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An Instrumental Variable Approach to Dynamic Models⇤

Steven T. Berry† and Giovanni Compiani‡

August 24, 2020

Abstract

We present a new class of methods for identification and inference in dynamic

models with serially correlated unobservables, which typically imply that state variables

are econometrically endogenous. In the context of Industrial Organization, these state

variables often reflect econometrically endogenous market structure. We propose the

use of Generalized Instrument Variables methods to identify those dynamic policy

functions that are consistent with instrumental variable (IV) restrictions. Extending

popular “two-step” methods, these policy functions then identify a set of structural

parameters that are consistent with the dynamic model, the IV restrictions and the

data. We provide computed illustrations to both single-agent and oligopoly examples.

We also present a simple empirical analysis that, among other things, supports the

counterfactual study of an environmental policy entailing an increase in sunk costs.

1 Introduction

We propose an instrumental variable (IV) approach to identification and inference in dynamic

models in the presence of serially correlated unobservables. Such serial correlation typically

leads to dynamic state variables that are econometrically endogenous, which creates problems

for identification and inference. As a result, much of the literature to date either assumes

away serial correlation in the unobservables or else deals with such correlation in particularly

simple fashions.

⇤We are grateful to Allan Collard-Wexler for generously providing the data, and to Xiaohong Chen, Liran
Einav, Phil Haile, Francesca Molinari, Jesse Shapiro, Paulo Somaini for helpful comments and suggestions.
We are also grateful to seminar participants at NAMES 2017, Northwestern, Harvard/MIT, Stanford, Duke,
2018 and 2019 Conference on Dynamic Models, Boston University, ASSA 2019. Mengsi Gao provided
excellent research assistance. All remaining errors are our own.
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‡University of Chicago, Booth School of Business. Email: Giovanni.Compiani@chicagobooth.edu.
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We mostly focus on applications to dynamic models of Industrial Organization (IO).

These models often feature state variables that measure various kinds of “market structure,”

such as the number of firms, the number of retail outlets, the vector of current productivity

levels of firms and so forth. As an example, consider a simple model of entry and exit where

profits depend on the number of firms in the market, N . Standard empirical approaches

assume that any variables a↵ecting firms’ profits and not captured by the data—e.g. un-

observed demand or supply shocks—are independent over time. This implies that “market

structure” N is independent of the contemporaneous unobservables and thus the e↵ect of N

on, say, firm entry can be directly observed in the data. In contrast, when the unobservables

are persistent over time, markets with large N are likely to be more systematically profitable

in terms of unobservables. Thus, the observed entry probabilities reflect the correlation be-

tween unobservables and N and we cannot directly observe the “causal e↵ect” of N on entry.

This is a classic endogeneity problem.

A natural and economically meaningful solution to this familiar IO problem of endogenous

market structure is to use IV methods. More broadly, this paper is part of the research

agenda that relates the formal identification of IO models to classic IV intuition, as in

standard equilibrium models of supply and demand. The goal is to address a persistent

critique of IO models that claims they are typically not well-identified. Specific examples of

this agenda include Cournot-style models, as in Bresnahan (1989), di↵erentiated products

demand and supply market equilibrium, as in Berry and Haile (2014), cross-sectional market

structure (“static entry” models), as in Tamer (2003), and auction cost heterogeneity, as in

Somaini (2015).1

1.1 Idea of the Paper

Our paper builds on the intuition of classic two-step methods, following on Hotz and Miller

(1993) (henceforth, HM), that distinguish between the identification of [i] the structural

parameters of an underlying dynamic model and [ii] the policy function that results from the

solution of that dynamic model evaluated at the true value of the structural parameters. It

is this policy function that (according to the model) generates the data.

The task of identification and inference is made much easier by the assumption that

unobservable shocks are distributed independently over time. This is made clear in Rust

(1987) and exploited in the HM “conditional choice probability” or “CCP” approach. In the

related IO literature, the shocks are then typically assumed to also be private information.2

1In addition, as in much of the auction literature, there are many formal IO identification arguments that
do not so clearly involve instrumental variables.

2See Pesendorfer and Schmidt-Dengler (2008), Bajari et al. (2007) and Pakes et al. (2007) for a discussion
of HM style methods, with pure i.i.d. private information shocks, extended to a dynamic oligopoly context
with possibly multiple equilibria. An early review of this approach is in Ackerberg et al. (2007).
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Under these assumptions, the dynamic policy function is often point-identified “directly from

the data.” For instance, in the case of dynamic discrete choice models, estimating the policy

boils down to estimation of conditional probabilities. The structural parameters are then

identified as those that are consistent with the observed policy function.

However, the simplicity of these methods depends critically on the econometric exogeneity

of dynamic states. Once unobservables are allowed to be serially correlated, the dynamic

states become econometrically endogenous. This is because the dynamic states reflect past

values of the unobservables which, due to serial correlation, are typically not independent of

the current unobservable entering the policy function. The econometric endogeneity problem

here is classic in its form: the “right hand side” state variables in the dynamic policy function

are correlated with the unobservables that enter the same function.

In order to tackle the endogeneity of the dynamic states, we rely on instrumental variables.

These instruments have the classic features that they [1] do not directly enter today’s policy

decision, [2] are assumed to be exogenous (independent of the unobservables), and yet [3] are

correlated with the current state, likely because they e↵ected past policy decisions that are

correlated with present states. In a dynamic entry model, an example would be past market

size or past regulatory environments that influenced past decisions to enter a market. In

the presence of sunk costs, these past decisions will continue to be correlated with current

market structure, even if current entry decisions are only driven by current market size and

current regulations. We discuss further examples of possible instrumental variables after we

have formally defined key features of the model.

Traditional IV and panel data methods face a di�cult problem in our context: the policy

function is derived from the “structural” dynamic model and this typically implies that the

policy function is not additively separable in the serially correlated unobservable(s). The

nonseparability of the policy function in unobservables creates di�culties for both iden-

tification and inference. Luckily, there is a large recent literature on the nonparametric

identification of functions with nonseparable unobservables and econometrically endogenous

right-hand side variables, sometimes mixed with a classic panel data structure. In the eas-

iest possible examples for us, the dynamic policy function will be point-identified even in

the presence of serial correlation, but more general cases may lead only to set identification.

To consider more general cases, we leverage an existing large literature on identification and

inference in partially identified models, including Manski and Tamer (2002), Tamer (2003),

Manski (2003), Chernozhukov et al. (2007), Berry and Tamer (2007), Ciliberto and Tamer

(2009), Beresteanu et al. (2011), Galichon and Henry (2011), Chesher (2010) and Andrews

and Shi (2013).

One paper that sums up and extends an IV style literature on this topic is Chesher and

Rosen (2017) (henceforth, CR), who discuss a class of “Generalized Instrumental Variable”

(henceforth, GIV) methods. In addition to emphasizing an appropriate IV framework for

the identification of a very broad class of dynamic policy functions, CR closely build on the
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work of Galichon and Henry (2011) and Beresteanu et al. (2011) to characterize the sharp

identified set. This characterization will help us build intuition about how instruments serve

to (set) identify policy functions.

The identifying power of these instrumental variable methods is increased by the pres-

ence of multiple periods of data. In particular, we note that even in the absence of any

instrumental variables, nonseparable policy functions can be usefully restricted purely from

the presence of multiple periods of data, as in the nonseparable error, nonparametric panel

data papers of Altonji and Matzkin (2005) and Athey and Imbens (2006).3

We illustrate our approach in a simple single-agent entry and exit model. This minimal

example allows us to build intuition about the sources of identification as well as to explore

how the number of time periods, the presence of exogenous covariates and the strength of

the instruments a↵ect the identified set for the structural parameters. We then apply the

method to data from the US ready-mix concrete industry and consider a counterfactual

policy that increases the magnitude of the sunk costs of entry into the market. When we

compare our approach to three di↵erent methods that assume away serial correlation in the

unobservables, we find that the latter results are significantly di↵erent than ours. Moreover,

the sign of the bias varies across the three methods. Two approaches tend to over-predict

the responses to the policy in terms of both the number of firms and the fraction of new

entrants. This stems from the fact that, in the counterfactual, the unobservables exhibit too

much volatility over time when serial correlation is ruled out. On the other hand, a third

approach estimates a very large sunk cost (as a way to match the persistence in the data

without appealing to serially correlated unobservables) and thus predicts no response to the

policy change. The di�culty in a priori signing the bias from standard, more restrictive

methods further motivates our contribution.

1.2 Some Related Papers

The literature on the identification and estimation of dynamic problems is immense and we

can only highlight a set of related literatures here.

We are obviously not the first authors to consider the issue of serially correlated unob-

servables in dynamic models, including dynamic games. Outside of the two-step literature

following on CCP methods, there is an important set of papers emphasizing computational

approaches to estimation that allow for some form of persistent unobservables, sometimes

in the form of a limited number of “discrete types” of agents. A classic single-agent exam-

ple is Keane and Wolpin (1997). A classic oligopoly example is the full-solution approach

of Ericson and Pakes (1995) and Pakes and McGuire (2001), who emphasize that serially

correlated unobservables are an important feature of realistic dynamic models in IO. These

3These papers do not explicitly consider the fully dynamic problems that we consider here, but instead
focus on nonparametric analogues of non-dynamic panel data-style arguments.
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computationally oriented papers do not typically discuss formal identification.

Work on the identification of mixture models, as in Kasahara and Shimotsu (2009) and Hu

and Shum (2012),4 provides some formal results on identification of discrete dynamic policy

functions with persistent unobservables. This work again emphasizes limited forms of discrete

heterogeneity. In Berry and Compiani (2020) we show that our framework includes the class

of models they consider as a special case. A key restriction in Kasahara and Shimotsu (2009)

is that the variation in unobservables is in some well-defined sense lower-dimensional than

the variation in the observed data. In particular, the degree of point-identified heterogeneity

is limited by the time-series dimension of the data. As a complementary result, our set-

identification approach is applicable to settings with as few as two time periods irrespective

of the dimension of the unobservable. Of course, if the data exhibits too little variation our

identified sets may be so large as to be of little use. In our empirical application, we obtain

informative results with fewer than 500 cross-sectional observations.

On the estimation side, Arcidiacono and Miller (2011) provide maximum likelihood com-

putational methods for the structural parameters of dynamic models with discrete persistent

heterogeneity. Norets (2009) proposes a Bayesian estimation method for dynamic discrete

choice models with serially correlated unobservables. Additional full-solution approaches

allowing for serial correlation include Blevins (2016) and Reich (2018). Neither discusses

identification formally.

Our paper is also related to the literature on dynamic panel data models that are not

derived from explicit dynamic optimization (e.g., Altonji and Matzkin (2005) and Athey and

Imbens (2006)) and to the large literature on distinguishing between state dependence and

unobserved heterogeneity (see, e.g., Heckman and Singer (1984), Israel (2005), Dubé et al.

(2010)). Similar to these papers, we face the challenge of disentangling the roles of past

actions and persistent unobservables in driving current outcomes. Our IV intuition is very

much in line with this literature on dynamic panels with state dependence. For example,

Israel (2005) argues for the usefulness of past exogenous shocks that shift the current state

but do not a↵ect today’s decision conditional on the current state. More recently, Heckman

et al. (2016) study identification and estimation of dynamic treatment e↵ects allowing for

time-invariant unobserved heterogeneity. Honoré and Tamer (2006) discuss set identification

in a dynamic panel context.

Even without serially correlated unobservables, there are typically no formal point-

identification results for models with continuous actions,5 which is one reason why Bajari

et al. (2007) (“BBL”) relies on set-identified inequality methods to recover the structural

profit parameters, once given a ”first-step” identified policy function. We propose much

4See also Hu et al. (2015).

5Identification in the case of no serial correlation and discrete actions is considered in Magnac and Thesmar
(2002) and related papers.
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simpler second step methods, which aids in translating the policy functions (set) identified

in our GIV first step into second-step profit parameters.

A recent paper by Kalouptsidi et al. (2020) shares our IV intuition and is in many ways

closest to our spirit. They show that in a class of dynamic discrete choice models with

serially correlated market-level unobservables, one can obtain Euler equations that point-

identify some firm-specific profit parameters. This approach leads to computationally light

linear IV estimators that are robust to endogeneity problems caused by the market-level

unobservables. However, it does not address identification of the joint distribution of the

unobservables over time and thus cannot be used to perform counterfactuals requiring that

distribution as an input. The paper provides some interesting examples of IV potential

applications with serially correlated market-level states, including durable goods demand,

land use and dynamic labor supply. They discuss possible instruments in these settings.

Their examples and instruments could be applicable to our methods as well. Blending our

method with theirs might be a fruitful direction for applied work.

The rest of this paper is organized as follows. Section 2 introduces the general model

and identification framework for single-agent problems. Section 3 illustrates the approach

via a simple entry example. Section 4 extends the analysis to the oligopoly setting. Section

5 contains the empirical application and Section 6 concludes. Appendix A provides more

details on our leading single-agent example, whereas Appendix B presents an additional

computed oligopoly model. Finally, Appendix C discusses the second step of our empirical

application in more detail and Appendix D contains a proof omitted from the text.

