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ABSTRACT

This paper studies how insurance coverage policies impact pharmaceutical innovation. In the 
United States, most patients obtain prescription drugs through insurance plans administered by 
Pharmacy Benefit Managers (PBMs). Beginning in 2012, PBMs began excluding coverage for 
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lowering their profitability. This new risk of coverage exclusion reshaped upstream 
pharmaceutical R&D: for every 1 standard deviation increase in drug class exclusion risk, we 
estimate an 11% decline in subsequent development activity. This change translated into a 
relative decline in the development of drug candidates that appear more incremental: that is, those 
in drug classes with more pre-existing therapies and with less scientifically novel research.
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Technological innovation is a major driver of rising health spending, raising questions as

to whether current payment systems deliver the right balance between incentives to innovate

and incentives to contain costs. In particular, while insurance expansions have been shown to

spur R&D investments, critics argue that more generous coverage policies generate perverse

incentives for firms to develop expensive products with little incremental clinical value.1

As prescription drug costs rise, politicians and policymakers have increasingly called for

the federal government to contain spending by limiting insurance coverage for high-cost,

low-value treatments. Despite the importance of this policy debate and the widespread

adoption of value-based pricing and coverage decisions outside the US, there is limited

empirical evidence on how insurance design shapes incentives for medical innovation.

In this paper, we study the impact of a major change in coverage policies of private

sector prescription drug plans on upstream pharmaceutical R&D. Prior to 2012, private

prescription drug insurance in the US generally provided coverage for all FDA-approved

drugs. To manage costs, plans used a combination of cost-sharing tiers and ordeal

mechanisms (e.g., prior authorization requirements) to direct patients to less expensive

drugs. These approaches, however, were insufficient to curb prescription drug spending,

which grew rapidly during the 1990s and 2000s (Kamal et al. 2018). Beginning in 2012,

Pharmacy Benefit Managers (PBMs), the intermediary firms that manage most private

prescription drug insurance, dramatically shifted their policies and began excluding

coverage for some drugs entirely. These exclusions applied to many newly approved drugs

without generic equivalents. This practice, known as maintaining a “closed formulary,” has

since become standard, with 300 branded drugs excluded by at least one of the three

largest PBMs as of 2017.

Exclusions typically target expensive treatments in therapeutic classes that already

contain cheaper options with a similar mechanism of action. Exclusions can substantially

reduce the profitability of these drugs. For example, when GlaxoSmithKline’s blockbuster

asthma inhaler, Advair, was excluded by Express Scripts in January 2014, its US sales fell

by over 30% within a few months (Pollack 2014). As a consequence, the risk of exclusion

decreases the expected profitability of new drugs. The high blood pressure medication

1For example, Stanford (2020) and Zycher (2006) have argued that the innovation benefits of generous
drug payment policies are large, while Bagley et al. (2015), Frank and Zeckhauser (2018), and Dranove et al.
(2020) highlight the risk that generous drug payments may yield excessive incremental innovation.
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Edarbi, for instance, received FDA approval in 2011 but was almost immediately excluded

by CVS Caremark in 2012, suppressing demand before it could become established. By

September 2013, Edarbi’s manufacturer, the Japanese firm Takeda, decided to sell off its

US distribution rights, despite keeping these rights in Japan and in other countries. Since

then, Takeda has not developed any further drugs for hypertension, choosing instead to

focus on oncology and rare diseases, areas which have seen far fewer exclusions.

Studying how the downstream decisions of drug buyers shape upstream pharmaceutical

innovation can inform our understanding of how to design payment policies that balance

incentives for innovation with cost containment. These lessons, gleaned from the choices of

private sector firms, can provide insight into the possible effects of policy proposals governing

how public insurers interact with drugmakers.2 Indeed, the largest PBM, CVS Caremark,

manages benefits for 75 million Americans—more than the number of enrollees in either

Medicare or Medicaid.

We begin our analysis by showing that exclusions were effective in reducing insurance

claims for targeted drugs, below the levels achieved with PBMs’ prior approaches. For each

major PBM that excludes coverage, a drug’s sales, as proxied by Medicare Part D claims,

falls by 24% on average, relative to comparable drugs that did not face exclusions.

Next, we show that a drug’s risk of facing exclusions varies systematically and

predictably according to the market characteristics of its therapeutic class. Specifically,

exclusions are more common in drug classes with a greater number of pre-existing drugs, as

well as in classes with a large number of patients, as measured by prescription volume.

These findings are consistent with the case of Edarbi, a later entrant in a crowded drug

class (angiotensin II receptor blockers—ARBs) intended to treat hypertension, a very

common condition. In excluding Edarbi, CVS was able to reduce costs over a large patient

population by pointing would-be users to cheaper substitutes in the same class. We

develop an index measure of a drug class’s ex-ante risk of facing exclusions, as predicted by

its pre-2012 market characteristics.

Our main results show that, following the introduction of closed formularies,

pharmaceutical investments fell markedly in drug classes at ex-ante high risk of exclusions,

2Congressional Budget Office (2007) predicts that the government will not be able to negotiate lower
prices with drug manufacturers unless it adopts a PBM-pioneered model of providing preferential access for
specific drugs on publicly-run formularies.
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relative to trends in low risk classes. For a one standard deviation increase in a drug class’s

ex-ante exclusion risk, we document an 11% decline in the number of drugs entering

pre-clinical and clinical development. These declines affect drug candidates in all phases of

development, but are largest among earlier stage drugs. We find no evidence that drug

classes at higher risk of exclusion were on different development trends in the five years

prior to the introduction of exclusions.

Finally, we explore the nature of this foregone innovation. After exclusions are introduced,

the composition of drugs under development shifts: R&D declined the most in drug markets

with a high number of existing therapies and high prescription volume. Moreover, exclusions

depress R&D investments in the least scientifically innovative drug classes: those where drug

patents are based on older and less “disruptive” underlying science (Funk and Owen-Smith

2017; Wu et al. 2019).

Taken together, our results suggest that closed formulary policies altered the economic

considerations that drugmakers face when making R&D investment decisions. Prior to this

policy change, pharmaceutical firms could expect that their drugs would be covered by

insurers if approved by the FDA. In this world, firms had strong incentives to develop

incremental drugs aimed at large disease markets because such drugs were the most likely

to receive FDA approval and generate a large base of revenues if approved. With the

introduction of closed formularies, these incremental drugs became precisely the ones at

greatest risk of being excluded. Our results show that pharmaceutical firms responded to

this change in incentives by reducing R&D spending in drug classes serving common

diseases with many incumbent therapies. This response shifted investments away from

research areas with more incremental activity and lower scientific novelty.

Our econometric approach is based on a difference-in-differences specification that

identifies a relative decline in R&D across drug classes at high vs. low exclusion risk. A

natural, welfare-relevant question is whether this constitutes a total decline in innovative

activity or a reallocation of R&D investment. Theoretically, whether firms reallocate or

simply reduce their R&D spending depends on their baseline ability to invest in promising

drugs. In a frictionless model, firms invest in all drugs with positive net present value

(NPV); the introduction of exclusions would lower NPV for drugs in high exclusion risk

areas and therefore lead to an aggregate decline in innovation. However, a growing finance
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literature has shown that even large public firms often behave as if they face financial

frictions and fail to invest in all NPV positive projects (Kerr and Nanda 2015; Krieger

et al. 2019). In this case, a decline in NPV for some drugs would free up funds to invest in

other areas, leading to a partial reallocation of R&D investment from high to low exclusion

risk drug classes. While we cannot answer this question empirically since it would rely

purely on time series identification, our results do show that insurance design choices are

powerful tools that can shape the direction of pharmaceutical R&D.

We contribute to a broad literature examining how policy design shapes incentives for

innovators across a range of settings. For example, prior work has shown that the design of

tax credits and tax rates influences corporate innovation (Akcigit et al. 2018; Bloom et al.

2002; Dechezlepretre et al. 2016). Market incentives can also shape the direction of

technology growth within an industry, as documented in environmental economics (Aghion

et al. 2016; Acemoglu et al. 2012). Within this literature, our work is most closely related

papers focusing on health innovation. A large body of evidence shows that public insurance

expansions create incentives for firms to develop new drugs (Acemoglu et al. 2006;

Blume-Kohout and Sood 2013; Clemens 2013; Dranove et al. 2020; Finkelstein 2004;

Krieger et al. 2017). Other papers such as Kyle and McGahan (2012) and Budish et al.

(2015) highlight the role of patent policy in encouraging innovation. In addition, Yin

(2008) studies the role of tax credits and Clemens and Rogers (2020) focuses on public

procurement incentives.

Our paper contributes to this literature in two ways. First, while existing work focuses

on the role of public sector policies, ours is the first to focus on the policies of private firms.

By showing that formulary exclusion practices have a substantial impact on the rate and

direction of pharmaceutical innovation, we provide evidence that decisions made by private

sector actors can shape market-level incentives for innovation as much as public sector policy.

Second, our paper is also the first to study the impact of restricted prescription drug coverage

on pharmaceutical innovation. Theoretical work in this area (Garber et al. 2006; Lakdawalla

and Sood 2009) highlights the tradeoff between insurance design and innovation. Although

policies to restrict prescription drug coverage and aggressively negotiate prices are widely

used in Europe and Asia, there has been very limited empirical evidence regarding how these
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policies affect dynamic incentives for innovation. We make progress on this important public

policy issue by leveraging evidence from private sector policy makers.

The rest of the paper proceeds as follows. Section 1 introduces the institutional

context. Section 2 describes the negotiation between PBMs and drugmakers in more detail,

summarizing a theoretical model of how R&D investments may respond to the introduction

of formulary exclusions. Section 3 provides an overview of our key data sources covering

exclusions, drug development, and market characteristics. Section 4 describes which drug

classes contain formulary exclusions and reports evidence that exclusions suppress drug

demand. Section 5 presents our main findings on how formulary exclusions have reshaped

investments in drug development. Section 6 discusses the welfare implications, and

Section 7 concludes.

1 Institutional Background

1.1 The Role of Pharmacy Benefit Managers (PBMs)

In the US, three key parties are involved in shaping payments and access to prescription

drugs: manufacturers who develop and produce new drugs, institutional payers such as

insurance companies and large employers, and pharmacy benefit managers (PBMs), who

design and administer drug insurance plans.3

Historically, PBMs were only responsible for processing patient claims at the pharmacy:

verifying the patient’s coverage, obtaining payment from the insurer, and transmitting that

payment to the pharmacy. However, over time and in concert with a wave of mergers, PBMs

began playing a more active role in designing prescription drug plans on behalf of insurers

(Werble 2014). By 2016, the three largest PBMs—CVS Caremark, Express Scripts, and

OptumRx—collectively designed and administered 70% of private prescription drug plans

(Fein 2017).

Modern PBMs argue that they create value by lowering prescription drug spending for

institutional payers. One way that PBMs limit spending is through prescription drug

3There are, of course, other parties involved, such as physicians, wholesalers, and pharmacies. We focus
on the parties above because they play the largest role in coverage and R&D decisions. See Appendix Figure
A.1 for a more complete picture of the supply chain.
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coverage that steers patients toward the lowest cost treatment options. Prior to the use of

exclusions, PBMs employed three tools to reduce patient demand for expensive drugs.

