternative and substantively different interpretations of the 2SLS estimand. Stating that

the 2SLS estimand admits a homogeneous treatment effect representation among observationally

equivalent individuals does not render treatment effects in fact homogeneous. Analogously, failing

to reject the ERM based on the testable implication in Proposition 5.1 does not mean imposing

the ERM leaves decision maker behavior unrestricted.

25This result is similar in spirit to the last sentence of Proposition 3 in Anwar and Fang (2006), which concerns the
ranking of average (rather than marginal) search outcomes across discrete police officer races (rather than individual
decision makers) who search drivers of a given race at different rates.

26Concretely, Hull (2021, p. 12) states that “whenever the race-specific MTE curves are strictly increasing there
exists a V such that decisions have an extended Roy model representation.”
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5.2 Other Settings and Data Environments

In many empirical settings, variation across decision makers Z may only be reasonably characterized

as discrete, rather than continuous, and decision makers may not be exogenously assigned to cases.

These deviations introduce additional challenges for identifying decision maker bias beyond the

logical and econometric issues discussed so far. In this subsection, we discuss these challenges and

potential solutions.

Discrete Instruments

We first consider settings in which decision makers Z continue to be exogenously assigned to

cases, and behave according to the Extended Roy Model (ERM), but Z may only be reasonably

characterized as discrete, rather than continuous. In this case, exploiting variation across different

decision makers can nonparametrically identify local average treatment effects (LATEs), but not

MTEs. Outcome tests that compare LATEs across groups are more problematic than the MTE-

based tests discussed up to this point, as instrument compliers now include individuals beyond those

directly on the decision maker’s margin of indifference. As such, the inframarginality problem re-

emerges as a challenge to identifying bias with discrete instruments (Arnold et al., 2018).

To illustrate this point, consider two judges z and z′ such that p(z, r) > p(z′, r) for a given race

R = r. We can write the LATE parameter as

LATEz
z′(r) =

∫ p(z,r)

p(z′,r)

MTE(r, ur)

p(z, r)− p(z′, r)
dur , (27)

such that the set of compliers can be described as {ur : p(z′, r) ≤ ur ≤ p(z, r)} in terms of Ur or as

Vzz′(r) ≡ {v : τ(z′, r) ≤ E[∆|r, v] ≤ τ(z, r)} (28)

in terms of the unobservable V entering the decision problem in (4).

A researcher may propose an outcome test in this setting that interprets the difference

LATEz
z′(w)− LATEz

z′(b) , (29)
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as evidence of racial bias. However, even in the context of an ERM where both judges are racially

τ -unbiased—i.e., τ(z, r) = τ(z) and τ(z′, r) = τ(z′) in (28)—the difference in (29) would not neces-

sarily be equal to zero. This is because the race-specific LATEs in (29) average across inframarginal

black and white compliers who differ from the marginal defendants of interest, analogous to the

case of average outcome comparisons that we discuss below. Settings where the support of Z is

discrete therefore introduce challenges to the outcome test that go beyond those we identified when

Z is continuous, and these challenges are similar to those that arise when exogenous instruments

are not even available.

Partial Identification

With discrete instruments, instead of attempting to point identify MTEs, one could approach the

problem from a different angle and consider partial identification of the MTEs of interest, and

bias in turn, by using strategies that restrict the range of admissible parameters using information

from the data. Anwar and Fang (2006) offer a pioneering example of this approach: rather than

attempting to directly identify the outcomes of marginal drivers of each race, they derive restrictions

on the rankings of decision rates and average outcomes across different officer groups under the

null hypothesis of unbiased ERM officers.27 A natural expansion of this approach when Z indexes

individual decision makers would apply the methods of Mogstad et al. (2018) to derive bounds

on the MTE functions implied by the LATE difference in (29) and other empirical moments that

constrain the set of possible MTEs. In the context of the ERM, the identified sets for the MTEs

may still be informative enough to make statements about the absence or presence of bias.

Average Outcome Comparisons without Instruments

In many empirical settings, cases are not exogenously assigned to decision makers. In such settings,

no valid instrument may be available, and the analyst must use a different identification strategy. A

widespread approach in the discrimination literature is to compare average post-decision outcomes

across groups for a given decision maker (or group of decision makers), typically after conditioning

27See also Alesina and La Ferrara (2014) and Marx (2022).
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on a set of observable covariates X (which we again suppress for parsimony):28

E[∆|w, z,D = 1]− E[∆|b, z,D = 1] , (30)

where for simplicity we assume the relevant outcome is ∆ ≡ Y1. In pre-trial release, for example,

the analyst considers comparing the average rate of pre-trial misconduct among white defendants

released by judge z versus the average rate of misconduct among black defendants released by the

same judge. The more general case of ∆ ≡ Y1−Y0 does not affect the derivations below but brings

additional identification challenges, as in some settings the analyst does not observe Y when D = 0.

The question of whether the observed difference in average outcomes in (30) is informative

about unobserved differences at the margin,

E[∆|w, v∗z,w]− E[∆|b, v∗z,b] , (31)

is a question about identification. In turn, the question of whether the marginal difference in (31)

is informative about decision maker bias is a question about logical validity. From our results in

Section 4, we know that unrestricted decision models do not yield logically valid outcome tests of

bias as defined in Section 3, even if the marginal outcome difference in (31) is perfectly known.

We therefore examine conditions an analyst could impose not only to render the average out-

come difference in (30) informative about the marginal difference in (31), but also to render (31)

informative about bias. To study clear and intuitive cases, assume V is scalar, E[∆|r, v] is strictly

increasing in v, and τ(z, r, v) is weakly decreasing in v, which ensures a unique type of marginal

defendant v∗z,r for each judge z and defendant race r. We also consider all of the analysis below

to be conditional on a given judge Z = z, which we leave implicit to reduce notation. With these

restrictions, the event D = 1 is equivalent to V ≤ v∗z,r; intuitively, if V represents a summary

measure of the defendant’s criminal history, then judge z releases all defendants of race r with

criminal history below the cutoff value v∗z,r, and detains all those above. This allows us to write

28Peterson (1981) and Berkovec et al. (1994) are early examples of this approach in the context of gender and racial
discrimination in lending, discussed in Ross and Yinger (2003). Charles and Guryan (2011) review similar approaches
in the context of racial discrimination in the labor market. More recent applications include gender bias in academic
publishing (Card and DellaVigna, 2020; Card et al., 2020; Hengel and Moon, 2020) and racial bias in police use of
force (Fryer, 2019).
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the estimand in (30) as

∫
E[∆|w, v]dFV |R=w,V≤v∗z,w(v)−

∫
E[∆|b, v]dFV |R=b,V≤v∗z,b(v) . (32)

This formulation highlights at least two distinct reasons why average outcome comparisons,

without further restrictions, fail to be informative about decision maker bias. Both involve the fact

that the two averages in (32) integrate over non-marginal values of V , sweeping in inframarginal

individuals who are irrelevant for the marginal comparison in (31)—i.e. the well-known “infra-

marginality” problem in the outcome test literature (e.g., Heckman et al., 1998; Knowles et al.,

2001; Ayres, 2002; Anwar and Fang, 2006). First, the distribution of V generally differs across R.