2 Model and Identification

In this section, we present the formal model. After introducing variables and notation, we

focus on the single-agent case and illustrate the GIV approach through a simple monopolist

entry example. We then extend the analysis to settings with multiple agents in each market.

2.1 Variables and Notation

We consider a model that generates data on a large set of markets, with one or more agents6

per market, and a fixed (perhaps small) number of time periods denoted by t = 1, ..., T . We

may additionally have access to some subset of variables for prior periods, t < 1. In the

general oligopoly model, markets are indexed by i and firms within markets are indexed by

j. We do not model cross-market interactions. Our simpler examples will involve a single

firm per market.

6Since many IO dynamic models involve firms making decisions over time, we use the words “firms” and
“agents” interchangeably throughout the paper.
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In each market in each time period, each firm takes an action (or actions) denoted aijt.

These actions contribute over time to the firm’s observed current state(s), denoted xijt. The

set of feasible actions for a firm with state xijt is denoted A(xijt). As one example, in an

entry model there might be a scalar action aijt, equal to one or zero, that indicates the

decision to operate in the market in period t+ 1. A scalar state xijt might then be whether

firm j operates in market i in period t.

There are also observed exogenous states, wijt, that evolve separately from the firms’

actions. Some or all of the exogenous states may be shared across firms. In some cases, we

may observe some partial information on exogenous variables from before the beginning of

our full panel dataset. We denote these variables, which will later prove useful as instruments,

as ri.

In addition, there are unobserved (to us) state(s) uijt that also evolve exogenously from

the actions of firms. For example, in an entry model, uijt may represent the component of

fixed costs not captured by the data. Within market, the unobservables may be correlated

both across time and firms. The uijt are the only variables that the firms observe but we do

not. In the oligopoly context, we treat the serially correlated component of uijt as commonly

observed by all firms. In some cases, it is also useful to model an independent (over time

and firms) component that that is private information to the firm.7

Suppose that there are a maximum of J firms within each market. We define

ait ⌘ (ai1t, ai2t, . . . , aiJt) (1)

and we define the market-time vectors xit, wit and uit in a similar fashion. As further nota-

tion, we let across-time, within-market vectors of variables (and their respective supports)

be denoted ai = (ai1, . . . , aiT ) 2 AT , xi = (xi1, . . . , xiT ) 2 XT , wi = (wi1, . . . , wiT ) 2 WT ,

and ui = (ui1, . . . , uiT ) 2 UT .

The probability that the vector ui of unobservables (across time and firms within market)

lies in the set S ⇢ U is denoted by

�(S; ✓u), (2)

where the vector ✓u parameterizes the distribution of the vector of market unobservables

across time and firms. The parameter ✓u will often, inter alia, control the degree of serial

correlation in the unobservables. The single-period profit of firm j in market i in period t is

given by the function

⇡j (ait, xit, wit, uit; ✓⇡) . (3)

The subscript j on the single-period profit function indicates the natural property that firm

j’s profits depend di↵erently on its own elements of (aijt, xijt, wijt, uijt) as opposed to its

7The distinction between the full information serially correlated unobservable and the private independent
unobservable is similar to the distinction between the variables ⌫1 and ⌫2 in Pakes et al. (2015).
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rivals’. The unknown parameters of the single period profit function are ✓⇡. The full vector

of structural parameters, ✓, then includes the unknown parameters of the single-period profit

function and of the distribution of unobservables: ✓ = (✓⇡, ✓u).8

2.2 Single Firm per Market

We begin with the single-agent case, returning to dynamic oligopoly in section 4. In this

special case, we treat each firm (agent) as operating in its own “market” and so we drop the

j firm subscripts in (aijt, xijt, wijt, uijt), leaving (for example) ait as the action of the firm in

market i at time t. In the single-firm case, we will shorthand the phrase “firm in market i”

as “firm i.”

As is classic in much of the literature following on Rust (1987), we assume that the

observed endogenous states of the firm evolve according to the transition probability function

�(xit+1|ait, xit, wit), (4)

where � gives the probability of each possible future state conditional on the firm’s own action

and observable states. As a special case, this could describe deterministic state transitions,

where some state occurs with a conditional probability of one. For instance, in a dynamic

entry model, the current state (whether the firm is in or out of the market) is equal to

the action taken last period. Table 1 gives some examples of actions, states and transition

processes that might occur in the IO context.

Table 1: Some Single Agent IO Examples

State, xit Action, ait A(xit) Transition

Capital Investment R+
xit+1 = �̃xit + ait

Out/In Entry/Exit {0, 1} xit+1 = ait

Retail # of Stores I+
xit+1 = ait

Quality R&D R+
xit+1 ⇠ f (xit, ait)

Similarly, the observable exogenous states are first-order Markov, with conditional prob-

8Following standard practice in the dynamics literature, we assume that the discount factor is known
throughout.
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abilities given by9

H(wit+1|wit). (5)

In our single-firm examples, we will focus on the special case where the firm-level unobserv-

able uit follows a first-order Markov process. Our leading example here will be a model of

first-order serial correlation where uit is a scalar that obeys

uit = ⇢uit�1 + ⌫it

p
1� ⇢2. (6)

In the simplest case, the period t vector ⌫it innovation might be assumed to have a simple

parameterized distribution. The parameter ✓u then includes those parameters plus the serial

correlation parameter ⇢.10

In this case, the firm’s dynamic problem is given by the classic Bellman equation:

V (xit, wit, uit) =

max
ait2A(xit)

�
⇡ (ait, xit, wit, uit; ✓⇡) + �E✓u [V (xit+1, wit+1, uit+1) |ait, xit, wit, uit]

� (7)

where � denotes the discount factor and V the value function. Note that, since the function V

does not depend on time, we assume a stationary environment. The expected value function

in this expression is

E✓u [V (xit+1, wit+1, uit+1) |ait, xit, wit, uit] =Z Z Z
V (xit+1, wit+1, uit+1) d�(xit+1|ait, xit, wit)dH(wit+1|wit)d�̃(uit+1|uit; ✓u)

(8)

where �̃(uit+1|uit; ✓u) denotes the conditional distribution of ut+1 given ut. Note that this is

similar to Rust (1987), but we do not make Rust’s full conditional independence assumption.

Specifically, in order to allow for serial correlation in the unobservables, we do not drop the

conditioning on the past unobservable in �̃(uit+1|uit; ✓u).

In the single-agent case, there is a unique solution for the value function and we assume

standard conditions such that there is a unique policy function consistent with that value

9Our framework also allows for the case where the transition processes for xit and wit in (4) and (5)
depend on uit (or components of it) provided that they can be identified from the data. Since we know of
no empirical models featuring this dependence, we focus on the case where the transitions do not depend on
uit throughout the paper.

10Berry and Compiani (2020) consider cases where the unobservable consists of both a time-invariant
discrete component and a serially uncorrelated shock in the spirit of Heckman and Singer (1984), Keane and
Wolpin (1997), Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011) and related literature.
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function.11 We let � denote this policy function, so that

ait = � (xit, wit, uit) , � 2 F . (9)

In many cases, reasonable assumptions on the single-period return function and the transition

processes imply that the policy function must obey certain qualitative restrictions, such as

monotonicity. These restrictions can then be imposed on the set of possible policy functions

F .

For the identification argument presented next, it will also be useful to define the di↵erent

(counterfactual) policy functions that would be generated by any other possible parameter

vectors ✓ = (✓⇡, ✓u). In the single-firm case, these policy functions, generated by the model

and the unique solution to Bellman’s equations, will be denoted by

ait = �✓ (xit, wit, uit) . (10)

2.3 Identification of the Single-Agent Model

We first focus on identification in the single-agent case. For purposes of identification, we

assume that we observe the true distribution of the data, which we denote by

P (ai, xi, wi, ri)

This is equivalent to seeing a T -period panel on a very large (in fact, infinite) cross-section of

firms or agents. We look to identify (possibly set-identify) the parameters ✓. Nothing in our

general discussion of identification requires these to be finite dimensional, but in practice the

models we consider in the simulations and empirical application are all finite-dimensional.

Note that in the case where (ai, xi, wi) are discrete, the single-period profit function may be

fully flexibly characterized by a finite number of parameters, one for each combination of

(ai, xi, wi) values.

The potential instruments in the model consist of the exogenous variables

zi = (ri, wi)

The critical assumption that allows for our instrumental variable approach is independence

of the instrument and the unobservables:12

zi ? ui

11For the technical conditions guaranteeing a unique policy function, see Stokey et al. (1989).

12While we focus on this restriction throughout the paper, CR show that the GIV approach may also be
applied under weaker assumptions, such as mean or quantile independence.
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Note that the assumption that wi be exogenous is standard in the existing literature. In

addition, we require excluded instruments ri to deal with the endogeneity of the dynamic

states xi. Table 2 gives some ideas of possible instruments ri in di↵erent contexts. As is

usual with discussions of potential instruments, the required independence assumption may

be more or less appropriate in di↵erent real-world cases.

Table 2: Examples of Possible Instruments ri

State Example Instruments

Capital Past investment cost
Out/In of Market Past market population, past regulation
# of Stores Distance from headquarters, interacted with time
Quality Past R&D shocks, age of firm

In studying identification of the model, we follow the classic “two-step” approach. First,

we discuss the (set-)identification of the policy function and serial correlation parameters,

using GIV techniques. Given the results of the first step, we then discuss the identification

of the structural parameters of the profit function using a broad generalization of existing

approaches.

2.4 First Step: Identification of the Policy

The broad idea is to (set-)identify the policy function from classic instrumental variables

conditions, extended to cases where the policy function is highly nonlinear in the states.

The GIV framework achieves this and it allows us to deal with the following complications

arising in many dynamic models of interest:

1. the incompleteness of the model, i.e. the fact that the exogenous variables do not

uniquely pin down the endogenous variables (Tamer (2003));

2. the fact that, if the dynamic states and actions are discrete—as in entry/exit models—

the policy function is known to be generally only partially identified in the absence of

a model for the endogenous explanatory variables (Chesher (2010));

3. lack of point-identification of the parameters, even in the absence of problems 1 and

2, e.g. due instruments that are not strong enough.

In applications, we may have all or none of these problems. If the model and data generating

process in fact imply point-identification, then the sharply identified set will collapse to the
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true parameter value. In the single agent case, an incomplete model can follow from the

presence of unknown initial conditions, i.e. the fact that the joint distribution of (xi1, ui1)

is not known.13 Traditionally, solutions to the initial conditions problem include either [i]

parameterizing the initial joint distribution of states and unobservables or [ii] specifying some

process for the past history of the firm that uses the model parameters to construct that

same initial joint distribution.14 We argue that if the parameterization in method [i] is so

flexible as to not impact the resulting identified set, then we might just as well look for the

sharply identified set that does not restrict the initial distribution.

As in Tamer (2003), any given action ait naturally leads to conditions on sets of unob-

servables. In particular, following CR and using similar notation, if the sequence (ai, xi, wi)

occurs, then ui must be in the inverse image set

U(ai, xi, wi, �) ⌘ {ui : �(xit, wit, uit) = ait, 8t} (11)

The condition

{ui 2 U(ai, xi, wi, �)} (12)

is then a necessary condition for the observed event (ai, xi, wi). If the model is incomplete,

however, that condition is not su�cient for the event: when the exogenous variables (wi, ui)

do not uniquely pin down the endogenous variables (xi, ai), it can happen that (12) is

satisfied but the event (ai, xi, wi) does not occur. Then, Corollary 1 in CR gives the following

characterization of the identified set for the policy and parameters for the unobservables,

(�, ✓u): a pair (�, ✓u) is in the identified set if and only if for all closed sets S ⇢ U and for

all z

Pr
�
U(ai, xi, wi, �) ✓ S |z

�
 �(S; ✓u). (13)

In this last equation, the left-hand side is the conditional probability of the outcomes yi =

(ai, xi), which, according to �, have {ui : ui 2 S} as a necessary condition. For a given

� and z, this probability is observed in the data. The right-hand side is the probability of

that necessary condition wrt the distribution of ui, which by assumption does not depend

on z. Further, given ✓u, this term is known and can be computed in closed form or via

simulation.15

In the case with discrete ait, xit, wit, CR shows that to obtain the sharp identified set for

13See Anderson and Hsiao (1981), Arellano and Bond (1991) and Blundell and Bond (1998), among others.
Honoré and Tamer (2006) emphasize how the initial conditions problem leads to partial identification in
nonlinear dynamic panel data models.

14Collard-Wexler (2014) employs both solutions. While the results of his counterfactuals are robust, a few
parameter estimates vary substantially across the two methods, suggesting that the way in which the initial
conditions problem is addressed matters in general.

15See Berry (1992) and Ciliberto and Tamer (2009) for other uses of simulation in models characterized
by moment conditions.
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✓, one only needs to check sets S (labeled “core-determining”) that belong to a collection

Q(�, zi). This collection includes the “elemental” sets, U(ai, xi, wi, �), associated with in-

dividual realizations of the observables, as well as unions of overlapping sets of that form,

excluding cases of strict subsets.

The CR approach operates in the space of the unobservables and it builds on earlier results

that apply to the space of observables (Beresteanu et al. (2011), Galichon and Henry (2011)).