First, insurance plans assign drugs to different coverage tiers, with varying generosity of

patient cost-sharing; expensive drugs would be placed in tiers with higher coinsurance or

copayment rates. Second, prior authorization requirements imposed on select drugs require

physicians to obtain advance approval from the PBM or insurer prior to coverage. Finally,

step therapy requirements allow coverage for certain expensive drugs only after the patient

has tried and failed cheaper alternatives.

PBMs may also lower costs by pooling demand across multiple payers in order to

negotiate bulk discounts for drugs. Given the concentration in the industry and their role

in shaping patient demand via the tools described above, PBMs have substantial

negotiating power with manufacturers. Drugmakers routinely offer large rebates in order to

secure more favorable formulary positions for their drugs. PBMs may return a portion of

this savings to institutional payers and keep a portion for themselves. Because rebates are

highly secretive, we have little information on how they vary across drugs.

1.2 The Introduction of Formulary Exclusions

Existing formulary strategies had limited success in reducing the use of expensive

medications. Pharmaceutical firms employed a variety of techniques aimed at

circumventing coverage restrictions. For example, to help patients shoulder co-pays for

drugs placed in more expensive coverage tiers, drugmakers introduced “co-pay coupons”

that insulate consumers from cost-sharing.4 Similarly, drug sales representatives actively

targeted drugs with prior authorization requirements, training and supporting physician

practices to process prior authorization paperwork, in some cases by developing specialty

software for the purpose of auto-filling authorization forms (Pinsonault 2002).5

Beginning with CVS in 2012, major PBMs responded by implementing closed formularies

(Pollack 2014). Rather than providing coverage (potentially with some tiering or restrictions)

4Because the average implied co-insurance rate of even the highest tier drugs is roughly 30-40%,
subsidizing patient costs still netted pharmaceutical firms substantial revenues via the insurer contribution
(Claxton et al. 2011).

5One audit study found that over 88% of prior authorizations were approved by health plans (Scott-Levin
2000).
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for all FDA-approved drugs, PBMs began publishing lists of drugs that their standard plans

would not cover at all, directing potential users to lists of recommended alternatives, such

as similar branded or generic drugs.

Exclusions constituted a much more effective tool for formulary management. In an

investor call, Helena Foulkes, the President of CVS Pharmacy at the time, highlighted the

efficacy of exclusions:

“It is only through exclusion where we can prevent manufacturer subversion of a

formulary strategy with co-pay coupons. As shown, an exclusion formulary will

have more than a 95% preferred drug use versus 55% preferred share in tiered

formularies.” (Foulkes 2015)

Express Scripts reported a similar experience with its own exclusions:

“We had a significant market share shift; nearly 70% in volume moved away from

the non-covered drugs into covered drugs...and that percentage has continued to

increase ever since then....And has it worked? It has worked really well.” (Myers

2014)

The success of closed formularies in reducing utilization reduces the profitability of drugs,

as can be seen in the case of the asthma inhaler Advair. Yet, perhaps more importantly, the

threat of facing exclusion can also reduce prices even if a drug is never excluded in practice.

Stephen Miller, the Chief Medical Officer of Express Scripts, describes using the threat of

exclusion in price negotiations with pharmaceutical manufacturers:

“We are going to be pitting you all against each other. Who is going to give us

the best price? If you give us the best price, we will move the market share to

you. We will move it effectively. We’ll exclude the other products” (Miller and

Wehrwein 2015).6

Consistent with the market dynamics described by Garthwaite and Morton (2017), a credible

threat of exclusions reduces the net price that drugmakers can charge, regardless of whether

exclusions actually take place.

6In line with this description, observers note that within a therapeutic class, PBMs are increasingly
selecting a single brand for coverage (Cournoyer and Blandford 2016).
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Finally, a natural question is why PBM formulary exclusions were introduced in 2012.

While we do not have direct evidence regarding CVS’s deliberations, industry analysts have

pointed to a variety of potential factors. The steady rise of copay coupons since 2007,

previously documented by Dafny et al. (2017), eroded PBMs’ ability to manage drug demand

via their traditional tiering. In addition, growing PBM market concentration strengthened

PBMs’ bargaining power, while consolidated pharmacy networks improved PBMs’ ability

to communicate and implement formulary restrictions (Miller and Wehrwein 2015). A key

concern is whether these same trends that led to the introduction of exclusion policies may

have directly contributed to declining innovation in drug classes at high risk of exclusion. We

investigate this possibility in Section 5.2 by looking for the presence of differential pre-trends

and conducting placebo experiments.

2 Formulary Exclusions and Upstream Innovation

Because exclusions substantially impact the expected profitability of new drugs, the

introduction of closed formularies changed the set of factors that pharmaceutical executives

considered during the drug development process. Rather than focusing primarily on FDA

approvals, industry consultants began routinely advising pharmaceutical companies that

now “[m]arket access strategy should underpin decision-making throughout the entire

product lifecycle, including portfolio decision-making” (Siegal and Shah 2019).

These concerns about formulary coverage may lead firms to apply a higher “bar” for

drugs that risk facing exclusions: rather than simply demonstrating safety and efficacy (the

standard for FDA approval), firms were also advised to conduct additional clinical trials to

demonstrate superiority in head-to-head comparisons with competitor’s drugs.7 Formulary

considerations may therefore reduce investment both by weeding out drugs that do not meet

this higher standard, and by raising the cost and complexity of clinical trial design.

7To provide evidence of superiority, a firm may choose to pursue more costly and ambitious clinical trials
in order to provide stronger evidence of efficacy relative to existing treatments. For example, the firm may
decide to directly compare a drug candidate to incumbent drugs to establish superiority in class, rather
than simply focusing on efficacy relative to a placebo (Schafer 2018; Siegal and Shah 2019). In a related
analysis, Seabright (2013) analyzes how drug procurement may affect trial design, particularly the incentive
to investigate treatment effect heterogeneity predictable by biomarkers.
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In Appendix A, we formalize this intuition by developing a simple model of how drug

exclusion policies impact firms’ R&D decisions. In this model, a potential pharmaceutical

entrant faces an investment decision to develop a drug for a “new” drug class (where no

incumbent treatments exist) or an “old” class (where an incumbent therapy is available).

In the absence of exclusions, PBMs provide coverage for all approved drugs: if successful, a

pharmaceutical entrant would become a monopolist in the new drug class and a duopolist

in the old drug class. We model closed formularies as permitting exclusions when a similar

substitute is available. In the old drug class, the two firms bid on rebate payments to

the PBM in order to win exclusive formulary coverage. Exclusions therefore reduce drug

revenues in the old drug class, where entrants face exclusion risk and will pay high rebates

to the PBM if they succeed in obtaining formulary coverage. These reduced revenues lower

the returns to investing R&D dollars into the old drug class, without changing the returns

to investment in the new class. Our model predicts that we should see a relative drop in

new drug candidates entering markets in which existing therapies are already available.

We note that the welfare implications of this change in drug development incentives are

theoretically ambiguous. First, losses to pharmaceutical firms can be cast as gains to

PBMs, in the form of higher rebates. If PBMs pass some of these cost savings onto

consumers, then exclusion policies create a tradeoff between incentives for future

innovation and affordability of current prescription drug coverage. Second, an overall

decrease in drug development can be welfare enhancing if business stealing effects dominate

the benefits of expanding treatment options (Mankiw and Whinston 1986). This is a

possibility in our setting, especially if foregone drug candidates would have otherwise been

entrants into already crowded therapeutic areas. Bloom et al. (2013) documents sizeable

business stealing effects of new innovation in pharmaceutical markets. We discuss

additional issues related to welfare in Section 6.

3 Data

In this section, we lay out the four data sources that underlie our analysis. To understand

the impact of exclusion policies on innovation, the key economic object we are interested in

measuring is pharmaceutical firms’ perceptions of exclusion risk associated with developing
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new drug candidates across different classes. The ideal measure would capture both the risk

that the new drug is itself excluded, as well as the risk that the new drug is less profitable

because it must offer large price concessions in order to avoid exclusion.

To develop our measure of exclusion risk, we link data on drug market characteristics

across classes (from First Data Bank) with the incidence of formulary exclusions (from PBM

communications). We use Medicare Part D data to demonstrate that formulary exclusions

reduce drug demand. Finally, we investigate the relationship between exclusion risk and

drug development, by linking exclusion risk to Cortellis data on R&D activity. The data

underlying these analyses is summarized briefly below.

1. Formulary Exclusions: We collected data on formulary exclusions, using the publicly

disclosed standard formulary lists published by CVS Caremark, Express Scripts, and

OptumRX through 2017. Together, these firms account for approximately 70% of the

PBM market.8 Our data cover “standard” formulary exclusions: these exclusions apply

to most health plans administered by a particular PBM. Insurers may elect to provide

more expansive coverage by opting out of the standard formulary, but we do not have

information on exclusions within these custom plans.9 We match the excluded drugs

to their 4-digit Anatomical Therapeutic Chemical (ATC4) drug class using the First

Data Bank data (described below). These exclusions form the basis of our analysis.

2. First Data Bank: In order to better understand the characteristics of drugs and drug

classes that experience exclusions, we collect data on drug markets and drug pricing

from First Data Bank (FDB). FDB is a commercial dataset primarily marketed to

healthcare organizations that manage formularies. It contains information on a drug’s

ATC4 classification, pricing, and the existence of generic substitutes. We use this

information to construct additional data on drug markets at the ATC4 level: the

number of approved branded and generic drugs in an ATC4 class and measures of

8When it first closed its formulary in 2012, CVS had a 20% share of the PBM market (Lopez 2018).
Express Scripts followed suit in 2014, when its market share was 33.8% (Health Strategies Group 2015).
Finally, OptumRx began publishing formulary exclusions in 2016, when its market share was 22% (Fein
2017).

9Custom plans are less common because they are likely to be substantially more expensive. For example,
on its payer-facing website, CVS encourages insurers to choose its standard (closed) formulary, for an
estimated 29% savings in per member per month drug costs (Brennan 2017).

10



the price of already approved branded and generic drugs.10 We use these variables to

predict which drug classes face exclusion risk and as control variables to account for

time-varying market attributes in certain specifications.

3. Medicare Part D Data: To establish that formulary placement affects drug

demand, we document the impact of exclusions on a drug’s insurance claim volume in

Section 4.2. Because sales volume is not measured by FDB, we turn to publicly

available data on annual Medicare Part D claims volume by drug.11 Most Medicare

Part D plan sponsors contract with PBMs for rebate negotiation and benefit

management (Government Accountability Office 2019), and many Part D plans

feature closed formularies (Hoadley et al. 2011), making Medicare Part D a suitable

context to study the impact of exclusions. This data is available from 2012-2017 and

reports the annual number of claims for all drugs with at least 11 claims.

4. Cortellis Investigational Drugs: Our main analysis studies the impact of formulary

exclusions on drug development. We obtain data on pipeline drugs, including both

small molecule and biologic drugs, from Clarivate Analytics’ Cortellis Investigational

Drugs database (Cortellis). Cortellis tracks drug candidates using data it compiles

from public records: company documents, press releases, financial filings, clinical trial

registries, and FDA submissions. Drug candidates typically enter the Cortellis database

when they enter preclinical development; this is often when a drug candidate will

appear in patents or in other documents describing a firm’s research pipeline. Similarly,

because all firms are required to apply for and receive FDA approval to begin human

clinical trials, Cortellis has near complete coverage of drug candidates that advance

into human testing.

