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1 Introduction
While a large number of American households hold small amounts or even zero financial assets, all

households hold at least some resources in the form of consumer goods inventories. These invento-

ries can be managed over time through strategic shopping behavior as households are able to take

advantage of coupons, temporary low prices at retailers, and savings from buying in bulk. In this

paper, we study how the financial return to investment in inventories affects households’ desire to

hold liquid assets like cash and cash equivalent assets (e.g., checking accounts, transaction accounts,

credit card lines of credit). We refer to these combined resources—the sum of cash and inventory—as

household working capital. This combination of financial resources and consumer goods echoes firms’

working capital which includes both current account resources as well as materials and inventories

that may be at least partially non-tradeable.

The paper makes two main contributions. First, using scanner data from AC Nielsen and income

and asset data from the Survey of Consumer Finances (SCF), we quantify this hitherto neglected

source of non-financial wealth on households’ balance sheets using a new method to impute inven-

tory from flows of Nielsen goods. Aggregating across all AC Nielsen goods included in our sample,

we find that households hold on average around $725 in consumer goods inventory at any given

time. For an average household in the lowest quintile of annual household income (under $22,000),

inventory represents a greater store of value than their total household financial assets.

Second, we build a parsimonious model of inventory management to compute the marginal fi-

nancial return to investing in household working capital through the maintenance of liquid savings

and engaging in strategic shopping behavior. These marginal returns, net of product depreciation

and trip costs, are household specific, scale with consumption, are approximately risk-free, and are

above 20% at low levels of working capital.

The model highlights two key sources of returns. By taking larger and less frequent trips, house-

holds can save on trip fixed costs and also take advantage of lower unit prices by buying goods in

bulk. Alternatively, consumers can shop more frequently, giving them additional opportunities to

take advantage of temporary deals at retailers but at higher cumulative trip fixed costs. This stock-

piling of non-durable but storable products can produce volatile expenditures alongside smooth con-

sumption paths, mirroring a tendency recognized among durable goods (Parker 1999; Browning and

Crossley 2001, 2009).

Both strategies require a substantial amount of resources: liquid assets in the former to pay for

the larger trip sizes, and consumer inventory in the latter, which is associated with depreciation

costs. The household in the model optimally chooses shopping trip frequency to minimize the cost

of providing a given consumption stream, subject to a household working capital constraint. The

model therefore allows us to study how investing in household working capital generates a return in

the form of reduced trip costs and lower per unit prices, taking into account product depreciation.

Beyond large marginal returns, average returns from inventory management are also large for

all households, well above 30% even at high levels of working capital, although both marginal and

average returns decline with income and financial assets. Including working capital in the household
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balance sheet increases household portfolio returns substantially both because of the high average

returns and because working capital has a high portfolio share for many households. Moreover,

because lower-income households hold a larger share of wealth in the form of household inventory,

including working capital more than offsets the higher returns richer households achieve on their

financial assets. Total returns, including working capital, decline as households’ income and financial

assets increase.

For a minority of consumers, the high marginal returns observed in our data can even rationalize

high cost borrowing to finance inventory purchases (e.g., credit cards). Households in our sam-

ple generally engage in substantial amounts of inventory management and thereby likely have low

marginal returns for additional working capital accumulation. Even for these households that have

exhausted the potential for profitable additional investment, average returns from optimal inventory

management remain high (around 50% at the median ratio of inventory to annual spending). Opti-

mal inventory management therefore provides a rationale for why households hold sizable amounts

of household working capital above and beyond the desire to maintain a buffer stock or precaution-

ary source of savings. For instance, Orhun and Palazzolo (2019) note that low-income households

are less responsive than higher income households to sales or promotions in part due to a lack of

liquidity reserves to employ for intertemporal substitution.

Existing models of deal shopping focus on individual products in a stochastic framework (Boizot,

Robin and Visser 2001; Hendel and Nevo 2013). In contrast, we focus on the deterministic steady state

that results from aggregating all Nielsen products a household purchases, where a constant fraction

of goods is on sale at any given time across a household’s total basket. This formulation is derived

from an assumption of independent price deals across goods and backed by observations from the

data. It has implications for households’ cash holdings. In particular, if deals are approximately

independent across products at typical shopping trip frequency, stocking up in response to deals is

consistent with a deterministic steady state where consumers hold a substantial level of inventory at

all times, but where trips are consistently spaced and of a similar size.1

Our model builds on a previous literature which shows that consumers use stockpiling strate-

gically to take advantage of temporarily low prices and to reduce the frequency of shopping trips.

While our model is static, much of that previous literature has exploited temporary shocks to causally

identify the stockpiling channel of consumer responses to these shocks. Baker, Kueng, McGranahan

and Melzer (2019) and Baker, Johnson and Kueng (2021) use anticipated local sales tax increases at

a monthly frequency and show that consumers respond strongly along several margins, including

stocking up on products while taxes are still low. Hendel and Nevo (2006a) identifies the related ef-

1In contrast, if aggregated deals are autocorrelated, households may want to hold substantial additional cash to stock
up more in those (random) weeks. We provide empirical evidence supporting the relative independence of deals across
products over time at typical shopping trip frequency. With few exceptions (e.g., Black Friday, New Year’s or Boxing Day
sales), retailers generally feature consistent amounts of goods on sale throughout the year rather than concentrating deals
in particular weeks. Appendix Figure H.1a ranks retailer-weeks by deal share relative to the retailer average. For a given
retailer, the weekly deal share varies from around 80% to 120% of the annual average, with most weeks having fairly
similar deal shares. To the extent that there are fluctuations in deal share, these do not seem to be strongly correlated across
retailers. Appendix Figure H.1b shows that, pooling across retailers, there is no calendar week with particularly high or
low deal share relative to the mean.
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fect of temporary price discounts on inventories in the context of a dynamic discrete choice model of

individual product demand with exogenously given shopping trip frequency. The study underscores

the importance of household inventory to explain the large price elasticities observed in scanner data.

By computing the total net returns to investment in household working capital, we go one step

further than existing work, which focuses on in-store savings as a percentage of the product price,

but does not take into account the additional household working capital that must be held to facil-

itate these savings and the financial returns to this working capital (Griffith, Leibtag, Leicester and

Nevo 2009; Nevo and Wong 2019). We also extend our framework to include the costs from product

depreciation and spoilage and the relation between the level of inventory holdings and differences

in shopping trip fixed costs associated with different shopping behaviors. Moreover, relative to the

previous literature, we endogenize the timing of shopping trips.

By highlighting the role of household working capital for households’ portfolio allocation and

spending behavior—especially for households with relatively low income and low financial wealth—

our paper relates to a large literature in household finance. While inventories have long been recog-

nized as an important part of firms’ working capital and has received considerable attention in finance

(Petersen and Rajan 1997; Fisman and Love 2003; Yang and Birge 2018; Rampini 2019), inventories of

consumer goods and household working capital has been largely ignored by the household finance

literature.2

For instance, none of the country studies of household portfolios in the widely cited book by

Jappelli, Guiso and Haliassos (2002) include household inventories. This also applies to the chapter

by Bertaut and Starr (2000), which studies U.S. households’ portfolios. One explanation for this gap

is that inventories are often difficult to observe and measure. For example, they are missing from

traditional consumer finance data such as the SCF. In addition to quantifying gross and net financial

returns to household inventory management, our second main contribution is to quantify the level

of working capital and its distribution across households. Our paper is therefore one of the first

systematic studies of the role of household inventories in household finance.3

The remainder of the paper is structured as follows. Section 2 describes the data sources. Section 3

discusses how we construct our measure of household inventory. Section 4 lays out the household

shopping model. Section 5 computes the financial net return to investing in household working

capital and tests some predictions of the model. Section 6 concludes.

2 Data
Our analysis uses data from five main sources, the Nielsen Consumer Panel (NCP), the Nielsen Retail

Scanner Panel (NRP), the Survey of Consumer Finances (SCF), the Food Safety and Inspection Service

Foodkeeper Data (FSIS), and the National Health and Nutrition Examination Survey (NHANES).

2A notable exception is Samphantharak and Townsend (2010), which focuses on households in developing economies
who are engaged in agriculture and therefore have a large fraction of their wealth invested in inventories.

3There is a literature in macroeconomics studying heterogeneity in the effective price paid for similar goods across
households and over business cycles (Chevalier, Kashyap and Rossi 2003; Aguiar and Hurst 2007; Coibion, Gorodnichenko
and Hong 2015; Kaplan and Menzio 2016; Kaplan and Schulhofer-Wohl 2017; Stroebel and Vavra 2019).
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2.1 Nielsen Consumer Panel (NCP)

The Nielsen Company Consumer Panel (2013–2014) consists of a long-run panel of over 60,000 na-

tionally representative households American in 52 metropolitan areas. Using bar-code scanners and

hand-coded diary entries, participants are asked to report all spending on household goods that they

engage in and also to detail information about the retail location that they visited in a given trip.

Nielsen uses monetary prizes and continual engagement with panelists to try to maintain high levels

of continued participation and limit attrition (≤ 20% per year) from the sample. On average, we

observe $306 of spending per month for each household on covered product groups.4

The NCP is constructed to be a representative sample of the US population. Broda and Weinstein

(2010) and Einav, Leibtag and Nevo (2010) perform more analysis of the NCP. Overall, they deem

the NCP to be of comparable quality to many other commonly-used self-reported consumer data.

The NCP primarily covers trips to grocery, pharmacy, and mass merchandise stores but also spans a

wider range of channels such as catalog and online purchases, liquor stores, delis, and video stores.

In this paper, we utilize data from the 2013 and 2014 NCP unless otherwise noted. Our measure

of household inventory is necessarily limited by the scope of the NCP. To the extent that households

stockpile clothing, electronics or other larger purchases, we will underestimate inventory and thus

consider our values a lower bound of household inventory.

2.2 Nielsen Retail Scanner Panel (NRP)

The Nielsen Company Retail MSR Scanner Data (2013–2014) contains price and quantity information

at the store-week level of each UPC carried by a covered retailer. This data covers almost 100 retail

chains with over 40,000 unique stores in over 350 MSAs across the country.

In general, the data span many of the largest retailers in the grocery, mass merchandiser, drug-

store, and pharmacy sectors. Within the store, the data provide a comprehensive view of products

sold, with more than two million unique product identifiers (i.e., scanner codes or UPCs) across 1,305

product modules, 118 product groups, and 10 departments. During these years, the database picks

up about half of total sales in grocery stores and pharmacies and about 30% of sales in other retailers.

2.3 Survey of Consumer Finances (SCF)

The Survey of Consumer Finances (2010, 2013, 2016) of the Board of Governors of the Federal Re-

serve System contains detailed information on U.S. households’ income and assets. Income is gross

household income over the calendar year preceding the survey. Financial assets include checking

accounts, savings accounts, CDs, mutual funds, bonds, stocks, and money market funds.

4We exclude throughout the analysis product modules for which we believe that either Nielsen would not provide
good coverage, or that our assumptions are unlikely to hold. We exclude all product modules within the following prod-
uct groups: “Tobacco”, “Ungrouped Items", “Hardware", “Housewares”, “Toys and Sporting Goods", “Seasonal”, “Beer”,
“Wine”, “Liquor”. We also exclude the following product modules: “Cellular phone”, “Computer Software”, “Printers”,
“Video Products Prerecorded”, “Video and Computer Games”, “Computer Software and Supply”, “Telephone and Ac-
cessory”, “Camera”, “Paper Shredders”, “Prepaid Gift Cards”. The vast majority of spending in “Ungrouped Items" is
accounted for by gas and apparel. Excluded products account for 14.1% of Nielsen spending on average, and 9.4% of
spending for the median household.
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2.4 USDA Food Safety and Inspection Service Foodkeeper Data (FSIS)

The Food Safety and Inspection Service FoodKeeper Data (2020) of the U.S. Department of Agricul-

ture contains information on recommended food and beverage storage times. We rely primarily on

this information to infer depreciation estimates for each Nielsen product module.

2.5 CDC National Health and Nutrition Examination Survey (NHANES)

To provide direct empirical evidence on households’ actual consumption of the products we con-

sider, we look at the CDC’s National Health and Nutrition Examination Survey (2013–2014). Survey

respondents report food and beverage items consumed on two non-consecutive days, with the sec-

ond day being 3–10 days after the first day. We restrict attention to items households purchased in

grocery stores, supermarkets, or convenience stores, as this most closely corresponds to purchases

covered by Nielsen.

We manually assign each of over 4,000 food items to a Nielsen product group. The item infor-

mation is very detailed, for example distinguishing between whether a vegetable item was canned,

fresh or frozen. In some cases the NHANES code corresponds to a meal with multiple ingredients

(e.g., “Frankfurter or hot dog sandwich, beef, plain, on wheat bun”). In this case, we assign multiple

product group codes. The NHANES codes broadly correspond to a level of aggregation between

UPC and Nielsen ‘Product Module’.

3 Measuring Levels of Household Inventory
Although we can track the flow of purchases for individual products over time in the NCP, including

the exact time stamp of each purchase, we must make three assumptions to compute household

inventories because we do not observe initial inventory or the flow of consumption.

Our first assumption is that a household has just enough in stock initially to ensure that inven-

tory does not become negative at any point during the year. This implies that inventory hits zero

at least once each year and therefore underestimates inventory if households violate this assump-

tion. The second assumption is that annual inventory depletion equals annual spending. The third

assumption is that a given product’s rate of inventory depletion (consumption and depreciation) is

constant throughout the year. Using direct evidence from NHANES on actual consumption rather

than spending, Appendix B shows that consumption is indeed fairly constant when aggregating up

to Nielsen product groups, which is our preferred level of aggregation (see also Aguiar and Hurst

(2013) for similar evidence). With these three assumptions, we can compute the initial level of in-

ventory for each household in the NCP sample as well as the inventory level at all later points in

time.

How well these assumptions recover unobserved true household inventories depends on the

level of product aggregation. To build intuition, it is useful to think of two extreme cases. On the one

hand, if we do not aggregate individual products (UPCs) at all, then our assumption that consump-

tion is constant throughout the year is poor and inventory is overstated. For instance, if a household

switches cereal products sequentially to try more varieties, say weekly between Kellogg’s Raisin

5



Bran Original and Kellogg’s Raisin Bran Crunch, they do not hold a stockpile of all varieties at once,

but rather consume them one after the other. If the household consumes the same amount of cereal

every day, consumption is constant at the product group level (cereal) but not at the product level.

Assuming constant consumption of each product would overstate inventory because we would in-

correctly infer that the household consumed stockpiled Raisin Bran Original in weeks where we do

not observe such a purchase, whereas in reality they just consumed Raisin Bran Crunch in that week.

On the other hand, choosing a very broad level of aggregation can lead to inventory being under-

stated. The broader the product categories used, the less likely it is that the household completely

runs out of each product category at some point during the year. For example, a household may run

out of canned tomatoes at some point during each year, but may only rarely have a pantry completely

empty of all canned goods. If households’ true inventories at the assumed level of aggregation do

not hit zero at some point during the year, our imputed initial level inventory will be too low.

For these reasons, the average level of measured inventory varies with the level of product ag-

gregation we assume. To show the effect of aggregation, we impose our three assumptions for each

individual product category as well as for individual products (i.e., no aggregation) and sum up in-

ventories over all categories to get total household inventory. Appendix Table H.1 provides summary

statistics of household inventory by aggregation.

With this approach, the average amount of household inventory in NCP goods aggregated to our

preferred level of 118 Nielsen “product groups” (e.g., “cheese”) is $725. Aggregating to the 1,305

Nielsen “product modules” (e.g., “natural American cheddar”) yields a slightly higher household

inventory of $985 while aggregating to a UPC level gives an average inventory of $1,461. In our

opinion, this likely overstates inventories substantially as the constant consumption assumption is

inappropriate for individual products. On the other hand, aggregating aggressively to the 10 Nielsen

“departments” (e.g., “dairy”) produces an average inventory of $431, which very likely underesti-

mates true inventory because it likely never reaches zero during the year for most departments. In

the remainder of the paper we therefore aggregate UPCs to “product groups”, and we document in

Appendix H how our main findings change for different levels of product aggregation.

Next, we derive the formula for average inventory, explain how we implement this formula with

the data at hand, and provide two validation exercises for our new measure of household inventory.

3.1 Computing Inventories

We derive a formula for average household inventory using a value-based approach, with dollars of

spending measuring the inflow of inventory.5 The average inventory held over the period from time

zero to T is ĪT = 1
T
∫ T

0 I(t)dt, where I(t) is the unobserved level of inventory at time t. Inventory at

time t reflects the initial time zero level of inventory I(0), purchases made on trips between time 0

5Under this approach, fluctuations in unit prices over time may in principle affect the accuracy of our inventory calcu-
lation. An alternative approach is to derive average inventory in terms of quantity, and then apply a household-specific
average annual per unit price to value it. Given that both approaches yield very similar results on a consistent set of UPCs
as shown in Appendix E, we prefer the value approach as it allows use of all NCP products, including those where the unit
of measurement is not comparable across items (e.g., products that are not measured in ounces, such as boxes of tissues).
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and time t, and the rate of inventory depletion d, which we assume to be constant:6

I(t) = I(0) +
nt

∑
j=1

Xt j − d · t, (1)

where {t j}nt
j=1 are the dates of the nt shopping trips occurring between time 0 and time t, correspond-

ing to the time stamps in the NCP data. Xt j is total expenditures on the jth trip. I(0) contributes to

average inventory from time 0 to T and each trip size Xt j contributes from time t j to T so that the

integral is:

∫ T

0
I(t)dt = I(0) · T +

nT

∑
j=1

(T − t j)Xt j −
T2

2
d. (2)

Hence, average inventory is:

ĪT = I(0) +
nT

∑
j=1

T − t j

T
Xt j −

T
2

d. (3)

We compute average annual inventory in the data by applying (3) to each product group g for each

household h. Hence, with time measured in years, we have T = 1 and the time stamp t j of trip j is

relative to the start of the year and takes values between 0 and 1. Assuming annual depletion is equal

to annual spending, annual average inventory of household h in product group g in calendar year y
is:

Īy,h,g = I(0)y,h,g +
ny,h

∑
j=1

(1 − t j)Xt j ,y,h,g −
1
2

ny,h

∑
j=1

Xt j ,y,h,g, (4)

where ny,h is the number of trips household h makes over calendar year y, Xt j ,y,h,g is the value of

purchases made on trip j in product group g and 1 − t j is the share of the calendar year remaining

when trip j occurs.

We recover the unobserved I(0)y,h,g as the level of initial inventory needed to ensure that inven-

tory of household h in product group g is never negative at any point in year y. To do this, we first

compute the inventory remaining immediately prior to each trip j, assuming constant depletion and

initial inventory equal to zero. We then find the minimum value of inventory and set:

I(0)y,h,g = −min
j

I(t j)y,h,g. (5)

I(t j)y,h,g is the value of inventory remaining immediately prior to trip j, assuming that I(0)y,h,g = 0.

6Depletion rate d broadly corresponds to the sum of consumption and depreciation in the model of Section 4. The
main difference is that in the model we make various assumptions about the depreciation profile depending on the type of
item. For some goods, exponential depreciation is a better approximation (see Appendix C). Here, we assume inventory is
depleted linearly for simplicity.
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That is:

I(t j)y,h,g =

−t j · ∑
ny,h
j=1 Xt j ,y,h,g if j = 1,

I(t j−1)y,h,g + Xt j−1 ,y,h,g −
(
t j − t j−1

)
∑

ny,h
j=1 Xt j ,y,h,g if j > 1.

(6)

Note that I(0)y,h,g ≥0, because I(t1)y,h,g ≤0. We then compute the average aggregate inventory level

for household h across all years in the sample (2013–2014) as:

Īh =
1
2

2014

∑
y=2013

∑
g

Īy,h,g. (7)

Figure I shows the distribution of our inventory measure Īh across households in terms of both dollars

(Figure Ia) and the ‘inventory ratio’: the value of inventory relative to annual spending on Nielsen

products (Figure Ib). The median household holds inventory worth 0.2 years or 2.4 months of spend-

ing.

Note that our measure of inventory naturally excludes inventory holdings in goods not covered

by the NCP; most notably it excludes all large durable items like cars and furniture. Although

the NCP contains some smaller durable items (such as clothing and cookware), we choose to ex-

clude these as we believe our assumptions may be less appropriate in these cases. On the house-

hold balance sheet, some of these durable items would be classified as long-term physical assets—

corresponding to “Property, Plant, and Equipment (PP&E)” on the corporate balance sheet—and are

therefore not included in our definition of household working capital.

Our measure of inventory is also not inflated by product waste. When computing inventory by

comparing the timing of spending with the timing of consumption, there would be a concern that

the difference reflected not just product storage, but also product depreciation. In practice, we do

not observe either consumption or the disposal of spoiled products. Instead, we assume that annual

inventory depletion d is equal to annual spending, and we do not need to take a stand on how much

of that depletion is consumption and how much is depreciation. In the model of Section 4, we will

use FSIS data to calibrate the product depreciation rates in our model, which allows us to explicitly

take spoilage into account when computing financial returns.