Integrating over non-marginal white and black defendants with arbitrarily different distributions of

V therefore allows the magnitude and sign of (32) to be arbitrarily different from that of (31). Sec-

ond, expected outcomes conditional on race and non-race characteristics, E[∆|R, V ], also generally

vary across R. The two averages in (32) thus integrate arbitrarily different conditional expectation

functions over inframarginal values of V , which is another reason the magnitude and sign of (32)

can differ arbitrarily from that of (31).

An analyst may attempt to solve the first problem by assuming that V is statistically indepen-

dent of R (again, typically after conditioning on X and Z, which we keep implicit):29

V ⊥⊥ R . (33)

Imposing (33) alone is insufficient, however, since the second problem still allows (32) to integrate

arbitrarily different conditional expectation functions over inframarginal values of V . An interesting

takeaway from this point is that assuming away racial differences in the characteristics observed by

the decision maker but not the analyst is not a sufficient condition for average outcome comparisons

like (30) to be informative about bias.

Likewise, the analyst may attempt to solve the second problem by excluding race R from the

29The assumption in (33) does not require specifying the functional form of FV . See Simoiu et al. (2017) and Arnold
et al. (2022) for alternative approaches that allow V to be distributed differently across R but impose parametric
assumptions on these distributions.
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expected cost/outcome function:

E[∆|R, V ] = E[∆|V ] . (34)

As discussed in Remark 4.6 and shown in Appendix C, this exclusion restriction (along with the

shape restrictions imposed to derive (32)) is sufficient for a logically valid outcome test, in that the

marginal comparison in (31) becomes informative about whether judge z is globally τ -biased. Im-

posing (34) is not sufficient on its own, however, to render the average difference in (32) informative

about the marginal difference in (31), leaving the average outcome difference still uninformative

about bias. The reason is that even if the outcome functions E[∆|V ] being integrated in (32) are

the same for white and black defendants with the same V , they are still weighted in the integration

by the arbitrarily different distributions FV |R=r,V≤v∗z,r across race r, as discussed above.

Imposing only one of (33) or (34) in isolation is therefore insufficient to render the average

outcome comparison in (32) informative about bias. Imposing both restrictions simultaneously,

however, does achieve this goal, at least with regard to global τ -bias and under the additional

shape restrictions imposed to derive (32). To see this, write (32) under all of these restrictions as

∫
E[∆|v]dFV |V≤v∗z,w(v)−

∫
E[∆|v]dFV |V≤v∗z,b(v) . (35)

First, suppose judge z is racially τ -unbiased, such that τ(z, r, v) = τ(z, v). Since neither the cost

function E[∆|V ] nor the benefit function τ(z, v) depend on r, neither does their intersection point

defining marginal defendants: v∗z,w = v∗z,b = v∗z . Then the average outcome difference in (35)

collapses to zero. Now suppose judge z is globally τ -biased against black defendants, such that

τ(z, w, v) > τ(z, b, v) for all v. Since E[∆|V ] is strictly increasing in V and τ(z, r, v) is weakly

decreasing in V for each r, it follows that v∗z,w > v∗z,b. In addition, with strictly increasing E[∆|v],

it follows from the properties of truncated distributions (and truncated expectations) that

∂

∂ṽ

∫
E[∆|v]dFV |V≤ṽ(v) > 0 ,

which implies the average outcome difference in (35) is positive given v∗z,w > v∗z,b. By an exactly

parallel argument, if judge z is globally τ -biased against white defendants, the average outcome

difference in (35) is negative.
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Thus, if the analyst is willing to impose both (33) and (34) (and the shape restrictions leading

to (32)), then the average outcome comparison in (30) will be informative about whether judge z

is globally τ -biased. To understand the intuition of this result, observe that (33) and (34) together

eliminate any role for race to influence expected outcomes, either directly as a relevant predictor

or indirectly through correlations with other non-race characteristics observed by the judge, which

eliminates any rationale for statistical discrimination. The only remaining channel through which

race could influence judge decisions and the outcomes of released defendants, both marginal and

inframarginal, is through the benefit function τ(·), i.e. through decision maker τ -bias.

Remark 5.2. The result above illustrates conditions under which average outcome comparisons

can be informative about the sign of judge z’s τ -bias. Contrasting the magnitude of (35) across

different judges z and z′, however, would not be informative about whether z is more or less τ -

biased than z′, even if judges were additionally assumed to satisfy the ERM and receive randomly

assigned cases. This is because, in contrast to the result in (16), the difference in (35) also integrates

over inframarginal individuals. Different judges can set different cutoff levels v∗z,b, which can lead

to arbitrarily different magnitudes of (35) even for ERM judges with the same magnitude of τ -bias,

which is only equal to expected outcome differences at the margin.

Remark 5.3. In the case of exogenous and continuous instrumental variation across decision

makers studied in Section 5.1, imposing an Extended Roy Model of decision maker behavior was

sufficient for a logically valid and econometrically identified outcome test. In contrast, in the case of

observational average comparisons like (30), imposing the ERM is neither necessary—as the result

above did not impose it—nor sufficient, as the inframarginality issues discussed after (32) would

remain regardless of whether an ERM were imposed.

Remark 5.4. Interestingly, imposing both (33) and (34) (and the shape restrictions leading to

(35)) to justify an average outcome test would actually render observing outcomes unnecessary.

The analyst could conduct an equivalent benchmark test that simply compares decision rates across

race for a given decision maker,

P{D = 1|R = w,Z = z} − P{D = 1|R = b, Z = z} = FV (v∗z,w)− FV (v∗z,b) . (36)
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since the sign of (36) must match the sign of (35) under these restrictions. The intuition here is

that while benchmark tests generally fail to be informative about bias because of racial differences

in unobservables and statistical discrimination, those are exactly the two phenomena shut down by

(33) and (34). With both outcomes and decisions observed, a testable condition of these restrictions

is that the sign of the average outcome test in (30) and the benchmark test in (36) must match.

6 Conclusion

In this paper, we have carefully examined what researchers can and cannot learn about bias in deci-

sion making from outcome tests. We showed that models of decision making underpinning outcome

tests can be usefully recast as Roy models, since heterogeneous potential outcomes enter directly

into the decision maker’s choice equation. Different members of the Roy model family, however,

are distinguished by the tightness of the link between potential outcomes and decisions, and we

showed that these distinctions have important implications for defining bias, deriving logically valid

outcome tests of such bias, and identifying the marginal outcomes that the test requires. Together,

these results offer a methodological guide for researchers considering the use of outcome tests to

detect bias across a wide range of empirical environments.
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A Proofs of the Main Theorems

Throughout the appendix, we define

Λ(R, V ) ≡ E[∆|R, V ] , (A.1)

and use the following spaces for the pair of functions Λ(r, ·) : V → R and τ(z, r, ·) : V → R. In addition,

to simplify our argument we assume throughout the appendix that V is scalar. We note, however, that our

results would extend to the case where V is a vector but assuming that the conditions we require below hold

for one of the components in V conditional on the rest of them.

Definition A.1. For fixed values of r ∈ {w, b} and z ∈ Z, F denotes the space of all pairs of functions

Λ(r, ·) : V → R and τ(z, r, ·) : V → R.

Definition A.2. Let V0 be an open subset of V. For fixed values of r ∈ {w, b} and z ∈ Z, Fm(V0) ⊆ F

denotes the space of all pairs of functions Λ(r, ·) and τ(z, r, ·) such that:

1. Λ(r, ·) : V → I ⊆ R is weakly monotone in v ∈ V0.