For us, the result is useful because it completely characterizes the inequality restrictions that

define the sharply identified set of policy functions. We illustrate this in the simple example

of Section 3. However, the number of these restrictions can grow quite large in realistic

problems. In these cases, one may not be able to list all the CR inequalities needed to

obtain the sharp identified set. However, the CR characterization is still helpful to build

intuition for selecting which inequalities to impose. We do this in the empirical application

of Section 5 and show that, while we do not get sharp identification, the results are still

informative.

When the necessary conditions (13) are actually necessary and su�cient for particular

(sets of) actions, then the associated inequalities become strict equalities. In a complete

model, all of the necessary conditions are equalities. However, as usual, this does not guar-

antee that the parameters are point-identified (since, e.g., the instruments might not be

strong enough) and so, in the absence of a proof of point-identification, we might still want

to consider set-identification.

To formalize the argument above, we define the set of policy functions that are identified

exclusively by the IV conditions and the data, with no use of the dynamic model. In

particular, for a given ✓u and a given data generating process, we define

⌃IV (✓u) ⌘ {� : condition (13) holds 8S 2 Q(�, z) and 8z} \ F (14)

We emphasize that ⌃IV (✓u) is a subset of the space of admissible policies F and, as such,

incorporates all the natural economic restrictions—e.g., monotonicity—that one may be

willing to impose on F . Definition (14) immediately gives the following characterization of

the sharp identified set for (�, ✓u).

Result 1. The sharp identified set for (�, ✓u) is given by
�
(�, ✓u) : � 2 ⌃IV (✓u),⌃IV (✓u) 6= ;

 
.

2.5 Second Step: Identification of the Profit Parameters

We now show how one can use the sharp identified set for (�, ✓u) from the first step to

characterize the identified set for the structural dynamic parameters entering the profit

function. These results can be viewed as a generalization of the approach in Hotz et al.

(1994) (HMSS). As noted, for any ✓ = (✓⇡, ✓u), we can use the Bellman equation to compute
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the implied policy �✓, defined as follows:

�✓(xit, wit, uit) ⌘

argmax
ait2A(xit)

⇣
⇡(ait, xit, wit, uit, ✓⇡) + �E✓u

⇥
V (xit+1, wit+1, uit+1)|ait, xit, wit, uit

⇤⌘
.

The sharply identified set of parameters is then given by all (✓⇡, ✓u) pairs whose associated

policy function is not rejected by the GIV restrictions. We formalize this in the following

result.

Result 2. The identified set for the structural parameters (✓⇡, ✓u) is given by

⇥ID ⌘ {✓ = (✓⇡, ✓u) : �✓(xit, wit, uit) 2 ⌃IV (✓u)}. (15)

Note that Result 2 imposes both the dynamic model and the GIV restrictions. This is

the sharp identified set because any ✓ in this set generates a policy function that cannot be

rejected by the data plus the sharp GIV conditions.

A natural question that arises is how to recover the profit parameters ✓⇡ from any given

(�, ✓u) pair. This question has been investigated extensively for models without serial corre-

lation in the unobservables. Here we extend some of those methods to the case with serial

correlation. In particular, we show that, under certain conditions, the parameter ✓⇡ can be

conveniently recovered by solving a system of linear equations. To this end, we define the

value of taking action a as follows:16

v(a, x, w, u; �, ✓) =

⇡(a, x, w, u; ✓⇡) + E✓u

" 1X

t=1

�
t
⇡(�(xt, wt, ut), xt, wt, ut; ✓⇡)

���a, x, w, u
#
.

(16)

Given that the true policy � is optimal, it must be the case that

�(x, w, u) = argmax
a

v(a, x, w, u; �, ✓) (17)

for every (x, w, u). Thus, if a value ✓⇡ is in the identified set, it must be that it solves (17) for

some ✓u and some � 2 ⌃IV (✓u). Note that, given a pair (�, ✓u) from the first stage, verifying

this condition is a static optimization problem and is therefore much easier than solving the

associated Bellman equation.

In order to illustrate how the condition in (17) can be used in practice, we extend an

argument made by HMSS for dynamic discrete choice models with i.i.d. unobservables. Our

16We refer to v(a, x, w, u) as the action (or choice) specific value function, but much of the literature refers
to it as the ”conditional” value function.
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approach applies to a wide class of models with discrete actions and continuous, possibly

serially-correlated unobservables.17 More specifically, we use indi↵erence conditions implied

by (17) to write a system of linear equations in the profit parameters.

Fix a pair
⇣
�̃, ✓̃u

⌘
from the first step and let ✓̃⇡ denote a value for the profit parameters

that is consistent with
⇣
�̃, ✓̃u

⌘
given the model. For now, we do not assume that such a ✓̃⇡

is unique; later, we will provide conditions that ensure it is unique. If there is no such ✓̃⇡,

then the model rejects the pair
⇣
�̃, ✓̃u

⌘
. Suppose that, given (x, w) and a pair of actions, a

and a
0, there exists a value of the unobservable, say ũ(a, a0, x, w), such that

v

⇣
a, x, w, ũ(a, a0, x, w); �̃,

⇣
✓̃⇡, ✓̃u

⌘⌘
= v

⇣
a
0
, x, w, ũ(a, a0, x, w); �̃,

⇣
✓̃⇡, ✓̃u

⌘⌘
(18)

We do not require that ũ(a, a0, x, w) be uniquely defined by (18), only that it exist.

Assumption 1. The variables (a, x, w) take discrete values and for each (a, x, w) there is an

action a
0 6= a such that there is at least one ũ(a, a0, x, w) satisfying the indi↵erence condition

in (18).

Assumption 1 is high-level assumption. In Berry and Compiani (2020), we show the

indi↵erence conditions in (18) are a natural extension of equations employed in the HMSS

second-step for multinomial discrete choice with independent errors. Not all second-step

CCP methods generalize easily (or at all) to the case of serial correlation, but this one

does.18 The next assumption provides more primitive su�cient conditions.

Assumption 2. (i) The variables (a, x, w) take discrete values; (ii) the support of u is

connected; (iii) the action-specific value function v is continuous in u; (iv) for each (x, w),

�̃ (x, w, ·) takes at least two distinct values.

Assumption 2(ii) is a standard support restriction; Assumption 2(iii) is also standard

and can be verified using results in Stokey et al. (1989); Assumption 2(iv) can be directly

verified by inspecting the �̃ from the first step.

Lemma 1. Assumption 2 implies Assumption 1.

17See also Pesendorfer and Schmidt-Dengler (2010). This working paper version of later published work
emphasizes an indi↵erence condition interpretation of policy functions in the context of dynamic discrete
choice with independent errors.

18HM and Arcidiacono and Miller (2011) employed related multi-period indi↵erence conditions to simplify
a second-step in problems with “finite dependenc” and independent errors. These methods could be adapted
to our case as well if the underlying model featured additive independent errors in addition to any serially
correlated component. Kalouptsidi, Scott, and Souza-Rodrigues (2020) make use of related finite-dependence
indi↵erence conditions in their special case IV method. Further exploration of finite dependence in our
context is an interesting future research agenda.
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Proof. Fix any (x, w) 2 X⇥W. By Assumption 2(iv) and the definition of v, there are two

actions, a0, a00, and two values of the unobservable, u0
, u

00, such that

v

⇣
a
0
, x, w, u

0; �̃,
⇣
✓̃⇡, ✓̃u

⌘⌘
� v

⇣
a
00
, x, w, u

0; �̃,
⇣
✓̃⇡, ✓̃u

⌘⌘

v

⇣
a
00
, x, w, u

00; �̃,
⇣
✓̃⇡, ✓̃u

⌘⌘
� v

⇣
a
0
, x, w, u

00; �̃,
⇣
✓̃⇡, ✓̃u

⌘⌘

Define

d (u) ⌘ v

⇣
a
0
, x, w, u; �̃,

⇣
✓̃⇡, ✓̃u

⌘⌘
� v

⇣
a
00
, x, w, u; �̃,

⇣
✓̃⇡, ✓̃u

⌘⌘

and note that d (u0) � 0 � d (u00). Thus, by the Intermediate Value Theorem for general

metric spaces,19 there exists at least one u000 such that d (u000) = 0, which proves the claim.

Next, we show that these assumptions ensure that a minimal necessary condition for

uniquely recovering ✓⇡ is satisfied, i.e. that there be at least as many equations as unknowns.

We consider the case in which profits are parameterized in an entirely flexible way with the

elements of ✓⇡ representing the (deterministic) single-period profits for each combination of

(a, x, w). Under more restrictive parameterization of profits, it may be possible to recover

✓⇡ under weaker conditions.

Lemma 2. Under Assumption 1, the parameters ✓̃⇡ associated with the pair
⇣
�̃, ✓̃u

⌘
from

the first step satisfy a system of equations with at least as many equations as the cardinality

of A⇥ X⇥W.

Proof. The result follows immediately from the fact that, given Assumption 1, one can write

at least as many equation of the form (18) as the cardinality of A⇥ X⇥W.

We now show that, when the single-period profits are linear in ✓⇡, the above yields a

system of linear equations. The coe�cients of this system are known given a candidate⇣
�̃, ✓̃u

⌘
from the first step and can be computed via forward-simulation as in BBL.

Assumption 3. The single-period profit function is linear in ✓⇡.

Result 3. Fix a pair
⇣
�̃, ✓̃u

⌘
from the first step. Under Assumptions 1 and 3, the parameters

✓̃⇡ associated with
⇣
�̃, ✓̃u

⌘
satisfy a system of linear equations, with at least as many equations

as the cardinality of A⇥X⇥W. Further, the coe�cients of the system are known given the

model,
⇣
�̃, ✓̃u

⌘
, and the transition functions in (4)-(5).

Proof. HMSS show that when then the single-period profit is linear in ✓⇡, then the action-

specific value function v is also linear in ✓⇡. This trivially extends to the case of serially

19See, e.g., Theorem 4.22 in Rudin (1976).
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correlated unobservables, so that we can write

v

⇣
a, x, w, u; �̃,

⇣
✓̃⇡, ✓̃u

⌘⌘
= h0(a, x, w, u, �̃, ✓̃u) + h1(a, x, w, u, �̃, ✓̃u)✓̃⇡,

for some known functions h0, h1.

For each (a, x, w), Assumption 1 then guarantees that we can write

h
h1(a, x, w, ũ(a, a

0
, x, w), �̃, ✓̃u)� h1(a

0
, x, w, ũ(a, a0, x, w), �̃, ✓̃u)

i
✓̃⇡ =

h0(a
0
, x, w, ũ(a, a0, x, w), �̃, ✓̃u)� h0(a, x, w, ũ(a, a

0
, x, w), �̃, ✓̃u)

(19)

for some a
0 6= a. This establishes the result.

Given this linear system, we have two cases depending on whether a standard (and

directly verifiable) rank condition is satisfied. If the rank condition holds, we can solve for

the unique ✓̃⇡ in closed form. Otherwise, we obtain multiple values of ✓̃⇡ associated with the

first-step parameters.

One might wonder whether the value(s) of ✓⇡ obtained in the second step are always

consistent with the Bellman equation. This, paired with sharpness of the identified set for

(�, ✓u) from the first step, would imply that the identified set for ✓⇡ is also sharp. In the

next section, we address this for our illustrative entry/exit example and show that indeed

the two-step approach delivers sharp identification of the structural parameters.

The results above focus on the case where the actions and states are discrete. However,

a similar logic applies to models with continuous actions as well. We illustrate this via the

following example.

Example 1 (Continuous-choice stochastic accumulation). Consider the “stochastic accumu-

lation problem” from Pakes (1994) and Doraszelski and Pakes (2007). In this model, firm i

chooses the level of investment ait, a continuous variable, based on its current e�ciency or

quality xit (often taken to be discrete). The distribution of e�ciency or quality at t + 1 is

assumed to be stochastically increasing in ait. Let

v(a, x, w, u; ✓) = ⇡(a, x, w, u, ✓⇡) + �E✓u

"
X

k

V (x0 = k, w
0
, u

0)�(x0 = k|x, a)
���w, u

#
, (20)

where both the single-period profit and the transition �(x0 = k|x, a) are di↵erentiable in a.

The optimal action then satisfies

@⇡(a, x, w, u, ✓⇡)

@a
+ �E✓u

"
X

k

V (x0 = k, w
0
, u

0)
@�(x0 = k|x, a)

@a

���w, u
#
= 0. (21)
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Given a candidate (�̃, ✓̃u), then we can reject a candidate ✓̃⇡ unless

@⇡(�̃(x, w, u), x, w, u, ✓̃⇡)

@a
+

�E✓̃u

"
X

k

V (x0 = k, w
0
, u

0)
@�(x0 = k|x, �̃(x, w, u))

@a

���w, u
#
= 0.

(22)

As in the discrete case, linearity of the profit function is inherited by the value function and

forward simulation can be used to approximate the coe�cients on ✓̃⇡. Thus, equation (22)

gives a continuum of linear equations that can be used to back out the profit parameters.

We conclude this section by noting that our proposed second step does not require the

use of any inequality conditions. This is contrast to existing approaches, such as BBL, which

require considering perturbations of the policy function from the first stage and imposing

the implied inequalities even in absence of serially correlated unobservables.