3.2 How Important Is Inventory in Households’ Portfolios?

Overall, inventory is an important asset for many households, even with durables excluded. To show

this, in Figure II we impute inventory values for each SCF household using characteristics observable

in both Nielsen and the SCF such as income, age, home prices, and household size and composition.

Then, using data from the 2010, 2013 and 2016 SCF, we compute the inventory portfolio share for

each household i, Inventoryi
Financial Assetsi+Inventoryi

. Our measure of financial assets includes checking accounts,

savings accounts, CDs, money market accounts, bonds and stocks (both directly held and in mutual

funds). Figure IIa shows the average and median inventory portfolio share by income quintile and

Figure IIb shows the average value of inventory in each income quintile in the Nielsen data. For

households in the bottom income quintile (up to $22,000), inventories constitute about 60% of the
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portfolio. As income increases, inventory holdings grow more slowly than financial assets and the

inventory portfolio share declines.

3.3 Validating the Household Inventory Measure

We perform two primary validation exercises for our measure. First, we show that our measure of

inventory correlates positively with measures of product life. Second, we show that households run

down inventories in advance of a move. While this evidence is not conclusive, it shows that our

measure of inventory is associated with the properties and household behavior we would expect.

3.3.1 Measured Inventory and Product Life

We compute inventory for each household-product group combination and estimate the relationship

between product group durability and inventory. Table I shows that inventory as a share of Nielsen

spending is increasing in durability. It serves as a check on the magnitudes for our calculations of

inventory levels. To measure durability, we manually assign each Nielsen product module a usable

life in months (between 0.03 and 60) using FSIS data. The majority of spending in our NCP sample

is on products with a lifetime of more than 6 months.

The relationship between inventory and shelf life is increasing and concave. It is robust to con-

trolling for the household’s trip frequency, which also has substantial explanatory power for the

inventory ratio. It is also robust to using within household variation in shelf-life across product

groups. Starting from a shelf life of zero, a one month increase in shelf life raises the inventory ratio

by around 0.4 percentage points. Column 5 shows an alternative specification with indicators for

product groups with an average shelf life greater than 6 months and less than 0.58 months. A shelf

life < 0.58 months corresponds to the two most perishable products in the model in Section 4 (l = 1

and l = 4). Shelf life ≥ 6 months corresponds to the most storable product (l = 4). Households

hold around 5 percentage points of annual spending more inventory of product groups with an av-

erage shelf-life of at least 6 months, and around 2.5 percentage points less of product groups with an

average shelf-life less than 0.58 months.

3.3.2 Inventory Dynamics of Movers

Because it is costly to transport a large stockpile of consumer goods, we expect that households

will adjust their stockpiling behavior around the time they move. Specifically, we anticipate that

households will run down their stockpile prior to a move and therefore reduce purchases.

Figure III shows that the behavior of the subset of households who move is consistent with this

conjecture. Households cut spending substantially well in advance of a move, consistent with our

finding that they hold a large stockpile of inventories. Spending returns to normal immediately fol-

lowing the move. An alternative explanation for the decline in purchases prior to a move is that

households are cutting consumption to pay for move-related expenses—for example to cover trans-

portation costs, down payments, or security deposits. However, we also find that the share of coupon

or deal purchases declines around the move (see Appendix Figure H.11), which seems inconsistent

with this interpretation. We discuss this further in Section 5.
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Assuming that the decline in spending reflects households running down inventory, we can inter-

pret the cumulative decline in spending as a lower bound for steady-state inventory. We expect that

some households may transport part of their stockpile—for example if an employer is paying for the

move, or if they are only moving a short distance. Hence, the observed decline is likely much smaller

than total inventory. For households moving to a new 3-digit ZIP Code, the cumulative spending

decline is 6.6% of annual spending.7 Restricting the sample to households moving more than 974

kilometers (the top quartile of move distance) the cumulative decline is 11.5%. This provides ad-

ditional evidence that households hold at least several hundred dollars of inventory, independent

of our assumptions in Section 3. Comparing these results with our headline inventory valuation,

the cumulative decline for long distance movers suggests that the inventory ratio is at least 12% on

average (compared with 20% computed in Section 3.1).

In Appendix Figure H.3 we repeat the exercise using log quantity purchased instead of log spend-

ing. While the use of quantities limits us to items measured in ounces, it allows us to address the fact

that spending will tend to understate the pre-move decline in inventory because households take less

advantage of deals during this period and therefore pay higher prices. We indeed find that quantities

decline slightly more than spending, 7% across all movers and 12.2% for long distance movers.

3.4 Heterogeneity in Inventory Holdings Across Households

In the previous sections, we demonstrate that consumer goods inventory varies substantially across

households. In Table II, we examine the extent to which observable characteristics of Nielsen house-

holds are correlated with their inventory holdings. In Column 1, we note that older households hold

less inventory relative to spending, as do married couples and households where all adults work

full-time. We also see variation across race and ethnicity, with white households holding less inven-

tory and Asian households holding more. Single person households hold more inventory relative to

spending than larger households. Together, these characteristics explain 9 per cent of the variation

across households. Column 2 adds financial and housing characteristics. Living in a single family

home, having higher income, and living in an expensive or high density ZIP Code all increase in-

ventory relative to spending. Adding these variables has very little effect on explanatory power, but

reduces the magnitude of the coefficients on labor force and education variables.

Columns 3 and 4 add characteristics relating to product and store choice. While these charac-

teristics are obviously outcomes of the household’s shopping and consumption decision, they have

considerable explanatory power and help to form a picture of households who hold high inventory.

We also expect these characteristics to be related to fundamental household preferences, which we

do not observe directly.

Using data on product expiry dates, we assign each Nielsen product module a time to expiration.

We classify spending as ‘perishable’ if the item lasts under about two weeks. In particular, we use

a cutoff of 0.58 months which corresponds to the two most perishable goods (l = 1 and l = 2) in the

model. Unsurprisingly, Column 3 shows that households with a high share of perishable spending

7Using the imputation estimator proposed by Borusyak, Jaravel and Spiess (2021) gives very similar results; see Ap-
pendix Figure H.4.

10



hold substantially less inventory and perishability explains an additional 8 per cent of variation in

the inventory ratio.

Column 4 also includes the share of spending at different types of stores, with grocery store

spending as the base. With the exception of discount stores (which feature similar types of products

as grocery stores), spending more at non-grocery store types is associated with substantially higher

inventory. There are a number of possible reasons for this. Shopping at warehouse clubs is likely

indicative of a household’s interest in buying in bulk and obtaining low prices. Store type may also be

capturing some variation in perishability not picked up by our perishability measure. Finally, there

may also be heterogeneity in pricing strategies across store types. We expect that households will

stockpile more when shopping at retailers who offer large temporary discounts rather than everyday

low prices. Including store type shares explains another 4 per cent of variation in the inventory ratio.

While most of these characteristics are statistically significantly correlated with inventory ratios,

the overall explanatory power of even their combination is modest (R2 of 0.21 or less). The fact that

household characteristics explain a low portion of overall shopping behavior is consistent with find-

ings reported in Hendel and Nevo (2006b), which documents that using household characteristics to

predict the likelihood to purchase a product during a sale yields a low R2 of under 0.03.

We might expect that conditioning on observed shopping choices will influence some of the coef-

ficients on more fundamental characteristics. Interestingly, coefficients on age, education, household

size, marital status, and labor force status do not change much. We see substantial changes for ‘young

children’, ‘income’, ‘density’ and race. Households with young children consume more perishable

products and both income and density are more correlated with choice of store type.

While we document correlations rather than causal relationships, in most cases the signs in Ta-

ble II are consistent with theoretical predictions. Youth, full-time work, income, and young children

are all be linked to the cost of time. We expect that households with a higher cost of time will prefer to

save by stockpiling in response to deals observed while in the store, rather than by searching across

stores, or shopping more frequently to take advantage of low prices on specific items. Education, in-

come, and ZIP Code house prices are also positively correlated with wealth and therefore negatively

related to financial constraints which would limit inventory accumulation.

ZIP Code population density and property type are likely to be correlated with storage space. The

positive coefficient on single family home is consistent with this, but the coefficient on density is not.

However, it is difficult to conclude much from the correlation with density given that many other

factors linked to shopping behavior are also related to density. After conditioning on perishability

and store choice, the coefficient on density becomes insignificant. In Appendix Table H.2, we use

transaction data from a FinTech company to show that this effect may also be influenced by the

extensive margin of food shopping. Conditional on income, households in denser locations tend to

spend proportionally more on restaurants and less on grocery goods, which may prompt differences

in the amount of accumulated inventory.

To further characterize households who hold high and low inventory as a share of spending, we

also take a machine learning approach based on the variables in Column 4. This approach allows for

non-linearities and interactions between variables and is similar to the approach we use in Section 3.2
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to impute inventory holdings for SCF households.8 Figure IV shows the relative importance of the

different predictors (normalized to sum to one). It measures the share of the reduction in mean-

squared error due to each predictor.We find that the most important predictor is the perishable share

followed by age.

Figure V shows a joint partial dependence plot for the two most important predictors. The ra-

tio of inventory to spending is increasing in age and declining in the perishable share. Figure VI

shows partial dependence plots for the six most important predictors. These relationships are mostly

monotonic and consistent with Table II. The main exception is that inventory ratios are decreasing in

population density for very low levels of density. This could be consistent with space constraints, or

with a high trip fixed cost reflecting distance from the store. If we exclude shopping outcomes from

the model, the most important variable is ‘age’, followed by ‘density’, ‘house price’, ‘household size’,

‘white’, and ‘income’.

4 A Model of Optimal Household Inventory Management
By setting aside working capital, households can reduce the average price they pay for consumer

products. This can act as a substitute to the channel identified by previous work that has focused

on taking more frequent shopping trips to take advantage of lower prices (Aguiar and Hurst 2007).

In this way, people with a relatively high opportunity cost of time can obtain savings by stockpiling

items when they are on sale instead of engaging in more frequent trips.

To understand the implications for borrowing behavior and portfolio allocation, we need to know

the marginal financial return to allocating additional funds to household working capital. In this

section, we use the NCP data to calibrate a model of optimal household inventory management. We

then use the model to compute the net marginal return to household working capital investment,

taking into account product depreciation costs and shopping trip fixed costs.

Our model builds on a previous literature, including our own work, which shows that consumers

use stockpiling strategically to take advantage of temporarily low prices and to reduce the frequency

of shopping trips. Much of that previous literature has exploited temporary price shocks to identify

the stockpiling channel of consumer responses to these shocks. In contrast, we are interested in how

allocating a marginal dollar to household working capital facilitates savings.

4.1 Model Overview

In our continuous-time model, a household with an infinite horizon minimizes the cost of providing

an exogenously given consumption flow subject to a working capital constraint. For simplicity, we

assume that the flow of consumption is constant both between trips and across trips.9 We define

8We use the Matlab command fitrensemble with hyperparameter optimization to train the inventory prediction model.
This method is similar to a random forest but requires all predictors to be used for every tree. For this application, we are
more interested in understanding predictor importance and relationships than predicting inventory (though in any case
alternative methods such as random forest and LSBoost have little effect on the quality of the predictions here). Using
Nielsen weights, the optimized method uses 343 trees and a minimum leaf size of 27 observations.

9This assumption can be relaxed. For the CES case, see Baker et al. (2021). Appendix B shows that for the type of
products covered by the Nielsen data, this is a reasonable representation of consumer behavior.
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the return to working capital investment as the reduction in cost generated by relaxing the work-

ing capital constraint. There are two types of costs: a fixed trip cost and a variable cost per unit

purchased. The variable cost reflects both the price charged by the store and the cost of storing the

product between purchase and consumption. We assume that this storage cost corresponds to physi-

cal quality deterioration and calibrate it using shelf life data. The trip fixed cost (e.g., the opportunity

cost of time spent shopping or pecuniary costs of travel) implies that even though the model is in

continuous time, spending occurs at discrete dates endogenously chosen by the household.

Households consume a continuum of goods i with varying perishability indexed by l. Each good

is characterized by a rate of depreciation and a maximum shelf life beyond which it cannot be stored.

Allowing for heterogeneity in perishability is important for matching the data. Perishable goods

drive the frequent trips observed, while non-perishable goods are important for matching the sub-

stantial stockpiling observed in response to price changes (Hendel and Nevo 2006a; Baker et al. 2021).

We model the household’s choice in two stages. First, we consider the household’s in-store choice

of how much of a product to purchase for storage given its observed price. This part of the model

is broadly similar to Boizot et al. (2001) and Hendel and Nevo (2006a). If an item is not on sale, a

purchase is only made if the household has exhausted the inventory of that item. If an item is on

sale, the household replenishes inventory to a target level as in an (s, S) type model. We refer to

this target as the stockpiling strategy. Our goal is to derive expressions for the average price the

household pays per unit as a function of the stockpiling strategy, and the working capital required to

facilitate the strategy. More stockpiling reduces the average price paid, but incurs depreciation costs

and requires more working capital.

Second, given the first stage, we model the household’s choice of the time interval between trips

subject to a working capital constraint. This second stage is similar to standard inventory models,

where a firm decides when to place orders in order to minimize costs of meeting demand (Arrow,

Harris and Marschak 1951).10 We refer to the first stage as “the stockpiling problem” and the second

stage as “the trip-timing problem.” To our knowledge, we are the first to integrate these two problems

and incorporate a working capital constraint.

Finally, we explain how our model can in turn fit into a consumption and portfolio choice prob-

lem. This allows the working capital investment to be considered alongside traditional financial

assets in a household’s portfolio.

Our model incorporates two types of savings: buying items on sale (“deals”) and buying in larger

quantities (“bulk”). In turn, these drive two key relationships between unit prices and shopping trip

frequency. Buying in bulk relates directly to the size of the trip (i.e., the amount spent per trip)

and buying items on sale relates directly to the frequency of the trip (i.e., more frequent trips yield

on average more items purchased on sale for a given trip size). Because buying large quantities

reduces trip frequency and the ability to take advantage of sales, there is a trade-off between the two

types of shopping policies. Depending on various parameters (amount of household working capital,

10It is also similar to the steady state version of the model in Baker et al. (2021). An important difference is that Baker
et al. (2021) captures intertemporal substitution behavior in response to an anticipated persistent consumption tax change;
whereas here households take advantage of periodic sales and maintain a permanent base level of inventory.
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depreciation rate, shopping trip fixed cost, frequency and magnitude of sales, etc.), households may

prefer one shopping policy over the other.

4.2 The Stockpiling Problem

We first consider the stockpiling problem from the perspective of a household who shops at trip

interval ∆. The household chooses how much of each item to purchase for storage given the price

observed on the current trip. In this section we characterize the relationship between the household’s

stockpiling choice and the price per unit. In Section 4.3, we integrate this relationship into the trip-

timing problem and solve for the optimal trip interval and stockpiling choice jointly.

Although the stockpiling component of our model is similar in some respects to Boizot et al.

(2001) and Hendel and Nevo (2006a), there are also some crucial differences. We assume that the

household observes prices only upon entering the store and there is no further fixed cost of making

purchases. Rather than focusing on a single product, we assume the household makes purchases to

supply a consumption stream of a continuum of products. Sales rotate across products, but the share

of products on sale is the same each trip. The decision to go to the store is not precipitated by a low

price realization for a single product of interest so the trip interval ∆ is constant. Our problem is

effectively deterministic after aggregating across products.

For most nondurable consumer products and for purchase frequencies observed in our scanner

data, prices tend to be at a modal level with temporary price discounts. Following previous stud-

ies (Boizot et al. 2001; Hendel and Nevo 2006a), we simplify retailers’ price setting with two prices,

the modal price, which we call full (or “list”) price p f , and the discounted (or “sale”) price pd. The

discounted price is observed with probability x and the current price realization is assumed to be in-

dependent of past prices. We also assume price discounts are independent across products. Because

the household consumes a continuum of products with prices independently drawn from the same

distribution, the amount and quantity purchased on each trip and the inventory remaining at trip

time are the same for all trips.11

We require the household to purchase an integer number of “packs” of each product. One pack

is the quantity that must be purchased on the current trip in order to supply consumption until the

next trip. We assume constant consumption of all products and therefore cannot have the household

running out of a product between trips. The household’s optimal stockpiling strategy takes an (s, S)

form, where the boundaries depend on the current price p. The optimality of this strategy is proven

for the continuous case by Hall and Rust (2007) and Sethi and Cheng (1997) and it is also shown there

that the optimal policy rules s∗(p) and S∗(p) are decreasing in p.

Figure VIIa provides an example of the path of inventory of an individual retail product and

the corresponding (s, S) policy rules for prices p f and pd. Intuitively, when the price is at its maxi-

mum level p f , it does not make sense to buy more than is required for consumption before the next

shopping trip because the price next trip cannot be any higher (and may be lower). Therefore, the

household only makes a purchase at full price when it has no product left in stock. That is, the

11In Appendix G we extend this to the case of three prices with similar results. The three price case is considerably more
complex (Boizot et al. 2001) and the computational cost of extending to a larger number of prices is substantial.
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optimal policy at full price is s∗(p f )=0 and S∗(p f )=1 packs.

In contrast, when a product is on sale, the current price is lower than the expected price at the

time of the next trip (i.e., pd < xpd + (1 − x)p f ≡ E[p]). Depending on depreciation costs, it may

make sense for the household to buy more than one pack. Because pd is the lowest possible price,

the only aspect of the policy we still need to solve for is s∗(pd), i.e., S∗(pd)= s∗(pd) + 1 because there

is no fixed cost of purchasing once the household is already in the store. Hence, the target level at

discounted price, sd ≡ s∗(pd), fully summarizes the stockpiling strategy.

Let q denote the current quantity. The household’s order quantity qo when using strategy sd is:

qo =


sd + 1 − q if q ≤ sd and p = pd,

1 if q = 0 and p = p f ,

0 otherwise.

(8)

When the deal price is observed, the household purchases one pack for immediate consumption until

the next shopping trip and sd − q packs for storage. Note that sd can equivalently be thought of as

the number of trips the household is willing to buy in advance of consumption when the deal price

is observed.

4.2.1 Expected Price Conditional on the Stockpiling Strategy

We would like to find an expression for the long-run quantity-weighted expected price paid condi-

tional on the stockpiling strategy, p(sd). To do this, we need to know the share of sale purchases for

a given choice of sd. Let d be the steady-state share of deal purchases. By setting a higher value of

sd, the household can raise deal share d for a given value of x. The long-run expected price paid

conditional on strategy sd is then:

p =
d · pd · E[qo|p = pd, q ≤ sd] +

(
1 − d

)
· p f · E[qo|p = p f , q ≤ sd]

d · E[qo|p = pd, q ≤ sd] +
(
1 − d

)
· E[qo|p = p f , q ≤ sd]

. (9)

That is, the numerator is the share of transactions occurring at pd, times the average transaction

value of orders at pd, plus the share of transactions occurring at p f , times the average transaction

value of orders at p f . The denominator is the expected number of packs purchased per transaction.

We know that conditional on p f being observed and a purchase occurring (q ≤ sd), exactly one

pack will be purchased. Also, it will always be the case that q ≤ sd as long as q is below sd at time

zero. This gives us:

p =
d · pd · E[qo|p = pd] +

(
1 − d

)
· p f

E[qo|p = pd] · d +
(
1 − d

) . (10)

Next we will find expressions for d and E[qo|p = pd].

Under the assumptions stated above, the price at which a transaction occurs follows a first-order

Markov process. The rows of the transition matrix below correspond to the price at which transaction

t occurs and the columns correspond to the price at which transaction t + 1 occurs. The first row
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(column) of the transition matrix below corresponds to pd and the second row (column) to p f :

Π =

(
1 − (1 − x)sd+1 (1 − x)sd+1

x 1 − x

)
. (11)

The intuition is as follows. When a transaction has just occurred at pd this means there are currently

sd + 1 packs in stock. For the next transaction to occur at p f it must be the case that no sale is observed

for more than sd trips in a row. As prices are i.i.d., the probability of this is (1 − x)sd+1.

When a transaction has just occurred at p f there is currently one pack in stock and a transaction

must occur on the following trip. As prices are i.i.d., the probability the next transaction occurs at pd

is x and the probability it occurs at p f is 1 − x.

Now that we have the transition matrix, solving for the steady state deal share d is straightforward

(Appendix F provides intermediate steps):

d =
x

x + (1 − x)sd+1 . (12)

Next, we need to work out the steady-state average quantity purchased when a deal is observed,

E[qo|p = pd]. The quantity purchased depends on how long it has been since a deal was last ob-

served. Regardless of when a deal was last observed, at least one pack is added (at a minimum, the

pack consumed over the previous period is replaced). For each additional period when a sale is not

observed, the household adds one extra pack upon next observing pd. That is, if pd is observed two

trips in a row, the household buys one unit on the second trip. If pd is next observed after two trips

the household buys two units, and so on. The probability that t periods pass without a sale being

observed is (1 − x)t. The expected quantity purchased conditional on a transaction occurring at pd is

therefore:12

E[qo|p = pd] =
sd

∑
t=0

(1 − x)t. (13)

Substituting (12) and (13) into (10) and simplifying gives:

p = pd ·
(

1 − (1 − x)sd+1
)
+ p f · (1 − x)sd+1. (14)

(14) can also be obtained more directly by intuitive argument. The only case where the household

pays p f in the long-run is when there has been a sequence of sd + 1 trips without sale (and only

one pack is purchased at p f ). In all other cases the household pays pd. The formal derivation is

helpful, however, for two reasons. First, we have so far ignored depreciation costs. To accurately

incorporate these costs it is necessary to keep track of the distribution of times between purchases.