10We use unit price provided by the manufacturer to FDB. Specifically, wholesale acquisition unit
cost (manufacturer’s published catalog or list price to wholesalers) was used, where available. If this
was unavailable, suggested wholesale unit price (manufacturer’s suggested price from wholesalers to their
customers) was used. If this was unavailable, then direct unit price (manufacturer’s published catalogue or
list price to non-wholesalers) was used. Unit refers to the NCPDP billing unit of the product, where a unit
is defined as a gram, each, or milliliter.

11This data is published annually by the Center for Medicare and Medicaid Studies. We accessed it online at
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/

Information-on-Prescription-Drugs/Historical_Data, in November 2019.
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Using Cortellis, we track each drug’s US-based development across five stages:

pre-clinical development, Phase 1 trials, Phase 2 trials, Phase 3 trials, and launch.

Our primary outcome is the total number of drug candidates within a class that

entered any stage of development each year.12 Table 1 Panel A reports the summary

statistics of development activity across different stages.

Throughout most of the paper, our unit of analysis is a narrowly defined drug class,

following the Anatomical Therapeutic Chemical (ATC) classification system. ATC codes

are used to organize medicinal compounds; we use an ATC4 (four-digit) level classification,

which identifies chemical subgroups that share common therapeutic and pharmacological

properties.

Appendix Table A.1 lists several examples of ATC4 designations. For example, diabetes

drugs fall into 3 distinct ATC4 categories depending on whether the drug is an insulin or

insulin analogue (ATC4 A10A), a non-insulin blood glucose lowering drug (A10B), or other

diabetes drug (A10X). Cardiovascular drugs span 28 distinct ATC4 categories. Narrowing in

on the subgroup of cardiovascular drugs that are beta blocking agents, Appendix Table A.1

reports 6 distinct ATC4 classes for beta blockers, distinguishing whether the beta blocker is

present in isolation or in combination with various other drug types.

We interpret an ATC4 drug class as a “market,” where drugs within the class will typically

be partial substitutes for one another. We drop ATC4 categories that are not categorized as

drugs in FDB, such as medical supplies. We also restrict to ATC4 categories that contain

at least one branded drug on the market as of 2011. Finally, we drop ATC4 categories with

missing 2011 data on prices or the availability of generic and branded drugs as measured in

FDB and ATC4s with missing data on prescription volume as measured in the 2011 Medicare

Expenditure Panel Survey, as we need to be able to predict exclusion risk as a function of

these market attributes for our main specification. After making these restrictions, our

primary sample has 127 ATC4 classes. Table 1 Panel B shows the summary statistics of

12In cases where we observe a drug in development at a later stage without a recorded date for prior
development stages, we fill in the earlier stage date to equal the subsequent recorded stage. Because the
FDA requires each new drug to move through each phase before receiving approval, seeing a drug at a later
stage in development is strong evidence that it previously moved through the earlier stages. We never fill
drug development “forward” because many drug candidates fail to progress at each stage.
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various market characteristics for our sample of ATC4s, separately based on whether or not

they experienced exclusions in 2012 or 2013.

4 Understanding Exclusion Risk

4.1 Exclusions over Time

Figure 1 illustrates the rise of drug exclusions over time and across PBMs. As described

in trade press outlets and national media (Pollack 2014; Fein 2015; ?), CVS was the first

major PBM to implement a closed formulary, starting with the exclusion of 38 drugs in 2012.

Over the next five years, CVS oversaw a sustained expansion in the number of types of drugs

it added to its exclusion lists. Express Scripts introduced its exclusion list in 2014, followed

by OptumRx in 2016. By 2017, a total of 300 drugs were ever excluded by at least one of

the three major PBMs.

We find that exclusions largely targeted newer branded drugs: 75% of those excluded in

our data had no molecularly equivalent generic substitute. Exclusions also targeted

therapeutic areas with large numbers of patients. For example, Figure 2 plots exclusions by

disease category at the drug level and shows that, from the outset, diabetes drugs have

consistently been the most frequently excluded. Other diseases with high numbers of

exclusions include cardiovascular, endocrine, and respiratory diseases.

In the remainder of this section, we analyze the effect of exclusions on drug sales and

describe how exclusion risk differs across markets, as defined by drug therapeutic classes.

4.2 The Impact of Exclusions on Drug Sales

A PBM’s formulary choices (coverage and prices) have been shown to have a clear

impact on patients’ drug use. A large body of work has documented that patient demand

for drugs is elastic to out-of-pocket prices, suggesting that eliminating insurance coverage

for excluded drugs will suppress demand.13 In addition, several papers have shown that

13For example, the following papers find evidence of negative price elasticities for drugs, as a function of
insurance cost-sharing: Abaluck et al. (2018), Einav et al. (2017), Choudhry et al. (2011), Thiebaud et al.
(2008), Tamblyn et al. (2001).
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formulary exclusions specifically reduce the utilization of targeted drugs (Chambers et al.

2016; Huskamp et al. 2003; Wang and Pauly 2005).14

To test whether these patterns hold in our setting, we investigate the link between PBM

formulary exclusions and drug sales, using data on Medicare Part D prescription drug claims

from 2012-2017. We estimate the following regression equation:

Log(Claims)dt = β1Excludeddt + Xdt + δd + δt + εdt (1)

Here, Claimsdt refers to the number of Medicare Part D claims made on drug d in year t.

Because the distribution of Part D claims per drug is highly right-skewed (see Appendix

Table A.2), we report our results in terms of the natural log of the drug’s claim count. The

key variable of interest is Excludeddt, how many of the three main PBMs were excluding the

drug in a given year. We include drug fixed effects in all specifications so that our effect is

identified from within-drug changes in formulary exclusion status. We also include drug age

× calendar year fixed effects to capture time trends and drug lifecycle patterns.

Our sample consists of drugs that were on the market prior to the introduction of

exclusions, and which have at least 11 annual Part D claims. Because Medicare Part D

regulation over this period disallowed formulary exclusions from six protected drug classes,

this analysis studies the 161 excluded drugs that are not in a protected class.15

In Table 2, we show that each excluding PBM decreases a drug’s prescription volume by

24% (e−0.274−1), relative to comparable drugs that did not experience an exclusion. Column

2 shows that our results are robust to including additional controls for time-varying demand

for the drug class, captured with ATC4 X calendar year fixed effects. In Columns 3 and 4,

we obtain a similar result when focusing on market share rather than prescription volume:

each excluding PBM reduces a drug’s market share by 20%. We note that this analysis does

not allow us to measure prescription drug sales that are not claimed in Medicare Part D; if

14While CVS was the first to implement a standardized national closed formulary in 2012, the two older
papers cited above provide evidence from smaller scale exclusions by individual insurance plans. These
earlier formulary coverage decisions affect many fewer patients than the national PBM formularies we study
here, but are likely to have similar effects on the drug choices of enrolled patients.

15The protected classes are antidepressants, antipsychotics, anticonvulsants, antineoplastic agents,
antiretroviral agents, and immunosupressants. Of the 181 excluded drugs prescribed in Part D, only 20
fall into these classes.
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formulary exclusions lead patients to pay fully out-of-pocket for the drugs without requesting

insurance coverage, we will not have a record of it in our data.

The effects we measure capture the combined effect of reduced prescriptions for the

focal drug, as well as possible reallocation toward non-excluded drugs in its category.

These findings show that exclusions had a major impact on shifting sales and market share

across competitor drugs, beyond what PBMs previously accomplished for these drugs with

traditional demand management tools, such as tiering, prior authorization, or step therapy.

Moreover, our magnitudes are consistent with anecdotal evidence by case reporting: for

example, after its exclusion by Express Scripts, sales of the asthma inhaler Advair fell 30%

while sales for its non-excluded competitor Symbicort increased 20% over the same period

(Pollack 2014).

In Appendix Table A.3, we investigate whether the immediate exclusion of newly released

drugs depresses drug diffusion, relative to the diffusion of other drugs in the same ATC4 class.

These estimates suggest that formulary exclusion depresses prescription volume of new drugs

by 68% (e−1.147 − 1), although the estimates are noisier because they focus on a small set of

13 drugs that face immediate exclusion by at least one PBM within 1 year of FDA approval.

4.3 Predictors of Formulary Exclusion Risk

Having provided evidence that exclusions harm revenues, we next examine the factors

that predict exclusion risk.

To motivate this analysis, we note that exclusion policies may impact upstream innovation

by reducing the expected profitability of some drug classes. In this paper, we document

the reduced form impact of predicted exclusion risk on subsequent investments in drug

development. An alternative approach would directly quantify the relationship between

drug profitability and development, using the exclusion risk as an instrumental variable for

profitabilty. We do not pursue this latter approach for two reasons. First, it is extremely

difficult to observe true profitability for individual drugs due to the prevalence of hidden

rebates. Second, a large literature has already documented the fact that innovation is elastic

to expected profitablity. This paper takes that knowledge as a foundation and focuses instead

on understanding whether policy levers such as targeted exclusions can be effectively used

to limit incentives to develop costly, low-value drugs.
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Because drug exclusions steadily expanded after their introduction in 2012, we focus on

using a drug class’s pre-period market characteristics to predict early exclusions, those that

occurred in 2012 and 2013. In our data, 12% of ATC4 drug classes experienced these early

exclusions.

Predictors of Drug-Level Exclusion

Using data from FDB described in Section 3, we begin by constructing several potential

predictors of exclusion risk for 127 ATC4 drug classes. The availability of therapeutic

alternatives is measured by the number of existing branded drugs approved within an

ATC4, the number of existing generics within the same class, or the number of

finer-grained ATC7 subclasses (which indicate specific chemical substances). To account

for the expected size of the patient population, we use the total prescription volume across

all drugs in a given ATC4 class; this information is calculated from the 2011 Medicare

Expenditure Panel Survey. Finally, we collect data on the price of already approved

branded and generic drugs, keeping in mind that price data do not reflect the rebates that

manufactures often pay to PBMs. All of these market characteristics are from 2011, before

the introduction of first exclusions in 2012.

Figure 3 plots the coefficients of bivariate linear regressions of exclusion on each drug

class characteristic. We find that drug classes with higher prescription volume and more

existing treatment options (measured as the number of distinct drugs on the market) are

more likely to experience exclusions. These patterns are consistent with contemporaneous

descriptions of PBMs’ exclusion strategies, which indicate that formulary exclusions often

target “me-too drugs” with multiple therapeutic substitutes (Reinke 2015), as well as drugs

with a larger number of prescribed patients: “[T]here’s no reason to go after trivial drugs

that aren’t going to drive savings” (Miller and Wehrwein 2015). We find no statistically

significant relationship between drug prices in the class and exclusion risk, but because our

data does not measure prices net of rebates, these correlations are difficult to interpret.

Class-Level Exclusions Risk

We use the market characteristics described in the previous section to construct each

drug class’s risk of facing exclusions, measured at the ATC4 level. To do so, we fit a logistic
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regression predicting whether a drug class experience exclusions in 2012 or 2013 as a function

of all of the ATC4 market characteristics described in the previous section (measured as

of 2011). This regression is described below, where F (·) denotes the cumulative logistic

distribution function.

Pr(Excludedc) = F (Xcγ) (2)

For this regression, the unit of observation is a single ATC4 drug class c. We then use the

regression’s fitted values to construct the predicted exclusion risk of each ATC4:

Pr(Excluded)c. Appendix Table A.4 shows the results of this exercise, and Appendix

Figure A.2 plots the resulting distribution of predicted exclusions.