2.6 Inference

So far, we have focused on identification of the model. We now briefly discuss how to obtain

confidence regions for the structural parameters. In doing so, we again follow the two steps

outlined above.

The sharp identified set for the first-step parameters (�, ✓u) is characterized by the in-

equalities (13). Therefore, estimates of the identified set and confidence regions for (�, ✓u)

can be obtained by applying methods from the by now large literature on moment inequal-

ities models (see, e.g., Chernozhukov et al. (2007), Andrews and Soares (2010), Beresteanu

et al. (2011), Galichon and Henry (2011), Andrews and Shi (2013), and Chernozhukov et al.

(2013)). As pointed out by CR, one issue that often arises is that the number of inequalities

characterizing the sharp identified set is large relative to the sample size, or even infinite.

For example, in our empirical application, we consider the entry and exit patterns from a

cross section of markets over twelve years. Since there can be zero, one or two firms in

the market at any given point in time, the number of inequalities associated with just the

“elemental” sets is 312 = 531, 441. Fortunately, recent results provide some guidance on how

to deal with the “many inequalities” case. References include Menzel (2014), Chernozkukov

et al. (2018), and Andrews and Shi (2017). In our application, we use one of the bootstrap

procedures proposed by Chernozhukov et al. (2018) to obtain valid confidence regions for

the parameters. Roughly speaking, their approach provides an econometrically disciplined

way of determining the subset of moment inequalities that are most informative about the

parameter values.

The second step in our approach maps the first-step parameters into the primitive single-

period profit parameters. As shown in Result 3, this map only depends on the model and
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does not involve the data. In particular, all that is needed is knowledge of the action-specific

value functions given the first-step parameters. Standard forward-simulation methods can be

used for this purpose, as illustrated in Section 3.2. With a large number of simulation draws,

the error from the second stage will be negligible relative to sampling error. Alternatively,

one could adjust the standard errors to account for any noise from the second step.

The two-step approach is not the only way to conduct inference. Another option is to

solve the model for each candidate value of the structural parameter ✓ and verify whether

the implied policy function satisfies the GIV restrictions. This full-solution method may be

viable in some cases (e.g., when the states take a small number of values), but typically

would require one to parameterize the profit function. A third approach—often used in

the empirical literature—parameterizes both the policy function and the profit function.

This “double parameterization” has the undesirable feature that the functional form used

for the policy might be inconsistent with the profit parameterization in the sense that no

choice of the structural parameters leads—via the model—to the chosen functional form for

the policy. Thus, in the numerical illustration of Section 3.3, as well as in the empirical

application (Section 5), we focus on the first two approaches: the two-step procedure and

the full-solution method.

3 A Simple Example

In this section, we consider a minimal single-agent model that illustrates identification via

GIV restrictions. In the example, the state is whether a firm is “In” or “Out” of the market

in the prior period, xit 2 {0, 1}, and the action today is whether to be active in the market

today, ait 2 {0, 1}. Exit is reversible and there are no exogenous profit shifters w.

A firm that is already in the market (xit = 1) and decides to stay in (ait = 1) earns a

single-period profit equal to ⇡�✏it, while a firm that is out of the market (xit = 0) and decides

to enter (ait = 1) earns the same single-period profit minus a sunk cost �. Whenever a firm

decides to be inactive (ait = 0), it earns zero profits. We interpret ✏it as a shock reflecting

variation in per-period fixed costs and assume that it follows a first-order autocorrelation

process,

✏it = ⇢✏i,t�1 + ⌫it

p
1� ⇢2, (23)

where ⌫it is distributed standard normal. The resulting model then has three structural

parameters: ⇡, �, and ⇢. The policy function that generates the data is

ait = �(xit, uit), (24)
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where uit ⇠ Unif(0, 1) can be normalized to be the quantile of ✏it.20 We assume that the

dynamic model generates the natural monotonicity results that � is weakly increasing in xit

and weakly decreasing in uit.

3.1 First step

The first step consists in characterizing the identified set for (�, ⇢). If we focus on only

one period of data, the policy function in (24) is a nonparametric binary choice model with

endogeneity and monotonicity restrictions, similar to Chesher (2010). Given monotonicity

in uit, the policy function is fully described by two policy cuto↵s, ⌧(x), for x 2 {0, 1}, as
illustrated in Figure 1.

Figure 1: Policy Cuto↵s in the One-Period Case

uit

0 ⌧(0) ⌧(1) 1

As in Manski (1988) Chesher (2010), even one period of data will generate nontrivial

bounds on the policy function. As a simple example of GIV restrictions, Table 3 illustrates

the inverse image sets associated with the example (in column 2) as well as the inequalities

implied by the GIV restrictions (in the last columns of the table). Note that [1] there are

Table 3: Inverse Image Sets & Inequalities for the One-Period Example

a x S = U(a, x, �) Pr
�
U(ai, xi, �) ✓ S |z

�
 �(S; ✓u)

1 1 (0, ⌧(1)) Pr((1, 1)|z) + Pr((1, 0)|z)  ⌧(1)
1 0 (0, ⌧(0)) Pr((1, 0)|z)  ⌧(0)
0 1 (⌧(1), 1) Pr((0, 1)|z)  1� ⌧(1)
0 0 (⌧(0), 1) Pr((0, 0)|z) + Pr((0, 1)|z)  1� ⌧(0)

nontrivial bounds even in the absence of IVs, but [2] instrumental variable variation is helpful

20To see this, one can write ait = �
�
xit, F�1

✏
(F✏ (✏it))

�
, where � is a nonparametric function and F✏ is the

cdf of ✏it. Equation (24) then follows by defining uit = F✏ (✏it) and � (xit, ·) = �
�
xit, F�1

✏
(·)
�
.
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to tighen those bounds. Note also that, by themselves, the restrictions in Table 3 place no

restrictions on ✓u. It is not surprising that it is impossible, in the example, to learn anything

about serial correlation from restrictions on the single-period policy function. However, with

multiple periods of data, restrictions on the policy function may rule out some values of

serial correlation, even without reference to the structural model.

We illustrate this by considering two periods of data. Now there are eight elemental

inverse image sets U(ai, xi, �), in the space of (ui1, ui2), that depend on (xi1, ai1 = xi2, ai2).

These are illustrated in Figure 2. The left panel gives the four elemental sets associated with

the initial condition xi1 = 0, while the right panel gives the sets associated with xi1 = 1. For

a given initial condition, the model is complete (the sets do not overlap), but across initial

conditions the sets do overlap, reflecting incompleteness. For example, there are values of

(ui1, ui2) that are consistent with both the sequence (1, 1, 1) and the sequence (0, 0, 0). If the

initial xi1 was exogenous, the model would be complete.

Figure 2: Elemental Inverse Image Sets Labeled as (xi1, ai1, ai2)

10
0

1

u1

u2

⌧(1)

⌧(0)

⌧(0)

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(0, 1, 0)

10
0

1

u1

⌧(1)

⌧(0)

⌧(1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 1)

(1, 1, 0)

u2

The sets in Figure 2 allow us to build some intuition about identification in this class

of models.21 Recall that the probability of the each of the eight events associated with

di↵erent (xi1, ai1, ai2) must be less than the probability weight placed by the distribution of

(ui1, ui2) over the regions of the elemental sets. In Figure 2, the joint density of (ui1, ui2),

which varies with the serial correlation parameter ⇢, places the relevant probability weight

over the various regions. Note that in this example, with two time periods, we can rule out

some values of ⇢ without any use of the dynamic model. For example, perfect correlation,

21The core-determining collection of sets also includes unions of partially overlapping elemental sets, which
we show in Appendix A.
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⇢ = 1, collapses the joint density down to a straight line across the diagonal of each box.

If in large samples we observe the events (0, 1, 0) or (1, 0, 1) conditional on any value of the

instrument, then we can reject ⇢ = 1 since the associated GIV inequalities of the form (13)

have a positive left-hand side and the right-hand side equal to zero.

As another piece of intuition, consider an instrument associated with a probability equal

to one for initial condition xi1 = 1. The event probabilities associated with the right-hand

side panel of Figure 2 then sum to one and all of the associated inequality restrictions

hold with equality. These equalities are exactly the same as those that would be implied

by maximum likelihood applied to the model with an exogenous initial condition xi1 = 1.

Thus, if MLE point-identifies the parameters (⌧(0), ⌧(1), ⇢), then GIV identifies the same

parameter values in this special case.

3.2 Second Step

Next, we apply Result 3 to recover the structural parameters (⇡, �) given a pair (�, ⇢) from

the first step. For each value of x 2 {0, 1}, firms are indi↵erent between being in and out of

the market when uit = ⌧(x). This gives two indi↵erence conditions involving action-specific

value functions of the form (18).22 Since the action-specific value functions do not have a

closed form expression, we show how to approximate them via forward-simulation. For any

a and x,

v
s(a, x, ⌧(x), �, ✓) =

⇡
1

S

SX

s=1

T̄X

t=0

�
t
a
s
t � �

1

S

SX

s=1

T̄X

t=0

�
t
a
s
t1 {xs

t = 0}�
SX

s=1

T̄X

t=0

�
t
✏
s
ta

s
t ,

where: (i) ✏st is set to the ⌧(x)-th quantile of ✏it for t = 0 and for t � 1 is drawn using (23)

and the correlation ⇢ from step 1, (ii) xs
0 and a

s
0 are set to x and a, respectively, (iii) ast for

t � 1 is determined by the policy � from step 1, and (iv) S, T̄ are large numbers. The two

equalities v
s(0, x, ⌧(x), �, ✓) = v

s(1, x, ⌧(x), �, ✓) for x 2 {0, 1} then give a system of linear

equations in (⇡, �).

As mentioned above, one might wonder whether the sharpness of the identified set for

(�, ⇢) from the first step is inherited by the identified for ✓⇡ from the second step. To address

this, we show that any value ⇡ obtained in the second step is consistent with the model’s

Bellman equation. Thus, if the identified set for (�, ⇢) from the first step is sharp, the

resulting identified set for ⇡ from the second step is also sharp.

Result 4. Let (�̃, ⇢̃) be any pair from the first step with �̃ weakly decreasing in u and ⇢̃ � 0,

22In order to fully map our entry example into Result 3, note that we implicitly have used the two
additional restrictions that single-period profits are zero when firms decide to be out. Thus, we have in total
four equations corresponding to the cardinality of A⇥ X.
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and let ⇡̃ be any value of ⇡ returned by the second step. Then,

�̃ (x, u) = argmax
a

v (a, x, u; �̃, ⇡̃, ⇢̃) (25)

for all x, u, i.e. the policy �̃ from the first stage solves the Bellman equation associated with

⇡̃ and ⇢̃.

Proof. See Appendix D.

3.3 Numerical Illustration

We now compute the identified set for the structural parameters in an instance of the entry

model described above. We will pay special attention to how the identified set changes with

the number of time periods, the strength of the instruments, and the presence of exogenous

profit shifters. In order to abstract from sampling error and focus on the shape of the

identified set, we draw a large number of cross-sectional markets (50,000).

We set the deterministic profit parameter ⇡ to 0.5, the sunk cost � to 1.5, and the corre-

lation parameter ⇢ to 0.75, so that there is persistent unobserved heterogeneity. We generate

time-invariant excluded instruments z taking the values {0, 1} with equal probabilities and

set xi1 = zi for a fraction of markets in the data equal to 0.50 or 0.75. We call this frac-

tion “IV strength” and note that it is equal to the square root of the R
2 coe�cient in the

regression of the endogenous state xi1 on the IV (plus a constant).23 We compute the three-

dimensional identified set for (⇡, �, ⇢) and we plot its projections onto the space of profits

(⇡, ⇡ � �) and the space of sunk cost and correlation parameters. Note that, since we are

treating both the policy and the deterministic profit function fully flexibly, the full-solution

method and the two-step approach give the same identified set.

First, we consider how the identified set varies with the IV strength as well as the number

of time periods (T = 2 and T = 10). In the case with T = 2, we are able to list all of the GIV

restrictions implied by the model and thus obtain sharpness of the identified set, as outlined

in Section 3.1. On the other hand, with T = 10, the number of inequalities in the GIV core-

determining class becomes very large. So, instead of listing all the inequalities, we use those

corresponding to the sharp two-period GIV identified set as well as those associated with

several observable events over the ten time periods.24 We pick events that intuitively should

help us shrink the identified set. Specifically, we use the events “the firm enters at least

once,” “the firm exits at least once,” “the firm enters at least once and exits at least once,”

and “the number of firms in the market, xit, does not change for at least six consecutive

23Specifically, IV strength = 0.50 corresponds to R2 = 0.25 and IV strength = 0.75 corresponds to
R2 = 0.56.

24Since it is hard to obtain a closed form for the model probabilities associated with these events, we
approximate the probabilities via simulation.
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periods.” To build some intuition, consider the latter event. We would expect this to help

rule out values of ⇢ close to zero, since it yields inequalities where the sample probabilities on

the left-hand side are large (the data exhibits a lot of persistence given that we set ⇢ = 0.75)

and the model necessary conditions on the right-hand side are relatively small (when ⇢ is

close to zero the model predicts little persistence in the observables). A similar argument

applies to the other events we include. Figure 3 show that, when IV strength is low and

T = 2, the identified set is quite large. On the other hand, as expected, the set shrinks

considerably as the number of time period grows or the IV becomes stronger (Figure 4).