2. τ(z, r, ·) : V → I ⊆ R is weakly monotone in v ∈ V0.

3. For Il ≡ inf I and Iu ≡ sup I, Il < τ(z, r, v) < Iu for all v ∈ V0.

4. There exist v∗z,r ∈ V0 such that Λ(r, v∗z,r) = τ(z, r, v∗z,r).

5. The sets

V0
l ≡ {v ∈ V0 : τ(z, w, v) < τ(z, w, v∗z,w)} , and (A.2)

V0
u ≡ {v ∈ V0 : τ(z, w, v∗z,w) < τ(z, w, v)} (A.3)

are non-empty open subsets of V0.

Definition A.3. For fixed values of r ∈ {w, b} and z ∈ Z, Fcm(V0) ⊆ Fm(V0) denotes the space of all

pairs of functions Λ(r, ·) and τ(z, r, ·) satisfying the conditions in Definition A.2, where conditions 1 and 2

additionally require the functions to be continuous.
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Remark A.1. The space of functions Fm(V0) is quite general and flexible enough to accommodate a

variety of cases. To start, the space does not restrict the functions outside V0, but working with Fm(V) the

restrictions become global. Conditions 1 and 2 impose weak monotonicity. Note that the condition does not

state whether the monotonicity should be increasing or decreasing and that it does not impose continuity,

thus allowing for step functions. Condition 3 requires τ to be in the interior of its range on V0 to allow for

other functions to be either above or below it. Condition 4 requires crossing on V0. Condition 5 essentially

requires τ to vary on V0 and have a set of points with “high” values and a set of points with “low” values.

This assumption is only required for one value of r and, without loss of generality, here we assume that such

value is w.

A.1 Proof of Theorem 4.1

Note that, by definition of v∗z,r, the difference in (15) is the same as

τ(z, w, v∗z,w)− τ(z, b, v∗z,b) .

The proof for functions in F is therefore trivial, as these are two different functions evaluated at two different

points so we omit a detailed treatment here. The result becomes more interesting as we add more restrictions,

starting with Fm(V0). We divide the proof in cases and assume without loss of generality that Λ(r, v), as

defined in (A.1), is weakly increasing as the other case involves symmetric arguments.

Case (i). When z is racially τ -unbiased the function τ(z, r, v) does not depend on r and becomes τ(z, v).

Take (Λ(w, v), τ(z, v)) ∈ Fm(V0) and recall v∗z,w ∈ V0 is such that Λ(w, v∗z,w) = τ(z, v∗z,w). Choose a point in

V0
u such that τ(z, v) is continuous at the point and call it v∗z,b. By Definition A.2(5), τ(z, v∗z,b) > τ(z, v∗z,w).

Next, define two functions, Hr(v) and Gr(v), as follows. First,

Hr(v) = {continuous and weakly increasing function mapping V0 ∩ {v ≤ v∗z,r} to I

s.t. Hr(v) < τ(z, r, v) ∀v < v∗z,r and Hr(v
∗
z,r) = τ(z, r, v∗z,r)} . (A.4)

Such a function exists provided τ(z, r, v) > Il for all v ∈ V0 and τ(z, r, v) is continuous at v∗z,r. Second,

Gr(v) = {continuous and strictly increasing function mapping V0 ∩ {v > v∗z,r} to I

s.t. Gr(v) > τ(z, r, v) and lim
v→v∗z,r

Gr(v) = τ(z, r, v∗z,r)} . (A.5)

Such a function exists provided τ(z, r, v) < Iu for all v ∈ V0 and τ(z, r, v) is continuous at v∗z,r. If we now
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define

Λ(b, v) =


Hb(v) for v ∈ V0 ∩ {v ≤ v∗z,b}

Gb(v) for v ∈ V0 ∩ {v > v∗z,b}
, (A.6)

then Λ(b, v) belongs to Fm(V0) and satisfies Λ(b, v∗z,b) = τ(z, v∗z,b). The case leads to (15) being negative.

Replacing v∗z,b ∈ V0
u with v∗z,b ∈ V0

l as defined in Definition A.2(5), so that τ(z, v∗z,b) < τ(z, v∗z,w), and

following the same construction, leads to (15) being positive. Setting v∗z,b = v∗z,w or any other value of

v ∈ V0 such that τ(z, v) = τ(z, v∗z,w) leads to (15) being zero. In this last case the construction above works

provided τ(z, v) is continuous at v∗z,w; otherwise the functions Hb(v) and Gb(v) need to be slightly modified

but the arguments are similar and so we omit them here. Note that the exact same construction works on

Fcm(V0) since Λ(b, v) was chosen to be a continuous function. Also note that extending V0 to V does not

change any of the arguments either, and so the result holds on Fcm(V).

Case (ii). We show the case where the judge is globally biased against black defendants as the other

case is symmetric. Note that this situation necessarily implies that τ(z, w, v) > Il for all v ∈ V so we assume

this below. Take (Λ(w, v), τ(z, w, v)) ∈ Fm(V0) and recall v∗z,w ∈ V0 is such that Λ(w, v∗z,w) = τ(z, w, v∗z,w).

Define τ(z, b, v) on V as

τ(z, b, v) = γτ(z, w, v) + (1− γ)Il , (A.7)

where γ ∈ (0, 1) is defined below. It follows that τ(z, b, v) < τ(z, w, v) for all v ∈ V and judge z is globally

biased against black defendants. By construction, τ(z, b, v) satisfies Definitions A.2(2) and Definitions A.2(3).

In particular, note that τ(z, b, v) inherits the same monotonicity properties that τ(z, w, v) has. Next choose

a point in V0
u such that τ(z, w, v) is continuous at the point, call it v∗z,b, and then choose γ to satisfy

γ

1− γ
>

τ(z, w, v∗z,w)− Il
τ(z, w, v∗z,b)− τ(z, w, v∗z,w)

> 0 , (A.8)

where the last inequality follows from Definition A.2(5) implying τ(z, w, v∗z,b) > τ(z, w, v∗z,w). Finally, define

Λ(b, v) as in (A.6). Definitions A.2(1) and A.2(4) immediately hold, so we conclude that (Λ(b, v), τ(z, b, v)) ∈

Fm(V0). Putting all the pieces together,

Λ(b, v∗z,b) = τ(z, b, v∗z,b) > τ(z, w, v∗z,w) = Λ(w, v∗z,w) , (A.9)

where the strict inequality follows (A.8). The case leads to (15) being negative. For the case that leads to

(15) being zero, simply choose γ to satisfy (A.8) with the first inequality replaced by an equality. For the

case that leads to (15) being positive, set v∗z,b = v∗z,w and choose any value of γ ∈ (0, 1). Note that the exact

same construction works on Fcm(V0) since Λ(b, v) was chosen to be a continuous function and τ(z, b, v) in
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(A.7) would be continuous on V0 if τ(z, w, v) is also continuous. Finally, note that extending V0 to V does

not change any of the arguments either, and so the result holds on Fcm(V).