The distribution of time between purchase is also necessary for computing the level of inventory

implied by stockpiling strategy s(p). Second, the additional structure is helpful when we derive the

solution to the considerably more complicated three price version of the model in Appendix G.

12We also verify (13) using a simulation for both small and large values of sd.
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4.2.2 Incorporating Depreciation

Standard inventory models, such as Arrow et al. (1951), typically include a storage cost per unit

time which is expressed as a proportion of the total inventory. In our model, we directly account for

product deterioration as part of the individual product stockpiling problem before aggregating.

There are two equivalent ways to think about the depreciation cost. We can convert the price

paid in store to an “effective price,” which reflects quality deterioration. We can also think of the

depreciation cost as modifying the quantity that must be purchased to meet consumption needs: if

items randomly go bad, more needs to be purchased initially. As the total amount spent on good i
each trip is piqo

i , in practice it does not matter whether we apply the depreciation cost factor to the

price or the quantity.

If a product deteriorates exponentially at rate δ, a unit purchased at time zero for consumption fol-

lowing trip t effectively costs eδt∆ times more than a product purchased for immediate consumption

(recall that ∆ is the time between trips, so t · ∆ is the total time between purchase and consumption).

To adjust the price function (14) to account for these costs, we need to consider the distribution of

inter-purchase times. This is because the level of inventory prior to a purchase determines the hold-

ing period for the items purchased. For example, if a sale is observed every trip, the household will

have sd packs in stock immediately prior to each trip, and purchase one pack each trip. Under a first-

in first-out approach, each pack would be opened sd trips after it was purchased. The depreciation

factor associated with each pack would therefore be eδ·sd·∆. In contrast, if inventory is zero immedi-

ately prior to a trip where pd is observed, the first pack purchased will be opened immediately (and

have a depreciation factor of one), the second pack will be opened after the next trip, and so on.

It is convenient to incorporate depreciation costs into our expression for E[qo|p = pd]. Recall that

for each additional trip when a sale is not observed, the household adds an extra pack upon next

observing pd. Under a first-in first-out approach, the incremental pack is held for sd − t trips before

consumption, where t is the number of trips without a sale. Therefore, depreciation inflates the cost

of the incremental pack by a factor of eδ(sd−t)∆. This gives:

E[qo|p = pd] =
sd

∑
t=0

eδ(sd−t)∆(1 − x)t. (15)

As we increase the number of trips without a sale, t, the depreciation cost of the incremental pack

eδ(sd−t)∆ declines because that pack will not be held for as long prior to consumption. The expression

for the average price after incorporating depreciation is therefore:

p(sd, ∆) = pd · x
sd

∑
t=0

eδ(sd−t)∆(1 − x)t + p f · (1 − x)sd+1. (16)

Because we aggregate over a continuum of goods indexed by i∈ [0, 1], assuming that sales are i.i.d.,

p(sd, ∆) is the quantity-weighted average price per unit on every trip.

In addition to exponential quality deterioration, we also incorporate a product shelf life con-
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straint, t̄. This is an upper bound on the time (measured in months) a product can be stored:

(sd + 1)∆ ≤ t̄. (17)

This is intended to make the model more realistic. While many products do deteriorate gradually

from the date of purchase, there is also typically a point at which quality falls below the minimum

required for consumption. The expiration date of the product provides guidance to the consumer

regarding when this point has been reached, and this is ultimately how we will calibrate t̄. The

method for determining expiration dates depends on the product. For some products, it is a question

of food safety. For others, expiration dates are driven by perceived quality falling below a cutoff.

Regardless of the reason, we think it is unlikely that households would set sd so high that they would

not consume the item prior to expiration.

4.2.3 Aggregate Inventory

The amount of working capital required to facilitate strategy sd is equal to the (deterministic) max-

imum value of inventory over the trip cycle. Inventory is at its maximum immediately following a

trip. Therefore, to incorporate a working capital constraint into the final problem we want an ex-

pression for the value of inventory immediately following a trip. We will then gradually relax the

constraint to compute the marginal net return to household working capital.

Intuitively, the higher the value of sd, the higher the level of inventory will be when going to the

store. If the household does not stockpile at all (i.e., qo = 1), inventory is exactly zero at the time of

the next trip. We first derive an expression for the inventory immediately prior to a trip, the number

of packs in stock I(sd). As these packs were all purchased on sale, they cost pd. To get the value of

inventory following each trip, we add the value of purchases made on each trip. This is discussed in

Section 4.3. Here, we focus on I(sd).

To obtain total inventory, we aggregate over the continuum of goods indexed by i ∈ [0, 1]. In

general, the household has sd − t packs in stock of share x(1 − x)t of products immediately prior to

each trip, where t is the number of trips since the last sale. Integrating across all products i, the total

number of packs in stock immediately prior to every trip is:

I(sd) = 1{sd>0}x
sd−1

∑
t=0

(sd − t)(1 − x)t. (18)

4.3 The Trip-Timing Problem

Next, we integrate the price equation (16), shelf life constraint (17) and the inventory equation (18)

into the trip-timing problem. The household will choose both sd and trip interval ∆ to minimize the

cost of providing an exogenous consumption stream, subject to a working capital constraint. The cost

per trip can be decomposed into two components: a fixed cost and a variable cost which depends on

the quantity of products purchased.

We divide products into perishability groups indexed by l. Constant continuous consumption of
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perishability group l is Cl(t)=Cl . We use k to denote the fixed trip cost and Pl to denote the per unit

price of group l. Pl will depend on the trip interval ∆ and also on the household’s stockpiling strategy,

sl,d. We allow the household to make a separate stockpiling choice for each perishability group l. So

far we abstracted from this for simplicity. Each perishability group still contains a continuum of

individual products i.
Each trip, the household must purchase enough of each good to last until the next trip, and we

previously defined a pack as containing exactly this amount. We do not allow households to set

different values of ∆ for different goods. Although setting different values of ∆ allows households to

reduce depreciation costs, this is more than offset by the increase in trip fixed costs associated with

maintaining multiple trip schedules. For more detail on this tradeoff, see Bartmann and Beckmann

(1992).

We then work out the quantity per pack. For a good in group l that deteriorates exponentially

at a rate δl , the quantity that must be purchased to satisfy continuous consumption flow Cl over the

trip interval ∆ is:

Ql(∆) =
∫ ∆

0
eδl tCldt =

(eδl∆ − 1)Cl
δl

if δl > 0,

Cl∆ if δl = 0.
(19)

That is, when the time between trips is ∆ and the household buys quantity Ql(∆) each trip, inventory

next hits zero precisely when the next shopping trip is scheduled to occur.13

In addition to stockpiling in response to temporary deals, households can also save by buying

larger pack sizes and paying a lower per unit price. We incorporate bulk discounts by multiplying

the expected price function (16) by a bulk discount function b(Ql):

Pl(∆, sl,d) = b(Ql(∆)) · pl(sl,d, ∆), (20)

where b(Ql)>0, b′(Ql)<0 and b′′(Ql)>0. (We discuss the calibration of b(Ql) in Section 4.4.4.) Note

that the expected price is achieved with certainty and Pl(∆, sl,d) is therefore deterministic. Empiri-

cally, larger trip sizes correspond to a household either consuming more or shopping less frequently.

Given that trips are evenly spaced with endogenous trip interval ∆, the average cost of providing

the exogenous consumption flow is:

k + ∑l Pl(∆, sl,d) · Ql(∆)

∆
. (21)

Next, we need to incorporate the working capital constraint. (18) provides Il(sl,d), the number of

packs in stock of perishability group l immediately prior to a trip. The amount of working capital

required to facilitate a given set of stockpiling strategies {sl,d}l and trip interval ∆ is the maximum

inventory over the trip cycle (summed over all groups l), which occurs immediately following a

trip. At this point in time 100% of household working capital is held as stored inventory goods.

Between trips, the inventory share of working capital gradually declines through consumption and

13While depreciation between trips (i.e., while the pack is in storage) is reflected in the effective price (16) as part of the
stockpiling problem, depreciation within trips (i.e., as the pack is being consumed) is reflected in Ql(∆).
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depreciation and is replaced with accumulated cash used to pay for the next trip. The paths of

aggregate inventory and household working capital are illustrated in Figure VIIb.

As all stockpiling occurs at price pl,d, the inventory of group l prior to a trip is Il(sl,d)Ql(∆)pl,d.

This is the number of packs in stock, times the pack size in number of consumption units, times the

price per consumption unit. Note that we allow the price distribution to vary across perishability

groups. To compute the working capital required to support (∆, {sl,d}l), we need to add the value

of products purchased on a single trip, Pl(∆, sl,d)Ql(∆). The maximum allowable level of working

capital is exogenous, denoted by Ī, and we will compute the marginal return to working capital by

gradually increasing Ī:

∑l

[
Pl(∆, sl,d)Ql(∆) + Il(sl,d)Ql(∆)pl,d

]
≤ Ī. (22)

We now have all the elements we need. The household minimizes the average cost (21) of provid-

ing the exogenous consumption flow Cl subject to working capital constraint (22) and a restriction

on storage time for each perishability level l, i.e., shelf life constraints (17):

V( Ī) = min
∆,{sl,d}l

k + ∑l Pl(∆, sl,d)Ql(∆)

∆
(23)

s.t. ∑l

[
Pl(∆, sl,d)Ql(∆) + Il(sl,d)Ql(∆)pl,d

]
≤ Ī,

(sl,d + 1)∆ ≤ t̄l ∀ l.

Ultimately, we are interested in the relationship between the dollar amount invested in household

working capital, Ī, and cost of providing the consumption stream. In order for a particular shop-

ping strategy to be feasible, the level of inventory immediately following a trip must not exceed the

amount of household working capital Ī. We will solve the problem for different levels of Ī, and use

this to compute the return to investing in household working capital (i.e., marginally increasing Ī).

The investment payoff will be the reduction in the cost V, so that we can define the marginal (net)

return to household inventory management:

Marginal (net) return: r Ī( Ī) = −V′( Ī). (24)

4.4 Calibration

We calibrate the model by choosing parameters to match a number of data moments, summarized

in Table III. To solve the model, we define a grid over trip intervals ∆ and bargain-hunting strategies

{sl,d}l . We then search over all combinations for which the household working capital constraint and

shelf life constraints are satisfied and find the combination that minimizes the cost function.

4.4.1 Time Units, Consumption Flows, and Expenditure Shares

Trip length ∆ is expressed in months. For example, ∆= 0.23 implies a trip interval of 0.23 months

(i.e., one week). To assist with calibrating the bulk discount function, below we define a standard

trip size Q̂l as the trip size corresponding to the optimal choice of ∆ in the absence of bulk discounts.

Problem (23) then scales with consumption if we assume that the trip fixed cost k and standard trip
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size Q̂l both scale with consumption. We therefore set ∑l Cl =1, which—because we express the trip

interval in monthly time units—implies that the household consumes one unit of total consumption

over the course of one month, and express the trip cost and standard trip size as shares of monthly

total consumption. Because E[pl ]=1 and ∑l Cl =1, Cl is also the expenditure share, and we calibrate

it to the observed expenditure shares of perishability group l in the NCP.

4.4.2 Depreciation and Shelf Life

Depreciation costs δl are monthly rates with continuous compounding. For example, if δl =0.5, each

unit purchased corresponds to e−0.5 =0.61 units one month later. To calibrate these costs, we start by

manually assigning a shelf life for each Nielsen product module using information on product life

from FSIS. We then allocate each Nielsen product module to one of four perishability groups. For

each perishability group l, we will calibrate a depreciation rate δl and a shelf life t̄l .

We rank Nielsen product modules by shelf life and then determine cutoffs for perishability groups.

The precise cutoff point becomes less important as products become more storable. This is because

the marginal price savings from additional stockpiling are extremely low once products are being

bought several months in advance. The precise shelf life is therefore unimportant for products that

can be stored for several months with only a negligible decline in quality. We define the most storable

group (l = 4) as Nielsen product modules with a shelf life greater than 6 months. At 6 months, over

99% of the possible price reduction through stockpiling has already been exploited.

In contrast, variation in shelf life is important for more perishable items. We therefore try to

choose the cutoffs for the remaining groups sensibly so that we can capture the variation well with a

small number of groups. We describe the procedure in Appendix C.

Table III shows that the least perishable group is by far the largest, accounting for 63% of NCP

expenditure. We want to ensure that t̄l is at least as long as the data trip interval for all groups. We

therefore set t̄1 =∆, which implies that s∗1 =0 (i.e., the household buys exactly the amount it requires

to supply consumption until the next trip). This is a fairly minor adjustment as the average shelf

life in perishability group 1 is 0.16 months, compared with a data trip interval of 0.28. In practice,

the exact value of t̄1 is in any case uncertain. Some products may be stored for a bit longer than the

standard shelf life, or consumed close to the trip time rather than continuously.14

4.4.3 Price Process

We primarily use the NRP to calibrate the price process. To calibrate x, pd, and p f , we ideally want to

match the distribution of posted prices. In the model, we normalize E[p]= xpd + (1 − x)p f =1. This

implies a value for p f given pd and x and means we need two moments to calibrate the price process.

We calibrate the price ratio p f
pd

and the deal frequency x jointly to match the skewness and relative

variance (variance divided by the mean) of NRP prices. We do this separately for each perishability

group l. Intuitively, the more negative the skewness, the smaller is x. Under our assumption of two

14This type of behavior is a realistic violation of the constant consumption assumption we make in Section 3. However,
as we discuss in Appendix B, violations similar to this one (i.e., consuming perishable products early in the trip cycle)
would not have a substantial effect on the inventory calculation.
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price points, a symmetric distribution corresponds to x = 0.5. Negative skewness corresponds to

x<0.5. Higher relative variance corresponds to a higher price ratio (i.e., larger discounts).

We compute the price moments using 2013 and 2014 data. Stores report prices weekly and we

focus only on UPC-store combinations for which units are sold in at least 49 weeks of the year. This

ensures that products in the sample are sold in every month and there are enough observations to

estimate moments at the UPC-store level. There are around 81 million UPC-store combinations in the

NRP satisfying this criterion. For each UPC-store combination, we compute the mean, variance, and

skewness of prices. Even after conditioning on UPCs the store stocks all year round, there are still

occasionally some anomalies in reported prices (some of these are likely errors). To address concerns

about these outliers, we compute the ratio of maximum to minimum prices for each UPC-store-year

and drop cases where the ratio is greater than 5.

We compute moments at the UPC-store level to capture temporary sales for the same product at

the same store over time. We do not want to incorporate differences in average prices across stores.

Ultimately, we need to calibrate price distributions for the four model product groups, meaning that

we need to aggregate. A simple approach would be to compute average normalized variance and

skewness for each group, but some UPC-store combinations have very low normalized variances and

it is not clear that we want skewness from these cases to contribute to average skewness. We select

only the middle quintile of the store variance distribution for each UPC and then compute average

variance and skewness within this set of stores for each UPC. We repeat this for UPCs within the

same product module to come up with representative moments for each product module. We then

weight each product module by its NCP spending share and compute the weighted average variance

and skewness for each of the four model groups.

Finally, we define a grid over the discount probability xl and the discount size pl, f
pl,d

and compute

the implied proportional deviation in variance and skewness relative to the data. We then select the

combination of (xl ,
pl, f
pl,d

) that minimizes the root mean squared error.15

4.4.4 Bulk Discount Function

We specify the bulk price discount function b to match bulk discounts observed in NRP data using

the following functional form:

b(Ql) = α +βe
−σ

Ql
Q̂l . (25)

Unit prices decline as the quantity purchased per trip Ql increases. Q̂l is the trip size associated

with purchasing standard packs of each item and we will calibrate parameters (α,β,σ) such that

b(Q̂l) = 1. In the NRP, we define the “standard pack size” as the second quintile of the pack size

distribution for each product. In the model, Q̂l = Ql(∆̂) =
Cl
δl
(eδl∆̂ − 1), where ∆̂ is the optimal trip

15Formally, we minimize the root mean squared deviation in variance and skewness relative to the data, where hats
denote data moments:

RMSE =

√
1
2

(
Var − V̂ar

V̂ar

)2

+
1
2

(
Skew − Ŝkew

Ŝkew

)2

.
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interval in the model without bulk discounts (i.e., the optimal trip interval assuming b(Ql)=1 ∀ Ql).

Figure VIII shows that the calibrated function matches the data well in several respects: unit

prices decay exponentially with pack size and converge to some level above zero. As pack sizes be-

come very small, unit prices increase but do not become arbitrarily large. We normalize the effective

price per unit in the absence of discounts to Pl(∆̂, 0)=1 (i.e., with sl,d =0 and b(Ql)=1 ∀ Ql). The

parameter α is interpreted as one minus the maximum % savings that can be obtained from buying

in bulk. Appendix C describes the calibration procedure in more detail.

We compute total expenditure for each product and use this to weight our regressions. We cali-

brate the parameters of the function b(Ql) by estimating a and b of the following relationship with

weighted least squares separately for different values of σ :

Unit Pricep,q = a + be−σUnitsp,q . (26)

Unit Pricep,q is the standardized unit price of product p at pack size q and Unitsp,q is the standardized

number of units of product p at pack size q. We then choose σ̂ to maximize the within-R2. We perform

this procedure separately for each level of perishability l. In the model, we normalize the price of the

standard pack size to one, and the price of other pack sizes reflects percentage deviations from the

standard pack size. We therefore calibrateα and β usingα = â
â+b̂e−σ̂

and β = b̂
â+b̂e−σ̂

.

4.4.5 Trip Fixed Cost

We set the fixed cost per shopping trip so that the trip interval in the model matches the average

interval between grocery trips (a household’s modal shopping channel that makes up more than one

third of their total Nielsen spending) in the Nielsen data. The average trip interval across households

is 0.28 months (or slightly more than one week) and the corresponding fixed cost per trip is 1.39% of

monthly consumption. This calibration accords well with the fixed shopping cost of $4.85 estimated

in Baker et al. (2021) using shopping responses to sales tax changes. Given average monthly Nielsen

spending of approximately $375, $4.85 would be equivalent to a trip cost of k = 1.29% of monthly

consumption.

4.5 Implications for Portfolio Choice

In the model, the working capital constraint and consumption are exogenous. The model should

therefore be considered as one component of a higher-level problem in which the household chooses

consumption and allocates assets to several investments, including working capital. For example,

to understand the implications of the household-specific returns from inventory management for

households’ participation in risky financial markets, we briefly sketch out how our model fits into a

static portfolio choice problem.

We consider the effect of working capital on the cost of supplying consumption to be analogous

to interest earned on an investment. The household has access to three investment opportunities:

working capital; a risk-free bond; and a risky asset, which could be thought of as the market portfolio.
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It maximizes expected utility of end-of-period wealth by solving the following problem:

max
λ Ī ,λ f ,λm

EU
(
(1 + r̃p)w

)
(27)

s.t. r̃p =
1
w

∫ λ Ī w

0
r Ī(x)dx + λ f r f + λmr̃m, (28)

1 = λ Ī + λ f + λm. (29)

λ Ī is the share of initial wealth w allocated to working capital (so Ī=λ Īw) with marginal return r Ī , λ f

is the share allocated to the risk-free bond with return r f , and λm is the share allocated to the risky

asset with stochastic return r̃m (e.g., stock market).

rI is the working capital return function we solve for using our model. While the risk-free bond

and risky asset returns do not depend on the amount invested, the return on working capital depends

on the amount invested. Consistent with our model assumptions, we treat the working capital in-

vestment as a risk-free asset.

Assuming consumers are risk averse, they choose λ Ī =1 as long as the marginal return to working

capital investment r Ī(w) ≥ E[r̃m] because working capital has a higher expected return and lower risk

over this range than the risky asset, and because investing in inventory also dominates the risk-free

asset since E[r̃m] > r f . In Section 5, we show that our calibrated model delivers sufficiently high

marginal returns that this is the case at low levels of wealth. At higher levels of wealth where r Ī(w)<

E[r̃m] the optimal allocation depends on the utility function, but as long as r Ī(w) > r f consumers

will optimally split assets between working capital and the risky investment, as the risk-free bond

is strictly dominated. As wealth becomes large, consumers will allocate all additional wealth to

financial assets. Consequently, λ Ī gradually declines as wealth increases.

5 Financial Net Returns to Household Inventory Investment
Solving the optimization problem (23) yields the average monthly cost V( Ī) of supplying consump-

tion flow ∑l Cl . To compute the marginal return to household working capital, we compute this cost

at each level of household working capital Ī.