As discussed in Section 3, our ideal measure of exclusion risk captures firms’ perceptions

of whether newly developed drugs in a given class may be at risk of exclusions. In practice,

we construct our measure to predict early exclusions in 2012 and 2013. Interpreting this as

a valid measure for exclusion risk over the post period requires two assumptions. First, drug

classes that are predicted to be more likely to face exclusions in 2012 and 2013 should also

be more likely to continue facing exclusions in later years. Second, because exclusion threat

can depress profitability even in the absence of actual exclusions (by forcing drugmakers to

grant price concessions in order to avoid exclusion), our measure should capture the threat

of exclusion even in classes where no drugs are excluded.

Table 3 presents tests of both aspects of predictive validity. In Column 1, we show that

classes at high risk of early exclusions are also more likely to see later exclusions: a one

standard deviation increase in early exclusion risk correlates with a 17 percentage point

increase in the likelihood that an ATC4 class experiences exclusions in later periods, from

a mean probability of 39%. This result suggests that exclusions followed a consistent and

predictable pattern over our study period, and that pre-policy market characteristics can be

used to form valid out-of-sample predictions of at-risk drug classes.

Next, we show that our predictions of exclusion risk contain information on the threat

of exclusion even when no early exclusions occur. To see this, the analysis in Column 2

considers the subset of ATC4s that see no exclusions during the first wave of exclusions in

2012 and 2013. This set—which includes almost 90% of our sample ATC4s—includes some

drug classes that were truly at low risk of facing exclusions, as well as drug classes that were

in fact at high risk, but which were able to avoid early exclusions perhaps by offering higher
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rebates. For this set of drug classes, we show that our measure of predicted exclusion risk is

still significantly correlated with future exclusions: a one standard deviation increase in early

exclusion risk generates a 15 percentage point increase in the likelihood of late exclusions,

from a base rate of 31%.

Because it has predictive validity over time and predicts exclusion risk in classes with

no realized early exclusions, we use predicted exclusion risk as our primarily measure of a

drug class’s exposure to closed formulary policies. As shown later in Section 5.3, our results

are robust to alternative measures of exclusion risk across drug classes, including realized

exclusion status, as well as indices that measure the intensity of exclusion risk by predicting

the count and share of excluded drugs.

5 The Impact of Exclusion Risk on Subsequent Drug

Development

5.1 Empirical Strategy

Our main specification compares drug development behavior across ATC4 drug classes

that vary in their ex-ante risk of exclusion, before and after the rise of closed formulary

policies:

Developmentct = β1Pr(Excluded)c × I(Yeart ≥ 2012) + Xctγ + δc + δt + εct (3)

In Equation (3), Developmentct refers to various measures of the number of new drug

candidates in drug class c at year t. We define a drug class’s extent of treatment using

Pr(Excluded)c, described in our discussion of Equation (2). The regressions control for

drug class fixed effects (δc), year fixed effects (δt), and time-varying drug market controls

(Xct).

To interpret our primary coefficient of interest, β1, as the causal impact of drug exclusions

on development activity, we must assume that development activity in ATC4s with different

predicted degrees of exclusion risk would have followed parallel trends in the absence of

formulary exclusions. We use event study graphs over a 5 year pre-period to assess the
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plausibility of this assumption. These graphs are based on a modified version of Equation

(3), which replaces the single indicator variable for being in the post period (I(Yeart ≥ 2012))

with a vector of indicator variables for each year before and after the introduction of PBM

exclusion lists in 2012.

5.2 Main Results

Table 4 presents our main regression results. The outcome is the total number of drug

candidates within a class that entered any stage of development each year. In Column 1,

we estimate that a one standard deviation increase in the risk that the class has formulary

exclusions leads to 3.6 fewer advanced drug candidates each year, a 12% reduction from a

mean of 30.6 advancing candidates.16 This estimate represents a relative decline in

higher-risk classes, relative to trends in lower-risk classes. In Column 2, we include controls

for a variety of time-varying market conditions at the ATC4 class level: the number of

approved branded drugs in that class, the number of approved generic drugs, the mean

price of branded drugs minus the mean price of generic drugs, the number of ATC7

subclasses (which indicate specific chemical substances) with approved drugs, and

prescription volume. Adding these controls lowers our estimate slightly from 3.6 to 3.3

fewer promoted drug candidates each year for every one standard deviation increase in

class exclusion risk, or a reduction of 11% relative to the mean. In Columns 3 and 4, we

consider an alternative functional form log(1 + Developmentct). The log-transformed

outcome suggests that development activity declines by 6% for every 1 standard deviation

increase in class exclusion risk.

Event Study

One potential concern for interpreting these findings is that innovation in ATC4 classes

at high risk of exclusion may have been evolving on different trends, for reasons other than

the introduction of formulary exclusions. For example, drug classes with many existing

treatment options may be both more likely to be excluded and, independently, also see

natural attenuation in innovative activity.

16As reported in Appendix Figure A.2, the standard deviation of the probability the class faces exclusions
is 0.15. Using the coefficient reported in Table 4, we calculate −24.03 ∗ 0.15 = −3.6.
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To assess this possibility, we first show that there are no discernible pre-trends in

development that vary by exclusion likelihood, in the years leading up to the introduction

of formulary exclusions. Figure 4 plots our results in an event study framework, illustrating

that there appears to be little difference in drug development across drug classes at high

vs. low risk of exclusions prior to 2011. These trends suggest that high exclusion classes

were not experiencing declining investment over the pre-period; to the extent that either

demand or innovative potential was changing across drug classes in our pre-period, those

changes do not appear to have cut along our predicted exclusion categories. Rather,

development activity begins to diverge in 2012, and these differences grow until 2017, the

last full year of our sample.

Placebo Analysis

Next, we conduct a series of placebo tests. If our measure of exclusion risk captures

aspects of a drug class—crowdedness for instance—that are predictive of declining R&D

independent of formulary exclusions, then we would expect drug classes with high exclusion

risk (measured in earlier pre-period years) to see innovation fall in response to pre-period

placebo exclusion policies. To test this, we use our coefficient estimates γ̂ estimated from

Equation (2) to identify drug classes that appear at risk of exclusion based on their market

characteristics as of each year in 2001-2005. That is, we look for drug classes that, in earlier

years, shared the same mix of treatment options and prescription volumes that would have

put them at high risk of exclusions in 2011. As can be seen from Figure 3, these are drug

classes that, at a given point in time, have a relatively large number of treatment options, as

well as high prescription volume. If our results were driven by trends unrelated to exclusions,

we should see R&D in these classes fall in the years following our assessment of their exclusion

risk.

Figure 5 plots out results for five different tests, corresponding to a placebo policy change

in each of the years 2002 through 2006. The blue horizontal lines plot the placebo policy

estimates and 95% confidence interval, while the vertical red line highlights the true estimated

policy effect. These estimates mirror the specification in Column 2 of Table 4, except that

we drop price when constructing the exclusion risk due to missing historical price data
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covering the placebo policy periods.17 For example, the 2002 placebo policy estimates a

positive β̂ coefficient of 2.2 on predicted exclusion risk interacted with a post period indicator

from Equation 3. For this placebo policy, the post period begins in 2002; exclusion risk is

measured using 2001 market characteristics; and we use a corresponding 11-year sample

period from 1997-2007. Similarly, the coefficient on the 2003 placebo refers to risk measured

in 2002, and a sample period of 1998-2008. We end the placebo tests with the 2006 placebo

policy change, because its 5 year post period ends in 2011, the last year of our true policy

pre-period.18 Figure 5 suggests drug classes with similar features to those eventually targeted

with exclusions did not experience declining investment over the pre-period; compared to

the statistically significant true policy estimate of -22.9, the placebo estimates range from

2.2 to 9.1, and none are statistically significant.

Stages of Development

Having established evidence of a decline in overall development, Table 5 decomposes this

total effect by drug development stage. In Table 5, we find the largest level declines for earlier

stage drugs. Across all stages from preclinical through Phase 3 trials, these changes range

from 8% to 14% reduction from the mean for a one standard deviation increase in exclusion

risk. We interpret these findings in the context of the drug development process, where Phase

1 trials generally assess safety, Phase 2 trials provide preliminary evidence of efficacy, and

Phase 3 trials are the large-scale expensive trials that firms rely upon to generate data for

FDA approval. Of these investment stages, Phase 3 trials are the most costly, with average

costs estimated over $250 million per drug in 2013 dollars (DiMasi et al. 2016). Given that

the marginal cost of continuing to develop a candidate drug remains high through the end of

Phase 3 trial stage, it is sensible that firms would be more likely to drop drug candidates even

at this relatively late stage. Further, a drug is more likely to be excluded from formularies if

it offers few benefits relative to existing treatments. Phase 2 trials provide the first evidence

17The true estimated policy effect of -22.9 is statistically significant and very similar to the estimate of
-22.0 reported in Table 4.

18It is worth noting that there were other changes in prescription drug markets over this early pre-period,
such as the introduction of Medicare Part D in 2006. While Medicare Part D did affect drug development
investments, there is no evidence to suggest that it differentially impacted drug classes based on their
exclusion risk. To make sure that our results are not driven by this change, we study a variety of placebo
test timing.
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of clinical efficacy. If a drug shows only marginal promise, then a firm concerned about the

possibility of exclusions may choose to end its development efforts rather than committing

to very expensive Phase 3 trials.

In contrast, we find no effect for new drug launches; at the point when a drug has

completed Phase 3 trials, the bulk of R&D expenses are already sunk. As a result, concerns

about coverage would be less likely to impact a firm’s launch decisions. Over time, we would

expect that launches would also fall in affected drug classes as the pipeline narrows, but,

given the long time lags in bringing a drug through each development stage, this effect would

not be immediate.

5.3 Additional Robustness Checks

In this section, we show that our results are robust to alternative choices for defining

exclusion risk, linking drug candidates to drug classes, and calculating standard errors.

First, we show that our results are consistent when we apply alternative definitions of

a drug class’s exclusion risk in Appendix Table A.5. In our primary analysis, we use 2011

ATC4 market level characteristics to predict exclusion risk, defined as whether an ATC4

class is predicted to have at least one drug with an exclusion by 2013. In this table, we

test three alternative approaches. Columns 1-2 use 2011 ATC4 market characteristics to

predict the count of excluded drugs by 2013, while Columns 3-4 use 2011 ATC4 market

characteristics to predict the share of excluded drugs by 2013. Like our main specification,

both of these alternatives provide continuous measures of predicted exclusion risk, and thus

have the benefit of capturing variation in the threat of exclusions, in drug classes that are

similar to the initially targeted set but that did not experience early exclusions. Alternatively,

realized exclusions can be another definition of treatment, rather than predicted exclusion

risk; Columns 5-6 present results using a binary definition of treatment (whether at least

one drug in an ATC4 class was actually on a PBM exclusion list by 2013) and show a

similar pattern of results as our main analysis. All of these approaches find that new drug

development is declining in exclusion risk. Scaling each of the coefficients in Appendix

Table A.5 by the standard deviation of the relevant exclusion risk measure, we predict a

similar magnitude reduction in drug development in each specification: 2.7 (Column 2), 1.7

(Column 4), and 1.5 (Column 6).
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Second, we show that our results are robust to the method we use to match drug

candidates to drug classes. In our primary analysis, we match drug candidates to ATC4

drug classes using a direct linkage when Cortellis provides it (in 43% of cases); in cases

where direct linking is not possible, we rely on indirect linking based on using a drug

candidate’s area of therapeutic application (ICD9) combined with an ICD9-ATC4

crosswalk. Appendix B provides further details on how we linked the drug candidates from

Cortellis to ATC4 classes. Appendix Table A.6 shows that our results are similar whether

using only direct linkages (Columns 1-2) or only indirect linkages (Columns 3-4).