Case (iii). We show the case where the judge is locally biased against black defendants as the other

case is symmetric. Note that if Vsi ∩ V0 = ∅, then τ(z, r, v) = τ(z, v) for all v ∈ V0 and the proof follows

from the proof of Case (i). We therefore consider a construction where Vsi ∩ V0 6= ∅ and focus on the case

where Vsi = (
¯
v, v̄) ⊆ V0 since other cases require essentially the same arguments. Take (Λ(w, v), τ(z, w, v)) ∈

Fm(V0) and recall v∗z,w ∈ V0 is such that Λ(w, v∗z,w) = τ(z, w, v∗z,w).

Start with the case where τ(z, w, v) is decreasing and note that it must be case that τ(z, w, v) > τ(z, w, v̄)

for v < v̄ in order for τ(z, b, v) to satisfy Definition 3.4 without violating weak monotonicity at v̄. Define

τ(z, b, v) on V as

τ(z, b, v) ≡


γτ(z, w, v) + (1− γ)τ(z, w, v̄) for v ∈ (

¯
v, v̄)

τ(z, w, v) for v 6∈ (
¯
v, v̄)

, (A.10)

for some γ ∈ (0, 1). It follows that τ(z, b, v) < τ(z, w, v) for all v ∈ (
¯
v, v̄) and judge z is locally biased against

black defendants. By construction, τ(z, b, v) satisfies Definitions A.2(2) and Definitions A.2(3). To check

that τ(z, b, v) is decreasing, note that for any v′ ≤
¯
v and v′′ ∈ (

¯
v, v̄),

τ(z, b, v′) = τ(z, w, v′) > γτ(z, w, v′) + (1− γ)τ(z, w, v̄) ≥ γτ(z, w, v′′) + (1− γ)τ(z, w, v̄) = τ(z, b, v′′) ,

with a similar argument applying to points v′′ ∈ (
¯
v, v̄) and v′′′ ≥ v̄. Next choose a point in V0

u such that

τ(z, w, v) is continuous at the point and call it v∗z,b. Since τ(z, w, v) is decreasing, we can choose v∗z,b to

satisfy v∗z,b ≤ ¯
v. Finally, define Λ(b, v) as in (A.6). Definitions A.2(1) and A.2(4) immediately hold, so we

conclude that (Λ(b, v), τ(z, b, v)) ∈ Fm(V0). It then follows that

Λ(b, v∗z,b) = τ(z, b, v∗z,b) > τ(z, w, v∗z,w) = Λ(w, v∗z,w) , (A.11)

where the strict inequality comes from τ(z, b, v∗z,b) = τ(z, w, v∗z,b) > τ(z, w, v∗z,w) since v∗z,b ≤ ¯
v. This case

leads to (15) being negative. For the case that leads to (15) being zero, simply choose v∗z,b = v∗z,w if

v∗z,w 6∈ (
¯
v, v̄). If v∗z,w ∈ (

¯
v, v̄) then we need a point v∗z,b ∈ (

¯
v, v̄) such that τ(z, w, v∗z,b) > τ(z, w, v∗z,w) in order

to set γ to satisfy

γ

1− γ
=

τ(z, w, v∗z,w)− τ(z, w, v̄)

τ(z, w, v∗z,b)− τ(z, w, v∗z,w)
.

Otherwise exact equality may not arise unless τ(z, w,
¯
v) = τ(z, w, v∗z,w). For the case that leads to (15)

being positive, choose v∗z,b in V0
l so that v∗z,b ≥ v̄. The construction we just derived is simple, but it

does not cover the case where the space is Fcm(V0) since, even when τ(z, w, v) is everywhere continuous,
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τ(z, b, v) would exhibit a discontinuity at
¯
v by construction. This, however, can be easily fixed by re-defining

τ(z, b, v) on (
¯
v,

¯
v + ε) for some ε > 0 small as the linear function connecting the points (

¯
v, τ(z, w,

¯
v)) and

(
¯
v + ε, γτ(z, w,

¯
v + ε) + (1 − γ)τ(z, w, v̄)). When τ(z, w, v) is decreasing and continuous, we can choose ε

small enough to guarantee that such a line would be strictly below τ(z, w, v) on (
¯
v,

¯
v+ ε). Finally, note that

extending V0 to V does not change any of the arguments, and so the result holds on Fcm(V).

Next consider the case where τ(z, w, v) is increasing and note that it must be case that τ(z, w, v) >

τ(z, w,
¯
v) for v >

¯
v in order for τ(z, b, v) to satisfy Definition 3.4 without violating weak monotonicity at

¯
v.

Define τ(z, b, v) on V as

τ(z, b, v) ≡


γτ(z, w, v) + (1− γ)τ(z, w,

¯
v) for v ∈ (

¯
v, v̄)

τ(z, w, v) for v 6∈ (
¯
v, v̄)

, (A.12)

for some γ ∈ (0, 1). It follows that τ(z, b, v) < τ(z, w, v) for all v ∈ (
¯
v, v̄) and judge z is locally biased against

black defendants. By construction, τ(z, b, v) satisfies Definitions A.2(2) and Definitions A.2(3). To check

that τ(z, b, v) is increasing, note that for any v′ ≤
¯
v and v′′ ∈ (

¯
v, v̄),

τ(z, b, v′) ≤ τ(z, w,
¯
v) = γτ(z, w,

¯
v) + (1− γ)τ(z, w,

¯
v) < γτ(z, w, v′′) + (1− γ)τ(z, w,

¯
v) = τ(z, b, v′′) ,

with a similar argument applying to points v′′ ∈ (
¯
v, v̄) and v′′′ ≥ v̄. Next choose a point in V0

u such that

τ(z, w, v) is continuous at the point and call it v∗z,b. Since τ(z, w, v) is increasing, we can choose v∗z,b to

satisfy v∗z,b ≥ v̄. Finally, define Λ(b, v) as in (A.6). Definitions A.2(1) and A.2(4) immediately hold, so we

conclude that (Λ(b, v), τ(z, b, v)) ∈ Fm(V0). It then follows that

Λ(b, v∗z,b) = τ(z, b, v∗z,b) > τ(z, w, v∗z,w) = Λ(w, v∗z,w) , (A.13)

where the strict inequality comes from τ(z, b, v∗z,b) = τ(z, w, v∗z,b) > τ(z, w, v∗z,w) since v∗z,b ≥ v̄. This case

leads to (15) being negative. For the case that leads to (15) being zero, simply choose v∗z,b = v∗z,w if

v∗z,w 6∈ (
¯
v, v̄). If v∗z,w ∈ (

¯
v, v̄) then we need a point v∗z,b ∈ (

¯
v, v̄) such that τ(z, w, v∗z,b) > τ(z, w, v∗z,w) in order

to set γ to satisfy

γ

1− γ
=

τ(z, w, v∗z,w)− τ(z, w,
¯
v)

τ(z, w, v∗z,b)− τ(z, w, v∗z,w)
.

Otherwise exact equality may not arise unless τ(z, w, v̄) = τ(z, w, v∗z,w). For the case that leads to (15) being

positive, choose v∗z,b in V0
l so that v∗z,b ≤ ¯

v. The construction we just derived is simple, but it does not cover

the case where the space is Fcm(V0) since, even when τ(z, w, v) is everywhere continuous, τ(z, b, v) would

exhibit a discontinuity at v̄ by construction. This, however, can be easily fixed by re-defining τ(z, b, v) on
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(v̄ − ε, v̄) for some ε > 0 small as the linear function connecting the points (v̄ − ε, γτ(z, w, v̄ − ε) + (1 −

γ)τ(z, w,
¯
v)) and (v̄, τ(z, w, v̄). When τ(z, w, v) is increasing and continuous, we can choose ε small enough

to guarantee that such a line would be strictly below τ(z, w, v) on (v̄− ε, v̄). Finally, note that extending V0

to V does not change any of the arguments, and so the result holds on Fcm(V).