In principle, we can then compute the marginal return as −V′( Ī), providing a net return measure

which incorporates both the price paid in store and also trip fixed costs and depreciation costs. In

practice, the cost function is not smooth because sl,d is discrete. Consequently, when computing the

marginal return in (24) numerically, −V( Ī+∆ Ī)−V( Ī)
∆ Ī may be zero when ∆ Ī is small, but substantial

when the increment is increased. We therefore utilize somewhat larger working capital increments

of ∆ Ī=2.5% of annual consumption.

Similarly, because the value function (23) is not well defined at zero working capital and positive

trip fixed costs, we define the average (net) return relative to a low but non-zero working capital

benchmark of Ī0 =2.5% of annual consumption:

Average (net) return: r̄ Ī( Ī) = −V( Ī)− V( Ī0)

Ī − Ī0
. (30)
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5.1 Model Results of Calculating Financial Net Returns

Table IV shows how increasing the maximum household working capital Ī affects the different

sources of household savings, optimal trip interval ∆∗ and stockpiling strategy s∗l,d (for the most

durable products in group 4), and marginal and average financial net returns. In equilibrium, house-

holds do not stockpile products in groups 1 and 2 because the calibrated shelf-life is too short relative

to the average trip interval.

When the amount of funds allocated to household working capital is low, the household is re-

stricted in its ability to take advantage of deals and must choose a low value for sl,d. This is because

stockpiling products well in advance of when they are needed (i.e., a large sl,d) is working capital in-

tensive. As the working capital investment increases, households choose progressively higher values

of sl,d for storable products. At the same time, an increase in working capital also allows households

to spend more per trip, increasing the trip interval, reducing trip fixed costs, and raising bulk savings.

This effect is strongest at very low levels of working capital. Given that we match the average NCP

trip interval of about one week, a relatively small amount of working capital is required to achieve

the desired trip interval and the value of working capital allocated to cash is fairly small.16

The trip interval and savings of each type need not be monotonic in Ī. Relaxing the constraint

may have positive or negative effects on these variables depending on whether the deal-focused

or bulk-focused strategies dominate. If the household chooses to use the additional funds to make

larger trips, this makes it more costly to buy items several trips in advance and can therefore lead to

a reduction in stockpiling and deal savings. Alternatively, if the household uses the additional funds

to increase stockpiling, this can put downward pressure on trip size due to depreciation costs and

reduce bulk savings.

At low levels of household working capital investment, the marginal return to additional invest-

ment is very high. When household working capital is equal to 5% of annual consumption, the

marginal return is around 55%. The marginal return gradually diminishes and reaches zero when

household working capital is around one third of annual consumption. As we discuss in Section 4.5,

households in the model do not participate in the stock market if the marginal return to working

capital is more than the expected stock market return. Over the two decades prior to our sample,

the average annual S&P 500 return was around 8%. In Table IV, this corresponds to inventory share

cutoffs of between 10.7% and 13.6% of annual spending.

When aggregating to the product group level, around 7% of households have an inventory ratio

below this cutoff. The share increases to 71% when aggregating to department. In addition to uncer-

tainty due to aggregation assumptions, we also expect this participation cutoff to vary substantially

across households in our sample (for example, it is influenced by household-specific investment op-

portunities, beliefs about future investment returns, shopping trip fixed costs, and preferences for

consuming perishable goods). It is therefore difficult to infer the share of households for whom our

16The level of cash and cash-equivalent asset holdings predicted by the model should of course not match the level
observed in a comprehensive household finance survey since the model only captures one motive for holding cash and
leaves out other motives such as precautionary liquidity. Furthermore, our model applies to other goods not covered by
the Nielsen data which require additional cash holdings.
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model predicts non-participation based purely on our inventory measure. Furthermore, some share

of inventory holdings is explained by non-financial factors such as goods stockpiled for emergencies.

To the extent that these other factors raise the value of inventories, more than 7% of households could

be below the non-participation cutoff for the inventory ratio.

5.2 For Which Households Is Working Capital Important?

In this section we relate our model conclusions to observable household characteristics in the Nielsen

data. There are two distinct ways to think about the importance of working capital as an asset.

Firstly, working capital may be considered to be important for a household if it can rationalize stock

market non-participation. This suggests we should look for the characteristics that predict a high

marginal return to working capital (i.e., low working capital relative to consumption). However,

an arguably more important question is how working capital affects overall portfolio returns. For

portfolio returns, what matters is the average return to working capital and the ratio of working

capital to financial assets. A low marginal return is quite consistent with a large effect on portfolio

returns. We examine each of these questions in turn.

5.2.1 Who Has Low Inventory in Practice (and Do They Have High Marginal Returns)?

Understanding which households earn high marginal returns is relevant for a discussion of the stock

market participation puzzle as these are the households for whom we may be able to rationalize

non-participation. In Section 5.1, we noted that the model implied an inventory-to-spending ratio

cutoff of 10.7–13.6% for stock-market non-participation. Unfortunately, it is difficult to directly map

the participation cutoff to inventory-to-spending ratios we observe in the data. Instead we repeat

the exercise from Section 3.4, predicting whether households have an inventory ratio in the bottom

quartile or not. Figure H.5 shows the relative importance of each predictor. The top six characteristics

are the same as when we predict the inventory ratio: the expenditure share of perishable goods, store

type shares (which may also capture perishability), age, density, and house prices. Figure H.6 shows

partial dependence profiles.

Linking this to the model, we expect older households have a lower value of k (low cost of time)

and the perishable share enters directly (C1). It is plausible that the grocery store share and other store

type shares are also linked to product storability. Households with a high share of grocery spending

are much more likely to have low inventory.

Lower k and higher C1 reduce the working capital ratio cutoff associated with stock market par-

ticipation, all else equal. Overall, it is difficult to credibly map the distribution of inventory ratios

in the Nielsen data to the distribution of marginal returns, and therefore to compute the share of

households for whom the working capital investment drives non-participation using this data.

5.2.2 What Is the Effect of Working Capital on Portfolio Return Heterogeneity?

There do not appear to be large differences by income in the degree to which households exploit

returns to working capital. However, working capital is much more important for low income and

low wealth households because it is a larger share of their overall portfolio and has higher average
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returns than traditional financial assets. Including working capital alongside financial assets may

dramatically change estimates of portfolio return heterogeneity. To quantify this, we use the SCF to

compute annual portfolio shares and returns to each type of asset, assuming a household’s capital

gain for a given asset class is equal to the aggregate capital gain for that asset.

We then assign a level of inventory to each SCF household based on a predictive model computed

using the Nielsen data. We approximate the working capital share using the inventory share given

the cash required to facilitate trips is small relative to average inventory levels. We assign to working

capital an average return of 54 per cent. This is the average return in Table IV corresponding to the

average Nielsen inventory-to-spending ratio of around 20% in Column 2.

Figure IX plots the average portfolio return for households in each income and asset quartile, with

and without working capital. As has been documented elsewhere (e.g., Fagereng, Guiso, Malacrino

and Pistaferri (2020) or Bach, Calvet and Sodini (2020)), average returns on financial assets tend

to increase with both income and assets. Because working capital is a large share of low income

households’ assets and has a high average return, including it changes this pattern dramatically.

This finding is subject to the caveats that average returns at a given working capital ratio likely vary

across households, and working capital is not directly observed in the SCF. However, it seems likely

that incorporating working capital would increase the average returns of low income households

substantially relative to other households. Appendix Figure H.7 shows that including retirement

accounts reduces the effect of working capital on average returns at higher levels of income and

assets, but does not change the overall conclusion.

5.3 An Empirical Measure of Returns Based on In-Store Savings Data

Previously, we used the calibrated model to compute the net return to working capital (marginal and

average) as a function of working capital, which we cannot recover directly from the data. These

return functions were obtained for a single model household that represents the typical household in

the data. An alternative measure of returns which, in principle, we can compute using the data alone

is the ‘gross return’, which ignores trip fixed costs and holding or depreciation costs. This measure of

returns reflects in-store savings only, and we can in principle estimate it using variation in working

capital across households in the data. While we do not observe working capital, this is only a minor

limitation because unobserved cash held to facilitate shopping trips makes up only a small share of

model working capital at inventory-to-spending ratios observed in the data; see column 3 of Table IV

and Figure I. We therefore use inventory to measure working capital Īh.17

One issue with estimating the relationship between in-store savings and working capital directly

is that in the data—contrary to the model—all else is not held constant. The most obvious problem

is that households with a higher level of overall spending have both a higher dollar amount of in-

ventory and a higher dollar amount of savings. A natural solution is to divide both annual average

dollar in-store savings and annual average inventory by annual average spending before estimating

17Note that while cash and inventory are negatively correlated over the trip cycle in the model, we estimate the relation-
ship between annual average inventory and annual average in-store savings.
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the average gross return as the parameter b in this relationship:18

Dollar in-store savingsh
Spendingh

= a + b
Average Inventoryh

Spendingh
+ eh. (31)

However, holding consumption fixed, households who obtain lower prices and thus higher in-store

savings also have mechanically lower spending and a lower level of inventory because their average

purchase price is lower. To address these potential sources of bias, we compute alternative measures

of spending and inventory at fixed prices, which we refer to as “base spending”, “base inventory”,

and “base price”. Our definition of base price corresponds to the expected price in the model when

sl,d = 0 and b(Ql) = 1. That is, the average price paid for a product if the household engages in

“untargeted shopping” in their location and buys the “standard” pack size. We define base spending

as the amount the household would have spent if they had purchased an identical basket of items

at a fixed base price. Base inventory is also computed using a fixed-price measure of spending.

The construction of base spending is discussed in more detail in Appendix A and base inventory in

Appendix E.2.

A related issue is that trip fixed costs are held constant for the model household, but are obviously

not constant across households in the data. Since they are an important driver of inventory in the

model, unobserved differences in trip fixed costs k can lead to differences in inventory even when

holding working capital Ī fixed. For instance, high trip fixed costs reduce deal discounts in the model,

generating a negative relationship between inventory and deal savings when varying k rather than

Ī. To control for the effect of unobserved trip fixed costs, we therefore condition on the household’s

average trip interval when estimating the relationship between inventory and savings. We discuss

the data relationships between inventory, the trip interval, and savings in more detail in Section 5.4.19

Taking into account these considerations, we measure (conditional) gross returns as b1 in the

following regression specification:

Dollar in-store savingsh
Base Spendingh

= a + b1
Average Base Inventoryh

Base Spendingh
+ b2Trip Intervalh + eh. (32)

Figure X shows estimates of b1 from (32) and a binned scatterplot for both the model and the data.20

Holding the trip interval fixed, varying working capital generates a positive relationship between

savings and inventory in both the model and the data. The gross return observed in the model

18In interpreting b as the gross return we are assuming that in-store savings increase linearly with working capital. If
true, this in turn implies that the marginal gross return is constant and equal to the average gross return. While this is not
the case in our model, it is a reasonable approximation in the data over the range of inventory ratios we observe.

19Controlling for the trip interval removes most of the variation in bulk savings in the model, and some of the variation in
the data. Our gross returns measure may therefore be more accurately interpreted as capturing returns through stockpiling
rather than by extending the trip interval and buying in bulk. In the model, controlling for the trip interval is not necessary
for identification because the trip fixed cost is held fixed, but it is necessary for a consistent comparison with the data
relationship. Appendix Figure H.8 shows that the unconditional model gross returns are in any case mostly driven by deal
savings, except at very low levels of inventory. Bulk savings are important at low levels of inventory because households
who are constrained to small trip intervals and pack sizes pay much higher prices.

20Dividing by base spending reduces the average inventory ratio relative to what we report in Section 3 because base
spending is higher than observed spending.
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declines with the inventory ratio. The return over the range of inventory ratios we consider is around

10%. Our data return of 23% is higher than the model, although Appendix Figure H.9 shows that

gross returns are lower when aggregating to product module and when aggregating to department.

5.3.1 Moving Events as an Alternative Source of Variation to Measure Gross Returns

One reason why model and estimated gross returns potentially differ is that the estimation of b1 in

(32) might use variation in inventory that is not exogenous.21 A partial solution to this problem is

found by leveraging the variation driven by households that move locations. Because it is costly

to move a stockpile of household goods, we expect that households will reduce sd in advance of

a move, consistent with Figure III. Informally, we expect this will also lead to a reduction in deal

savings obtained in the weeks prior to a move as households reduce stockpiling items on sale. In

addition, as households who recently moved have a limited stockpile, we expect that a larger share

of items will be purchased at full-price after the move as well.

Figure XI shows that the share of deal transactions indeed drops by 3.6 percentage points in the

month of the move and recovers only gradually in the months following the move, consistent with

this conjecture. We focus on the share of deal transactions rather than percentage savings, as our sav-

ings measure can only be computed when the exact NCP UPC-store-week combination corresponds

to an observation in the NRP. Because the coverage varies substantially from month to month at the

household level, the resulting monthly household savings is too noisy to credibly estimate effects

around the move. In contrast, the NCP deal indicator is available for all NCP transactions. Appendix

Figure H.10 shows that a one percentage point increase in the NCP deal indicator is associated with

an 0.15% increase in percentage deal savings on a consistent set of transactions. The 3.6 percentage

point drop in Figure XI therefore corresponds to an 0.54 percentage point (or about 10%) drop in deal

savings.

Combining this with an implied change in the inventory ratio of 6.63% of annual spending (see

Figure III) gives a back-of-the-envelope gross return of 100 × 0.54
6.63 = 8.1%.22 As this approach uses

within household variation, we do not condition on the trip interval and therefore compare our data

gross return to the unconditional model return of 12.2% shown in Appendix Figure H.8. The movers

estimate is lower than the cross-sectional estimates and fairly comparable to the gross return implied

by the model.

5.4 Model Validation and Robustness

In the model, households obtain high returns to working capital by exploiting temporary sales and

bulk discounts. The model generates a number of predictions for the relationships between working

21Alternative sources of variation in inventory which are present in the model are trip fixed costs k, which we can
control for by conditioning on the trip interval, and variation in holding costs. In the data, variation in holding costs may
reflect differences in the space available to store items, preferences for perishable products, or in the way grocery items are
processed and stored. In the model, variation in δl generates a similar relationship between inventory and deal savings
as variation in Ī. Variation in holding costs across households may therefore also contribute to the data relationship in
Figure XIId. In addition, there are likely sources of inventory variation in the data that are not present in the model.

22There is not a statistically significant change in bulk savings around a move so we assume the response is zero. This is
consistent with bulk savings driven by a high level of consumption of a particular product.
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capital Ī, the trip fixed cost k, and in-store savings, which we can test using the NCP, in addition

to the tests we performed in the previous Section 5.3 and in Section 3.3. These tests help support

our claim that financial returns to working capital are an important determinant of households’ high

inventory holdings.

The first exercise we perform using the model is to show the effect of the fixed cost k on savings.

That is, we vary k and plot the resulting relationship between in-store savings and the trip interval

∆. In the second exercise, we vary working capital Ī and plot the relationship between savings

and average inventory generated by this variation. To compare these relationships with the data,

we construct measures of deal savings and bulk savings using the NCP and NRP using the base

spending and base inventory measures from Section 5.3.

To look at the effect of k on savings, we estimate the following equation separately for deal savings

and bulk savings, and for the NCP and data generated from the model by varying k:

Dollar in-store savingsh
Base Spendingh

= a + b1Trip Intervalh + eh. (33)

To look at the effect of varying Ī on savings, we estimate (32) separately for deal savings and bulk

savings, and for the NCP and data generated from the model by varying Ī.23

5.4.1 Deal Savings

We measure deal savings as the discount relative to the amount the household would have spent if

they paid the average price for the same UPC in the same store over that year: the additional savings

resulting from strategic shopping behavior relative to random shopping in the same store over time.

Note that because different pack sizes of the same product have different UPCs, this measure does

not incorporate bulk savings. We discuss the construction of the deal savings measure in more detail

in Appendix A.

Figure XIIa plots the model relationship between deal savings and the trip interval generated by

varying k. Deal savings are lower for households with longer trip intervals (higher fixed costs). Fig-

ure XIIb shows that deal savings are also lower for households with longer trip intervals in the NCP.

This is consistent with Aguiar and Hurst (2007): households in the NCP who shop more frequently

obtain higher in-store savings. In our model, shopping more frequently allows households to set a

higher value of sd, holding working capital fixed, and therefore obtain higher deal savings because

prices are observed more frequently.

Next, we vary working capital Ī and plot the model relationship between in-store savings and

the ratio of inventory to annual spending. Figure XIIc shows that increasing working capital allows

households in the model to obtain more savings by allowing households to set a higher value of sd.

Figure XIId shows that we also observe a positive relationship between inventory and deal savings

in the data. Allocating more working capital to use for stockpiling can be seen as a substitute for

23Note that we do not condition on the inventory ratio when estimating the relationship between the trip interval and
savings. This is because when holding Ī fixed, conditioning on the inventory ratio absorbs essentially all the variation in
the trip interval generated by k in the model.
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shopping more frequently. Consistent with this, returns to working capital in the model are higher

for households with a high cost of time (i.e., a high k). Households with a low cost of time, such as

the older households studied by Aguiar and Hurst (2007) are able to exploit most of the potential

deal savings with a small level of working capital because they shop very frequently.

5.4.2 Bulk Savings

Our measure of bulk savings compares the average unit price paid with the average unit price of a

second quintile pack size of the same product in the same year and 3-digit ZIP Code. We describe

our method for computing bulk savings in more detail in Appendix A. We add an additional con-

trol when estimating the data relationships between bulk savings, the trip interval and inventory

to improve comparability with the model. In practice, the potential for bulk savings varies across

products—some products are available (and much cheaper) in larger pack sizes, whereas others are

not. We therefore define potential bulk savings as the bulk savings that would be obtained if the

household bought every product in the largest pack size available in their 3-digit ZIP Code. Potential

bulk savings explains around 65% of the variation in observed bulk savings.

Figure XIIIa plots the model relationship between trip interval and bulk savings. In the model,

households with high fixed costs k, and therefore longer trip intervals ∆, obtain more bulk savings

because households with less frequent trips also buy more each trip. While the data relationship is

also positive, the slope is close to zero (Figure XIIIb).

There is also a flat relationship between the inventory ratio and bulk savings in the model (Fig-

ure XIIIc). This follows from our assumption that bulk savings are obtained by choosing a larger

steady state trip size. Consequently, variation in bulk savings generated by adjusting Ī comes purely

through the effect on the trip interval, which we controlled for in this specification for the reasons

outlined in Section 5.4.1. Figure XIIId shows that the relationship in the data is similar, supporting

our assumption. That is, in both the data and the model, stockpiling mostly reflects households tak-

ing advantage of temporary deals on standard pack sizes, rather than buying in bulk. The fact that

we find no change in bulk savings around a move is also consistent with this interpretation. One

possible reason for this is that depreciation is often much higher after the pack is opened; buying

many small packs will reduce depreciation costs.

6 Conclusion
We study how households can obtain substantial financial returns from strategic shopping behavior

and optimally managing inventories of consumer goods. We find that American households tend

to hold substantial amounts of these non-financial assets and rationally choose to maintain some

amount of liquid savings not only for precautionary motives but in support of this inventory man-

agement role. Such inventories are missing from traditional consumer finance data such as the SCF,

which might explain why household working capital has been largely ignored by the household

finance literature.

We demonstrate that households earn high marginal returns from inventory management through

several channels at low levels of inventory, but these marginal returns decline rapidly as inventory
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levels increase. At low levels of inventory, the marginal return to investment in inventory strongly

dominates stock market returns and then quickly approach zero. Hence, even though marginal re-

turns to working capital investment are low for households that are not borrowing constrained, aver-

age returns are still high and contribute substantially to average portfolio returns, especially for low

income and low wealth households.

Though we do not consider them explicitly in the paper, time-varying investment opportunities

in working capital such as large temporary store price discounts, sales tax holidays, or ‘Black Friday’

sales could even rationalize some of the borrowing at high interest rates that lower income house-

holds engage in (Zinman 2015). Investment in working capital is therefore related to the literature

motivating household borrowing as a way to invest in illiquid assets offering high rates of return but

requiring a threshold amount of capital (Angeletos, Laibson, Repetto, Tobacman and Weinberg 2001;

Laibson, Repetto and Tobacman 2003).

Since we do not observe financial assets and borrowing costs and limits of households in the scan-

ner data, our model of optimal household inventory management does not feature credit constraints.

We therefore view the collection of more comprehensive household balance sheet data, including

household working capital and borrowing limits, an important next step in this line of research.