Finally, conventional inference can over-reject when the number of treated clusters is

small, so we also implement a correction using the wild cluster bootstrap (Cameron et al.

2008; Djogbenou et al. 2019). In Appendix Table A.7, we report 95% confidence intervals

calculated with the wild cluster bootstrap for our main regression results; our findings remain

statistically significant.

5.4 Classifying Foregone Innovation Across Drug Classes

In this section, we describe the drug classes and types of projects that experienced the

greatest declines in R&D as a result of formulary exclusions. To assess the decline in drug

development for each ATC4 drug class, we compare the number of candidates we predict

would have been developed in the absence of exclusions to the number we predict in the

presence of exclusions. This analysis examines how exclusions impact the allocation of

R&D resources across drug classes that vary in their size, competitiveness, or level of

scientific novelty. We focus on allocation across drug classes because our theoretical

framework, formalized in Appendix A, predicts that exclusions will affect the relative

investments in drug development across classes.19

Our analysis is based on the specification reported in Table 4 Column 2; this is our

preferred specification because it controls for a battery of time-varying drug class

observables and generates the most conservative point estimate. To measure predicted new

drug candidates in the presence of exclusions, we calculate the fitted value prediction of

19The impact of exclusion policies within a drug class are less obvious; while it is possible that exclusions
may change the characteristics of promoted molecules within a drug class, these effects may be smaller and
more difficult to measure. Because ATC4 drug classes already represent relatively narrow categories, there
is limited scope to change the scientific novelty of investment within the class, for example.
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drug development activity for every year of the post-period. To recover the predicted new

drug candidates absent exclusions, we repeat this exercise after setting the treatment

variable Pr(Excluded)c × I(Yeart ≥ 2012) equal to zero for all observations. We use these

predictions as the basis for calculating the percent decline in development activity

attributable to exclusion risk. We then compare the predicted decline in development

activity across several ATC4 drug class characteristics, measured before the introduction of

the formulary exclusions.

Availability of Existing Therapies and Market Size

For our first counterfactual comparison, we divide drug classes into terciles based on the

number of existing therapies, as measured by the number of distinct drugs available within

that class as of 2011. Figure 6 Panel A compares predicted drug development activity under

the observed exclusion policies to the counterfactual activity that would have occurred absent

exclusions. Consistent with our model, we see the largest declines in drug classes with more

existing therapies: among drug classes in the top tercile of available therapies, exclusions

depress development by 5%. By contrast, exclusions depress development by less than 2%

for drug classes in the bottom tercile of pre-existing therapies. This result indicates that

formulary exclusions lead firms to reduce their investments in drugs that are more likely to

be incremental entrants to more crowded therapeutic areas.

In Figure 6 Panel B, we perform the same analysis splitting drug classes by market

size, as measured by the volume of prescriptions filled in 2011 (estimated from the MEPS

data). We find that formulary exclusions disproportionately impact drug development in

therapeutic classes with many patients. For drug classes in the top tercile of prescription

volume, drug development is predicted to decline by nearly 8% after the introduction of

formulary exclusions.

Scientific Novelty

Next we examine the relative effect that formulary exclusions had on R&D investment

across areas with differing measures of scientific novelty. To assess scientific novelty, we

match drug candidates within an ATC4 class to the scientific articles cited by their underlying

patents, making use of the patent-to-science linkages created by Marx and Fuegi (2020). We
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then create two measures of the scientific novelty of research in a drug class (averaged over

the pre-period 2007-2011).

First, we calculate how often patents in a drug class cited recent science, defined as articles

under 5 years old as of 2011. In Panel A of Figure 7, we find that exclusions generate a

much larger decline in R&D in drug classes that were rarely citing recent science in the policy

pre-period, compared to those that were (10% vs. 2% predicted declines, respectively).

Second, we measure how “disruptive” research in a drug class is likely to be. To do this, for

each of the scientific article cited by the underlying patents of the drugs, we follow Funk and

Owen-Smith (2017) and Wu et al. (2019) and measure how many of a focal article’s forward

citations also cite the focal article’s backward citations. This “disruptiveness” index, ranging

from -1 (consolidating) to 1 (destabilizing), captures the idea that a research article that

represents a paradigm shift will generate forward citations that will not cite the breakthrough

article’s backward citations. In contrast, a review article that consolidates a knowledge

domain will receive forward citations that will also cite the same citations as the review

article. In Figure 7 Panel B, we report predicted changes in drug development as a function

of how disruptive the patents underlying the drugs were in this class over the pre-period

(proxied by the average disruptiveness index of the cited science). Formulary exclusions

spurred larger reductions in development in drug classes citing the least disruptive research.

Together, these results suggest that closed formularies shift R&D dollars away from areas

with older, less novel science.

6 Discussion

So far, we have shown that closed formulary policies lead pharmaceutical firms to invest

less in R&D for areas more likely to face exclusions. This response results in a shift in

development away from large markets (in terms of available therapies and prescription

volume). Our evidence also indicates that R&D effort shifts away from drug classes with

older and less disruptive underlying science. Overall, these results suggest that exclusions

direct upstream research away from more incremental treatments.

The welfare implications of this behavior are theoretically ambiguous. There are two key

considerations. First, exclusions reduced development of drugs for crowded markets; what is

25



the value of this sort of forgone incremental innovation? Second, when investment declines

in high-exclusion risk classes relative to other classes, does this contribute to an aggregate

decline in pharmaceutical R&D, or is some of the investment redirected to innovation in

other drug classes within the sector?

Regarding the first question, assessing the value of late entrants to a drug class is difficult

because even incremental drugs can reduce side effects, improve compliance by being easier to

take, or generate price competition and improve access (Regnier 2013; Hult 2014). Further,

even if the new drugs never make it to market, incremental drug candidates may generate

scientific spillovers, leading to further innovation over a longer time horizon.

Second, our empirical approach cannot test for aggregate changes in development

activity, which would be identified solely by time-series trends. By estimating equation (3),

we isolate the relative change in development activity in drug categories at high exclusion

risk, compared to the changes in low-risk categories. These differences could come from a

combination of absolute declines in R&D for excluded classes or it could come from a shift

in development from classes with high to low exclusion risk.

Absent financial frictions, we would expect that the introduction of closed formularies

would decrease the expected value of investments in drug classes at high risk of facing

exclusions, but should have little impact on the net present value for drugs in classes at

low risk of facing exclusions. In such a world, we would interpret our results as leading

to an absolute decline in drug R&D. However, a large finance literature has shown, both

theoretically and empirically, that even publicly traded firms often behave as though they

face financial frictions (Myers and Majluf 1984; Froot et al. 1993; Brown et al. 2009). This

is especially true in pharmaceuticals and other R&D intensive sectors where intellectual

property is more difficult to collateralize or value (Fernandez et al. 2012; Kerr and Nanda

2015; Krieger et al. 2019). For example, it is common for firms to set their R&D budgets

by allocating a percentage of revenues from the previous year.

In the event that exclusion policies generate some degree of reallocation away from

older drug areas toward newer ones, a welfare analysis would need to take into account the

relative value of research in these areas. In our case, this would require weighing the value
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of additional incremental innovations aimed at larger markets against the value of

earlier-in-class innovations for less common conditions.20

7 Conclusion

Amid rising public pressure, government and private payers are looking for ways to

contain drug prices while maintaining incentives for innovation. In this paper, we study how

the design of downstream insurance policies—namely, those related to drug coverage—impact

upstream investments in pharmaceutical R&D.

We find that drug classes facing a one standard deviation greater risk of experiencing

exclusions see an 11% decline in drug development activity following the introduction of

closed formulary policies. These declines in development activity occur at each stage of

the development process, from pre-clinical through Phase 3 trials. In aggregate, our results

suggest that PBMs wielded the threat of formulary exclusion in a way that shifted the

relative allocation of R&D effort away from incremental treatments; that is, away from drug

classes with many existing therapies on the market and older, less novel underlying science.

Our results provide evidence that insurance design influences pharmaceutical R&D.

Pharmaceutical firms anticipate downstream payment policies and shift their upstream

R&D efforts accordingly. Viewed from a public policy perspective, this finding opens the

door for insurance design to be part of the broader toolkit that policymakers use to

encourage and direct investments in innovation. Existing policy efforts to shape innovation

have relied almost exclusively on directly influencing the costs and returns to R&D,

through patents, tax credits, research funding, or other direct subsidies. Our results

suggest that managers and policymakers can also use targeted coverage limitations and

price negotiation—for example, those generated by value-based pricing—to shift R&D

efforts away from drugs with limited incremental clinical value.

The limitations of our analysis suggest several important directions for future work.

First, our identification strategy allows us to document a relative decline in R&D in high

20Moreover, if exclusion policies have positive spillovers on development in non-excluded categories (e.g.,
due to within-firm investment reallocation), our estimates will tend to overstate the magnitude of the total
decline in R&D investment in excluded categories. By contrast, if exclusion policies have negative spillovers
on non-excluded categories (e.g., due to a fall in revenue reducing available development dollar), our estimates
will tend to understate the magnitude of the investment decline in excluded categories.
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exclusion risk categories; more research is needed to assess the extent to which policies that

limit the profitability of a specific class of drugs reduce aggregate R&D. Second, it remains

a challenge to place an accurate value on the innovation that is forgone as a result of the

exclusion practices we study. While we focus on the availability of existing treatments,

prescription volume, and measures of scientific novelty, these are not complete descriptions

of the clinical and scientific importance of potentially foregone drugs. Third, because we

cannot directly observe drug price rebates, we cannot directly quantify the reductions in

revenue precipitated by formulary exclusion policies.