Case (iv). This case is similar to the other cases so we only characterize the simplest situation and omit

the details of the rest. Take (Λ(w, v), τ(z, w, v)) ∈ Fcm(V0) and recall v∗z,w ∈ V0 is such that Λ(w, v∗z,w) =

τ(z, w, v∗z,w). Consider the case where τ(z, w, v) is strictly decreasing for simplicity and define

τ(z, b, v) ≡ γτ(z, w, v) + (1− γ)τ(z, w, v∗z,w) , (A.14)

for γ ∈ (0, 1). By construction, τ(z, b, v) satisfies Definitions A.3(2) and Definitions A.3(3). In addition,

τ(z, b, v) < τ(z, w, v) for v < v∗z,w, τ(z, b, v∗z,w) = τ(z, w, v∗z,w), and τ(z, b, v) > τ(z, w, v) for v > v∗z,w. The

judge is then unclassified, as she exhibits higher expected benefits for one race or the other one depending

on the values of v. Next, for a given value of v∗z,b, define Λ(b, v) as in (A.6). Definitions A.3(1) and A.3(4)

immediately hold, so we conclude that (Λ(b, v), τ(z, b, v)) ∈ Fcm(V0). To finish the argument, note that by

strict monotonicity of τ(z, w, v),

τ(z, b, v) = γτ(z, w, v) + (1− γ)τ(z, w, v∗z,w) > γτ(z, w, v∗z,w) + (1− γ)τ(z, w, v∗z,w) = τ(z, w, v∗z,w) (A.15)

for any v < v∗z,w and

τ(z, b, v) = γτ(z, w, v) + (1− γ)τ(z, w, v∗z,w) < γτ(z, w, v∗z,w) + (1− γ)τ(z, w, v∗z,w) = τ(z, w, v∗z,w) (A.16)

for any v > v∗z,w. This means that choosing v∗z,b < v∗z,w leads to (15) being negative, choosing v∗z,b = v∗z,w

leads to (15) being zero, and choosing v∗z,b > v∗z,w leads to (15) being positive. This completes the proof.

A.2 Proof of Theorem 4.2

By the definition of the marginal defendant in (12), it must be the case that

Λ(w, v∗z,w) = τ(z, w) and Λ(b, v∗z,b) = τ(z, b) .

It follows immediately that

Λ(w, v∗z,w)− Λ(b, v∗z,b) = τ(z, w)− τ(z, b) , (A.17)
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and so the outcome test concludes there is no evidence of racial bias if and only if judge z ∈ Z is racially

τ -unbiased, i.e., τ(z, r) = τ(z). Similarly, the outcome test concludes that judge z is biased against black

defendants, Λ(w, v∗z,w) > Λ(b, v∗z,b), if and only if judge z ∈ Z is racially τ -biased against black defendants.

The same holds for τ -biased against white defendants and this concludes the proof.

A.3 Proof of Proposition 5.1

Let FΛ|R(·) denote the CDF of Λ(R, V ) ≡ E[∆|R, V ] conditional on R, which is assumed to be one-to-one

for each value in the support of R. Evaluating MTE(r, u) at u = p(z, r) yields

MTE(r, p(z, r)) = E[∆|R = r, Ur = p(z, r)]

= E[∆|R = r, FΛ|r(Λ(r, V )) = FΛ|r(τ(z, r))]

= E[∆|R = r,Λ(r, V ) = τ(z, r)]

= τ(z, r)

= F−1
Λ|r(p(z, r)) , (A.18)

where the first and second equality use the representation D = I{Ur ≤ p(z, r)}, the second equality exploits

that the event {Ur = p(z, r)} is equivalent to the event {FΛ|r(Λ(r, V )) = FΛ|r(τ(z, r))} in the ERM, and the

third and last equality follow from FΛ|r(·) being one-to-one.

A.4 Interpretation of the LIV Estimand without Separability

Consider the latent index model in (20) without additive separability. For simplicity of the argument, assume

the function ζ(z, r, v) has a countable number of crossing points v such that ζ(z, r, v) = 0 for each (z, r) as in

Heckman and Vytlacil (2001, Appendix). The results below, however, conceptually extend to the case where

there are unaccountably many crossing points at the cost of more cumbersome notation. Assume additionally

that ζ(z, r, v) is continuously differentiable in (z, v) for each value of r. Let j ∈ Jz,r index the set of v points

such that the latent index is zero, so that ζ(z, r, v∗j ) = 0 for all j ∈ Jz,r. |Jz,r| > 1 could arise, for example,

when v is a scalar and the function τ(z, r, v) is non-monotonic in v, or when v is multi-dimensional. Also

note that the values {v∗j : j ∈ Jz,r} depend on z and r, but we suppress such dependence throughout this
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appendix for parsimony. It follows from standard manipulations (see Section A.4.1 below) that

∂

∂z
E[Y |Z = z,R = r] = −

∑
j∈Jz,r

ζz(z, r, v
∗
j )

|ζv(z, r, v∗j )|
fv|r(v

∗
j )E[∆|R = r, V = v∗j ] ,

∂

∂z
p(z, r) = −

∑
j∈Jz,r

ζz(z, r, v
∗
j )

|ζv(z, r, v∗j )|
fv|r(v

∗
j ) ,

where ζz(·) and ζv(·) denote the partial derivatives of ζ(·) with respect to z and v, and fv|r(v
∗
j ) is the

conditional density of V given (R = r, Z = z), which only depends on R = r since V is independent of Z.

The LIV estimand is the ratio of these two terms:

LIV (r, p(z, r)) =
∂
∂zE[Y |Z = z,R = r]

∂
∂zp(z, r)

=
∑
j∈Jz,r

wj(z, r)E[∆|R = r, V = v∗j ] , (A.19)

where the weights wj(z, r) are given by

wj(z, r) =

ζz(z,r,v∗j )

|ζv(z,r,v∗j )|fv|r(v
∗
j )∑

j∈Jz,r
ζz(z,r,v∗j )

|ζv(z,r,v∗j )|fv|r(v
∗
j )

. (A.20)

It follows that the LIV estimand, evaluated at a particular judge z and defendant race r, is a weighted

average of E[∆|r, v∗j ] associated with each of the crossing points v∗j for j ∈ Jz,r, i.e. all defendants of race

r who are marginal for judge z. While these weights necessarily add up to one, they could be negative,

meaning that the LIV estimand may be negative even when E[∆|r, v∗j ] > 0 for all j ∈ Jz,r. This is because

ζz(z, r, v
∗
j ) could be positive for some j and negative for others; intuitively, reassigning one of judge z’s

marginal defendants to a nearby judge z′ could raise the value of the benefit function τ(·), while the same

reassignment of another of judge z’s marginal defendants could lower the value of the benefit function.