As a comparison, we report estimates obtained via two standard methods (MLE and

GMM) that assume away serial correlation in the unobservables, consistent with most of the

existing literature. In the MLE approach, we pool all observations along the cross-section

and time-series dimensions and maximize the resulting one-period likelihood. In contrast, in

the GMM approach, we use moments based on the two-period and three-period transitions

as well, while still restricting ⇢ to be zero. Both methods—and particularly GMM—tend

to overestimate the sunk cost. Intuitively, a model that assumes no serial correlation in the

unobservables will load all the persistence in the data onto the sunk cost, thus overestimating

its magnitude. In addition, Figures 7 and 8 in Appendix A.2 show that MLE and GMM

with ⇢ = 0 tend to underestimate the profit parameters.

Figure 3: Low IV strength
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Figure 4: High IV strength

Next, we explore the impact of adding an exogenous covariate wit to the model. We

specify the firm per-period profit as follows:

⇡it =

8
>><

>>:

↵wit � � � ✏it if ait = 1, xit = 1

↵wit � � � � � ✏it if ait = 1, xit = 0

0 if ait = 0

so that wit could be interpreted as a measure of market size such as population, ↵wit rep-

resents variable profits, � is fixed costs, and � is again the sunk cost of entry. Further, we

let ✏it follow the AR(1) process in (23), with ⌫it distributed N (0, �2
⌫). Following Pakes et al.

(2007), we assume that the term ↵wit � � has already been estimated outside the dynamic

model and we focus instead on the parameters �, ⇢ and �.25 When generating the data, we

set ↵ = 1.5, � = 1, � = 1.5, ⇢ = 0.75, � = 1, and we focus on the case where IV strength is

low. Regarding the distribution of the covariate, we let the initial wi0 for each market take

the values {0.15, 1.00, 1.65} with equal probabilities and evolve according to the transition

25Note that, unlike the case without wit, here we are not allowed to normalize � since the non-stochastic
part of the period-profits is modeled parametrically. Accordingly, for this design, we report the standardized
sunk cost �

�
to ensure comparability with the plots for the case without w.
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Note that the parameter values are chosen in such a way that the single-period profit function

when wit = 1 is the same as in the model without wit.

Because wit is exogenous, it can be used as an additional conditioning variable in the GIV

inequalities along with the excluded IV. Thus, adding wit to the model increases the number

of inequalities that each candidate parameter value must satisfy in order to be included in

the identified set. We would then expect the identified set to be smaller in the model with

the exogenous covariate.26 As shown in Figure 5, this is indeed the case.

Figure 5: E↵ect of exogenous covariate

Finally, we illustrate how the identified sets translate into bounds on counterfactual quan-

tities. For brevity, we focus on the case with T = 2, strong IV and no exogenous covariate

wit. We consider three counterfactual scenarios: (i) an increase in the sunk cost of entry by

26However, note that, because wit varies over time in the data, the policy function also changes relative
to the “no wit” case (even for the value of wit that makes the per-period profit identical to that in the “no
wit” model). Thus, it need not be the case that the identified set in this section is a subset of that in the
“no wit” model.
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4.00—corresponding to 267% of its true value—which we call “the sunk cost counterfactual”

for brevity; (ii) an increase in the fixed cost by 0.50—corresponding to 50% of its true value—

and a simultaneous decrease in the sunk cost by 0.125—or 8% of its true value—which we

call “the fixed cost counterfactual”; (iii) a 1.25 subsidy to entry—corresponding to 83% of

the true value of the sunk cost—which we call “the subsidy counterfactual.” The sunk cost

counterfactual is meant to simulate a policy, such as environmental regulation, that only

constrains new entrants. On the other hand, the fixed cost counterfactual corresponds to a

policy restricting both incumbents and entrants. We simultaneously decrease the sunk cost

in this counterfactual to reflect the fact that complying with the regulation may be easier

for new entrants than for incumbents (e.g., due to retrofitting costs). Finally, the subsidy

counterfactual mimics a policy encouraging entry of new firms that might be using cleaner

or otherwise better technology.

The procedure we employ to assess the impact of these shocks is as follows. For each

market in the data, we draw many time series for the unobservables and look at how the

number of firms as well as the fraction of new firms—defined as firms that enter after the

policy change—evolve 10 years after each of the three counterfactual changes.27 We then

average across markets as well as realizations of the unobservables.

Tables 4 and 5 show the results for the GIV approach as well as the MLE and GMM

models with ⇢ = 0. One can see that assuming away serial correlation in the unobservables

leads to bias in the estimated reaction to the policy changes, in terms of both the number

of firms and the fraction of new firms. The e↵ects of the policies tend to be overstated,

in particular for the fixed cost and the subsidy counterfactuals. Intuitively, when ⇢ = 0

the unobservables drawn in the counterfactuals will exhibit much less persistence relative to

their true distribution. This, in turn, leads to an excessive amount of predicted entry and

exit.

27This requires choosing an initial value for the unobservable. For each market, we compute the bounds
on u0 implied by (x0, a0) and the model, and repeat the exercise twice setting u0 equal to the upper and
lower bounds, respectively. We then take the convex hull of the two resulting outcomes.
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Table 4: Number of firms

True GIV MLE
⇢ = 0

GMM
⇢ = 0

Baseline 0.659 (0.612, 0.701) 0.817 0.763
Sunk cost (�) 0.059 (0.017, 0.123) 0.012 -0.154
Fixed cost (�) -0.167 (-0.289, -0.139) -0.769 -0.700
Subsidy (�) -0.023 (-0.052, -0.011) -0.167 -0.140

Note: The first row shows the average number of firms in the market in the absence of policy
changes. Rows 2-4 show the change—relative to the first row—in the average number of firms in
the market 10 years after the policy change (an increase in the sunk cost, a simultaneous increase
in the fixed cost and decrease in the sunk cost, and a subsidy to entry, respectively). The dgp has
T = 2, strong IV and no wit covariate.

Table 5: Fraction of new firms

True GIV MLE
⇢ = 0

GMM
⇢ = 0

Baseline 0.591 (0.460, 0.781) 0.574 0.516
Sunk cost (�) -0.193 (-0.349, -0.098) -0.291 -0.270
Fixed cost (�) 0.186 (0.102, 0.288) 0.429 0.426
Subsidy (�) 0.124 (0.066, 0.209) 0.366 0.379

Note: The first row shows the average fraction of new firms in the market in the absence of policy
changes. Rows 2-4 show the change—relative to the first row—in the average fraction of new firms
in the market 10 years after the policy change (an increase in the sunk cost, a simultaneous increase
in the fixed cost and decrease in the sunk cost, and a subsidy to entry, respectively). The dgp has
T = 2, strong IV and no wit covariate.
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4 Dynamic Oligopoly

We now extend the analysis to the setting where multiple firms interact in each market. In

the oligopoly case, each firm’s equilibrium policy is its single-agent best reply to its rivals’

equilibrium strategies. The firm still solves a value function problem similar to (7), but its

expectations of the future evolution of endogenous market states depend on its action as

well as the equilibrium actions of its rivals.

Throughout this section, we assume complete information for the serially correlated com-

ponents of unobservables. If the serially correlated unobservables are not common knowledge

across all players, standard equilibrium concepts such as perfect Bayesian equilibrium often

become intractable in that they imply that the entire history of play enters the current state.

Fershtman and Pakes (2012) propose a tractable framework to deal with persistent sources of

asymmetric information and our methods might be usefully merged with theirs. In Appendix

B, we illustrate a computed oligopoly problem that features both [i] serially correlated errors

that are observed by all the firms and [ii] private information shocks that are independent

over time. The combination of observed (by rivals) errors and private information errors is

reminiscent of the discussion in Pakes, Porter, Ho, and Ishii (2015).

Since there are multiple firms per market, here we require our original notation of i for

the market and j for the firm. If the equilibrium policies of firm j’s rivals are given by the

function ��j, then the firm’s expected equilibrium state transition probabilities are given by

�̃j (xit+1|aijt, xit, wit, ��j(xit, wit, uit)) . (26)

This notation allows for a rich set of possible state transitions models, including oligopoly

variations on our earlier single-firm examples.

Firm j’s equilibrium Bellman equation then depends on the equilibrium strategies of its

rivals:

Vj (xit, wit, uit, ��j) = (27)

max
aijt2A(xijt)

(⇡j (ait, xit, wit, uit; ✓⇡) + �E✓u [Vj (xit+1, wit+1, uit+1, ��j) |ait, xit, wit, uit]) .

The expected Bellman’s equation is

E [Vj (x
0
, w

0
, u

0) |a, x, w, u, ��j] =Z Z Z
Vj (x

0
, w

0
, u

0
, ��j) d�̃(x

0|aj, x, w, ��j(x, w, u))dQ(w0|w)d�̃(u0|u; ✓u).

Associated with this dynamic program is a best response strategy for firm j, which we assume
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is unique,28 denoted by �̄j(��j, ✓). The vector of best response strategies is then the J-vector

�̄(�, ✓) = (�̄1(��1, ✓), . . . , �̄J(��J , ✓)).

Any vector of equilibrium strategies, �⇤, must satisfy the fixed point

�
⇤ = �̄(�⇤

, ✓). (28)

We can then define the set of possible equilibrium policy function vectors as

⌃EQ(✓) = {�⇤ : �⇤ = �̄(�⇤
, ✓)}.

We adopt the same approach as in earlier papers and assume that, even if the underlying

model admits multiple equilibria, the firms themselves always play the same policy function

when at the same state vectors.29 The true policy function that generates the data is then

an element of the set ⌃EQ(✓), where ✓ is the true parameter that generates our data.

The sharply identified set of parameters in the oligopoly case is the same as in the single

agent case, except with the further restriction that the policies associated with ✓ are a vector

of equilibrium policies:

⇥ID ⌘ {✓ = (✓⇡, ✓u) : there exists �⇤ 2 ⌃EQ(✓) such that �⇤ 2 ⌃IV (✓u)}. (29)

That is, a parameter vector ✓ is in the identified set if there is a policy vector that both [i] is

not rejected by the IV restrictions and the data (given ✓u) and [ii] is a vector of equilibrium

strategies given ✓.

In practice, we may recover ⇥ID via a two-step procedure, just like in the single-agent

case. First, note that the argument for the first step from Section 2.4 immediately extends

to the oligopoly setting, since displays (11) to (14) continue to hold when the variables

ait, xit, wit, uit and the function � are vector-valued. Thus, we can characterize the identified

set for the policy vector ⌃IV (✓u) using the GIV restrictions. Second, one can easily extend

the dynamic best reply condition (17) to the oligopoly setting as follows:

�j(x, w, u) = argmax
aj

vj(aj, ��j (x, w, u) , x, w, u; �, ✓) (30)

where vj is the oligopoly analogue of (16) for firm j. Note that, in defining vj for the oligopoly

case, we treat the actions of rival firms as being generated by ��j (in addition to generating

28Again, Stokey et al. (1989) provide standard conditions guaranteeing uniqueness of the best response
strategy. Note that we assume uniqueness of the best reply but not of the overall equilibrium strategy profile.

29This approach was adopted approximately simultaneously in Bajari, Benkard, and Levin (2007), Pakes,
Ostrovsky, and Berry (2007) and Pesendorfer and Schmidt-Dengler (2008).
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the future actions of firm j based on �j). As in the single-agent case, the best reply in (30) is

therefore a static optimization problem and does not require solving any Bellman equations.

Furthermore, it is a general condition that can be used to characterize the identified set in

any problem. Specifically, the identified set for ✓⇡ is characterized as the values of the profit

parameters that solve (30) for some ✓u and some � 2 ⌃IV (✓u).

As in the single-agent case, in many oligopoly cases we will be able to find simple in-

di↵erence conditions that are necessary for the best reply equation in (30) to hold. In that

case, the second-step search for the identified set of single-period profit function parameters

may once again be characterized as the set of solutions to a system of linear equations. In

the next section, we illustrate this via an oligopoly empirical application. The exact form

of the indi↵erence conditions yielding the system of linear equations for our application is

given in Appendix C.

It may be useful to compare our oligopoly procedure to other two-step procedures in the

literature. Our two-step procedure of the last paragraph is quite similar to Bajari, Benkard,

and Levin (2007), with two di↵erences. First, the policy functions are identified via GIV

conditions. Second, we obtain the sharply identified set via the static best-reply condition

(perhaps through the implied linear indi↵erence conditions), whereas BBL suggest the use

of various inequality conditions that are motivated by the same best reply condition.

We can also compare our approach to “full-solution” approaches that search across the

set of “structural” parameters (✓⇡, ✓u), at each point solving for a (one hopes) unique equi-

lirium. We believe that our set-identification approach clarifies identification issues in a way

that is often hard to do with full-solution approaches. There also a number of more practical

di↵erences. Full-solution methods become particularly hard in the case of possible multiple

equilibria.30 Once an equilibrium is calculated for a given parameter value, a full compu-

tational method must then compare the model’s predictions to data. If the model features

a natural solution to the initial conditions problem, then the fit to data might be done via

maximum likelihood (as in, e.g., Rust (1987) and Igami (2018)) or else via a fit of data

moments to moments predicted from the model (Pakes and McGuire (2001). In contrast,

our method naturally accounts for unrestricted initial conditions and never requires a com-

puted solution to the equilibrium fixed-point problem, or even a solution to the single-agent

contraction mapping. In our method, the “fit to data” is provided by the GIV method. In

the absence of an initial conditions problem, the GIV approach often collapses into an MLE

or method of moments approach, reducing the di↵erence between the methods.