Finally, we note that adding household inventory management to a household’s portfolio choice

problem can potentially affect its decision of whether to participate in financial markets. House-

hold working capital could therefore provide another partial explanation to the stock market non-

participation puzzle.24 Since investment in household working capital has investor-specific and ap-

proximately risk-free returns that decline systematically as wealth increases and that dominate equity

returns for poorer households, it complements explanations of cross-sectional variation in participa-

tion rates, such as participation costs. However, at this point these are conjectures and open to future

research as we do not observe financial asset holdings in the scanner data.
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FIGURE I
OBSERVED CONSUMER GOODS INVENTORY
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Notes: Panel (a) plots how the average 2013-2014 inventory level Īh varies across households in the NCP. Average inventory
is plotted up to the 99th percentile. Summary statistics reported in the top right corner are computed using all observations.
Panel (b) plots the distribution of inventory ratio, i.e., inventory as a share of annual household spending on goods covered
by Nielsen. Both panels are constructed using Nielsen sampling weights. Appendix Table H.1 provides corresponding
summary statistics for alternative product aggregation levels (UPC, Product Module, Product Group, and Department).
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FIGURE II
INVENTORY PORTFOLIO SHARE BY INCOME
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Notes: Panel (a) is constructed by combining data from the NCP over 2013 and 2014 and the SCF over 2010, 2013, and
2016. We impute inventory for SCF households based on characteristics observable in both datasets: house price, house-
hold income, the maximum age of household members, household size, marital status, and indicators equal to one if the
respondent identifies as non-Hispanic white, if the household contains young children, if all adults work full time, or
if either respondent or spouse has a college degree. We train a machine learning model to predict inventory using the
Matlab command fitrensemble with hyperparameter optimization. The resulting method is LSBoost with 95 trees, a learn
rate of 0.12 and a minimum leaf size of 2. The model explains 17.2 per cent of variation in observed inventory out-of-
sample. Then, using data from the 2010, 2013 and 2016 SCF, we compute the inventory portfolio share for each household
i, Inventoryi/(Financial Assetsi + Inventoryi), and report the average and median share by income quintile. Financial as-
sets include checking accounts, savings accounts, CDs, money market accounts, bonds and stocks (both directly held and
in mutual funds). We do not subtract debt and do not include retirement accounts (see Appendix Figure H.2 for results
including retirement accounts). Income is reported to the nearest thousand dollars. Panel (b) shows the median value of
inventory in each income quintile computed using the NCP. The lower cutoffs for each income quintile are $0, $22,000,
$38,000, $61,000, and $101,000. We use Nielsen sampling weights in both panels.



FIGURE III
VALIDATION: SPENDING AROUND MOVE DATES

Cumulative spending decline =    -6.63 % of annual spending
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(a) All households moving to new 3-digit ZIP Code

Cumulative spending decline =   -11.46 % of annual spending
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(b) Households in top quartile of move distance

Notes: This figure shows the change in log spending around the time a household moves. For households who move to a
new 3-digit ZIP Code in a given year we impute the month of the move by searching for a break in the share of trips made
in the household’s new 3-digit ZIP Code (rather than their old 3-digit ZIP Code). The figures plot estimates of bs from the
following specification and a 95 per cent confidence interval:

ln Spendingi,t =
9

∑
s=−9

bs Movedi,t−s + Month FE + Household FE + ei,t ,

where ln Spendingi,t is the log spending of household i in month t. Movedi,t is an indicator equal to 1 if household i moved
in month t. The sample includes non-movers and households who moved to a new 3-digit ZIP Code exactly once between
2006 and 2014. The sample period is January 2006 to December 2014. We also drop households who leave the panel and
re-enter in a later year. Panel (b) includes only households in the top quartile of move distance—that is households moving
more than 974km. Standard errors are clustered by household. The regression is weighted using Nielsen sampling weights.
Appendix Figure H.4 shows robustness to using the imputation approach described by Borusyak et al. (2021) to deal with
potential bias in pooled event studies with staggered events.
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FIGURE IV
RELATIVE IMPORTANCE FOR INVENTORY RATIO PREDICTION

Notes: This figure shows the relative importance of each inventory ratio predictor. It measures the share of the reduction
in mean-squared error due to each predictor. At each node where a predictor is chosen, the predictor’s contribution is
the difference between the MSE at the parent node and the average MSE of the child nodes (weighted by the number of
observations going through each child node). The contribution is then summed over all nodes for which the predictor is
chosen, weighted by the number of observations at each node as a share of the total sample size. We predict the inventory
ratio using bootstrap aggregation (without random selection of predictors), 343 trees and a minimum leaf size of 27 obser-
vations.
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FIGURE V
PARTIAL DEPENDENCE PROFILE: AGE AND PERISHABLE SHARE

Notes: This figure shows the joint partial dependence profile for age and the share of purchases with a shelf-life of less
than 0.58 months. To construct the partial dependence profile, model predictions are computed for each observation at
counterfactual values of age and the perishable share (between the 2nd and 98th percentile), holding all other predictors
fixed. The resulting predictions are then averaged over all observations in the dataset (applying Nielsen sample weights).
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FIGURE VI
PARTIAL DEPENDENCE PROFILES

Notes: This figure shows partial dependence profiles for the six most important inventory ratio predictors. To construct the
partial dependence profile, model predictions are computed for each observation at counterfactual values of the variable
of interest (between the 2nd and 98th percentile), holding all other predictors fixed. The resulting predictions are then
averaged over all observations in the dataset (applying Nielsen sample weights).
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FIGURE VII
EXAMPLE PATHS OF HOUSEHOLD INVENTORY
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(a) Example path of inventory of a single product

(b) Example path of total household inventory

Notes: This figure shows two examples of the path of inventory. Panel (a) show the path of an individual retail product i.
The blue dashed lines and the x axis display the (s, S) policies at full price p f and discounted price pd, respectively. In this
example, sd,i = si(pd) = 3. Panel (b) shows an example of the path of inventory aggregated to the household level. In this
example, the optimal trip interval is ∆ = 0.25 months, and optimal deal shopping strategies for product groups 1 to 4 are
s∗d,1 = s∗d,2 = s∗d,3 = 0, and s∗d,4 = 4. The red dashed line displays total working capital, which is the sum of inventory and
cash set aside to pay for the next shopping trip. Cash accumulates between trips at the rate at which inventory depletes,
leaving total working capital constant.
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FIGURE VIII
BULK CALIBRATION
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(a) Group 1
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(b) Group 2
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(c) Group 3
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(d) Group 4

Notes: We first compute pack size quintiles for each product-ZIP3 combination. We then compute the median number of
units and unit price for each product-pack size quintile-ZIP3, weighted by expenditure. We normalize both prices and
units by dividing by the second quintile price and units. The range of available sizes varies substantially across products.
As we want to measure the savings obtained by increasing pack size uniformly across all products, we ensure that all
products have a common range of normalized units. This means the set of products does not change along the x-axis. To
achieve this, we create a number of pack size bins over the range 0.5 to 10 (the cutoffs are 0.5, 1, 1.5, 2, 5, and 10). For
products where price and units are missing for a particular bin, we impute price using the unit price in the closest bin. We
impute units as the weighted average (normalized) units in the bin across all products. We then estimate (26). The dashed
line shows the relative price we assume in the model: Price = α+βe−σ̂Units and Units is the weighted average normalized
units in units bin q across all products. The solid line is constructed by computing the weighted average normalized retail
price in units bin q across all products.
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FIGURE IX
IMPLIED EFFECT OF WORKING CAPITAL ON AVERAGE RETURNS
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(b) By assets

Notes: This graph shows average portfolio returns in each income and asset quintile with and without working capital. We
construct average returns for each SCF household using the following method. First we compute the portfolio return with-
out working capital, which is ri =

Income from Financial Assetsi
Financial Assetsi

+∑a λa,iRevaluationa, where λa,i is household i’s share of assets
in asset class a and Revaluationa is the revaluation return for asset class a from the Flow of funds (the SCF only provides
information on realized capital gains and losses). Income from financial assets is pre-tax and includes both interest and div-
idend income. The assets classes are stock mutual funds, directly held stocks, bond mutual funds, directly held bonds and
combined mutual funds. Also included in financial assets are checking accounts, savings accounts, CDs and money market
accounts. We assume these assets have zero revaluation return. To compute the corresponding return including working
capital we use the inventory portfolio share λI,i =

Inventoryi
Assetsi+Inventoryi

where Inventoryi is imputed inventory of household i
(see note to Figure II). The return including working capital is then rwc

i = λI,iAvgWorkingCapitalReturnq(i) + (1 − λI,i)ri,
where q(i) is the income quintile of household i. Note that as we observe inventory (not working capital), we ideally need
the average return to inventory (not working capital). However, at the average inventory ratio of 0.2 these are essentially
identical. We therefore use the average return to working capital associated with an inventory-to-spending ratio of around
20%, which is 54% (Table IV). Income is reported to the nearest thousand dollars. The lower cutoffs for each income quintile
are $0, $22,000, $38,000, $61,000 and $101,000. The lower cutoffs for each asset quintile are $0, $321, $2,001, $8,510, $43,600.
All quintiles and summary statistics are calculated using SCF weights.
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FIGURE X
GROSS RETURN: IN-STORE SAVINGS AND INVENTORY

Slope Estimate = 0.0985
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(b) Data

Notes: To construct Panel (a) we vary working capital ( Ī) and compute the in-store savings and inventory as a share of
spending. We plot the relationship between the two conditional on the number of trips for comparability with the data.
Panel (b) uses the NCP over 2013 and 2014 to illustrate the relationship between in-store savings and average inven-
tory as a percentage of spending. The points on the charts represent deciles of households, controlling for the number
of shopping trips a household makes each year. The savings measure reflects in-store savings only and does not incor-
porate holding costs or trip fixed costs. The red dashed line shows predicted values from (32): Dollar in-store savingsh

Base Spendingh
=

a + b1
Average Base Inventoryh

Base Spendingh
+ b2Trip Intervalh + eh. The regression is weighted using Nielsen sampling weights.
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FIGURE XI
DEAL TRANSACTIONS AROUND MOVE DATES
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Notes: This figure shows the percentage point change in the share of purchases associated with a coupon or self-reported
deal. For households who move to a new 3-digit ZIP Code in a given year we identify the month of the move by searching
for a break in the share of trips made in the household’s new 3-digit ZIP Code (rather than their old 3-digit ZIP Code). The
figure plots estimates of bs from the following specification and a 95 per cent confidence interval:

Deal Shareh,t =
9

∑
s=−9

bs Movedh,t−s + Month FE + Household FE + eh,t ,

The sample includes both non-movers and households who moved to a new 3-digit ZIP Code exactly once between 2006
and 2014. The sample period is January 2006 to December 2014. We also drop households who leave the panel and re-enter
in a later year. Standard errors are clustered by household. The regression is weighted using Nielsen sampling weights.
Appendix Figure H.11 shows robustness to using the imputation approach described by Borusyak et al. (2021) to deal with
potential bias in pooled event studies with staggered events.
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FIGURE XII
RELATIONSHIP BETWEEN DEAL SAVINGS, TRIP INTERVAL, AND WORKING CAPITAL

Slope Estimate = -0.1462
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(a) Model: Deal savings and trip interval

Slope Estimate = -0.1676
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(b) Data: Deal savings and trip interval

Slope Estimate = 0.0977
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(c) Model: Deal savings and working capital

Slope Estimate = 0.2350
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(d) Data: Deal savings and working capital

Notes: In Panel (a) we evaluate % deal savings and days between trips in the model for different values of k. Working capital
is set sufficiently high that the working capital constraint does not bind. Days between trips is computed as ∆× 365

12 . In
Panel (b) we plot the data relationship between deal savings and the household’s average number of days between trips
over a calendar year, winsorized at 98 per cent. In Panel (c) we evaluate % deal savings and the inventory ratio in the model
for different values of Ī. Panel (d) shows the corresponding relationship in the data. The inventory ratio in the model is
average inventory divided by annual spending at the expected price when s = 0 and b(Q) = 1. The inventory ratio in
the data is the household’s average base inventory over a calendar year divided by annual Nielsen base spending (see
Appendix A and E.2 for an explanation of how these variables are constructed). Deal savings in the data are constructed
using (44). In Panels (c) and (d) we control for the number of trips. Panels (b) and (d) are constructed using Nielsen
sampling weights.
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FIGURE XIII
RELATIONSHIP BETWEEN BULK SAVINGS, TRIP INTERVAL, AND WORKING CAPITAL

Slope Estimate = 0.8798
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(a) Model: Bulk savings and trip interval

Slope Estimate = 0.0387
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(b) Data: Bulk savings and trip interval

Slope Estimate = 0.0008
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(c) Model: Bulk savings and working capital

Slope Estimate = -0.0421
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(d) Data: Bulk savings and working capital

Notes: In Panel (a) we evaluate % bulk savings and days between trips in the model for different values of k. Working
capital is set sufficiently high that the constraint does not bind. Days between trips is computed as ∆× 365

12 . In Panel (b) we
plot the data relationship between bulk savings and the household’s average number of days between trips over a calendar
year, winsorized at 98 per cent. In Panel (c) we evaluate % bulk savings and the inventory ratio in the model for different
values of Ī. Panel (d) shows the corresponding relationship in the data. The inventory ratio in the model is average
inventory divided by annual spending at the expected price when s = 0 and b(Q) = 1. The inventory ratio in the data is
the household’s average base inventory over a calendar year divided by annual Nielsen base spending (see Appendix A
and E.2 for an explanation of how these variables are constructed). Bulk savings in the data are constructed using equation
(46). In Panels (c) and (d) we control for the number of trips. In Panels (b) and (d) we also control for potential bulk savings,
which is the bulk savings obtained if the household purchased the largest available pack size quintile for each product.
Panels (b) and (d) are constructed using Nielsen sampling weights.
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TABLE I
VALIDATION: RELATIONSHIP BETWEEN DURABILITY AND INVENTORY RATIO

(1) (2) (3) (4) (5)

Shelf Life (Months) 0.128*** 0.395*** 0.401*** 0.392***
(0.001) (0.004) (0.003) (0.004)

Shelf Life Squared -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000)

Avg. # Days Between Trips 0.467***
(0.008)

Group Shelf Life ≤ .58 months -2.220***
(0.027)

Group Shelf Life > 6 months 5.234***
(0.027)

Household FE X X
Number of Observations 5,578,528 5,578,528 5,578,527 5,535,390 5,578,528
Adjusted R-squared 0.07 0.09 0.27 0.13 0.25

Notes: This table combines data from the NCP over 2013 and 2014 and the FSIS. We estimate variations on the
following regression specification, where h indexes households and g indexes Nielsen product groups:

Inventory Ratioh,g = b0 + b1Shelf Lifeg + b′2Xh + eh,g .

Inventory Ratioh,g is the ratio of household inventory to annual spending in product group g, multiplied by
100. Columns 3 and 5 include household fixed effects. Standard errors are clustered by household. Regressions
are weighted, using Nielsen sampling weights multiplied by total product group expenditures. * p < .1, **
p < .05, *** p < .01.
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TABLE II
FACTORS CORRELATED WITH HOUSEHOLD INVENTORY TO SPENDING RATIOS

(1) (2) (3) (4)

Maximum Age (Years) -0.290 (0.014) -0.307 (0.015) -0.296 (0.014) -0.317 (0.013)
Maximum Age Squared 0.002 (0.000) 0.002 (0.000) 0.002 (0.000) 0.002 (0.000)
Young Children 0.020 (0.111) -0.005 (0.111) 0.142 (0.106) 0.210 (0.103)
Married -0.392 (0.074) -0.596 (0.078) -0.607 (0.074) -0.518 (0.072)
All Adults Work Full-time 0.397 (0.066) 0.193 (0.069) 0.213 (0.066) 0.278 (0.064)
White -1.278 (0.074) -1.276 (0.074) -1.205 (0.070) -0.889 (0.068)
Asian 1.496 (0.182) 1.352 (0.183) 1.555 (0.170) 1.258 (0.164)
Single Household 1.737 (0.085) 1.902 (0.086) 1.913 (0.082) 1.865 (0.081)
College Degree 0.336 (0.059) 0.107 (0.063) 0.264 (0.060) 0.236 (0.058)
Single Family Home 0.594 (0.072) 0.542 (0.069) 0.465 (0.068)
ZIP Code House Price ($00,000s) 0.054 (0.021) 0.114 (0.019) 0.066 (0.018)
Income ($000s) 0.007 (0.001) 0.008 (0.001) 0.005 (0.001)
ZIP Code Persons per Sq. Mi. (000s) 0.013 (0.005) 0.011 (0.004) 0.004 (0.004)
Perishable Share of Spending -14.647 (0.333) -15.517 (0.379)
Discount Store Share 0.566 (0.126)
Dollar Store Share 4.697 (0.528)
Drug Store Share 3.794 (0.379)
Convenience Share 2.849 (1.258)
Online Share 4.548 (0.537)
Other (Non-Grocery) Share 5.715 (0.308)
Warehouse Club Share 5.118 (0.181)

Number of Observations 65,852 65,852 65,852 65,852
Adjusted R-squared 0.09 0.09 0.17 0.21

Notes: The dependent variable is the household inventory-to-spending ratio (times 100). Maximum Age is the maximum age of household heads. Young
Children is an indicator for whether children under the age of 6 are present in the house. White and Asian are indicator variables for the household head.
College degree is an indicator for whether either household head has a college degree. Single Family Home is an indicator for whether the household lives
in a single family home. ZIP Code House Prices are from Zillow. Income is the midpoint of the corresponding Nielsen bin. Perishable Share of Spending is
the share spent on products with a time to expiry less than 0.58 months (just over two weeks). This cutoff is chosen so that ‘perishable’ here corresponds to
perishability groups 1 and 2 in the model. The omitted store-type is grocery. Standard errors are in parentheses.
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TABLE III
CALIBRATION OF MODEL PARAMETERS

Perishability Group (l)
Name 1 2 3 4 Source/target

Depreciation rate δl 4.29 1.76 0.34 0.00
See Appendix C

.
Shelf life (in months) t̄l ∆∗ 0.42 2.01 32

Consumption flow (in %) Cl 12.47 11.52 12.90 63.1 Match NCP expenditure shares.

Deal probability xl 0.21 0.30 0.29 0.27 Match NRP price moments.

Full price pl, f 1.07 1.07 1.08 1.08 Match NRP price moments and
E[pl ] = 1.Deal price pl,d 0.74 0.83 0.80 0.78

Regression coefficients
â0,l 0.77 0.82 0.84 0.81

Estimation of (26) by WLS.â1,l 3.00 0.94 4.41 0.77

Bulk discount function
αl 0.78 0.81 0.82 0.77 αl ,βl match relation between

NCP pack size and unit price.βl 3.05 0.92 4.30 0.73
σ̂l 2.63 1.56 3.18 1.16 σl maximizes within-R2 of (26).

Trip fixed cost k 0.0139 Match NCP trip interval.
Notes: This table shows the model parameters by perishability group. Group 1 contains the most perishable products and
Group 4 contains the least perishable. The calibration approach is described in Section 4.4. In the model, one unit of a
product from group l stored for a period of t months since purchase provides consumption of e−δl t units if t < t̄l and 0
units if t ≥ t̄l . Cl is the % of total Nielsen spending accounted for by each group. xl is the probability of a sale, pl,d is
the price in the event of a sale, and pl, f is the full price. â0,l and â1,l are weighed least squares coefficients of regression
equation (26), estimated separately for each group. In the model, we normalize the price of the standard pack size to one,
and the price of other pack sizes reflect percentage deviations from the standard pack size. We therefore setαl =

â0,l

â0,l+â1,l e−σ̂l

and βl =
â1,l

â0,l+â1,l eσ̂l
. σ̂l is chosen to maximize the within-R2 of (26). Note, because the implied shelf life for group 1, t̄1, is

somewhat lower than the data trip interval (which we calibrate k to match), we set t̄1 = ∆∗, the household’s optimal trip
interval. This effectively means that products from group 1 cannot be stockpiled.
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TABLE IV
FINANCIAL RETURNS TO HOUSEHOLD INVENTORY INVESTMENT

Work. Cap. Inventory Cash % Savings: Interval ∆∗ s∗4,d Return (%):
( Ī, % cons.) (% spend.) (% Ī) Deal Bulk (months) (trips) Marg. Avg.

2.5 1.8 35.1 6.2 12.8 0.23 2 215.2
5.0 4.7 19.0 9.9 15.7 0.26 5 56.6 215.2
7.5 7.4 13.6 10.8 17.3 0.28 7 28.6 135.9
10.0 10.7 9.4 11.8 16.1 0.27 10 13.7 100.1
12.5 13.6 7.8 11.9 16.7 0.28 12 6.3 78.5
15.0 16.5 6.6 12.0 17.1 0.28 14 3.0 64.1
17.5 19.4 5.7 12.1 17.2 0.28 16 1.6 53.9
20.0 22.1 5.0 12.1 17.2 0.28 18 0.8 46.4
22.5 24.9 4.4 12.1 17.2 0.28 20 0.5 40.7
25.0 27.6 4.0 12.2 17.2 0.28 22 0.2 36.3
27.5 30.3 3.6 12.2 17.2 0.28 24 0.1 32.7
30.0 34.3 3.3 12.2 17.2 0.28 27 0.1 29.7
32.5 37.2 3.1 12.2 17.2 0.28 29 0.0 27.2
35.0 39.9 2.9 12.2 17.2 0.28 31 0.0 25.1

Notes: This table is constructed by solving the model for different values of the working capital constraint Ī, increasing it by
2.5% of (exogenous) annual consumption in each row. The working capital ratio in column 1 is available working capital
Ī, expressed as a percentage of annual consumption. Column 2 shows the value of inventory immediately prior to a trip as
a percentage of total annual spending. Column 3 shows the annual average value of cash set aside to pay for the next trip
as a share of annual total working capital. The remaining share of working capital is invested in inventory. Columns 4 and
5 show in-store savings achieved in % of base spending, which is annual spending assuming no stockpiling (‘untargeted’
or ‘inattentive’ shopping, sl,d = 0) and the trip interval is the interval associated with purchasing the standard pack size
of each product. Deal savings are in-store savings due to buying an item on sale. Bulk savings are in-store savings due
to buying a larger pack size. Column 6 shows the length of time of the optimal interval ∆∗ between trips, measured in
months. s∗4,d in column 7 is the optimal deal shopping strategy for goods with a shelf life of at least six months (group 4),
expressed in the number of trips the household is willing to purchases the product in advance of consuming it when the
product is on sale. The financial returns in columns 8 and 9 incorporate not only in-store savings but also depreciation and
trip fixed costs. The average return is computed relative to a working capital benchmark of 2.5% of annual consumption.