As an illustration, consider a case where |Jz,r| = 2, so there are two values of V that characterize

marginal defendants. This could arise when v is a scalar and the function τ(·) is quadratic in v, or when

v is multi-dimensional. For example, suppose that v = (v1, v2) where v1 takes values {0, 1} and v2 takes

values in R. Consider the case where τ(z, r, v) = τ1(z, r) + av1 − v2 for some function τ1(z, r) and constant

a ∈ R. Then, for any τ∗ in the range of τ(·) we obtain that τ(z, r, v) = τ∗ for v = (1, τ1(z, r) + a− τ∗) and

v = (0, τ1(z, r)− τ∗).

Additive separability of the latent index ζ(z, r, v) in z and v guarantees that the weights wj(z, r) in

(A.20) are positive, since in that case ζz(z, r, v) is either positive or negative for all v ∈ V. Indeed, additive
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separability ensures that the derivative ζz(z, r, v
∗
j ) in (A.20) does not depend on v∗j and so

wj(z, r) =

fv|r(v∗j )

|ζv(z,r,v∗j )|∑
j∈Jz,r

fv|r(v∗j )

|ζv(z,r,v∗j )|

> 0 . (A.21)

A.4.1 Proof of (A.19)

We start with the denominator. In order to simplify the expressions, we remove the dependence of Jz,r on

(z, r) and simply write J from here on. We also keep implicit regularity assumptions that guarantee that all

denominators are non-zero as well as conditions on the conditional (on R) density of V that guarantee that

the expressions for the integrals we write below are valid. Let Vz,r ≡ {v ∈ V : ζ(z, r, v) ≤ 0} and note that

we can order the crossing points {v∗j : j ∈ J} from smallest to largest. By the implicit function theorem,

dv∗j
dz

= −
ζz(z, r, v

∗
j )

ζv(z, r, v∗j )
(A.22)

where ζz and ζv denote the partial derivatives of ζ with respect to z and v. Next, let fv|r(v) be the conditional

on (z, r) density of v. Since Z ⊥ V , this conditional density does not depend on z. Finally, consider the case

where ζ(z, r, v) > 0 for v ∈ (−∞, v∗1), as the other case involves similar arguments. We can then write

P{D = 1|Z = z,R = r} =

∫
Vz,r

fv|r(v)dv

=

∫ v∗2

v∗1

fv|r(v)dv +

∫ v∗4

v∗3

fv|r(v)dv +

∫ v∗6

v∗5

fv|r(v)dv + · · · .

Taking derivatives, using (A.22), and noting that fv|r(v) is not a function of z, we get

∂

∂z
P{D = 1|Z = z,R = r} = fv|r(v

∗
2)
dv∗2
dz
− fv|r(v∗1)

dv∗1
dz

+ fv|r(v
∗
4)
dv∗4
dz
− fv|r(v∗3)

dv∗3
dz

+ fv|r(v
∗
6)
dv∗6
dz
− fv|r(v∗5)

dv∗5
dz

+ fv|r(v
∗
8)
dv∗8
dz
− fv|r(v∗7)

dv∗7
dz

+ · · ·

= −fv|r(v∗1)
ζz(z, r, v

∗
1)

|ζv(z, r, v∗1)|
− fv|r(v∗2)

ζz(z, r, v
∗
2)

|ζv(z, r, v∗2)|
− fv|r(v∗3)

ζz(z, r, v
∗
3)

|ζv(z, r, v∗3)|
− · · ·

= −
∑
j∈J

fv|r(v
∗
j )
ζz(z, r, v

∗
j )

|ζv(z, r, v∗j )|
, (A.23)

where the second equality follows because ζv(z, r, v
∗
j ) < 0 for all odd values of j and ζv(z, r, v

∗
j ) > 0 for all

even values of j. In the case where ζ(z, r, v) < 0 for v ∈ (−∞, v∗1), the first integral in the expression goes

from −∞ to v∗1 and in that case ζv(z, r, v
∗
j ) > 0 for all odd values of j and ζv(z, r, v

∗
j ) < 0 for all even values

of j. The resulting expression is the same.

Now consider the numerator. Let Vz,r be defined as before and note that we can order the crossing
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points {v∗j : j ∈ J} from smallest to largest. Consider the case where ζ(z, r, v) > 0 for v ∈ (−∞, v∗1), as the

other case involves similar arguments. We can then write

E[Y |Z = z,R = r] = E [E[Y |Z = z,R = r,D]|Z = z,R = r]

= E[Y1|Z = z,R = r,D = 1]p(z, r) + E[Y0|Z = z,R = r,D = 0](1− p(z, r))

= E[Y1|Z = z,R = r, v ∈ Vz,r]p(z, r) + E[Y0|Z = z,R = r, v ∈ Vcz,r](1− p(z, r))

=

∫
Vz,r

E[Y1|Z = z,R = r, V = v]p(z, r)fv|r(v|v ∈ Vz,r)

+

∫
Vc

z,r

E[Y0|Z = z,R = r, V = v](1− p(z, r))fv|r(v|v ∈ Vcz,r)

=

∫
Vz,r

E[Y1|R = r, V = v]fv|r(v)I{v ∈ Vz,r} (A.24)

+

∫
Vc

z,r

E[Y0|R = r, V = v]fv|r(v)I{v ∈ Vcz,r} , (A.25)

where the first equality follows by the LIE, the second equality follows by the definition of propensity score,

and the last equality follows from the definition of the condition density

fv|r(v|v ∈ A) =
fv|r(v)I{v ∈ A}
Pr{v ∈ A|R = r}

, (A.26)

and the independence of Z. The term in (A.24) can be worked out as in the previous proof by first writing,

∫
Vz,r

E[Y1|R = r, V = v]fv|r(v) =

∫ v∗2

v∗1

E[Y1|R = r, V = v]fv|r(v)dv

+

∫ v∗4

v∗3

E[Y1|R = r, V = v]fv|r(v)dv +

∫ v∗6

v∗5

E[Y1|R = r, V = v]fv|r(v)dv + · · · .

and then taking derivatives with respect to z,

∂

∂z

∫
Vz,r

E[Y1|R = r, V = v]fv|r(v) = E[Y1|R = r, V = v∗2 ]fv|r(v
∗
2)
dv∗2
dz
− E[Y1|R = r, V = v∗1 ]fv|r(v

∗
1)
dv∗1
dz

+ E[Y1|R = r, V = v∗4 ]fv|r(v
∗
4)
dv∗4
dz
− E[Y1|R = r, V = v∗3 ]fv|r(v

∗
3)
dv∗3
dz

+ · · ·

= −E[Y1|R = r, V = v∗1 ]fv|r(v
∗
1)
ζz(z, r, v

∗
1)

|ζv(z, r, v∗1)|

− E[Y1|R = r, V = v∗2 ]fv|r(v
∗
2)
ζz(z, r, v

∗
2)

|ζv(z, r, v∗2)|

− E[Y1|R = r, V = v∗3 ]fv|r(v
∗
3)
ζz(z, r, v

∗
3)

|ζv(z, r, v∗3)|
− · · ·

= −
∑
j∈J

E[Y1|R = r, V = v∗j ]fv|r(v
∗
j )
ζz(z, r, v

∗
j )

|ζv(z, r, v∗j )|
,
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where we again used that ζv(z, r, v
∗
j ) < 0 for all odd values of j and ζv(z, r, v

∗
j ) > 0 for all even values of j.