The computational tradeo↵ is that our method requires us to find a confidence region for

the identified set of policy functions. The nature of the tradeo↵ here may vary with the fine

details of the problem and (in the absence of multiple equilibria issues) might favor either

30See the online appendix of Doraszelski and Satterthwaite (2010) for examples of multiplicity. Further
examples are in Pesendorfer and Schmidt-Dengler (2010). Borkovsky et al. (2010) provides a homotopy
method for exploring a range of possible multiple equilibria.
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method. Note that we could, if computationally advantageous, also employ a full solution

method. In this case, the “fit to data” for a computed equilibrium would involve testing

the GIV conditions for the policy function implied by the equilibrium behavior. In our

empirical example, we employ a full-solution GIV approach (assuming a unique equilibrium

and allowing for an initial conditions problem) as well as the two-step approach that we have

discussed in this section (which does not require a unique equilibrium).

5 Empirical Application to Environmental Policy Style

Counterfactuals

In order to illustrate the approach, we apply it to the ready-mix concrete industry studied

by Collard-Wexler (2014) (henceforth, CW). CW quantifies the magnitude of the sunk cost

of entry in each of many isolated markets in the US and uses these estimates to assess how

persistent the e↵ects of a horizontal merger are in this industry. More specifically, CW first

estimates the firms’ policy functions based on data on the number of ready-mix concrete

plants and demand shifters. Given the policies, the paper then simulates the evolution of a

market following a merger to monopoly and evaluates how long it takes for a second firm

to enter.31 CW imposes an intuitively appealing parametric form for the policy functions,

rather than deriving them from an underlying dynamic model. One of our approaches below

will roughly mimic this approach.

We use the same data and modeling framework as CW, but estimate all of the structural

parameters as opposed to just the policy functions and the serial correlation parameter.32

This allows us to address the counterfactual e↵ects of policies that a↵ect the “structural”

profit function. In particular, we consider the e↵ects of policies—similar to the environmental

policies in the cement industry study of Ryan (2012)—that alter sunk costs. In addition,

since the GIV approach accommodates incomplete models, we are able to tackle the initial

conditions problem in a flexible way.33

Note that our application is intentionally simplified to serve as an example within a longer

methodological paper. In particular, for this worked empirical example, we want to avoid the

large, growing and important literature on methods that solve the computational challenge

of methods that involve both (1) many parameters and (2) many inequality restrictions.

31Lazarev et al. (2018) also consider counterfactual questions that only require knowledge of the dynamic
policy functions, but not the structural single-period profit parameters.

32Collard-Wexler (2013) estimates a full model of industry dynamics using firm-level data under the
assumption that the dynamic states are econometrically exogenous. We use coarser market-level data, but
address the endogeneity of market structure.

33CW addresses the initial conditions problem by simulating the probabilities of the initial states via a
modification of the GHK algorithm. This requires assuming that the industry has been following the same
set of policies for a long time.
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Examples of this literature include Chen et al. (2018) and Kaido et al. (2019). To keep the

number of parameters small, we use an intentionally simplified state space and, even then, we

place further parametric restrictions. This gives us models with as few as five parameters so

that we can easily apply a multidimensional grid search to compute the required confidence

regions. Our restriction to problems amenable to a grid search is obviously strong given

the state of the literature, but it removes complex computational choices from the list of

problems we need to tackle.

Table 6 summarizes the variables we use. The data on number of plants and construction

employment is the same as in CW and we refer the reader to that paper for more details.

Briefly, the number of plants variable measures how many firms are active in each isolated

town, while construction employment captures demand for ready-mix concrete. We follow

CW and treat construction employment as exogenous, while the number of concrete plants

is endogenous. In addition, we obtain data on past household income growth at the county

level from the US Census website. We assume that past income growth is excluded from the

current profits of concrete firms and that, conditional on current construction employment,

past income growth is independent of within sample unobserved shocks to profitability. Past

income growth therefore serves as an excluded instrument in our model.

Table 7 shows results for a “quasi first-stage regression.” This table presents an ordered

probit model with the number of firms as the dependent variable. We see that that the

coe�cients on both exogenous variables are positive and precisely estimated. The result

suggests that our excluded instrument is “relevant,” even when conditioning on current

demand. Of course, the true reduced form of the model is not an ordered probit and we

present this merely as a descriptive result.

We conclude our brief descriptive analysis by reporting in Table 8 the transition probabil-

ities for the number of plants, which shows that the variable exhibits substantial persistence

over time.34

34The results in Tables 7 and 8, as well as those from structural estimation, are based on a discretized
version of the original data. Specifically, since more than 90% of the original observations at the market-year
level have two or fewer plants, we censor the number of plants at two, which reduces the number of parameters
to estimate in the structural model. Similarly, we discretize construction employment and household income
growth. For each variable, we define a high and a low value depending on whether a given observation is
above or below the median. Because construction employment essentially has no over-time variation after
discretization, we take its value in the first year of the sample for each market and assume it is constant over
time (and that firms know it). This means that, when we condition on construction employment to compute
the moments implied by the model, the conditioning variable is scalar—as opposed to having dimension
equal to the number of time periods—which leads to much more precisely estimated moments.
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Table 6: Summary statistics

Variable Mean St.Dev. Min Max

Number of plants 0.97 0.93 0.00 6.00

Construction Employment 519 819 3 17,772

% Household Income Growth 1969-1989 0.15 0.11 -0.16 0.69

Note: Fully balanced panel of 428 markets between 1994 and 2005.

Table 7: Ordered probit results

Log Construction Employment 0.14⇤⇤

Income Growth 1969-1989 0.22⇤⇤

Likelihood-Ratio Test p-value 0.00

Note: Dependent variable is number of plants. ⇤⇤ denotes significance at the 95% level.

Table 8: Transition probabilities conditional on instrument

xit+1

xit 0 1 2

0 0.92 0.07 0.01
1 0.05 0.89 0.06
2 0.01 0.10 0.89

Note: Each row displays the probabilities of di↵erent values of xit+1 conditional on a value of xit.

We now turn to the structural analysis. As in CW, we estimate a version of the Last-In

First-Out model developed by Abbring and Campbell (2010). Again, we refer the reader to

CW for more details on what assumptions are imposed and why this is is a suitable oligopoly

model in the context of the ready-mix concrete industry. Importantly, in our simple model,

the Abbring-Campbell assumptions imply uniqueness of the equilibrium (see footnote 35)

34



within the class of Last-In-First-Out equilibria. However, we also present results from a

two-step approach that allows for multiple equilibria.

Some—but not all—of the results presented below rely on the following specification for

the single-period profit function:

⇡it =

8
>><

>>:

↵xitwi � � + ✏it if was in at t� 1, stays in at t

↵xitwi � � � � + ✏it if was out at t� 1, enters at t

0 if is out at t

(31)

where wi denotes construction employment (in thousands) in market i, ↵xit is a coe�cient

that depends on the number xit of active firms in market i at time t, � represents the intercept

of the variable profit function as well as any fixed costs, � is the sunk cost of entry, and ✏it

denotes a potentially serially correlated unobservable shock to profitability. We assume that,

conditional on ✏it�1, ✏it is equal to ✏it�1 with probability ⇢ and is drawn uniformly from the

[�1, 1] interval with probability 1� ⇢.35 Further, we impose the natural restriction ↵2  ↵1
2 ,

i.e. that per-firm variable profits (weakly) decrease with the number of competitors.

As mentioned above, because we have twelve years of data, the number of moment

conditions defining the sharp identified set is extremely large and it is not practical to use

all of them. However, the goal of obtaining a small confidence region for the identified set

suggests that we want to use a large number of them. This creates a potential problem,

as many methods for obtaining confidence regions will not perform well when the number

of moment inequalities is very large. A tension thus arises between the desire for a small

confidence region (on one hand) and the desire for accurate inference (on the other hand). To

resolve this tension, we report confidence sets for the structural parameters obtained via the

two-step multiplier bootstrap approach proposed by Chernozhukov et al. (2018) (henceforth,

CCK).36 The method is intended for cases where the number of moment inequalities is very

large, even larger than the dimension of the data.

As in the Monte Carlo simulations from Section 3, we impose two sets of GIV moments:

(i) the full list of moments characterizing the sharp identified based on the first two time

35This parametric specification for the joint distribution of the unobservables is used by Abbring and
Campbell (2010), who show that it satisfies their Assumption 3. This, along with other mild assumptions,
ensures existence and uniqueness of a Markov-perfect equilibrium in Last-In First Out strategies. Note that
we are able to map our model to that of Abbring and Campbell (2010), which features a scalar exogenous
state variable, since the covariate wi is time-invariant in our setting after the discretization described in
footnote 34. If wi also varied over time, then we would have two exogenous state variables—wit and ✏it—
and uniqueness of the equilibrium might no longer hold. However, note that even in this case our two-step
approach would be able to (partially) identify the model parameters under the standard assumption that
the same equilibrium is played at a given state in the data.

36For each candidate parameter value, we use as test statistic the maximum of the sample moments (at
that parameter value) divided by their standard deviations and scaled by the square root of the sample size.
We then compare the test statistic to the CCK critical value obtained with 250 bootstrap draws.
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periods;37 and (ii) several inequalities corresponding to observable events over the entire

twelve years in the data.38 This second set is chosen to include events that are intuitively

likely to distinguish di↵ering levels of serial correlation. For example, if the event “no entry

or exit occurs in the twelve-year period” is very common, this might indicate a high degree

of serial correlation. In addition to our list of intuitively information aggregated events, we

include the inequalities associated with the complement of each of these events and we make

sure that the left-hand side of each GIV inequality incorporates not only the observable event

associated with that inequality, but also all observable events whose necessary conditions (in

the space of unobservables) are subsets of the set whose probability is on the right hand side

of the inequality.

Computationally, we follow CCK in generating a large number of draws to approximate

the integrals corresponding to these events and ignoring the corresponding simulation error.

Simple diagnostics suggest that the simulation variance is indeed negligible relative to the

sample variance. Since all our conditioning variables are discrete, we can easily turn the

conditional moment inequalities into unconditional ones. We obtain a total of with 614

inequalities.

We estimate our GIV model in two ways. First, we use a traditional full-solution ap-

proach in which we solve the model for each candidate ✓ and verify whether the implied

policy functions satisfy the GIV restrictions. This method requires a model with a unique

equilibrium. Our model satisfies the unique equilibrium conditions of Abbring and Campbell

if the exogenous shifters wit are fixed over time (see footnote 35). This is a strong restriction

that we maintain in our empirical specification. We also estimate a version of our two-step

method, which does not require uniqueness of the equilibrium. As in many more elaborate

two-step empirical exercises, to hold down the computation burden we impose a functional

form on the policy function. In particular, we use a five-parameter specification consisting

of four entry thresholds (corresponding to two values of xit and two values of wi) plus a

shifter that, when added to the entry thresholds, gives the corresponding exit thresholds.

This choice of parameterization fairly closely matches the policies that are obtained via

the full-solution method. In addition, we impose the specification of single-period profits

37We compute these moments by only using the first two years in the panel. In principle, one could obtain
more moments by taking all subsets of the data with two consecutive years. Because we already obtain
informative results when only using the first two years, we do not pursue this extension in the paper.

38These events are: “some entry and some exit occur,” “there are always zero firms,” “there is always
one firm,” “there are always two firms,” “there is at least one period with zero firms,” “there is at least one
period with one firm,” “there is at least one period with two firms,” “the number of firms goes from zero to
one,” “the number of firms goes from one to two,” “the number of firms goes from zero to two,” “the number
of firms goes from two to zero,” “the number of firms changes at least once,” “the number of firms changes
exactly once,” “the number of firms changes exactly twice,” “the number of firms goes from one to zero,”
“the number of firms goes from two to one or zero,” “the number of firms in the market is unchanged for at
least five consecutive periods,” “the number of firms in the market is unchanged for at least nine consecutive
periods.”
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given in (31). This “double parameterization”—on both the policies and the single-period

profits—mimics the double parameterized specifications that are common in the CCP liter-

ature. We also estimated a more flexible two-step model in which the single-period profits

are unrestricted, i.e. each of the eight possible discrete values of ⇡(x, w, a) is treated as a

separate parameter. Unsurprisingly given the limited sample size and variation in the data,

this more flexible model gives wide confidence intervals for the counterfactuals. However,

this might be a viable option when larger samples with more variation in the endogenous

states are available.

In addition, we estimate three models that set ⇢ = 0 and thus assume away serial cor-

relation. Two are full-solution methods corresponding to the MLE and GMM approaches

used as benchmarks in the numerical illustration of Section 3.3. A third method mimics the

standard two-step approaches with exogenous states. In particular, we use the same double

parameterization as in the GIV two-step procedure described above, but we set ⇢ = 0 and

estimate the policy in the first step by MLE.