53



Online Appendix

Financial Returns to Household Inventory Management

A Savings Measures
This section describes how we compute deal and bulk savings. There are two requirements we would

like our savings definition to satisfy. Firstly, we would like the model and data savings definitions to

be as comparable as possible. Secondly, we want to measure savings relative to a base level of spend-

ing which is itself independent of savings. Otherwise, when expressing dollar savings relative to

observed spending, the ratio is inflated by the reduction in spending that corresponds to an increase

in savings.

We define base spending as the amount the household would have spent if they had purchased

an identical basket of items at the base price. We define the base price as the average price paid for a

product if the household engages in “untargeted shopping” (or “inattentive shopping”) in their area

and buys the “standard” pack size. Our base price definition corresponds to the expected price in

the model when s = 0 and b(Q) = 1. All savings will be measured relative to this base price (which

is normalized to one in the model).

To compute the base price in the data, we require an alternative source, as the NCP only provides

us with the price the household actually paid for the item, not the prices that were available to them.

To compute the base price, we therefore use the NRP, which provides weekly UPC price data at the

store level for all products. For product p sold in 3-digit ZIP Code z in calendar year y, the base price

is computed using the following formula:

Base Pricez,p,y =
1

|Up| ∑
u∈Up

Avg Pricez,u,y, (34)

where Up is the set of UPCs associated with the second pack-size quintile of product p, and product p
corresponds to the set of UPCs with the same product module, brand and common consumer name,

as described in Section 4.4. AvgPricez,u,y is the average price at which UPC u was sold in year y in

3-digit ZIP Code z:

Avg Pricez,u,y =
∑w∈Wy ∑s∈Rz,w Pu,w,s · 1NRPu,w,s

∑w∈Wy ∑s∈Rz,w ·1NRPu,w,s

, (35)

where Wy is the set of weeks in calendar year y, Rz,w is the set of stores in the NRP located in 3-digit

Zip Code z reporting data in week w and Pu,w,s is the average per unit price at which UPC u is sold in

week w by store s. Stores do not necessarily report prices for a given UPC in every week of the year.

Conditional on a store being in the sample, Pu,w,s is not observed for UPC-week-store combinations

with zero sales. 1NRPu,w,s is an indicator equal to one when the NRP contains price information for

UPC u sold in week w in store s and zero otherwise. Our measure of base spending holds products

purchased and quantities fixed, but applies the base price to each item rather than the price the
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household actually paid:

Base Spendingh = ∑
t∈Th

∑
p

Base Pricez,p,y(t) · Qp,h,t, (36)

where Th is the set of times corresponding to trips taken by household h, Qp,h,t = ∑u∈Up Qu,h,t and

Qu,h,t is the quantity of UPC u purchased by household h on trip t.
For simplicity we abstract from the time period Th covers throughout this appendix. For the anal-

ysis in Sections 5.3 and 5.4, Th is the set of 2013-2014 trip times. Because we use monthly aggregation

for the movers analysis, there we instead use Th,m, the set of trip times in month m.

Although this measure of base spending lines up well with the model, the average price of the

standard pack size in a 3-digit Zip Code (Base Pricez,p,y) can only be computed for a subset of NCP

purchases. This is partly because we drop UPCs measured in “CT”, as it is unclear how to interpret

variation in pack size for these items. Each different pack size of the same product has a separate

UPC, and it is unclear whether “CT” is comparable even across UPCs which we group together as

a single product p. Furthermore, the NRP covers an overlapping but different set of stores from the

NCP. A given UPC-ZIP3-year combination we see in the NCP may not have corresponding price

information in the NRP.

As we want to maximize coverage for each savings measure, we also construct an alternative

fixed-price spending measure using the NCP only. This is the the average price paid by other NCP

panelists for the same UPC in the same year and is defined for 99.6% of household-UPC-years (it is

missing only when no other panelist purchased the same UPC in the same year). The NCP average

price paid by household h for UPC u in year y is:

NCP Avg Priceu,h,y =
∑t∈Th,y ∑u Pu,h,t · 1Qu,h,t>0

∑t∈Th,y
1Qu,h,t>0

, (37)

where 1Qu,h,t>0 is an indicator equal to 1 if household h purchased UPC u on trip t. Let Hu,y be the set

of households purchasing UPC u in year y. The leave-out average price we assign to household h’s

purchases of UPC u in year y is:

NCP Leave-out Avg Priceu,h,y =
∑i∈Hu,y ,i ̸=h NCP average priceu,i,y

|Hu,y| − 1
. (38)

Household h’s total spending at the leave-out average price in year y is then:

NCP Avg Price Spendingh = ∑
u

(
∑

t∈Th

NCP Leave-out Avg Priceu,h,y(t) · Qu,h,t

)
. (39)

We then convert spending at NCP average prices to our base spending measure by computing the

ratio of the two measures on the largest set of transactions for which both are defined and averaging

across households:

Spending Ratio =
∑i∈H

BaseSpendingi
NCP Avg Price Spendingi

|H| , (40)
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where H is the set of NCP households in the sample. The spending ratio is constant across house-

holds within a time period, and we multiply by it to convert spending at NCP average prices to base

spending.25 We use this conversion for coupon and deal savings to maximize coverage. For bulk

savings, the base price is also a direct input in the dollar value of savings, so we normalize by base

spending directly as it does not reduce the sample size. The spending ratio is 1.48 in the 2013–2014

sample.

A.1 Deal Savings

The NCP contains two measures of savings: the dollar value of coupon savings and a self-reported

deal indicator. This information alone does not allow us to compute a measure of savings that is

comparable to our model definition. Deal savings in the model occur when items are on sale in a

store where the household shops at a constant frequency (although the trip interval is chosen opti-

mally, once chosen, the trip interval is effectively exogenous from the perspective of the stockpiling

problem). To match this concept as closely as possible, we consider a purchase to be a ‘deal’ if the

household purchases the item for less than the store-UPC annual average (excluding the price in the

week of the household’s trip – if there is a corresponding row in the NRP). In line with the model, our

deal measure does not incorporate savings from shopping at stores with everyday lower prices, or

from store switching in response to lower prices for a particular item.26 Because we use a leave-out

mean, the average price depends on the household (h) and trip (t), as well as the UPC (u) and store

(s):

Avg Priceh,t,s,u =
(∑w∈Wu,s,y Pu,w,s · 1NRPu,w,s)− Pu,t,s · 1NRPu,t,s

(∑w∈Wu,s,y ·1NRPu,w,s)− 1NRPu,t,s

. (41)

The dollar value of deal savings is:

Deal Savingsh = Coupon Savingsh + NonCoupon Deal Savingsh (42)

= Coupon Savingsh + ( ∑
t∈Th

∑
u

Avg Priceh,t,s,u · Qu,h,t − Spendingh), (43)

where Th is the set of trips taken by household h and s is the store associated with trip t, Qp,h,t is the

quantity of product p purchased by household h on trip t. Spendingh is spending by household h after

coupons have been applied. Using the variable names from the NCP documentation, our measure

of spending is defined as ”total_price_paid” less ”coupon_value”, where ”total_price_paid” is the

total price paid before coupon discounts, and ”coupon_value” is the value of coupon discounts. We

25As with the two spending measures, the spending ratio can be defined for any time period. In Sections 5.3 and 5.4, the
spending ratio is computed using 2013-2014 data. For the movers analysis, we instead compute a monthly spending ratio,
Spending Ratiom.

26We also adjust prices for product module seasonality. For example, if a household buys strawberries in December they
will be about 30% more expensive on average than strawberries purchased in June. While this could still be thought of as a
form of savings, our primary focus is the savings that can be obtained by stockpiling in response to a temporary sale at the
store where the household typically purchases that item. Seasonality is relevant for certain product modules (particularly
within fresh produce), but does not have a substantial effect on savings at the household level.
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compute percentage deal savings as:

% Deal Savingsh =
Deal Savingsh

NCP Avg Price Spendingh · Spending Ratio
, (44)

where we compute spending at the NCP leave-out average price using only the set of transactions

for which dollar deal savings are defined.

Our deal savings definition is closely related to the NCP self-reported deal indicator. Figure A.1a

is a binned scatter plot illustrating the relationship between % Deal Savingsh,u,t (i.e., transaction-level

deal savings) and the Nielsen deal flag (which is equal to one where a coupon was used or where the

household reported the item was a “deal”). As the coupon component of savings is directly reported

by Nielsen, we also show in Figure A.1b the relationship between % Non-Coupon Deal Savingsh,u,t

and self-reported component of the deal flag (which does not correspond to a coupon).

As our measure of deal savings increases, households are more likely to self-report the trans-

action as a deal. There is also a kink at zero, suggesting that our reference price for deal savings

likely corresponds closely to the household’s own perceived reference price for a substantial subset

of transactions (interestingly there is also a fairly high baseline rate of perceived deals, even in cases

where the household pays a price well above the store average).

FIGURE A.1
TRANSACTION-LEVEL DEAL SAVINGS AND NIELSEN DEAL INDICATOR
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Notes: Panel A.1a shows a binned scatter plot where the x-axis is transaction-level percentage deal savings (i.e.,
the savings corresponding to a single item purchased). Each point corresponds to a decile of transactions. The
y-axis shows the share of transactions in each bin for which the household either used a coupon or reported
that the item was a “deal”. Panel A.1b excludes coupons from both the deal savings measure and the Nielsen
deal indicator (leaving only self-reported deals not associated with a coupon). Panel A.1b arguably provides a
clearer test of our methodology for constructing deal savings. Because Nielsen directly reports the dollar value
of a coupon where one is used, we expect to see a strong relationship between the coupon component of deal
savings and the coupon component of the Nielsen deal indicator.

A.2 Bulk Savings

In our model, bulk savings is determined as part of the trip-timing problem where household chooses

the optimal fixed trip interval ∆. For a fixed level of consumption C, larger pack sizes correspond
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to longer shopping trips. We need to take a stand on whether to compute bulk savings in-store in

an analogous way to deal savings, or whether to use variation in pack sizes across stores. Although

we do not model store choice explicitly, it is reasonable to think of households as solving the trip-

timing problem and choosing a store simultaneously. That is, a household with high optimal trip size

(for example, because there is a high trip fixed cost or more people in the household) may select a

store where larger pack sizes are available. If we only used variation within a store, we would likely

understate bulk savings for a household who shops at a warehouse club, for instance, because most

products sold at the store are only available in large pack sizes. This motivates our choice to use

variation across stores when computing bulk savings. We compute the dollar value of bulk savings

as:

Bulk Savingsh = ∑
t∈Th

∑
p

Base Pricez,p,y(t) · Qp,h,t − ∑
t∈Th

∑
u

Avg Pricez,u,y(t) · Qu,h,t, (45)

where recall that Base Pricez,p,y is the average price of the second pack-size quintile of product p in

3-digit Zip Code z in year y. Percentage bulk savings is:

% Bulk Savingsh =
Bulk Savingsh

Base Spendingh
. (46)

B Constant Consumption Assumption
In order to compute household inventories, we make the assumption that each household has con-

stant consumption at the assumed level of aggregation, with product group being our preferred level.

In this section, we show how violations of this assumption influence the inventory calculation. Al-

though non-constant consumption does lead to inventory being overstated, assuming several plau-

sible non-constant consumption patterns we show that the effect is small relative to the overall level

of inventory we find.

There are two main ways in which we expect the constant consumption assumption to be vio-

lated. First, households may have non-constant aggregate grocery consumption, for example due to

holidays or parties. This violation would not be addressed by aggregating across products.

The second type of violation occurs when households do not have constant consumption at the

assumed level of aggregation (holding their aggregate consumption constant). For example, if con-

sumption is assumed to be constant at the UPC level, but households regularly switch brands, pack

sizes or substitute very similar products from week to week. Seasonal consumption of certain prod-

ucts (such as turkey or stuffing mix) also falls in this category. The question is then which level

of aggregation is appropriate, and, at the chosen level of aggregation, what is the likely degree of

inventory overstatement.

We provide some examples illustrating how violations of these assumptions affect the inventory

calculation. In all examples, we assume that true consumption is equal to spending and true inven-

tory is therefore zero. We then compute the ratio of measured inventory to annual spending under

the incorrect assumption that consumption is constant. Figure B.1a shows a household with a large

spike in consumption at four dates spread throughout the year. Consumption on these ‘celebration’
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FIGURE B.1
NON-CONSTANT AGGREGATE CONSUMPTION

Inventory ratio assuming constant consumption = 0.007
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(b) Example 2

Notes: Panel (a) plots consumption for a household who consumes five times more on the first day of March,
June, September and December than on other days of the year. Panel (b) plots consumption for a household
who consumes around 25 per cent more in June and July than in other months. The inventory ratio assuming
constant consumption is computed using the method described in Section 3.

days is five times consumption on a typical day. This pattern of non-constant consumption yields a

computed ratio of inventory to annual spending equal to 0.007. Figure B.1b shows consumption for

a household who consumes around 25% more in the months of June and July than it does at other

times. Annual spending is the same as in Figure B.1a. This consumption pattern yields a ratio of

inventory to annual spending equal to 0.019.

FIGURE B.2
PRODUCT GROUP SWITCHING
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(a) Example 1

Inventory ratio assuming constant consumption = 0.012
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Notes: Panel (a) shows the consumption pattern of a household who consumes only Product Group A on one
day and only Product Group B on the following day. Panel (b) shows the consumption patter of a household
who consumes only Product Group A one week and only Product Group B the following week. Aggregate
consumption is constant. The inventory ratio assuming constant consumption at the product-group level is
computed using the method described in Section 3.
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Next, we consider the case where aggregate consumption is constant, but households switch

between product groups. Consequently, there are large fluctuations in consumption at the product

group level. In Figure B.2a, households consume two product groups and alternate between them

each day. This pattern yields an inventory ratio of 0.004 if consumption is assumed to be constant. In

Figure B.2b, households alternate between product groups each week. This yields an inventory ratio

of 0.012.

These examples illustrate that the inventory calculation is generally robust to fairly extreme vi-

olations of constant consumption, such as occasional large parties, very seasonal consumption, and

extreme switching between product groups for variety on a day-to-day or week-to-week basis.

While it is challenging to provide direct empirical evidence on households’ actual consumption

of the products we consider, we use data from NHANES which provide information on food and

beverage items consumed by an individual on two non-consecutive days (labeled Day 1 and Day 2),

which are between 3 and 10 days apart. Figure B.3a shows the average share of Day 1 products of

a given level of aggregation which were also consumed on Day 2 by the number of days between

interviews.

We also separate respondents where one interview day was a weekday and the other day was

a weekend. Even without further aggregation the share of items also consumed on Day 2 is quite

high, at around 40%. The share declines slightly with the time between interviews, consistent with

some of the persistence being driven by households consuming items from the same shopping trip,

but remains high even with a gap of 9 days. Figure B.3c shows the effect of aggregating to Nielsen

product group. In this case around 60% of Day 1 product groups were also consumed on Day 2.

NHANES respondents also report the amount of each item consumed in grams. Figures B.3b

and B.3d illustrate the relationship between Day 1 quantity and Day 2 quantity for the same item

or product group. Regardless of the level of aggregation, Day 1 quantity is closely related to Day

2 quantity (the coefficient is also close to one when excluding items where a very large amount is

consumed in Day 1).

60



FIGURE B.3
VALIDATION: CONSUMPTION PERSISTENCE
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(c) Nielsen Product Group
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(d) Nielsen Product Group

Notes: For each individual we enumerate the NHANES products and Nielsen product groups consumed on
Day 1 and Day 2 of the survey. We then compute the share of Day 1 products or groups which were also con-
sumed on Day 2. Panels (a) and (c) show the average share by number of days between interviews. Because
consumption patterns may differ on weekdays and weekends, we also show results separately for individuals
where one survey day was a weekday and the other was on the weekend. Panels (b) and (d) show the rela-
tionship between the log amount of an NHANES product or Nielsen product group consumed on Day 1 and
the amount consumed on Day 2. βtrimmed only uses observation with Day 1 consumption in the second and
third quartile.
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C Depreciation and Shelf Life
We use a decision tree to divide the set of products with shelf life less than 6 months into 3 subgroups.

Our approach selects cutoffs so that the products within each subgroup are as similar as possible

with respect to their log shelf life.27 The most perishable group (l = 1) comprises fresh meat, fresh

baked goods, and pre-prepared salads. The remaining perishability groups contain a larger number

of Nielsen product groups. Milk and yoghurt are examples of items in group 2. Eggs, packaged deli

meats, and fruit juice are in group 3. Group 4 contains all Nielsen product groups with a shelf life

of more than 6 months, and includes items such as cereal, carbonated beverages, cleaning products,

toiletries, canned items, or dried grains.

When mapping shelf life to the model depreciation relationship, we need to account for differ-

ences in the depreciation profile across product types. Table C.1 provides a description of how quality

changes over time for a number of different food items and Figure C.1 summarizes findings from the

food science literature, showing product quality measures as a function of storage time. For items

such as coleslaw and bread, quality measures deteriorate rapidly from the date of purchase. In line

with this, we assume exponential depreciation for more perishable products. For Groups 1–3 we cali-

brate δl so that the consumption value on the expiration date is 50% of the value on the purchase date

and then set maximum shelf life t̄l equal to the time until expiration. Figure C.2 shows the quality

deterioration for Group 3 graphically.28

In contrast, Table C.1 shows that for more storable products, such as breakfast cereal, snack bars,

and shelf-stable ready meals, there is effectively no decline in quality for the first few months fol-

lowing purchase. In addition, the main limiting factors for these products are things like flavor and

texture changes, rather than the item becoming unsafe (Singh, 1994). We therefore believe that expo-

nential depreciation is inappropriate for these products. Instead, we assume that products in group

4 do not depreciate prior to the expiration date, at which point the product is disposed of; that is, we

set δ4 = 0.29

27We use log shelf life to group products based on the log difference rather than the absolute difference in shelf life. A
given absolute difference in shelf life is less important for products with a longer shelf life because the majority of deal
savings are exploited with a two or three month stockpile.

28For groups 1–3 we compute the time to expiration t̄l by taking the average time to expiration across Nielsen product
modules in perishability group l, weighted by expenditure share. We then compute the depreciation rate δl which leaves
50% of the product remaining on the expiration date, i.e., we assume the half life is equal to the time to expiration:

e−δl t̄l = 0.5 ⇒ δl =
ln 2
t̄l

Depreciation could be a deterministic change in quality, but may also have a stochastic interpretation. For example, the life
of an item after purchase may vary depending on storage time and conditions prior to purchase. Mapping the expiration
date to a depreciation rate is subjective. In practice different cutoffs and metrics may be used for different products.
Alternative approaches, such as assuming the expiration date corresponds to the mean expiry time, give qualitatively
similar results.

29Allowing for gradual depreciation to begin a few months after purchase but prior to expiration would arguably be
more realistic, but would have little effect on our results. As discussed in the paper, any variation in product depreciation
more than a few months out has little effect on the return to working capital because the price reduction from stockpiling
is almost fully exploited by this point.
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FIGURE C.1
FOOD QUALITY DEPRECIATION ACROSS FOOD TYPES

(a) Cooked Meat (b) Potato Salad

(c) Breakfast Cereal (d) Canned Tomato Sauce

Notes: This figure uses figures from the Singh (1994). Displayed here are sample figures covering the quality
and safety of several types of food: cooked meat, potato salad, boxed breakfast cereal, and canned tomato
sauce. Each food type is tested via different measures focusing on the perceived quality and texture as well as
quantifiable indicators of food safety. Perceived quality is measured in quantifiable visual methods and also
through the use of human testers. Safety measurements include the quantity of microflora and bacteria within
the food samples.
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FIGURE C.2
MODEL DEPRECIATION PROFILE FOR GOOD 3

Notes: This figure shows the model depreciation profile for perishability group 3 (l = 3). Exponential monthly
depreciation of 0.34 is calibrated so that the half-life matches the shelf life of 2.01 months. We assume the
product is discarded once the expiration date has passed.
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TABLE C.1
PRODUCT DEPRECIATION AND SHELF LIFE

Product Quality changes over time

Refrigerated prepared coleslaw. Several quality outcomes change rapidly from date of purchase (increase in acidity, decline in
dressing thickness and viscosity, increase in cabbage translucency). Flavor is broadly unchanged for
4-6 days and then starts to decline. Despite quality deterioration, is safe to eat well past expiry date
if stored at 5 degrees Celsius (Brocklehurst, 1994).