The term in (A.25) can be worked out similarly since,

∫
Vc

z,r

E[Y0|R = r, V = v]fv|r(v) =

∫ v∗1

−∞
E[Y0|R = r, V = v]fv|r(v)dv

+

∫ v∗3

v∗2

E[Y0|R = r, V = v]fv|r(v)dv +

∫ v∗5

v∗4

E[Y0|R = r, V = v]fv|r(v)dv + · · · .

and then taking derivatives with respect to z,

∂

∂z

∫
Vc

z,r

E[Y0|R = r, V = v]fv|r(v) = E[Y0|R = r, V = v∗1 ]fv|r(v
∗
1)
dv∗1
dz
− E[Y0|R = r, V = v∗2 ]fv|r(v

∗
2)
dv∗2
dz

+ E[Y0|R = r, V = v∗3 ]fv|r(v
∗
3)
dv∗3
dz
− E[Y0|R = r, V = v∗4 ]fv|r(v

∗
4)
dv∗4
dz

+ · · ·

= E[Y0|R = r, V = v∗1 ]fv|r(v
∗
1)
ζz(z, r, v

∗
1)

|ζv(z, r, v∗1)|
+ E[Y0|R = r, V = v∗2 ]fv|r(v

∗
2)
ζz(z, r, v

∗
2)

|ζv(z, r, v∗2)|

+ E[Y0|R = r, V = v∗3 ]fv|r(v
∗
3)
ζz(z, r, v

∗
3)

|ζv(z, r, v∗3)|
+ E[Y0|R = r, V = v∗4 ]fv|r(v

∗
4)
ζz(z, r, v

∗
4)

|ζv(z, r, v∗4)|
+ · · ·

=
∑
j∈J

E[Y0|R = r, V = v∗j ]fv|r(v
∗
j )
ζz(z, r, v

∗
j )

|ζv(z, r, v∗j )|
,

where we again used (A.22) and the fact that ζv(z, r, v
∗
j ) < 0 for all odd values of j and ζv(z, r, v

∗
j ) > 0 for

all even values of j. The expression in (A.19) follows by taking the ratio of these quantities.

B Local IV Fails to Implement the Outcome Test in the GRM

Under the GRM, unlike the ERM, local IV fails to identify the MTEs required to implement the outcome

test for two reasons. The first reason is the lack of separability of the latent index in (20), which simply

equals ζ(z, r, v) ≡ E[∆|r, v] − τ(z, r, v) in the GRM and is not necessarily separable in the instrument Z

and the unobserved heterogeneity V without further assumptions. Without separability, representing the

decision model in terms of a uniformly distributed random variable and a propensity score, as in (22), does

not lead to a useful formulation. This may not be obvious, as one could start from the unrestricted index

model D = I
{
ζ(Z,R, V ) ≤ 0

}
, as in Hull (2021), then let F̃z,r(·) be the conditional distribution of ζ(Z,R, V )

given (Z = z,R = r), and then write

D = I
{
F̃Z,R(ζ(Z,R, V )) ≤ F̃Z,R(0)

}
= I

{
ŨZ,R ≤ p(Z,R)

}
with ŨZ,R|(Z,R) ∼ U [0, 1] .

One could then define an MTE as E[∆|R = r, Ũz,r = u]. The problem with this approach is that ŨZ,R

is not independent of Z, even if V is independent of Z. Furthermore, the results in Appendix A.4 show
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that without separability the LIV estimand identifies a weighted average of MTEs (see (A.19)), with the

caveat that such weights could potentially be negative. This means that under the GRM, the LIV estimand

generally fails to identify even a convex combination of MTEs.

The second reason is unrelated to the non-separability of the latent index and holds even if one were

to further impose additive separability. Concretely, whenever τ(z, r, v) is a non-trivial function of v (even

if this function were to be assumed separable in z and v), the possibly multiple values of v such that

ζ(z, r, v) = 0 do not necesarily share the same value of E[∆|r, v]. In other words, the GRM does not lead to

E[∆|R = r, V = v∗z,r,j ] being equal across j ∈ Jz,r even if one were to impose the additional assumption that

ζ(z, r, v) is separable in z and v. Imposing additive separability is enough to guarantee that the weights in

(A.19) are all non-negative, as shown in Appendix A.4, but it does not pin down a unique value of E[∆|r, v]

for marginal defendants. As a result, the LIV estimand would identify a convex combination of MTEs across

marginal defendants of race r facing judge z who have different values of v, making it difficult to interpret

comparisons of such weighted averages across race.

To address these two problems, an analyst may be tempted to impose the following assumptions on the

GRM, in hopes of securing identification of MTEs for marginal defendants while otherwise maintaining the

GRM as a highly flexible model of decision maker behavior:

Assumption B.1. The latent index in (20) satisfies the following two conditions:

(a) Additive separability: ζ(z, r, v) = ζ1(r, v)− ζ2(z, r).

(b) Single crossing: for each (z, r), there is a unique v∗z,r such that ζ(z, r, v∗z,r) = 0.

Assumption B.1(a), which is equivalent to assuming τ(z, r, v) = τ1(r, v) + τ2(z, r), guarantees that the

GRM admits the representation in (22). Assumption B.1(b), in turn, guarantees that the marginal defendant

for each judge z and race r is uniquely determined. Thus, under the GRM with the additional restrictions of

Assumption B.1, the LIV estimand evaluated at a given judge z and defendant race r identifies the unique

value of E[∆|r, v∗z,r]. Importantly, however, these conditions to secure identification of E[∆|r, v∗z,r] do not

affect the results in Theorem 4.1, which took this parameter as known, and thus do not rectify the logical

invalidity of the outcome test under the GRM. This is because additive separability and single-crossing do

not remove the dependence of the benefit function τ(z, r, v) on v, which is the key driver of logical invalidity

in the GRM. Thus, an analyst employing a GRM under Assumption B.1 may successfully identify marginal

outcomes across groups that are nevertheless uninformative about decision maker bias defined in Section 3.
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C Excluding Race from the Cost Function

In Section 4 we showed that marginal-based outcome tests are logically invalid in the GRM and logically

valid in the ERM. The ERM differs from the GRM in that it excludes non-race defendant characteristics

v from the benefit function τ(·). However, a close inspection to the intuition provided in Figures 1a and

1b points to another possible restriction in the GRM that would break the arguments behind the proof of

Theorem 4.1: excluding race from the cost function,

Λ(r, v) = Λ(v) for all v ∈ V . (A.27)

This restriction is not strong enough by itself to recover logical validity of the marginal outcome test.

A set of apparent minimal conditions would require both Λ(r, v) and τ(z, r, v) to be monotone and also

require assuming away the possibility that judge z is locally racially biased or, what we previously label as,

unclassified. The combination of these conditions are enough to make the marginal outcome test valid in

the GRM as the following Lemma shows.

Lemma C.1. Assume the following conditions:

1. The expected cost function satisfies (A.27) and is strictly increasing on V.

2. The expected benefit function τ(z, r, v) is weakly decreasing on V.

3. Judge z is either racially τ -unbiased so that τ(z, b, v) = τ(z, w, v) for all v ∈ V or is globally τ -biased

against race r so that τ(z, r′, v) > τ(z, r, v) for all v ∈ V.