Tables 9 and 10 display confidence intervals for the structural parameters in specification

(31) based on the full-solution and two-step approaches, respectively. First, both GIV ap-

proaches give estimates of ⇢ that are positive and significantly di↵erent than zero, indicating

substantial persistence in the unobservables over time. Second, the GMM approach with

⇢ = 0 considerably over-estimates the sunk cost �. Intuitively, like in the simulations of

Section 3.3, the GMM approach requires a very large sunk cost in order to rationalize the

observed persistence in the number of firms over time since, with ⇢ = 0, sunk costs are the

only source of stickiness in the model. On the other hand, the sunk cost is not over-estimated

by the MLE model with ⇢ = 0. To understand this, recall that the MLE model pools all

observations together and maximizes the single-period likelihood, thus e↵ectively ignoring

the time dimension of the data, whereas the GMM model is designed to match the time

transitions of the states.

Table 9: Full-solution parameter estimates

Full-solution GIV MLE ⇢ = 0 GMM ⇢ = 0

↵1 (0.17,0.18) (0.042,0.045) (0.10,0.20)
↵2 (0.010,0.011) (0.01,0.02) (-0.013,0.015)
� (0.260,0.269) (0.038,0.043) (-0.04,-0.02)
� (2.582,2.585) (1.44, 1.46) (6.40,10.56)
⇢ (0.65,0.76) — —

Note: The results impose the specification for single-period profits in (31), but do not restrict the
policy functions. The intervals have 95% confidence level.
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Table 10: Two-step parameter estimates

Two-step GIV Two-step ⇢ = 0

↵1 (0.10,0.40) (0.006,0.010)
↵2 (-0.0004,0.218) (-0.005,-0.002)
� (0.14,0.54) (-0.036,-0.030)
� (-0.0001,1.766) (1.62,1.68)
⇢ (0.74,0.87) —

Note: The results impose the parameterization of the single-period profits in (31) as well as the
five-parameter specification for the policy functions described in the text. The intervals have 95%
confidence level.

In order to investigate whether allowing for endogeneity of market structure makes a

di↵erence for policy-relevant questions, we turn to counterfactual analysis. We consider

the impact of an increase in the sunk cost on the number and composition of firms in

the market.39 This can be thought of as arising from environmental regulation, such as a

mandate for new firms to invest in technology to reduce polluted water from running o↵

concrete operations.

Tables 11 and 12 shows the counterfactual results. One can see that the approaches

assuming away serial correlation in the unobservables yield significantly di↵erent predictions

relative to the GIV methods. In particular, maximum likelihood with ⇢ = 0 tends to over-

estimate the response to the counterfactual policy in terms of both the change in the number

of firms and the decrease in the percentage of new firms (defined as firms that enter the

market after the policy change). Intuitively, the i.i.d. assumption forces the unobservables

to vary too much from one period to the next, which translates into excessive variation in

the implied market outcomes relative to the model with serial correlation. Table 12 shows

a similar pattern for the two-step methods. In contrast, the GMM approach with ⇢ = 0

predicts no change at all in the number or composition of firms. This is because GMM

estimates a very large sunk cost, relative to which the policy change is second-order. It is

also interesting to compare the two GIV methods. While the two-step approach delivers

wider confidence intervals than the full-solution method, the latter confidence intervals are

not contained in the former. This is because the two models are not nested: the two-step

procedure is more restrictive in that it places a parametric structure on the policy functions,

but on the other hand it is more flexible in that it allows for multiple equilibria.

In sum, these policy counterfactual results show the large bias that may result from

models that artificially set the serial correlation parameter to zero, as is common in much

39Specifically, we take the midpoint of the (projection of the) full-solution identified set for � and increase
the sunk cost by 10% of that value.
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of the literature. Further, the relatively precise estimates from our full-solution procedure

show that dropping restrictive initial conditions assumptions need not lead to uninformative

results. In part, this stems from our use of new econometric techniques for moment inequali-

ties that allow us to employ very large number of moment inequalities in an econometrically

disciplined and correct way.

Table 11: Counterfactual Outcomes: Full-solution approaches

Full-solution GIV MLE ⇢ = 0 GMM ⇢ = 0

# of Firms

Baseline (0.47,0.50) (0.60,0.66) (0.30,0.64)
Increase in Sunk Cost (-0.032,-0.031) (-0.15,-0.11) 0

% of New Firms

Baseline (7.7,9.7) (27.6,32.0) (0.7,0.9)
Increase in Sunk Cost (-2.3,-2.2) (-15.4,-13.7) 0

Note: For each outcome of interest (number of firms and percentage of new firms), the “baseline”
numbers refer to the average outcomes in the absence of policy changes, whereas the “increase in
sunk cost” numbers represent the change—relative to the baseline—in the counterfactual scenario
where the sunk cost is higher. All intervals have 95% confidence level.

Table 12: Counterfactual Outcomes: Two-step approaches

Two-step GIV Two-step ⇢ = 0

# of Firms

Baseline (0.74,1.314) (0.89,1.02)
Increase in Sunk Cost (-0.18,-0.01) (-0.22,-0.19)

% of New Firms

Baseline (15.2,38.9) (22.1,27.9)
Increase in Sunk Cost (-0.9,-0.1) (-8.6,-6.8)

Note: For each outcome of interest (number of firms and percentage of new firms), the “baseline”
numbers refer to the average outcomes in the absence of policy changes, whereas the “increase in
sunk cost” numbers represent the change—relative to the baseline—in the counterfactual scenario
where the sunk cost is higher. All intervals have 95% confidence level.
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6 Conclusion

In this paper, we have proposed an approach to identification and inference in dynamic mod-

els with serially correlated unobservables. We tackle the resulting endogeneity of dynamic

states by relying on the type of instrumental variables intuition that is commonly used in

static models. In order to characterize the identified sets for quantities of interest and ob-

tain confidence regions, we leverage recent results in the econometrics literature on partially

identified models and the associated inference literature. Our empirical application extends

work by Collard-Wexler on dynamic entry models with serially correlated unobservables to

consider policy counterfactuals that are motivated by classic questions in environmental eco-

nomics. We find that approaches ignoring serial correlation can significantly misstate the

e↵ects of policies that a↵ect the underlying profitability of an industry, such as an environ-

mental regulation that a↵ects the sunk cost of entry.

This paper opens several avenues for future research. Most importantly, it would be

interesting to apply the proposed approach to a wider class of empirical settings and see how

accounting for the endogeneity of market structure a↵ects additional counterfactual policy

results.
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Appendix A: Additional Details on Single-Agent Exam-

ple

A.1 Non-Elemental Sets

First, we present the non-elemental sets belonging to the collection of core determining sets for the example

considered in Section 3 with T = 2 time periods. These are the sets given by the overlapping unions of

elemental sets, excluding cases of strict subsets. Below each set we specify the events associated with the

elemental sets that we are taking the union of (top three sets) or the non-elemental sets that we taking the

union of (bottom two sets).

(a) (0,0,0)+(1,1,0) (b) (0,0,0)+(1,1,1) (c) (1,1,1)+(0,0,1)

(d) (a)+(b) (e) (b)+(c)

A.2 Projection of Identified Sets on the Space of Profit Parame-

ters

Next, we complement the results in Section 3.3 by showing the projections of the identified sets onto the

space of the profit parameters. We focus on the model without exogenous profit shifters wit. One can see

that the GMM and MLE models that assume away serial correlation tend to underestimate both profit

parameters.
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Figure 7: Low IV strength

Figure 8: High IV strength
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Appendix B: Computed Example of Dynamic Oligopoly

In this section, we illustrate how our approach applies to the dynamic oligopoly setting by considering a

model with discrete persistent common knowledge unobservables and private information i.i.d. shocks.

Consider the problem faced by two firms choosing how many stores to open in each of several markets

over time. We assume that the firms choose between having one or two stores open in each market at any

given point in time. Given the number of stores in a market, the two firms engage in Bertrand competition

and each of them charges the same price across its own stores. We let j index stores and k (j) be the firm

owning store j. Consumers view the products as horizontally di↵erentiated across stores. Specifically, let

uijt = � � ↵pk(j)t + ✏ijt

be the utility that consumer i gets from buying from store j at time t. Assuming that ✏ijt is i.i.d. extreme

value across consumers and stores, the market share of firm k at time t is given by

skt (pt) =
xkt exp��↵pkt

1 +
2P

r=1
xrt exp��↵prt

,

where pt = (p1t, p2t) and xkt denotes the number of stores that firm k has open at time t. The first order

condition for firm k’s static problem at time t is then

pkt = mckt �
skt (pt)
@

@pkt
skt (p)

where mckt denotes the marginal cost of firm k at time t, which is assumed to be constant across firm k0s

stores. The system of first-order conditions implicitly determines the equilibrium prices in each market at

any point in time and this in turn determines each firm’s variable profits. Let ⇡⇤
k
(xt, wt) be firm k’s variable

profit at time t as a function of the endogenous states xt = (x1t, x2t) and of market size wt, which we assume

to be exogenous. Further, each firm incurs a fixed cost for each open store at time t and a sunk cost if it

decides to open a new store in the next period. The timing is such that at time t a firm chooses akt, i.e. the

number of stores at time t+ 1, and incurs the associated sunk cost, if any, at time t. The final specification

for flow profits is as follows:

⇡kt (akt, xt, wt,�kt, ⌫kt) = ⇡⇤
k
(xt, wt)� �xkt�kt � � (akt � xkt) I {akt � xkt} · ⌫kt,

where � is the fixed cost, � is the sunk cost and �kt and ⌫kt are shocks that are unobserved to the econome-

trician. We assume that �kt is common knowledge and possibly correlated over time and across players. This

is the structural shock that may be correlated with the state xt, thus leading to an endogeneity problem.

On the other hand, ⌫kt is assumed to be i.i.d. over time and across players and to be observed by player k

but not by the other firm. Adding this shock to the profit specification helps show existence of the dynamic

equilibrium and compute said equilibrium in practice.

In the simulation, we set ↵ = 0.5, � = 2 on the demand side and mckt = 0.5, � = 0.7, � = 1 on the cost

side. Moreover, we assume �kt can only take the two values 0.25 and 0.75, so that at any time t there are

four possible combinations of �t = (�1t,�2t). The joint probability distribution for (�t,�t+1) is given by the
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following matrix 2

6664

0.175 0.025 0.025 0.025

0.025 0.175 0.025 0.025

0.025 0.025 0.175 0.025

0.025 0.025 0.025 0.175

3

7775

In other words, the �t process is fairly persistent over time. Further note that the matrix above is charac-

terized by just one parameter, which is convenient computationally. In particular, this correlation structure

implies that, given any value of �t, �t+1 will be equal to �t with probability ⇢ = 0.7 and will switch to any

of the other three values with 0.1 probability each. Moreover, the shock ⌫kt takes one of the two values 0.5

and 1 with equal probability and is i.i.d. over time and across players. The exogenous state w is either 0.8 or

2 and, for simplicity, is taken to be constant over the time span from t = 1 to t = T , where T is the number

of observed time periods. In the simulation, we let T = 2.40

Finally, we use past values of w as instruments. For each firm, the instrument has a correlation of 0.81

and 0.56 with x from period 1 and 2, respectively.

The structural parameters are the fixed cost �, the sunk cost � and the correlation parameter ⇢ for the

�t process. To characterize the identified for ✓ = (�, �, ⇢), we proceed in two steps. First, we find all the

policies that satisfy the CR conditions. Note that, in this simple example, there are only 64 possible states

and therefore a policy is a vector of length 64 with elements taking two possible values (corresponding to

choosing one or two stores). This makes it possible to enumerate all possible (monotonic) policies and check

the GIV conditions for each of them. Only 5,335 policies survive at the end. This is the sharp GIV identified

set for the policy.

In the second step, we go from the identified set for the policy to the identified set for the structural

parameters. Specifically, for each candidate value ✓ in a grid, we check whether there exists a policy in the

GIV identified set such that when the opponent plays according to that policy, it is optimal for a firm to play

the same policy. Here we exploit the fact that the two firms face the same problem and thus there has to be

a symmetric equilibrium. Further, note that this procedure does not rely on uniqueness of the equilibrium

and thus can be applied without any changes even if a given value of ✓ is associated with multiple equilibria.

Figures 9 and 10 show projections of the identified set for the structural parameters.

40In order to focus on identification of the parameters and abstract from inference issues, we draw a very
large sample of markets (50,000).
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Figure 9: Projection of identified set for �, �
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Figure 10: Projection of identified set for ⇢

Appendix C: The Second Step in the Empirical Appli-

cation

In this appendix, we write out the system of equations that we use to perform the second step of our

procedure in the empirical application. In our sample, each market can have 0, 1 or 2 firms. We denote

by 1 the first firm to enter the market and by 2 the second firm to enter. Abbring and Campbell (2010)

show that in equilibrium firm 1 will also be the last to exit. Each market is characterized by the level of

construction employment (w), which we discretize into “high” and “low,” respectively labeled w,w. Denote

by ⌧j,In(w) the entry threshold for firm j when construction employment is set at w. This is the value

of the unobservable that makes firm j indi↵erent between staying out and entering the market. Similarly,

let ⌧j,Out(w) be firm j’s exit threshold. By the properties of the Last-In-First-Out equilibrium and since

profits are increasing in both w and the unobservable, we have (i) ⌧j,In(w) � ⌧j,Out(w), for all j and w; (ii)

⌧1,In(w)  ⌧2,In(w), ⌧1,Out(w)  ⌧2,Out(w) for all w; and (iii) ⌧j,In(w)  ⌧j,In(w), ⌧j,Out(w)  ⌧j,Out(w) for

all j.