Nielsen group: Dressings, salads, pre-
pared foods-deli.
Group FSIS shelf life: 5 days.

Sourdough bread. Perceived quality starts to deteriorate immediately from date of purchase (less crisp, more difficult
to chew and swallow, crumb dries out). The share of consumers who would not eat the bread
increases from around 20% at 1.5 days to around 50% at 3 days and around 90% at 5 days (Gauchez,
Loiseau, Schlich and Martin, 2020).

Nielsen group: Bread and baked goods.
Group FSIS shelf life: 5 days.

Liquid milk. In lab conditions milk stored at home refrigeration temperatures has a very low rejection rate in the
first 5 days. Rejection increased to 100% by 17.5 days. However, as milk deteriorates much faster at
higher temperatures (Duyvesteyn, Shimoni and Labuza, 2001), in practice there could be
considerable variation in shelf life due to variation in storage both before and after purchase (Lewis
and Hale, 1994). For example, consumers may store milk in the refrigerator door, which tends to be
warmer (Terpstra, Steenbekkers, de Maertelaere and Nijhuis, 2005).

Nielsen group: Milk.
Group FSIS shelf life: 10 days.

Frozen grass-fed lamb. No change in quality for at least two years (Winger, 1984). In general, changes in quality for frozen
food are slow and food going off is not the primary concern. Shelf life should reflect the time period
over which consumers perceive the product to have the expected level of quality (Symons, 1994).

Nielsen group: Frozen unprepared
meat/poultry/seafood.
Group FSIS shelf life: 9 months.

Breakfast cereal. No sign of off flavors from 0-14 months. No change in appearance, texture or flavor over the first 4
months. Possibly some, but not substantial, deterioration in these outcomes between 4 and 14
months. Similar for cereals containing fruit, except the moisture of the fruit starts to decline
immediately (though flavor scores were stable over 14 months) (Howarth, 1994).

Nielsen group: Cereal.
Group FSIS shelf life: 9 months.

Fruit-filled snack bar. No decline in acceptability before 35 weeks when stored at 20 degrees celsius. Faster decline when
stored at 30 degrees Celsius (Corrigan, Hedderley and Harvey, 2012).Nielsen group: Breakfast food.

Group FSIS shelf life: 11.25 months.

Ready-meal (pasta in minced meat and
tomato sauce).

The product is sterilized so changes in texture and flavor determine expiry. Acidity from the tomato
contributes to faster deterioration than for similar products. No decline in acceptability scores for
the first 3 months when stored at 25 degrees Celsius (6 months if refrigerated). Acceptability then
declined very slowly up to the end of the trial at 18 months. The product still had high acceptability
at 18 months when stored at 25 degrees Celsius or less (Goddard, 1994).

Nielsen group: Prepared food ready-to-
serve.
Group FSIS shelf life: 20 months.
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D Bulk Discount Function
To calibrate the bulk discount function, we first need to prepare the Nielsen data by creating a new

product identifier. Because each pack size has a unique UPC, we need to create a broader product

definition to examine the relationship between unit price and pack size holding the product fixed

(e.g., a pack of two Snickers bars has a different UPC than a single Snickers bar). Ideally, we want to

group otherwise identical products that are available in different sized packages. Our approach is to

group products based on product module, brand, and common consumer name.

To standardize prices and pack size, we compute the average number of units in the second

quintile of the pack size distribution for each product-ZIP3 combination, as well as the average price

for the same set of products. We then divide pack size and unit prices for other pack sizes by these

second quintile averages.30 Motivated by the observation that the first quintile appears to contain

travel size packs which are substantially more expensive on a per unit basis, we assume the second

quintile of pack size corresponds to the ”standard” pack size in the model.31

In our model, buying larger pack sizes corresponds to a reduction in trip frequency, holding

consumption fixed. Therefore, quantities of all products are scaled up in the same way. In the data,

a large proportion of spending is accounted for by products that have only limited bulk savings

potential (for example, it may not be possible to purchase a pack size more than 1.5 times the standard

pack size). Estimating the price-quantity relationship using the raw data will therefore overstate the

bulk savings households could achieve with respect to their total consumption. Instead, we group

standardized pack sizes into bins and expand the dataset so it is balanced. We then fill in prices for

missing pack size bins using prices from neighboring bins.32

E Alternative Inventory Measures

E.1 Quantity-Based Inventory

Recall that our main measure of inventory is based on the following equation:

Īy,h,g = I(0)y,h,g +
nh,y

∑
j=1

(1 − t j)Xt j ,y,h,g −
1
2

ny,h

∑
j=1

Xt j ,y,h,g (47)

where {t j}
nh,y
j are the dates of the nh,y shopping trips of household h in year y, corresponding to the

time stamps in the NCP data. Xt j ,y,h,g is total expenditures on the jth trip and 1 − t j is the share of

the calendar year remaining when trip j occurs.

One concern with this approach is that Xt j ,y,h,g captures both quantities and prices. Fluctuations

in prices could lead to inventory being mismeasured. For example, suppose that 10oz of cereal is

purchased weekly and consumption is constant and equal to 10oz per week. However, the price of

30We exclude items measured in “count” (CT) as it is unclear whether the units are comparable across UPCs.
31In some cases, no UPCs are allocated to the second quintile due to insufficient variation in pack size (and given the

constraint that UPCs with the same pack size cannot be allocated to different quintiles). For these items we treat the first
quintile as the standard pack size.

32When a pack size bin does not contain any UPCs associated a particular product, we assign the price from the nearest
bin containing any UPCs for that product. If there are bins equally close either side we take the average of the two prices.
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cereal fluctuates from week to week. Price fluctuations will lead to our measured average inventory

deviating from true inventory (which in this case is 5oz).

In this example, computing inventory using quantities rather than spending would improve ac-

curacy. However, in practice this approach leads to a large reduction in product coverage. A large

proportion of spending in the NCP is on products measured in “CT" (count). This unit is unlikely to

be comparable across different UPCs and therefore these products must be excluded from the inven-

tory measure. In this section we show that the spending and quantity approaches yield very similar

results for the set of products measured in ounces. This suggests that any potential accuracy gains

of using quantities are in practice outweighed by the coverage implications, supporting our main

approach.33

Under the quantity-based approach, we replace Xt j ,y,h,g with Py,h,gQt j ,y,h,g, where Qt j ,y,h,g is the

quantity (in ounces) of product group g purchased by household h on trip j in year y, and:

Py,h,g =
∑

nh,y
j=1 Xt j ,y,h,g

∑
nh,y
j=1 Qt j ,y,h,g

. (48)

That is, Py,h,g is the average per unit price for product group g paid by household h in year y. Fig-

ure E.1 shows how the quantity based approach affects our inventory estimates. Switching to the

quantity approach increases average inventory by 0.57%, so there is very little effect in this respect.

The effects on some households are larger, though as Figure E.1a shows, it is rare for inventory to

change by more than 10% for any single household. Figure E.1b shows that the relationship between

the two measures is linear and the correlation is close to one.

While the quantity-based approach yields similar results holding the set of products fixed, the

effect of restricting the sample to goods measured in ounces is more substantial. Figure E.2 shows

the effect of computing inventory using only products measured in ounces and then assuming that

the ratio of inventory to spending is representative for these products. That is, Īh =
Īoz
h

Coverageh
, where

Coverageh is the share of household h’s spending accounted for by products measured in ounces.34

Figure E.2a shows that this approach increases average inventory by 4%. There is considerable

variation across households. While the two measures are still fairly closely related, it is clear that

computing inventory using only products measured in ounces is not ideal.

E.2 Constant Price Inventory

We also compute a measure of inventory using constant prices (i.e., constant both across house-

holds and within a year for a given UPC). Like normalizing by base spending (see Appendix A),

this addresses bias in our measurement of the relationship between inventory and savings. When

33In principle it is possible to include products measured in “CT” if we apply fixed prices at the UPC level rather than
the product group level (see for example Section E.2 below). However, because a particular UPC may be purchased very
infrequently this approach is less effective at addressing the concern that the inventory measure picks up fluctuations in
prices. Another option would be to value purchases at the average price observed in the NRP, but this would also imply a
large drop in coverage.

34The average of Coverageh is 0.65, but there is substantial variation across households.
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FIGURE E.1
COMPARISON OF QUANTITY AND VALUE APPROACHES (APPLIED TO GOODS MEASURED IN OZ)

      Mean = 0.57

   St.Dev. = 3.40
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Notes: This figure compares the value approach for measuring inventory described in Section 3.1 with the
quantity approach described in Appendix E. Both approaches are applied to a consistent set of products (those
measured in OZ).

FIGURE E.2
EFFECT OF RESTRICTING TO GOODS MEASURED IN OZ UNDER THE VALUE APPROACH

      Mean = 3.78
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Notes: This figure shows the effect of restricting the sample to goods measured in OZ when computing inven-
tory under the value approach. When restricting the sample, inventory is scaled up Coverageoz

h , the share of
household h’s spending accounted for by products measured in ounces.

inventory is computed using the actual purchase price it will appear lower for households who

stockpile in response to sales. When computing constant price inventory we replace Xt j ,y,h,g with

∑u∈Ut j ,y,h,g
NCP Leave-out Avg Priceu,h,y × Qt j ,y,h,u, where Ut j ,y,h,g is the set of UPCs purchased by

household h on trip j in year y in product group g, Qt j ,y,h,u is the quantity of UPC u purchased by

household h on trip j in year y, and NCP Leave-out Avg Priceu,h,y is the leave-out average UPC price

defined in equation (38) in Appendix A. We refer to this inventory measure as Average Base Inventoryh

and use it in Sections 5.3 and 5.4.
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F Model Intermediate Steps
Derivation of (12): As we restrict attention to times at which transactions occur, the solution will

be the steady state distribution of transaction prices. This is what we need in order to compute the

expected price paid. The steady state deal probability d solves:

(
1 − d d

) [(1 0

0 1

)
− Π

]
=
(

0 0
)

.

Substituting Π and simplifying:

(
1 − d d

)( x −x
−(1 − x)sd+1 (1 − x)sd+1

)
=
(

0 0
)

.

This gives (12):

d = 1 − (1 − x)sd+1

x + (1 − x)sd+1 =
x

x + (1 − x)sd+1 .

Derivation of (14): Substituting (12) and (13) into (10) gives:

p =
pd

x
x+(1−x)sd+1 ∑

sd
t=0(1 − x)t + p f

(1−x)sd+1

x+(1−x)sd+1

x
x+(1−x)sd+1 ∑

sd
t=0(1 − x)t + (1−x)sd+1

x+(1−x)sd+1

.

Simplifying:

p =
pdx ∑

sd
t=0(1 − x)t + p f (1 − x)sd+1

x ∑
sd
t=0(1 − x)t + (1 − x)sd+1

.

Because x ∑
sd
t=0(1 − x)t + (1 − x)sd+1 = 1, this gives (14).

G Model Robustness and a Three-Price Point Model Extension

G.1 Model Robustness

Here we discuss two adjustments to the model. First, we show the effect of the trip fixed cost k.

Second, we turn off bulk savings by setting b(Q)=1 and show that we obtain similar results.

Appendix Table H.3 shows model returns under a large trip fixed fixed cost of 10% of monthly

consumption. Such high trip costs could be relevant for households with high opportunity costs or in

periods where going to the store may incur non-financial costs such as risk of disease transmission.

High trip fixed costs increase the returns at low levels of working capital. With a longer interval

between trips, households need a substantial amount of working capital to cover the high in-store

cost associated with large trips. It shows that at low levels of working capital, households devote

their resources to covering the cost of large trips and forgo deal savings. The fact that the perishable

good share in our model is fixed at normal levels restricts the extent to which households can increase

the trip interval. Allowing for substitution away from these perishable products when trip fixed costs

rise would lead to larger reductions in trip frequency as the fixed cost increases (and larger returns
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to working capital).

The main respect in which our model does not match the data is that very little of the variation

in bulk savings is explained by the trip interval. Given this, we demonstrate that our main results

are robust to removing bulk savings from the model entirely. We turn off bulk savings by setting

b(Q) = 1, and then recalibrate the fixed cost k to match the data trip interval. One consequence of

removing bulk savings is that the fixed cost needed to match the trip interval increases to 5.8% of

monthly consumption on covered Nielsen products. Appendix Table H.4 shows similar marginal

returns are obtained when ignoring bulk savings.

G.2 Three-Price Point Model

We outline a three-price version of the stockpiling problem and show that it delivers very similar

results to the two-price model. For simplicity, we compare the two and three price versions of the

problem in a simplified setting with one product and no holding costs. We index price levels by

i, where p1 is the lowest (or discount) price, p2 is an intermediate price and p3 is the highest (or

full) price. The price is equal to pi with probability xi. We choose a price distribution such that the

unconditional expected price is identical across the two and three price cases. We specifically focus

on the case where p2 is the ‘regular’ or most common price. Both p1 and p3 occur fairly infrequently

and are substantially different from p2. That is, as well as the possibility of a discount, the household

also faces the risk of a substantially higher price on future trips.35

Three price model Two price model

i xi pi xi pi

1 0.1 0.8 0.1 0.8

2 0.81 0.9735 0.9 1.0222

3 0.09 1.4603 0 0

For each price distribution and each level of working capital, we find the stockpiling strategy that

minimizes the expected price paid. We then plot expected price paid against working capital for both

the two price and three price cases. This relationship underlies the return to working capital in the

model we outline in Section 4. In the full model, part of the return to working capital is generated

through facilitating a longer trip interval (∆); however, this is only relevant at very low levels of

working capital (i.e., < 10% of annual consumption). For simplicity, we therefore restrict attention to

the stockpiling component of the model in this appendix. We assume that ∆ is exogenous and equal

to 0.25 months.

First, we provide an intuitive comparison of the two and three price models. Next, we describe the

solution to the three price stockpiling problem. As we discuss in Section 4, the two-price stockpiling

problem is straightforward because the household never stocks up at full price. The problem then

35It would be more consistent with the data to set p3 fairly close to p2; however, the result in this case is virtually identical
to the two-price model. Instead, in this appendix we want to show that the results are similar even when p3 is substantially
higher than p2.
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reduces to how many packs to buy for storage when the deal price is observed (s(p1)). In a simplified

setting with zero depreciation, the household keeps increasing s(p1) as the working capital constraint

is relaxed.36

In the three price version of the model, there is a small probability that the price may go up

relative to the regular price p2. This means the household may also like to stockpile goods at the

regular price. However, stockpiling at the regular price will only be attractive if the existing stockpile

is sufficiently low. If the household has, say, two months of supply in stock, they are not concerned

about the possibility of a high price next trip. They are fairly confident that they will see a price at

least as low as the regular price before running out. This is why the three price version of the model

ultimately yields very similar results to the two price version.

As before, the stockpiling threshold s(p) is a function of the observed price. We denote the opti-

mal policy by s∗(p). In the two price model, s∗(p2) = 0 because p2 is the highest price. In the three

price model, s∗(p3) = 0, s∗(p2) ≥ 0 and s∗(p1) ≥ 0.37 When the household observes pi, it makes a

purchase only if there are less than s(pi) packs currently in stock. Conditional on making a purchase,

the household will have s(pi) + 1 packs in stock immediately following the trip, one of which will be

consumed prior to the next trip.

Intuitively, s∗(p2) should be lower than s∗(p1). We find that s∗(p2) = 1 for realistic levels of

working capital. That is, if the household is about to run out they will buy an extra pack at p2 just in

case p3 is realized next period, but when working capital is substantial and s(p1) is high, it is rare for

stockpiling to occur at p2.

Figure G.1 compares the average price obtained at each level of working capital for the two and

three price models. The relationship is very similar across the two models. The average price is

virtually identical regardless of the level of working capital, though the gap tends to be greater at

intermediate levels of working capital. This is because at low levels of working capital, s∗(p2) = 0,

because it is more beneficial to use working capital to increase s(p1). At high levels of working

capital, purchases are rarely made at p2 or p3 because s∗(p1) is so high. Overall, we expect the returns

generated by the three-price point model to be very similar to our main results. In the following

subsections, we explain how we construct Figure G.1 in detail.

G.2.1 Average Price Paid Conditional on the Stockpiling Strategy

We define the expected price per consumption unit as the expected dollar value of purchases divided

by the expected quantity of purchases in units. E[vo|p−1 = pi, s(p)] is the expected dollar value of

purchases conditional on a transaction occurring and given that the previous transaction occurred

at pi. E[qo|p−1 = pi, s(p)] is the expected quantity of units purchased conditional on a transaction
36If the stockpiling problem were integrated into a portfolio choice problem, s(p1) would be limited in practice because

alternative investments would eventually yield higher risk-adjusted returns.
37Because our stockpiling problem is from the perspective of a household already in the store, we assume there is no

fixed cost of making a purchase. (This does not imply continuous shopping. In the main model, there is a fixed cost
associated with making a trip to the store. Because we focus on the stockpiling component of the problem here, we assume
an exogenous trip interval ∆ = 0.25). No fixed cost of purchasing simplifies things relative to a standard (s,S) problem
as S(pi) = s(pi) + 1 ∀i. I.e., when observing price pi, the threshold the household stocks up to is the same as the level of
inventory that triggers a purchase at price pi, but with one additional pack purchased for consumption over the current
trip interval.
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FIGURE G.1
RELATIONSHIP BETWEEN AVERAGE PRICE AND WORKING CAPITAL

occurring and given that the previous transaction occurred at pi. dpi ,s = dpi(s(p)) is the steady state

share of transactions at price pi given strategy s(p). The average quantity-weighted price paid is:

p(s(p)) =
∑i dpi ,sE[vo|p−1 = pi, s(p)]
∑i dpi ,sE[qo|p−1 = pi, s(p)]

. (49)

Note that pack size Q(∆) appears in both the numerator and denominator and ultimately cancels

out, so we abstract from this for simplicity. Given p(s(p)), we construct Figure G.1 by plotting W( Ī)
for different levels of Ī:

W( Ī) =min
s(p)

p
(

s(p)
)

(50)

s.t. ∑
i

dpi ,s pi Ii(s(p))Q(∆) + pQ(∆) ≤ Ī. (51)

Note that this computation requires us to know the steady state transaction price distribution dpi ,s

and the amount of working capital required to facilitate stockpiling strategy s(p). Given that it is

intuitively clear that s∗(p3) = 0, we set s(p3) = 0 for this entire section. Section G.2.2 computes the

steady state distribution and Section G.2.3 computes E[vo|p−1 = pi, s(p)] and E[qo|p−1 = pi, s(p)].
Section G.2.4 computes the inventory distribution for a single product and Section G.2.5 computes

the level of working capital required to facilitate strategy s(p).

G.2.2 Steady State Transaction Price Distribution

To obtain the steady state distribution, we first derive the transition matrix for transaction prices.
Row/column i corresponds to pi. Rows correspond to the most recent transaction price (p−1) and
columns correspond to the next transaction price (p). For example, the probability that the next
transaction takes place at p2 given that the previous transaction took place at p1 is Π12. Note that
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each row must sum to 1. The probabilities in column 1 are by definition one minus the probabilities
in columns 2 and 3 (e.g., Π11 = 1 − Π12 − Π13). We also verify the probabilities using a simulation.
The transition matrix is:

Π =


1 − (1 − x1)

s(p1)−s(p2)

[
xs(p2)+1

3 + x2 ∑
s(p2)
i=0 xi

3

]
x2(1 − x1)

s(p1)−s(p2) ∑
s(p2)
i=0 xi

3 (1 − x1)
s(p1)−s(p2)xs(p2)+1

3

1 − x2 ∑
s(p2)
i=0 xi

3 − xs(p2)+1
3 x2 ∑

s(p2)
i=0 xi

3 xs(p2)+1
3

1 − x2 − x3 x2 x3

 .

The vector of steady state deal purchase shares d = (dp1 ,s, dp2 ,s, dp3 ,s)′ satisfies:

dΠ = d. (52)

We solve for d numerically. Below, we explain the intuition behind the transition probabilities in columns 2
and 3 (i.e., to p2 and p3).

Probability Π12. Because the most recent transaction occurred at p1, we know the stock immediately follow-
ing that transaction was s(p1) + 1 packs. For the next purchase to occur at p2, the household needs to have
run down this stock to level s(p2) or below and then observe p2 before running out (at levels above s(p2)

the household will only purchase at p1). It takes s(p1) − s(p2) trips where p1 is not observed before inven-
tory reaches s(p2). Once this point is reached, less than s(p2) + 1 sequential realizations of p3 followed by a
realization of p2 leads to a purchase at p2. This gives Π12 = x2(x2 + x3)

s(p1)−s(p2) ∑
s(p2)
i=0 xi

3.