It follows that

Λ(v∗z,w) = Λ(v∗z,b) if and only if z is racially τ -unbiased , (A.28)

Λ(v∗z,r′) > Λ(v∗z,r) if and only if z is globally τ -biased against defendants of race r . (A.29)

Proof of Lemma C.1. First, suppose that judge z ∈ Z is racially τ -unbiased, i.e., τ(z, r, v) = τ(z, v) for all v ∈

V. In this case neither the expected cost nor the expected benefit depend on race, and since they cross only

once by the monotonicity assumptions, it follows that τ(z, v∗z) = Λ(v∗z) and v∗z = v∗z,b = v∗z,w. The outcome

test immediately concludes absence of racial bias in this case. Next, suppose that Λ(v∗z,w) = Λ(v∗z,b). Since

Λ(v) is strictly increasing, this implies that v∗z,b = v∗z,w and so τ(z, b, v∗z,b) = τ(z, w, v∗z,w). Under the as-

sumption that z is either racially τ -unbiased or is globally racially τ -biased, this immediately implies that z

is racially unbiased.
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Second, suppose that judge z is globally τ -biased against black defendants, i.e.

τ(z, w, v) > τ(z, b, v) for all v ∈ V . (A.30)

The other direction is symmetric. Now split the argument in three cases. First, suppose that v∗z,w = v∗z,b

and consider the following argument,

Λ(v∗z,w) = τ(z, w, v∗z,w) > τ(z, b, v∗z,w) = τ(z, b, v∗z,b) = Λ(v∗z,b) = Λ(v∗z,w) , (A.31)

where the equalities follow from the definition of marginal defendants and the inequality follows from (A.30).

This is a contradiction. Second, suppose that v∗z,w < v∗z,b and consider the following argument,

Λ(v∗z,w) = τ(z, w, v∗z,w) > τ(z, b, v∗z,w) ≥ τ(z, b, v∗z,b) = Λ(v∗z,b) , (A.32)

where the equalities follow from the definition of marginal defendants, the first inequality follows from (A.30),

and the weak inequality follows from τ(z, r, v) being weakly decreasing. This leads to a contradiction of Λ(v)

being strictly increasing. Finally, suppose then that v∗z,w > v∗z,b. Since the function Λ(·) is assumed to

be strictly increasing, it follows that Λ(v∗z,w) > Λ(v∗z,b). It follows that the marginal-based outcome test

concludes there is racial bias in the right direction.

To conclude the proof, suppose now that Λ(v∗z,w) > Λ(v∗z,b), so that the outcome test concludes that

judge z is biased against black defendants, and assume that τ(z, b, v) ≥ τ(z, w, v) for all v ∈ V. By Λ(v)

being strictly increasing we know that v∗z,w > v∗z,b and so

Λ(v∗z,w) = τ(z, w, v∗z,w) ≤ τ(z, w, v∗z,b) ≤ τ(z, b, v∗z,b) = Λ(v∗z,b) , (A.33)

where the equalities follow from the definition of marginal defendants, the first weak inequality follows from

τ(·) being weakly decreasing, and the second weak inequality follows from τ(z, b, v) ≥ τ(z, w, v) for all v ∈ V.

This leads to a contradiction and completes the proof.

Lemma C.1 requires three conditions. Figure A.1a illustrates the strict monotonicity of Λ(v) is needed

to avoid a situation where the outcome test concludes absence of racial bias simply because Λ(v) happens to

be flat in the relevant crossing areas. That is, excluding race from the cost function and weak monotonicity

of Λ(v) are not enough to prevent the outcome test from incorrectly concluding absence of racial bias. The

second condition guarantees that there is a unique marginal defendant for each race. If the function τ(z, r, v)

is allowed to be increasing in some subset of V, then the marginal defendants for each race may not be
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Λ(v∗z,b) = Λ(v∗z,w)

(a) Weakly Monotone Expected Cost

v

Λ,τ

τ(z, w, v)

τ(z, b, v)

Λ(v)

v∗z,w = v∗z,b

Λ(v∗z,b) = Λ(v∗z,w)

(b) Locally Racially Bias

Figure A.1: Intuition behind the conditions in Lemma C.1

associated with a unique value of v and the arguments in behind (A.32) and (A.33) would break. Finally,

the third condition assumes away the possibility that z is only locally biased against a given race. This is

required as, otherwise, a situation could arise where Λ(v∗z,w) = Λ(v∗z,b), the test concludes absence of bias,

and despite the fact that τ(z, b, v∗z,b) = τ(z, w, v∗z,w), the judge is locally racially biased. This is illustrated in

Figure A.1b. In that figure, the outcome test concludes that there is no evidence of racial bias when judge z

is locally racially biased against black defendants simply because the intersection happens at a point where

the expected benefits across race are the same.

D Interpreting (18) Through the Lens of the GRM

Consider the GRM in Definition 2.1 and assume for simplicity that V ∈ R. Note that E[∆|R, V ] is a function

of (R, V ) so the actual treatment effect ∆ does not enter D. Then,

E[D|Z = z,R = w,∆ = δ] = P {E[∆|R, V ] ≤ τ(Z,R, V )|Z = z,R = w,∆ = δ}

= P {ψw(V ) ≤ gz,w(V )|R = w,∆ = δ} , (A.34)

where the last line used that V ⊥ Z and changes notation simply to emphasize that these are two functions

of V indexed by values of (z, r). Arnold et al. (2022) test for racial discrimination based on

T = E [P {ψw(V ) ≤ gz,w(V )|R = w,∆} − P {ψb(V ) ≤ gz,b(V )|R = b,∆}] . (A.35)
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To interpret this test in the context of the GRM, one would need to make statements about the distribution

of V |(R,∆) for the expression inside the expectation, and then about the distribution of ∆ for the outer

expectation. Without restrictions on these distributions, the values that T can take are not informative

about differences in τ(Z,R, V ), even within the context of the ERM. As a simple illustration, consider the

following example where judge z is racially τ -unbiased:

ψw(V ) = awV ψb(V ) = abV τ(z, r, V ) = −V V |(R,∆) ∼ U [−∆, 1 + cr] ∆ ∈ {0, 1} (A.36)

where ar ∈ (0, 1), cb > cw = 0 and P{∆ = 1} = 0.5. It follows that

P
{

(1 + aw)V ≥ 0|R = w,∆ = 0
}
− P

{
(1 + ab)V ≥ 0|R = b,∆ = 0

}
= 1− 1 = 0 (A.37)

P
{

(1 + aw)V ≥ 0|R = w,∆ = 1
}
− P

{
(1 + ab)V ≥ 0|R = b,∆ = 1

}
=

1

2
− 1 + cb

2 + cb
< 0 (A.38)

since V |R = b,∆ = 1 ∼ U [−1, 1 + cb] and so P {(1 + ab)V ≥ 0|R = b,∆ = 0} = 1+cb
2+cb

> 1/2. Averaging over

∆ then leads to T < 0. The example does not depend on the values of ar and holds when aw = ab.

A special case arises when we impose the restrictions (a) V ⊥ (∆, R) and (b) E[∆|w, V ] = E[∆|b, V ], so

that T in (A.35) becomes

T = P {ψ(V ) ≤ gz,w(V )} − P {ψ(V ) ≤ gz,b(V )} . (A.39)

It follows immediately from this expression that if judge z is racially τ -unbiased, so gz,w(V ) = gz,b(V ), then

T = 0. It also follows from the same expression that if judge z is globally τ -biased against black defendants,

so gz,w(V ) > gz,b(V ), then T > 0. However, even in this very special case, one may still obtain T = 0 when

gz,w(V ) 6= gz,b(V ).
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