This analysis studies the first wave of PBM formulary exclusions, but the implications

may evolve with ongoing changes to exclusion strategies. For example, in recent years,

formulary exclusions have begun to target therapies for relatively rare and sensitive diseases

for the first time, including HIV, hemophilia and certain cancers (The Doctor-Patient Rights

Project 2017; Maas 2018). Drug classes that appeared low-risk in our analysis based on early

exclusion patterns may become higher-risk as exclusions expand, leading to more widespread

reductions in drug development. Additional research will be needed to quantify the tradeoffs

associated with decreased development in these therapeutic areas.
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Figure 1: Number of Excluded Drugs by PBMs

0

50

100

150

N
um

be
r o

f E
xc

lu
de

d 
D

ru
gs

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

CVS
Express Scripts
Optum

Notes: This figure plots the number of drugs excluded by each of the three Pharmacy Benefit Managers.
CVS was the first to begin excluding drugs in 2012, followed by Express Scripts in 2014 and OptumRx in
2016.
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Figure 2: Number of Excluded Drugs by Disease Categories
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Notes: Each bubble represents a disease category in a year, and the size of the bubble reflects the number
of drugs that were excluded by CVS, Express Scripts, or OptumRx in that disease category. There were a
total of 300 drugs that were ever excluded from 2012-2017 by at least one of the three PBMs. Of these 300
excluded drugs, we were able to match 260 of them to the First Data Bank data, from which we obtained
the ATC4 data. We manually matched each ATC4 to a disease category; this disease taxonomy was adapted
from the disease categories provided by the PBMs in their exclusion lists.
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Figure 3: Predictors of Exclusion Risk

Log(1 + N of generic NDCs)
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Log(1 + N of ATC7s)
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Total prescription volume
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Notes: We used the 2011 market characteristics of the ATC4 class to predict exclusion risk. The plotted
coefficients were generated by conducting bivariate linear regressions of whether an ATC4 class had at least
one drug excluded in 2012 or 2013 on each characteristic of the ATC4 class. Independent variables were
standardized (divided by their standard deviation). The coefficients on the number of brand NDCs, number
of ATC7s, and prescription volume are significant at the 1% level, while the coefficient on the number of
generic NDCs is significant at the 10% level. The coefficient on price is not significant. Data on prices, the
number of brand and generic NDCs, and the number of ATC7s are from FDB; data on total prescription
volume are from the 2011 Medical Expenditure Panel Survey.
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Figure 4: Impact of Predicted Exclusion Risk on New Drug Development:
Event Study
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Notes: Figure displays coefficient estimates and 90% confidence intervals from a modified version of
Equation (3). The outcome variable is the annual count of new development activity (across all stages). To
generate the event study graph, we replace the single post-period indicator variable (I(Year ≥ 2012)) with
a vector of indicator variables for each year before and after the introduction of PBM exclusion lists in
2012. We plot the coefficients on the interaction of these year indicators and a continuous measure of
predicted exclusion risk. (Exclusion risk is predicted using 2011 market characteristics, prior to the
introduction of PBM formulary exclusions. Details on the prediction of exclusion risk can be found in
Appendix Table A.4.) The regression controls for ATC4 fixed effects and year fixed effects. The sample
includes 1,397 ATC4-year observations.
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Figure 5: Placebo Test: Impact of Predicted Exclusion Risk on New Drug
Development

Placebo tests

True policy effect

Notes: This coefficient plot shows the “placebo tests” of the results reported in Column 2 of Table 4. The
red line indicates the baseline, true policy estimate; it reports β1, the coefficient on predicted exclusion risk
interacted with a post period indicator from Equation 3. This true policy estimate of -22.9 is statistically
significant and parallels the specification in Column 2 of Table 4, but the only difference is that when
constructing the exclusion risk, we dropped the price variables. The blue coefficients report the “placebo
tests” of the results reported in Columns 2 of Table 4. First, as in the exclusion risk used in Table 4,
exclusion risk was constructed by using the same 2011 market characteristics (but dropping price variables)
to predict exclusions by 2013 using Equation (2), but here we applied the coefficients from this regression
to 2001, 2002, 2003, 2004, or 2005 market characteristics to construct new versions of the exclusion risk.
Second, the pre-period and post-periods were adjusted depending on the placebo policy year, such that we
use the same number of pre- and post-period years as Table 4. For instance, for the 2002 placebo policy, the
pre-period was 1997-2001 and the post-period was 2002-2007, and we used 2001 market characteristics to
construct the exclusion risk. For the 2006 placebo policy, the pre-period was 2001-2005 and the post-period
was 2006-2011, and we used 2005 market characteristics to construct the exclusion risk. Due to lack of
market characteristics data in the earlier period of the data, 3 ATC4s were dropped from the sample for
2006 and 2005 placebo policies, 4 ATC4s for 2004 placebo policy, and 5 ATC4s for 2003 and 2002 placebo
policies. None of the placebo estimates were statistically significant.
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Figure 6: Counterfactual Development Activity by Pre-Period
Availability of Existing Therapies & Market Size

A. Reduction in development B. Reduction in development
by number of drugs in class by number of prescriptions in class

0
2

4
6

8
%

 d
ec

re
as

e 
in

 d
ev

el
op

m
en

t a
fte

r 2
01

2

Low Medium High
Terciles of pre-period no. available drugs

0
2

4
6

8
%

 d
ec

re
as

e 
in

 d
ev

el
op

m
en

t a
fte

r 2
01

2

Low Medium High
Terciles of pre-period no. prescriptions

Notes: This figure displays the percent decrease in annual development attributable to exclusions.

Predictions are based on our estimation of equation (3); we match the specification reported in Table 4

Column 2. The figure shows the percent difference between predictions at the ATC4 × year with and

without exclusions, averaged over the post-period (2012-2017). In Panel A, we group ATC4 drug classes by

terciles of the number of existing drugs in the class (in 2011); data on existing drugs is from First Data

Bank. In Panel B, we group ATC4 drug classes by the number of prescriptions written in the class (in

2011); data on prescriptions is from the 2011 Medical Expenditure Panel Survey. Drug classes are weighted

by the number of drugs with advancing development over the pre-period.
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Figure 7: Counterfactual Development Activity by Pre-Period Measures
of Scientific Novelty

A. % Citing Recent Science B. Average “Disruptiveness” Index
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Notes: This figure displays the percent decrease in annual development attributable to exclusions.

Predictions are based on our estimation of equation (3); we match the specification reported in Table 4

Column 2. Drug classes are divided into terciles according to attributes of patents associated with drug

development activity over the pre-period, averaged from 2007-2011. Panel A groups drug classes by the

share of pre-period patents in a drug class citing recent science as of 2011 (recent is therefore defined as

publications between 2006 and 2011). Panel B groups drug classes by the average “disruptiveness” index of

patents in the drug class over the pre-period, which is a measure that captures how disruptive the scientific

articles associated with the patent are; the index ranges from -1 (least disruptive) to 1 (most disruptive)

and was originally developed by Funk and Owen-Smith (2017).
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Table 1: Summary Statistics

(A) New Drug Development

Mean Std. Dev. Median
All 30.61 42.06 13.05
Preclinical 17.39 26.13 6.64
Phase 1 6.54 8.84 3.07
Phase 2 4.57 6.04 2.17
Phase 3 2.11 3.04 1.04
Launch 1.02 1.63 0.31

(B) ATC4 Characteristics

ATC4s with ATC4s without
ATC4 market characteristics in 2011 early exclusions early exclusions
Mean N of generic NDCs 767.9 310.3
Mean N of brand NDCs 268 106.8
Mean N of ATC7s within ATC4 14.60 8.518
Mean brand price - mean generic price 5.822 55.98
Mean total prescription volume (millions) 70.46 17.63
Number of ATC4s 15 112

Notes: Panel A summarizes the annual drug development activity from 2007-2011 in the
Cortellis data. The sample includes 1,397 ATC4-year observations. The panel reports the
annual number of drug candidates within an ATC4 class that entered different development
stages. Panel B summarizes ATC4 market characteristics in 2011. Column 1 reports results
for ATC4 classes with at least one excluded drug in 2012-2013; Column 2 reports results for
ATC4s with no exclusions in 2012-2013. Data on pricing and the number of available drugs
are from First Data Bank; data on on total prescription volume are from the 2011 Medical
Expenditure Panel Survey.
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Table 2: Impact of Exclusions on Prescription Volume

(1) (2) (3) (4)
Log(Claims) Log(Claims) Log(Mkt. Share) Log(Mkt. Share)

Number of Excluding PBMs -0.274*** -0.319*** -0.220*** -0.319***
(0.0638) (0.0733) (0.0809) (0.0733)

Observations 4,626 4,391 4,626 4,391
Drug FE YES YES YES YES
Cohort X Year FE YES YES YES YES
Market Controls NO YES NO YES

Notes: This table estimates the impact of PBM formulary exclusion on the volume of
Medicare Part D insurance claims; each column reports a different regression specification.
The unit of observation is a drug × year. The outcome variable in Columns (1) and (2) is the
natural log of the total number of annual claims; the outcome in Columns (3) and (4) is the
annual market share of the index drug relative to all other drugs in the ATC4 class. The key
independent variable of interest is the number of formularies excluding the drug that year.
All regressions include drug fixed effects and drug age X calendar year fixed effects. (Drug
age is measured as number of years elapsed since market entry.) Specifications (2) and (4)
include additional controls for ATC4 class × calendar year fixed effects to account for trends
in demand for different drug classes. Data on prescription volume is from Medicare Part D
2012-2017 public use files. We analyze exclusions on 161 excluded drugs that are prescribed
to Medicare Part D enrollees and are not in a protected class. Standard errors are clustered
at the drug level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Early Exclusion Risk and Later Exclusions

(1) (2)
Late Exclusion Late Exclusion

Pr(Exclusion) 0.167*** 0.150**
(0.0413) (0.0624)

Observations 127 112
Sample All ATC4s ATC4s without early exclusions
Fraction with Late Exclusions 0.39 0.31

Notes: Using a linear probability model, we regressed whether ATC4 classes that were
highly predicted to be excluded by 2013 were more likely to be actually excluded later
after 2013. Early exclusion risk is a continuous measure defined using the same specification
underlying Table 4; we used 2011 market characteristics of the ATC4 class to predict whether
the ATC4 class was at risk of exclusion by 2013. We then standardized this early exclusion
risk variable. The outcome variable, late exclusion, is a binary variable that indicates whether
the ATC4 was on any of the PBM’s exclusion list at least once in 2014-2017. Column 1
includes all ATC4s, while Column 2 drops ATC4s that were actually excluded by 2013.
Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Impact of Predicted Exclusion Risk on New Drug Development

(1) (2) (3) (4)
New Development New Development Log(1+New Dev.) Log(1+New Dev.)

Post X Pr(Exclusion) -24.03*** -21.98*** -0.382*** -0.333***
(5.894) (6.571) (0.108) (0.115)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls NO YES NO YES

Notes: This table reports results from estimation of equation (3); each column reports a
different regression specification. The unit of observation is an ATC4 drug class × year.
The outcome variable “New Development” is the annual count of new development activity
(across all stages). The treatment variable is a continuous measure of predicted exclusion
risk. (Exclusion risk is predicted using 2011 market characteristics, prior to the introduction
of PBM formulary exclusions. Details on the prediction of exclusion risk can be found
in Appendix Table A.4.) The “Post” period comprises years 2012 and later, after the
introduction of PBM formulary exclusions. All specifications include year fixed effects and
ATC4 fixed effects. Columns 2 and 4 include time-varying controls for each of the drug class
characteristics listed in Table 1. Standard errors are clustered at the ATC4 level. Statistical
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Impact of Predicted Exclusion Risk on New Drug Development By
Stages

(1) (2) (3) (4) (5) (6)
All Preclinical Phase 1 Phase 2 Phase 3 Launch

Post X Pr(Exclusion) -21.98*** -11.05*** -6.010*** -3.830*** -1.098** 0.220
(6.571) (3.403) (2.077) (1.349) (0.422) (0.496)

Observations 1,397 1,397 1,397 1,397 1,397 1,397
Year FE YES YES YES YES YES YES
ATC FE YES YES YES YES YES YES
Market Controls YES YES YES YES YES YES
N of Drug Candidates Mean 30.61 17.39 6.54 4.57 2.11 1.02

Notes: See notes to Table 4. Each column reports a regression with a different outcome
variable. Column 1 replicates the result reported in Table 4 Column 2 on total development
activity. The additional columns decompose this affect to explore how drug development
changes at each phase, moving from the earliest observed preclinical activity in Column 2
through the each phase of clinical trials and eventual launch on the market. Standard errors
are clustered at the ATC4 level. Statistical significance is indicated as: *** p<0.01, **
p<0.05, * p<0.1.
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Figure A.1: Pharmaceutical Payment and Supply Chain Example

Notes: Illustration of the flow funds and prescription drugs for a prescription drug purchase covered by
a Medicare Part D Insurance plan. Other private insurance plans using PBMs have similar flow of funds.
Figure credit to Government Accountability Office (2019).
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Figure A.2: Distribution of Predicted Exclusion Risk
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Notes: This histogram plots the distribution of predicted exclusion risk of the 127 ATC4s in our main
analyses. Summary statistics are also provided. See notes to Appendix Table A.4 for details on how the
exclusion risk was calculated.
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Table A.1: Examples of ATC4 Codes Defining Drug Markets

A10 Diabetes drugs
A10A Insulins and analogues
A10B Blood glucose lowering drugs, excluding insulins
A10X Other drugs used in diabetes

C07 Beta blocking drugs
C07A Beta blocking agents
C07B Beta blocking agents and thiazides
C07C Beta blocking agents and other diuretics
C07D Beta blocking agents, thiazides and other diuretics
C07E Beta blocking agents and vasodilators
C07F Beta blocking agents, other combinations

Notes: This table provides examples of ATC4 classes for illustrative purposes. Our
sample includes 127 distinct ATC4 classes. A complete listing of the ATC4 class definitions
that guided this analysis can be found in WHO Collaborating Centre for Drug Statistics
Methodology (2010).