The single-period profit parameters to be recovered are ⇡ (x,w)—the deterministic part of variable profits

as a function of x, the number of firms in the market and w—and �(x,w)—the sunk cost of entry as a function

of x and w. In total, there are four ⇡ and four � parameters. Since we will have eight equations, we will

be able to recover all of the eight parameters. However, it seems reasonable to assume that sunk costs are

invariant to x and w and so the results in the paper impose that restriction.

We let ✓ ⌘ (⇡, �). Given a candidate profile of strategies �̃ and a candidate serial correlation parameter

⇢̃ from the first stage, the goal is to recover ✓. Let vj(aj , w, ✏, �̃, ✓) be firm j’s value function associated with

46



the action aj at states (w, ✏) when all firms follow the strategy profile �̃ and the profit are parameterized by

✓. Now we evaluate vj at aj = 1 (firm j chooses to be in the market) and ✏ = ⌧j,In (w) for each firm j and

each value of w. At that value of the unobservable, j is indi↵erent between staying out of the market and

entering. Thus, the value function is equal to zero, the value of staying out. The value of entering can be

expressed as a linear function of the profit parameters via simulation as follows

vs(1, w, ⌧j,In(w), �̃, ✓) =
X

x̃2{1,2}

X

w̃2{w,w}

⇡ (x̃, w̃)
1

S

SX

s=1

T̄X

t=0

�t1
�
xs

t
= x̃, ws

t
= w̃, as

jr
= 1 8r  t

 
�

� (j, w) +
SX

s=1

T̄X

t=0

�t✏s
t
1
�
as
jr

= 1 8r  t
 
,

(32)

where (i) as
jt
—and thus xs

t
—are determined by the candidate profile of strategies �̃; (ii) xs

0 = j for all s,

since if firm 1 is indi↵erent between entering and staying out then firm 2 will stay out and, conversely, if

firm 2 is indi↵erent between entering and staying out then firm 1 will be in; (iii) ws
t
is set to w for t = 0 and

after that is drawn based on the law of motion for the exogenous covariates recovered outside the dynamic

model; and (iv) ✏s
t
is set to ⌧j,In(w) for t = 0 and after that is drawn from the distribution with candidate

serial correlation parameter ⇢̃ from the first stage. Note that, since exit is irreversible, the sunk cost � is

paid only at t = 0. Equating (32) to zero gives one linear equation in ✓ for each firm and each value of w,

i.e. four equations in total.

Similarly, we can evaluate vj at aj = 1 and ✏ = ⌧j,Out (w) for each firm j and each value of w. At that

value of the unobservable, j is indi↵erent between staying in the market and exiting. The simulated version

of the value function is

vs(1, w, ⌧j,Out(w), �̃, ✓) =
X

x̃2{1,2}

X

w̃2{w,w}

⇡ (x̃, w̃)

2

4 1

S

SX

s=1

T̄X

t=0

�t1
�
xs

t
= x̃, ws

t
= w̃, as

jr
= 1 8r  t

 
3

5

+
SX

s=1

T̄X

t=0

�t✏s
t
1
�
as
jr

= 1 8r  t
 
.

(33)

Relative to (32), now ✏s0 is set to ⌧j,Out(w). Further, the � parameters do not show up in (33) since firm j is

already in at the initial time. Since in the model exit is irreversible, the value of exiting the market is zero.

Thus, equating (33) to zero gives another set of four equations. In total, we have a system of eight linear

equations which characterize the set of values of ✓ consistent with the first-stage candidates (�̃, ⇢̃) and the

model.

Appendix D: Proofs Omitted from the Text

Proof of Result 4

First, note that the restrictions imposed in the second step imply that (25) is satisfied at x = x̄, u = ⌧(x̄)

for x̄ 2 {0, 1}. Thus, if we could show that the policy solving (25) is weakly decreasing in u, then we

could conclude that that policy is the same as �̃ at all values of x and u, completing the proof. The

policy solving (25) is weakly decreasing in u if and only if ⇡ (1, x, u) + �E [V (1, u0)� V (0, u0)|u] is weakly

decreasing in u, where ⇡ (1, x, u) denotes the single-period profit from choosing a = 1. The specification of

the single-period profit function implies that ⇡ (1, x, u) is (strictly) decreasing in u, so it su�ces to show
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that E [V (1, u0)� V (0, u0)|u] weakly decreases in u. To this end, we use Corollary 1 in Stokey et al. (1989).

Based on the corollary, if we can show that E
h
Ṽ (1, u0)� Ṽ (0, u0)|u

i
weakly decreasing in u implies that the

value function returned by the Bellman equation, B(Ṽ ), satisfies the same property, then we have shown

that the fixed point of the Bellman equation, V , satisfies the property, yielding the desired result. Note that

B(Ṽ ) (1, u)�B(Ṽ ) (0, u) = max {⇡ (1, 1, u) + �E [V (1, u0)|u] , �E [V (0, u0)|u]} �
max {⇡ (1, 0, u) + �E [V (1, u0)|u] , �E [V (0, u0)|u]}

Since ⇡ (1, 1, u)� ⇡ (1, 0, u) = � � 0, we have

B(Ṽ ) (1, u)�B(Ṽ ) (0, u) =

8
>>><

>>>:

� if ⇡ (1, 0, u) + �E
h
Ṽ (1, u0)� Ṽ (0, u0)|u

i
� 0

⇡ (1, 1, u) + �E
h
Ṽ (1, u0)� Ṽ (0, u0)|u

i
if 0  ⇡ (1, 1, u) + �E

h
Ṽ (1, u0)� Ṽ (0, u0)|u

i
 �

0 if ⇡ (1, 1, u) + �E
h
Ṽ (1, u0)� Ṽ (0, u0)|u

i
 0

By inspecting this function, one can see that it is weakly decreasing in u if E
h
Ṽ (1, u0)� Ṽ (0, u0)|u

i
weakly

decreases in u. Since ⇢̃ � 0, the distribution of u0 is stochastically increasing in u. It then follows that

E
h
B(Ṽ ) (1, u0)�B(Ṽ ) (0, u0) |u

i
weakly decreases in u.

48



References

Abbring, J. H. and J. R. Campbell (2010): “Last-In First-Out Oligopoly Dynamics,”

Econometrica, 78, 1491–1527.

Ackerberg, D., L. Benkard, S. Berry, and A. Pakes (2007): “Econometric Tools

for Analyzing Market Outcomes,” in Handbook of Econometrics, ed. by J. J. Heckman and

E. Leamer, North-Holland, vol. 6A, chap. 63.

Altonji, J. and R. L. Matzkin (2005): “Cross-Section and Panel Data Estimators for

Nonseparable Models with Endogenous Regressors,” Econometrica, 73, 1053–1102.

Anderson, T. and C. Hsiao (1981): “Estimation of Dynamic Models with Error Com-

ponents,” Journal of the American Statistical Association, 76, 598–606.

Andrews, D. W. and X. Shi (2013): “Inference based on conditional moment inequali-

ties,” Econometrica, 81, 609–666.

——— (2017): “Inference Based on Many Conditional Moment Inequalities,” Journal of

Econometrics, 196, 275–287.

Andrews, D. W. and G. Soares (2010): “Inference for Parameters Defined by Moment

Inequalities Using Generalized Moment Selection,” Econometrica, 78, 119–157.

Arcidiacono, P. and R. Miller (2011): “Conditional Choice Probability Estimation

of Dynamic Discrete Choice Models with Unobserved Heterogeneity,” Econometrica, 7,

1823–1868.

Arellano, M. and S. Bond (1991): “Some Tests of Specification for Panel Data: Monte

Carlo Evidence and an Application to Employment Equations,” Review of Economic Stud-

ies, 58, 277–297.

Athey, S. and G. Imbens (2006): “Identification and inference in nonlinear di↵erence-in-

di↵erence models,” Econometrica, 74, 431–497.

Bajari, P., C. L. Benkard, and J. Levin (2007): “Estimating Dynamic Models of

Imperfect Competition,” Econometrica, 75, 1331–1370.

Beresteanu, A., F. Molinari, and I. Molchanov (2011): “Sharp Identification Re-

gions in Models with Convex Moment Predictions,” Econometrica, 79, 1785–1821.

Berry, S. and G. Compiani (2020): “Empirical Models of Industry Dynamics with En-

dogenous Market Structure,” Tech. rep., Yale, in preparation for the Annual Review of

Economics.

49



Berry, S. and E. Tamer (2007): “Identification in Models of Oligopoly Entry,” in Ad-

vances in Economics and Econometrics: Theory and Applications, Ninth World Congress,

ed. by W. N. R. Blundell and T. Persson, Cambridge University Press, vol. 2.

Berry, S. T. (1992): “Estimation of a Model of Entry in the Airline Industry,” Economet-

rica, 60, 889–917.

Berry, S. T. and P. A. Haile (2014): “Identification in Di↵erentiated Products Markets

Using Market Level Data,” Econometrica, 82, 1749–1797.

Blevins, J. (2016): “Sequential Monte Carlo Methods for Estimating Dynamic Microeco-

nomic Models,” Journal of Applied Econometrics, 31, 773–804.

Blundell, R. and S. Bond (1998): “Initial conditions and moment restrictions in dy-

namic panel data models,” Journal of Econometrics, 87, 115–143.

Borkovsky, R. N., U. Doraszelski, and Y. Kryukov (2010): “A User’s Guide to

Solving Dynamic Stochastic Games Using the Homotopy Method,” Operations Research,

58, 1116–1132.

Bresnahan, T. (1989): “Empirical Studies of Industries with Market Power,” in The

Handbook of Industrial Organization, ed. by R. Schamlensee and R. Willig, North-Holland,

no. 10 in Handbooks in Economics.

Chen, X., T. M. Christensen, and E. Tamer (2018): “Monte Carlo Confidence Sets

for Identified Sets,” Econometrica, 86, 1965–2018.

Chernozhukov, V., D. Chetverikov, and K. Kato (2018): “Inference on Causal

and Structural Parameters using Many Moment Inequalities,” The Review of Economic

Studies, 86, 1867–1900.

Chernozhukov, V., H. Hong, and E. Tamer (2007): “Estimation and Confidence

Regions for Parameter Sets in Econometric Models1,” Econometrica, 75, 1243–1284.

Chernozhukov, V., S. Lee, and A. Rosen (2013): “Intersection Bounds: Estimation

and Inference,” Econometrica, 81, 667–737.

Chernozkukov, V., D. Chetverikov, and K. Kato (2018): “Inference on Causal and

Structural Parameters Using Many Moment Inequalities,” Review of Economic Studies,

forthcoming.

Chesher, A. (2010): “Instrumental Variables Models for Discrete Outcomes,” Economet-

rica, 78, 575–601.

50



Chesher, A. and A. Rosen (2017): “Generalized Instrumental Variable Models,” Econo-

metrica, 83, 959–989.

Ciliberto, F. and E. Tamer (2009): “Market Structure and Multiple Equilibria in Airline

Markets,” Econometrica, 77, 1791–1828.

Collard-Wexler, A. (2013): “Demand Fluctuations in the Ready-Mix Concrete Indus-

try,” Econometrica, 81, 1003–1037.

——— (2014): “Mergers and Sunk Costs: An Application to the Ready-Mix Concrete In-

dustry,” American Economic Journal: Microeconomics, 6, 407–447.

Doraszelski, U. and A. Pakes (2007): “A Framework for Applied Dynamic Analysis in

I.O.” in Handbook of Industrial Organization.

Doraszelski, U. and M. Satterthwaite (2010): “Computable Markov-perfect industry

dynamics,” The RAND Journal of Economics, 41, 215–243.

Dubé, J., G. Hitsch, and P. Rossi (2010): “State dependence and alternative explana-

tions for consumer inertia,” RAND Journal of Economics, 41, 417–445.

Ericson, R. and A. Pakes (1995): “Markov Perfect Industry Dynamics: A Framework

for Empirical Work,” Review of Economic Studies, 62, 53–82.

Fershtman, C. and A. Pakes (2012): “Dynamic Games with Asymmetric Information:

A Framework for Empirical Work,” The Quarterly Journal of Economics, 127, 1611–1661.

Galichon, A. and M. Henry (2011): “Set identification in models with multiple equilib-

ria,” Review of Economic Studies, 78, 1264–1298.

Heckman, J. and B. Singer (1984): “A Method for Minimizing the Impact of Dis-

tributional Assumptions in Econometric Models for Duration Data,” Econometrica, 52,

271–320.

Heckman, J. J., J. E. Humphries, and G. Veramendi (2016): “Dynamic treatment

e↵ects,” Journal of Econometrics, 191, 276–292.
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