Probability Π13. For a purchase at p1 to be followed by a purchase at p3, the household needs to run the
stockpile completely down to zero, and then observe p3 on the next trip. Note that for levels of inventory
above s(p2), the household will only purchase at p1, but once inventory falls to s(p2), observing p2 will also
induce a purchase. Therefore, to transition from a transaction at p1 to a transaction at p3 requires s(p1)− s(p2)

trips in a row where p1 is not observed, followed by s(p2) + 1 trips where p3 is observed. As we assume prices
are iid, the probability of this is (x2 + x3)

s(p1)−s(p2)xs(p2)+1
3 .

Probability Π22. The intuition is similar to Π12, except that because the last transaction occurred at p2, only
s(p2) + 1 packs were purchased, with one being consumed over the following trip interval. Therefore, for the
next transaction to occur at p2, there must be up to s(p2) sequential trips where p3 is observed, followed by a
trip where p2 is observed. The probability of this is x2 ∑

s(p2)
i=0 xi

3

Probability Π23. For the next transaction to occur at p3, p3 needs to be observed s(p2) + 1 trips in a row. The
probability of this is xs(p2)+1

3 .

Probabilities Π32 and Π33. When a transaction occurs at p3, the household only buys enough to last until the
next trip (i.e., s(p3) = 0). Therefore, in row 3, the transition probabilities reflect the fact that a transaction must
occur on the next trip regardless of the price.

G.2.3 Purchase Quantities

Next, we need to obtain the expected order values and quantities conditional on the most recent transaction
price and the stockpiling strategy. We also verify these expressions using a simulation.
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Case 1: p−1 = p1.

E[vo|p−1 = p1] = (1 − x1)
s(p1)−s(p2)xs(p2)+1

3 p3 (53)

+
s(p2)

∑
t=0

(t + 1)
[
(1 − x1)

s(p1)−s(p2)x2xt
3 p2

]

+
s(p1)−s(p2)

∑
t=0

(t + 1)(1 − x1)
tx1 p1

+
s(p1)

∑
t=s(p1)−s(p2)+1

(t + 1)(1 − x1)
s(p1)−s(p2)x1xt−(s(p1)−s(p2))

3 p1.

E[qo|p−1 = p1] = (1 − x1)
s(p1)−s(p2)xs(p2)+1

3 (54)

+
s(p2)

∑
t=0

(t + 1)
[
(1 − x1)

s(p1)−s(p2)x2xt
3

]

+
s(p1)−s(p2)

∑
t=0

(t + 1)(1 − x1)
tx1

+
s(p1)

∑
t=s(p1)−s(p2)+1

(t + 1)(1 − x1)
s(p1)−s(p2)x1xt−(s(p1)−s(p2))

3 .

The first row of (53) is Π13 times p3. That is, given that p1, the probability the next transaction occurs at p3 is
Π13 and the value of the transaction in that case is p3 as only one unit is purchased.

Row 2 of (53) corresponds to the case where the next purchase is at p2. The intuition is similar to row 1, but
now we need to account for the fact that the quantity purchased is dependent on how much time has passed
since the previous transaction. t = 0 corresponds to the case where x3 is observed only once after inventory
has fallen to s(p2). In this case, only one unit is purchased. When t = s(p2), inventory has been run down to
zero before p2 is observed, and in this case s(p2) + 1 units are purchased.

Row 3 of (53) corresponds to the case where the next purchase is at p1 and p1 is next observed when
inventory is at least s(p2). Row 4 corresponds to the case where the next purchase is at p1 and p1 is next
observed when inventory is below s(p2). It is necessary to separate these two cases because once inventory
hits s(p2), the chance of another trip occurring without a transaction decreases from 1 − x1 to x3.

Case 2: p−1 = p2.

E[vo|p−1 = p2] = xs(p2)+1
3 p3 (55)

+
s(p2)

∑
t=0

(t + 1)xt
3x2 p2

+
s(p1)

∑
t=s(p1)−s(p2)

(t + 1)xt−(s(p1)−s(p2))
3 x1 p1.
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E[qo|p−1 = p2] = xs(p2)+1
3 (56)

+
s(p2)

∑
t=0

(t + 1)xt
3x2

+
s(p1)

∑
t=s(p1)−s(p2)

(t + 1)xt−(s(p1)−s(p2))
3 x1.

The intuition is similar to above. Row 1 of is Π23 multiplied by p3, as only one unit is purchased in this case.
When the next transaction occurs at p2 or p3, the number of packs purchased increases with the time since the
previous transaction.

Case 3: p−1 = p3. If the current transaction is at p3 we know there is no inventory remaining. Therefore, the
next purchase quantity is s(p1) + 1 packs at p1 with probability x1, s(p2) + 1 packs at p2 with probability x2,
or 1 pack at p3 with probability x3:

E[vo|p−1 = p3] = ∑
i

xi pi[s(pi) + 1], (57)

E[qo|p−1 = p3] = ∑
i

xi[s(pi) + 1]. (58)

Now we have everything we need to compute the conditional expected price using (49).

G.2.4 Inventory Distribution for a Single Product

Next, we need to work out the inventory associated with each strategy so we can impose constraint 51. First,
we work out the distribution of inventory levels for a single product given the price at which the previous
transaction occurred. In this subsection, I denotes inventory of an individual product immediately prior to a
trip.

For levels of inventory between s(p1) and s(p2), P(I = n) = (1 − x1)P(I = n + 1). This is because for
these levels of inventory, a transaction only happens if p1 is observed. For levels of inventory between 0 and
s(p1), P(I = n) = x3P(I = n + 1), because in this range transactions occur unless p3 is observed. Combined
with the fact that probabilities must sum to one, this gives us the inventory distribution for a single product.

Case 1: p−1 = p1. For 0 ≤ n < s(p2):

P(I = n|p−1 = p1) =
(1 − x1)

s(p1)−s(p2)xs(p2)−n
3

∑
s(p2)−1
i=0 (1 − x1)s(p1)−s(p2)xs(p2)−i

3 + ∑
s(p1)
i=s(p2)

(1 − x1)s(p1)−i
.

For s(p2) ≤ n ≤ s(p1):

P(I = n|p−1 = p1) =
(1 − x1)

s(p1)−n

∑
s(p2)−1
i=0 (1 − x1)s(p1)−s(p2)xs(p2)−i

3 + ∑
s(p1)
i=s(p2)

(1 − x1)s(p1)−i
.

Case 2: p−1 = p2. For 0 ≥ n ≤ s(p2):

P(I = n|p−1 = p2) =
xs(p2)−n

3

∑
s(p2)
i=0 xi

3

.

P(I = n|p−1 = p2) = 0 for n > s(p2).
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Case 3: p−1 = p3. P(I = 0|p−1 = p3) = 1.

G.2.5 Aggregate Working Capital

As we assume a continuum of iid products, the total amount of inventory will be the expected inventory for
sure. Let Ii denote the aggregate number of packs held of products where the previous transaction occurred at
pi. Given that each pack contains Q(∆) units, the total value of the stockpile immediately prior to each trip is
therefore ∑

3
i=1 dpi ,s pi IiQ(∆). From Section G.2.4 above we have:

Ii =
s(p1)

∑
n=0

P(I = n|p−1 = pi)n ∀ i ∈ {1, 2, 3}. (59)

To get the amount of working capital required, we add the value of products purchased on the upcoming trip,
which is pQ(∆).
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H Additional Appendix Figures and Tables

FIGURE H.1
RETAILER DEAL CONCENTRATION

(a) Ranked Weeks

(b) Calendar Weeks

Notes: We compute the share of deal sales for each retailer in each week using the deal flag in the NCP (which
includes both coupon and non-coupon deals), and then divide by the retailer’s average deal share over the
year. Panel (a) plots the average across retailers by ranked weeks (so week 1 is the week with the lowest deal
share). Panel (b) plots the average by calendar week. We restrict the sample to large retailers with more than
1,000 separate items sold each week to NCP households.
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FIGURE H.2
INVENTORY PORTFOLIO SHARE BY INCOME (INCL. RETIREMENT ACCOUNTS)
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Notes: This figure is constructed by combining data from the NCP over 2013 and 2014 and the SCF over
2010, 2013 and 2016. We impute inventory for SCF households based on characteristics observable in
both datasets. We use the maximum age of household members, household income, house price, indica-
tor equal to one if the respondent identifies as non-hispanic white, indicator equal to one if the household
contains young children, household size, marital status, indicator equal to one if all adults work full time.
We train a model to predict inventory using the Matlab command fitrensemble with hyperparameter op-
timization. The resulting method is LSBoost with 95 trees, a learn rate of 0.12 and a minimum leaf size
of 2. Using the resulting inventory predictions we compute the inventory portfolio share for each house-
hold Inventoryi/(Financial Assets Incl. Retirement Accountsi + Inventoryi) and report the average and me-
dian share by income quintile. Financial assets includes checking accounts, savings accounts, CDs, money
market accounts, bonds and stocks (both directly and indirectly held) and retirement accounts. We do not sub-
tract debt. Income is reported to the nearest thousand dollars. Figure IIa shows the median value of inventory
in each income quintile computed using the NCP. The lower cutoffs for each quintile are $0, $22,000, $38,000,
$61,000 and $101,000.
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FIGURE H.3
VALIDATION: LOG QUANTITY PURCHASED AROUND MOVE DATES

Cumulative quantity decline =    -6.96 % of annual quantity
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(a) All households moving to new 3-digit ZIP Code

Cumulative quantity decline =   -12.15 % of annual quantity
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(b) Households in top quartile of move distance
Notes: This figure shows the change in log quantity purchased around the time a household moves. For
households who move to a new 3-digit ZIP Code in a given year we impute the month of the move by searching
for a break in the share of trips made in the household’s new 3-digit ZIP Code (rather than their old 3-digit ZIP
Code). The figures plot estimates of bs from the following specification and a 95 per cent confidence interval:

ln qi,t =
9

∑
s=−9

bs Movedi,t−s + Month FE + Household FE + ei,t ,

where ln qi,t is the log quantity purchased in ounces by household i in month t. Movedi,t is an indicator equal
to 1 if household i moved in month t. The sample includes non-movers and households who moved to a new
3-digit ZIP Code exactly once between 2006 and 2014. The sample period is January 2006 to December 2014.
We also drop households who leave the panel and re-enter in a later year. Panel (b) includes only households in
the top quartile of move distance—that is households moving more than 974km. Standard errors are clustered
by household. Nielsen sampling weights are used.

FIGURE H.4
SPENDING AROUND MOVE DATES (IMPUTATION ESTIMATOR)

Cumulative spending decline =    -6.85 % of annual spending
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(a) All households moving to new 3-digit ZIP Code

Cumulative spending decline =   -12.00 % of annual spending
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(b) Households in top quartile of move distance

Notes: This figure shows the change in log spending around the time a household moves. For households who
move to a new 3-digit ZIP Code in a given year we impute the month of the move by searching for a break in
the share of trips made in the household’s new 3-digit ZIP Code (rather than their old 3-digit ZIP Code). The
figure plots responses analogous to Figure III estimated using the imputation approach described by Borusyak
et al. (2021). We implement this using their Stata command did_imputation. The sample includes non-movers
and households who moved to a new 3-digit ZIP Code exactly once between 2006 and 2014. The sample period
is January 2006 to December 2014. We also drop households who leave the panel and re-enter in a later year.
Standard errors are clustered by household. The regression is weighted using Nielsen sampling weights.
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FIGURE H.5
RELATIVE IMPORTANCE FOR BOTTOM QUARTILE INVENTORY

Notes: This figure shows the relative importance of each predictor for whether a household’s inventory ratio
is in the bottom quartile. It measures the share of the reduction in mean-squared error due to each predictor.
Specifically, at each node where a predictor is chosen, the predictor’s contribution is the difference between
the MSE at the parent node and the average MSE of the child nodes (weighted by the number of observations
going through each child node). The contribution is then summed over all nodes for which the predictor is
chosen, weighted by the number of observations at each node as a share of the total sample size. We predict
low inventory using bootstrap aggregation (without random variable selection), 114 trees and a minimum leaf
size of 36 observations.
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FIGURE H.6
PARTIAL DEPENDENCE PROFILES

Notes: This figure shows partial dependence profiles for the six most important predictors of a bottom quartile
inventory-to-spending ratio. To construct the partial dependence profile, model predictions are computed for
each observation at counterfactual values of the variable of interest (between the 2nd and 98th percentile),
holding all other predictors fixed. The resulting predictions are then averaged over all observations in the
dataset (applying Nielsen sample weights).
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FIGURE H.7
IMPLIED EFFECT OF WORKING CAPITAL ON AVG. RETURNS (INCL. RETIREMENT ACCOUNTS)
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Notes: See the notes to Figure IX.

FIGURE H.8
UNCONDITIONAL RELATIONSHIP BETWEEN MODEL SAVINGS AND WORKING CAPITAL

Slope Estimate = 0.0349
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(a) Bulk savings

Slope Estimate = 0.0873
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(b) Deal savings

Slope Estimate = 0.1222
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(c) Total savings

Notes: This figure shows the model relationship between the inventory ratio and bulk, deal, and total savings
without conditioning on the trip interval.
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FIGURE H.9
GROSS RETURN UNDER ALTERNATIVE AGGREGATION ASSUMPTIONS

Slope Estimate = 0.0235
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(a) Nielsen Department

Slope Estimate = 0.1577
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(b) Nielsen Product Module

Notes: This figure uses the NCP over 2013 and 2014 to illustrate the relationship between in-store savings
and average inventory as a percentage of spending for two alternative levels of aggregation: 10 “Nielsen De-
partments” and 1,305 “Nielsen Product Modules”. Each point on the charts represent deciles of households,
controlling for the number of shopping trips a household makes each year. The savings measure reflects in-
store savings only and does not incorporate depreciation costs or trip fixed costs. The red dotted line shows
predicted values from (32): Dollar in-store savingsh

Base Spendingh
= a + b1

Average Base Inventoryh
Base Spendingh

+ b2Trip Intervalh + eh. The re-
gression is weighted using Nielsen sampling weights.

FIGURE H.10
HOUSEHOLD-LEVEL DEAL SAVINGS AND THE NIELSEN DEAL TRANSACTION SHARE
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Notes: This figure plots the relationship between our measure of percentage deal savings at the household
level, % Deal Savingsh, and the share of transactions for which household h either used a coupon or reported
that the item was on sale (which is directly reported by Nielsen). Both deal savings and the deal share are
computed on the same common subset of transactions for which deal savings can be computed. Each point
corresponds to a decile of households.
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FIGURE H.11
DEAL TRANSACTIONS AROUND MOVE DATES (IMPUTATION ESTIMATOR)
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Notes: This figure shows the percentage point change in the share of sale purchases around the time a house-
hold moves. For households who move to a new 3-digit ZIP Code in a given year we identify the month of the
move by searching for a break in the share of trips made in the household’s new 3-digit ZIP Code (rather than
their old 3-digit ZIP Code). The figure plots responses analogous to Figure XI estimated using the imputation
approach described by Borusyak et al. (2021). We implement this using their Stata command did_imputation.
The sample includes non-movers and households who moved to a new 3-digit ZIP Code exactly once between
2006 and 2014. The sample period is January 2006 to December 2014. We also drop households who leave
the panel and re-enter in a later year. Standard errors are clustered by household. The regression is weighted
using Nielsen sampling weights.

FIGURE H.12
FINANCIAL RETURNS TO HOUSEHOLD INVENTORY MANAGEMENT
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Notes: This figure plots the marginal and average net returns to household working capital investments shown
in Table IV.
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TABLE H.1
HOUSEHOLD INVENTORY: SUMMARY STATISTICS BY LEVELS OF PRODUCT AGGREGATION

Avg SD p1 p5 p10 p25 p50 p75 p90 p95 p99

Average Inventory ($)

Nielsen Department 431 223 98 161 200 279 390 536 705 832 1146
Nielsen Product Group 725 348 162 276 347 481 669 904 1172 1357 1785
Nielsen Product Module 985 496 189 346 442 632 903 1247 1631 1902 2489
UPC 1461 804 241 462 604 885 1311 1870 2518 2965 3946

Inventory-to-Spending Ratio (%)

Nielsen Department 12.1 3.9 5.8 7.1 7.9 9.4 11.5 14.1 16.9 18.8 24.5
Nielsen Product Group 20.2 5.1 11.0 13.1 14.3 16.7 19.7 23.1 26.8 29.2 35.6
Nielsen Product Module 26.8 5.4 15.4 18.5 20.2 23.1 26.5 30.2 33.8 36.1 41.1
UPC 38.3 5.3 23.5 28.7 31.3 35.1 38.9 42.2 44.7 46.0 48.1

Notes: The sample contains 68,335 households that purchase more than two million unique products (UPCs or scanner codes),
which Nielsen aggregates to 1,305 Product Modules, 118 Product Groups, and 10 Departments. “Avg” denotes average
inventory, “SD” the standard deviation, and “p1” to “p99” denote percentiles of the distribution. All statistics use Nielsen
household sampling weights.

TABLE H.2
POPULATION DENSITY AND RESTAURANT SPENDING

(1) (2) (3) (4)

ln(Population Density) 0.001*** 0.003*** -0.004*** -0.002***
(0.000) (0.000) (0.000) (0.000)

ln(Annual Income) -0.024*** -0.026*** -0.023*** -0.024***
(0.000) (0.000) (0.000) (0.000)

Number of Observations 212,360 211,889 212,360 211,889
Adjusted R-Squared 0.08 0.11 0.07 0.11
Year FE X X
State FE X X

Notes: The dependent variable in columns (1) and (2) is the share of household consumer spending at restaurants. The
dependent variable in columns (3) and (4) is the share of household consumer spending at grocery stores. Density is
calculated at a ZIP-Code level in terms of thousands of people per square mile. * p < .1, ** p < .05, *** p < .01.
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TABLE H.3
FINANCIAL RETURNS WITH HIGH SHOPPING TRIP FIXED COST (k = 0.1)

Work. Cap. Inventory Cash % Savings: Interval ∆∗ s∗4,d Return (%):
( Ī, % cons.) (% spend.) (% Ī) Deal Bulk (months) (trips) Marg. Avg.

2.5 1.5 43.9 3.1 17.1 0.28 1 387.9
5.0 3.8 28.7 7.2 21.2 0.37 3 87.1 387.9
7.5 6.6 19.6 9.2 21.5 0.39 5 43.6 237.5
10.0 9.5 14.2 10.3 21.3 0.38 7 20.2 172.9
12.5 12.5 10.9 10.9 21.1 0.37 9 12.4 134.7
15.0 14.7 9.6 11.0 21.6 0.39 10 9.2 110.3
17.5 18.0 8.1 11.3 21.4 0.38 12 3.3 93.4
20.0 19.9 7.2 11.3 21.6 0.39 13 3.8 80.5
22.5 23.5 6.4 11.4 21.6 0.39 15 1.2 70.9
25.0 25.2 5.8 11.4 21.6 0.39 16 1.5 63.2
27.5 28.8 5.2 11.5 21.6 0.39 18 0.7 57.0
30.0 32.1 4.7 11.5 21.5 0.38 20 0.4 51.9
32.5 34.1 4.4 11.5 21.6 0.39 21 0.3 47.6
35.0 37.6 4.1 11.5 21.6 0.39 23 0.1 44.0

Notes: See the notes to Table IV. This table computes returns for households who have a very large trip fixed cost of 10% of
monthly consumption.

TABLE H.4
FINANCIAL RETURNS WITH NO BULK SAVINGS (CALIBRATED k = 0.0578)

Work. Cap. Inventory Cash % Savings: Interval ∆∗ s∗4,d Return (%):
( Ī, % cons.) (% spend.) (% Ī) Deal Bulk (months) (trips) Marg. Avg.

2.5 1.5 36.4 7.2 0.0 0.21 2 260.0
5.0 3.9 20.9 11.8 0.0 0.25 5 76.5 260.0
7.5 6.2 15.5 13.2 0.0 0.27 7 31.1 168.3
10.0 8.5 12.1 13.9 0.0 0.28 9 17.2 122.6
12.5 11.3 9.0 14.4 0.0 0.27 12 8.8 96.2
15.0 13.7 7.7 14.6 0.0 0.27 14 4.4 78.7
17.5 16.1 6.7 14.7 0.0 0.28 16 2.2 66.3
20.0 18.6 5.9 14.7 0.0 0.28 18 1.0 57.2
22.5 20.9 5.3 14.7 0.0 0.28 20 0.5 50.1
25.0 23.2 4.8 14.7 0.0 0.28 22 0.3 44.6
27.5 25.5 4.4 14.8 0.0 0.28 24 0.1 40.2
30.0 27.8 4.0 14.8 0.0 0.28 26 0.1 36.6
32.5 30.1 3.7 14.8 0.0 0.28 28 0.0 33.5
35.0 32.3 3.4 14.8 0.0 0.28 30 0.0 30.9

Notes: See the notes to Table IV.
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