51



Table A.2: Summary Statistics, Part D Claims per Drug

Mean Std. Dev. Median No. of obs.
Claims for non-excluded drugs (all ages) 158,298 842,241 4,357 3,923
Claims for excluded drugs (all ages) 454,433 1,193,389 45,374 867
Market share, non-excluded drugs (all ages) 0.187 0.305 0.027 3,923
Market share, excluded drugs (all ages) 0.113 0.211 0.028 867
Claims for new drugs, not excluded on entry 125,826 395,623 7,123 1,811
Claims for new drugs, excluded on entry 193,731 452,800 27,799 59
Market share of new drug, not excluded on entry 0.147 0.264 0.027 1,811
Market share of new drug, excluded on entry 0.063 0.183 0.004 59

Notes: This table reports summary statistics from the Medicare Part D public use file.
Data tracks annual claims per drug in 2012-2017; the unit of observation is the drug-year
pair. Market share is calculated as the fraction of prescription drug claims in the ATC4 class
that are for the index drug. The first four rows report results for all drugs, comparing those
that were ever excluded to those that were never excluded durign the sample period. The
last four rows report results for the subset of “new drugs,” defined as drugs that enter the
market in 2007 or later, and so are ten years old or younger for the duration of the sample.
These final rows compare new drugs that were excluded within a year of entry to those that
were not excluded in the first year.

52



Table A.3: Impact of Immediate Exclusion on Prescriptions of New Drugs

(1) (2) (3) (4)
Log(No. of Claims) Log(No. of Claims) Log(Market Share) Log(Market Share)

Excluded at Entry -1.147** -1.193** -1.094** -1.099*
(0.573) (0.591) (0.546) (0.564)

Observations 1,846 383 1,846 383
ATC4 FE YES YES YES YES
Cohort X Year FE YES YES YES YES
Limited sample NO YES NO YES

Notes: This table investigates the impact of immediate exclusion by one or more PBM on
claims for a new prescription drug. Each column reports results from a separate regression.
The regressions include ATC4 fixed effects, and drug age X calendar year fixed effects.
Identifying variation comes from the debut of multiple drugs within an ATC4 drug class,
some of which are immediately excluded and others are not. Immediate exclusion is defined as
exclusion in the calendar year immediately following market entry. The sample is restricted
to drugs that enter the market in 2007 or later, and so are ten years old or younger for
the duration of the sample. In Columns 2 and 4, the sample is further restricted to only
ATC4 categories that have at least one immediately excluded drug. See notes to Appendix
Table A.2 for more details on the data. Standard errors are clustered at the drug level.
Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.4: Predicting Exclusion Risk

(1)
Exclusion

Log(1 + N of generic NDCs) -0.674**
(0.317)

Log(1 + N of brand NDCs) 0.656
(0.511)

Log(1 + N of ATC7s) 1.069
(0.665)

Mean brand price - mean generic price -0.00862
(0.00761)

Total prescription volume 1.70e-08**
(8.16e-09)

Observations 128

Notes: We used the above 2011 market characteristics of the ATC4 class to predict exclusion
risk. Using a Logit model, we regressed whether an AT4 class had at least one drug excluded
in 2012 or 2013 on all of the characteristics of the ATC4 class reported above. We then used
the regression’s fitted values to construct predicted exclusion risk of each ATC4. Data on
prices, the number of brand and generic NDCs, and the number of ATC7s are from FDB;
data on total prescription volume are from the 2011 Medical Expenditure Panel Survey.
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Table A.5: Impact of Exclusion Risk on New Drug Development:
Alternative Definitions of Exclusion Risk

Predicted Count Exclusion Predicted Share Exclusion Realized Exclusion
(1) (2) (3) (4) (5) (6)

New Dev. New Dev. New Dev. New Dev. New Dev. New Dev.

Post X Exclusion Risk -7.973*** -7.230** -59.50* -57.08* -5.824** -4.534**
(2.600) (2.772) (33.81) (31.25) (2.568) (2.290)

Observations 1,397 1,397 1,397 1,397 1,397 1,397
Year FE YES YES YES YES YES YES
ATC FE YES YES YES YES YES YES
Market Controls NO YES NO YES NO YES

Notes: This table reports results from estimating a modified version of equation (3),
applying alternative definitions of exclusion risk. Instead of defining exclusion risk as whether
an ATC4 class is predicted to have at least one drug with an exclusion as in Table 4, the
exclusion risk here is defined as how many drugs are predicted to be excluded in an ATC4
class in Columns 1-2 and what share of drugs are predicted to be excluded in an ATC4
class in Columns 3-4. In Columns 5-6, rather than using continuous measures of predicted
exclusion risk as our measure of treatment, we use a binary definition of treatment by looking
at realized exclusions: whether at least one drug in an ATC4 class was actually on a PBM
exclusion list. For further details on the regression specifications, see notes to Table 4.
Standard errors are clustered at the ATC4 level. Statistical significance is indicated as: ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.6: Impact of Predicted Exclusion Risk on New Drug Development:
Alternative ATC4 Linking

Direct Linking Approach Indirect Linking Approach
(1) (2) (3) (4)

New Development New Development New Development New Development

Post X Pr(Exclusion) -20.98*** -18.59*** -4.301*** -4.454***
(6.048) (6.745) (1.329) (1.473)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls NO YES NO YES
N of Drug Candidates Mean 21.06 21.06 10.29 10.29

Notes: These results parallel the specification underlying Table 4, but with alternative
methods for linking drug candidates to ATC4 classes. We have replaced our baseline outcome
measure of development activity with two alternative outcomes that take different approaches
to matching. In Columns 1-2, we only count track development activity among the subset
of drug candidates for which Cortellis directly reports the drug class. In Columns 3-4, we
impute ATC4s from ICD9 codes for all drug candidates, rather than relying on Cortellis’
reporting of drug class. Appendix B provides more details on how the drug candidates are
linked to ATC4s. Standard errors are clustered at the ATC4 level. Statistical significance is
indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.7: Impact of Predicted Exclusion Risk on New Drug Development:
Wild Cluster Bootstrap

(1) (2)
New Development Log(1+New Dev.)

Post X Pr(Exclusion) -21.98*** -0.333**
[-39.07, -7.604] [-.5344, -.03927]

Observations 1,397 1,397
Year FE YES YES
ATC FE YES YES
Market Controls YES YES

Notes: Columns 1 and 2 of this table repeat the specifications reported in Table 4 Columns
2 and 4, but now using wild cluster bootstrap to calculate the 95% confidence interval (rather
than using conventional inference). Clustering is performed at the ATC4 level. Statistical
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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A Theoretical Model

We focus on a potential pharmaceutical entrant that makes R&D decisions on the basis

of expected profitability. This firm can make investments in one of two drug classes: class

o is “old” in the sense that there is already an approved treatment in that class; class n is

“new” in the sense that there are no existing treatments. For tractability, we assume that

there is exactly one incumbent drug in the old class. The pharmaceutical firm pays a fixed

cost of drug development, K, that is the same for both classes. If the firm invests in class

o, it produces an FDA approved drug with probability φo; for class n this probability is

given by φn. If successful, the entrant competes as a monopolist in the new drug class and

as a Bertrand duopolist in the old drug class. For simplicity, we follow Dixit (1979) and

adopt a linear demand system with horizontally differentiated products. We assume there is

a single PBM that facilitates access to FDA approved drugs by administering an insurance

plan formulary. Patients pay a coinsurance fraction λ ∈ (0, 1) for drugs included in the

PBM’s formulary but must bear the full cost of drugs that are not.

We begin in Section A.1 by characterizing pharmaceutical profits in both the old and

new drug classes when formulary exclusions are prohibited. Next, in Section A.2, we

introduce formulary exclusions as a policy change in which PBMs begin granting exclusive

contracts to pharmaceutical firms in exchange for a fixed fraction (1 − α) ∈ (0, 1) of sales

revenue from the included drug. When there are two drugs on the market, we show that ex

post profits are lower for drugmakers when their drug is excluded from the PBM’s

formulary; because of this, they are willing to offer higher rebates ex-ante in order to win

the exclusive contract. Finally, after characterizing downstream profits associated with

approved drugs, both with and without exclusions, we analyze how the exclusion policy

impact firms’ upstream investment decisions, and provide an informal discussion of welfare

implications.

A.1 Downstream profits without exclusions

In our baseline case, we do not allow for exclusions; PBMs facilitate access to all FDA

approved drugs. If the entrant drug is approved, it competes as either a monopolist in class

n or as a differentiated Bertrand duopolist in class o. In both cases, its drug is included on
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the PBM’s formulary. Because formulary inclusion is guaranteed, the PBM cannot extract

rebate payments in the absence of a credible exclusion threat, in the context of our simple

model.21

We denote the entrant’s downstream profits as Πe,n in the new class and as Πopen
e,o in the

old class. The subscript e indicates the entrant; the subscript o or n indicates the old or new

class, respectively; the superscript open describes the open formulary policy state where no

drugs are excluded.

In drug class n, the entrant faces a standard monopoly pricing problem:

max
pe,n

(pe,n −m) (A−Bλpe,n)

Here, A is a parameter describing the level of demand in this drug class and B is a parameter

describing consumer’s elasticity with respect to price. Marginal costs of production are

denoted as m. Demand also depends on λp because we assume consumers are partially

insured. The relevant price consumers face is λp ≤ p, even though the drugmaker receives

p. Solving this problem yields equilibrium prices pe,n, quantities qe,n, and profit Πe,n.

Meanwhile, in class o, the entrant e would be two competing with the incumbent i. We

assume that the demand system is symmetric and the drugs are horizontally differentiated

but of equivalent quality, so that b > d.

qopene,o = a− bλpopene,o + dλpopeni,o

qopeni,o = a− bλpopeni,o + dλpopene,o

Here, the parameters a and b denote potentially different levels and elasticities of demand,

relative to class n. The entrant and incumbent symmetrically choose price to maximize

21In reality, PBMs could negotiate rebates in exchange for placement on a preferred formulary tier, even
in the absence of exclusions. For simplicity, we do not include these other tools in our model. Crucially,
exclusions are the strongest tool available to PBMs for restricting drug access, and are thus a significant
departure from the earlier forms of control over formulary structure.
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profits:

max
popene,o

(popene,o −m)
(
a− bλpopene,o + dλpopeni,o

)
max
popeni,o

(popeni,o −m)
(
a− bλpopeni,o + dλpopene,o

)
We take the first order conditions and solve for the optimal duopoly pricing.

Proposition A.1 The incumbent and entrant face symmetric demand and will choose

identical prices and then produce identical quantities. Production will occur as long as

2b− d > 0.

popene,o = popeni,o , qopene,o = qopeni,o , Πopen
e,o = Πopen

i,o

This proposition is proved by deriving equilibrium price, quantity, and profit. These

expressions are given below:

popene,o = popeni,o =
a

λ(2b− d)
+

bm

(2b− d)

qopene,o = qopeni,o =
ab

(2b− d)
− λb(b− d)m

(2b− d)

Πopen
e,o = Πopen

i,o =
b (a− λ(b− d)m)2

λ(2b− d)2

A.2 Downstream profits with exclusions

We now consider the case in which PBMs are able to exclude approved drugs when there

is a viable alternative. In our model, this means that there can be no exclusions in class n,

so that prices, quantities, and profits are unaffected.

In class o, however, drugs can be excluded. Excluded drugs can still be marketed, but

would not be covered by insurance, meaning that consumers face the full price p rather

than the subsidized λp. The firm again enters differentiated Bertrand competition, but with

another firm whose drug is covered. For the purposes of this exposition, we assume that the
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entrant is excluded and the incumbent is covered. The demand functions will then become:

qexcludede,o = a− bpexcludede,o + dλpincludedi,o

qincludedi,o = a− bλpincludedi,o + dpexcludede,o

Each firm will choose prices to maximize profits. Here, we assume that the term (1− α)

is the pre-negotiated rebate that the incumbent pays in order to be included in a PBM’s

formulary. We will endogenize α in the following section. If the entrant is excluded, then it

no longer pays the (1− α) revenue share to the PBM.

max
pexcludede,o

(pexcludede,o −m)
(
a− bpexcludede,o + dλpincludedi,o

)
max

pincluded
i,o

(αpincludedi,o −m)
(
a− bλpincludedi,o + dpexcludede,o

)
Taking first order conditions, we can solve for the optimal price, quantity and profits for

entrant and incumbent.

Proposition A.2 When λ ≤ α, we have the following expressions for prices and quantities.

pexcludede,o ≤ αpincludedi,o , qexcludede,o ≤ qincludedi,o

The condition λ ≤ α means that the share of revenue retained by the pharmaceutical

company after rebates is greater than the drug coinsurance rate paid by insured

consumers.22 Under this assumption, the included drug is able to charge a higher price to

insurers and still sell more quantities because formulary placement leads consumers to face

a lower out-of-pocket price. The more generous the insurance coverage, the larger the price

wedge between the included and excluded drug. If marginal costs of production are zero,

then the two drugs will sell equal quantities: the excluded drug’s lower prices will be

exactly the amount needed to offset the insurance coverage. If marginal costs are positive,

then the excluded drug will sell at a lower quantity than the included drug. Finally, the

22Empirical estimates suggest this sufficient condition holds in practice. The Kaiser Family Foundation
reports average insurance subsidy rates (1 − λ) for prescription drugs ranging between 62% and 83%,
depending on the drug tier, for employer sponsored insurance plans in 2017 (Claxton et al. 2017). These
estimates imply coinsurance rates λ in the range of [0.17, 0.38]. In comparison, Kakani et al. (2020) estimate
rebates of 48% in 2017, suggesting the share of retained revenue α as 0.52.
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expressions above assumed the entrant is excluded, but flipping the identity of the

excluded drug will simply swap the comparative statics: the excluded drug will have a

lower revenue per unit and lower quantity sold in equilibrium.

To prove these propositions, we solve for the equilibrium price and quantities, taking the

rebate level (1−α) required for formulary inclusion as given. We then solve for the optimal

rebate bidding strategy in the second stage. Prices are as follows:

pexcludede,o =
a

(2b− d)
+
b(2αb+ λd)m

α(4b2 − d2)

pincludedi,o =
a

λ(2b− d)
+
b(2λb+ αd)m

αλ(4b2 − d2)

Recall that the included drug does not receive the full price pincludedi,o in additional revenue

for each unit sold, because it owes a cut (1− α) of its revenue to the PBM. As a result, the

effective revenue per unit sold is αpincludedi,o for the included drug. As a result, we compare

αpincludedi,o to pexcludede,o to calculate the difference in revenue per unit across the included and

excluded drug.

αpincludedi,o − pexcludede,o =
(α− λ)a

λ(2b− d)
+

(α + λ)(α− λ)bdm

αλ(4b2 − d2)

As long as λ ≤ α and 2b− d > 0, it will hold that:

αpincludedi,o ≥ pexcludede,o

We can calculate equilibrium quantities as follows:

qexcludede,o =
ab

(2b− d)
− b (2αb2 − λbd− αd2)m

α(4b2 − d2)

qincludedi,o =
ab

(2b− d)
− b (2λb2 − αbd− λd2)m

α(4b2 − d2)
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From these quantity expressions, we calculate:

qincludedi,o − qexcludede,o =
(α− λ)b(b+ d)m

α(2b+ d)
.

Maintaining the assumption that λ ≤ α, it follows that:

qincludedi,o ≥ qexcludede,o .

A.3 Profits and bidding on rebates

From the PBM’s perspective, exclusions allow it to extract positive rebates 1 − α by

leveraging the exclusion threat. From the drug company’s perspective, exclusions reduce

the profitability of entry into the old class; we discuss these profitability comparisons in

this section. A corollary of Proposition A.2 is that profits will be higher when a drug is

included rather than excluded from an PBM’s formulary, as long as the final rebate level is

not too high. Because of this, drugmakers would be willing to provide an ex ante payment in

order to avoid exclusion ex post. We model this process as a second price auction in which

pharmaceutical firms bid for the exclusive right to be included in a PBM’s formulary by

offering rebates of the form αpq. The drug offering the highest rebate offer will be included

on the formulary; in cases with tied bids, one drug will be selected at random for inclusion.

The following pins down rebates in equilibrium:

Proposition A.3 In the old drug class, firms will be bid a rebate level 1 − α = 1 − λ, so

that:

Πexcluded
e,o = Πincluded

i,o and Πexcluded
e,o > Πopen

e,o (4)

At the time a drug is approved, each pharmaceutical firm would be willing to set the rebate

up to the level that would equalize profits when included on formulary to the profits when

excluded. As shown in Appendix A, excluded profits equal included profits when the rebate

share (1 − α) equals the insurance coverage share (1 − λ). Assuming that the entrant and

incumbent have symmetric demand and marginal costs, the incumbent’s bid is the same as

the entrant’s and we assume that the PBM uses a coin toss to break the tie. Because the
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firm’s bid leaves it indifferent between being included and being excluded, the firm receives

its outside option profits in either case, and the PBM retains the extra rebate payment.23

To compare profit of the entrant to the old drug class, see the expressions below:

Πexcluded
e,o = (pexcludedi,o −m)qexcludede,o

Πincluded
i,o =

(
pexcludedi,o +

(α− λ)a

λ(2b− d)
+

(α2 − λ2)bdm
αλ(4b2 − d2)

−m
)(

qexcludede,o +
(α− λ)b(b+ d)m

α(2b+ d)

)

As shown above, as long as α > λ, the included drug makes higher profits. Further,

profits for the included drug are increasing in α, and the difference in profitability between

the included and excluded drug is also increasing in α. Profits for the included drug are

equal to profits for the excluded drug when λ = α, since at this point the marginal revenue

per unit sold is the same for included and excluded drugs, as is the quantity sold. The drug

company would be willing to bid a maximum rebate level of up to 1−α = 1−λ for inclusion

on the formulary.

Now, we can compare price, quantity, and profitability of the entrant under the open

formulary regime compared to the closed formulary regime. The entrant’s price net of the

PBM rebate under the open formulary is higher than the price of the excluded drug in the

closed formulary.

popene,o − pexcludede,o =
(1− λ)a

λ(2b− d)
+

(α− λ)bdm

α(4b2 − d2)

Under the sufficient condition that λ ≤ α, it will hold that the the entrant’s drug price is

strictly higher under the open formulary than if it were excluded from coverage.

αpopene,o > pexcludede,o

23For simplicity, we do not model demand for PBM services. In practice, some of the PBM’s rebate may
be passed on to consumers or retained as PBM profit.
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Further, the entrant’s quantity sold is also strictly larger under the open formulary than

when it is excluded.

qopene,o − qexcludede,o =
(1− λ)b(b− d)m

(2b+ d)
+

(α− λ)b2dm

α(4b2 − d2)

As long as λ ≤ α and b > d, it will also hold that:

qopene,o > qexcludede,o

Because the entrant’s price and quantity are both strictly larger under the open formulary

than when the entrant is excluded, it follows that entrant’s strictly profits are higher under

the open formulary:

Πopen
e,o > Πexcluded

e,o .

A.4 Upstream investment decisions

A firm will choose whether to invest in the old or new drug class by comparing expected

profits and success rates of drugs in each class. When there are no exclusions, a potential

entrant’s expected returns at the time of its R&D decision are given by:

E[Πe] =

φnΠopen
e,o if develop for class o

φoΠe,n − if develop for class n

The firm therefore chooses to develop for the old class as long as

Πopen
e,o >

φn

φo

Πe,n. (5)

In general, the old drug class will be more attractive when the likelihood of successful

development is higher, when there is a large base of potential consumer demand (e.g., if it is a

common condition), or if the firm’s drug is more differentiated from that of the incumbent’s.

However, when there is a threat of exclusion, the entrant anticipates needing to bid for

access to the PBM’s formulary in the event it creates an FDA approved drug for the old

class. The firm has a probably φo of developing a successful drug in the old class, in which
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case it will enter its maximum rebate bid to be included in the formulary and win half the

time. However, any ex post returns to being included in the formulary are bid away, so that

the entrant expects to receive only its outside option: revenues in the case when its drug is

excluded.

Meanwhile, profits from developing an entrant for the new drug class do not depend on

whether the formulary is open or closed, because we assume that drugs can only be excluded

when there is a viable alternative. The potential entrant’s new criterion for developing in

class o when exclusions are permitted is given by:

Πexcluded
e,o >

φn

φo

Πe,n. (6)

The criterion differs from the no-exclusion condition given in Equation (5) only in the

lefthand side, which had a Πexcluded
e,o instead of Πopen

e,o . As shown above profits are higher

when there is an open formulary so that Πopen
e,o > Πexcluded

e,o . The model therefore predicts

that the introduction of an exclusion policy leads firms to develop relatively fewer drugs for

the older class.
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B Linking Drug Candidates to ATC4 Classes

We matched the pipeline drug candidates in Cortellis to ATC4 codes in two ways: directly

via EphMRA codes and indirectly via ICD9 codes if the EphMRA codes were missing.

Direct method: matching via EphMRA codes. Cortellis links drug candidates to

chemical drug classes (specifically the EphMRA code, which is a close derivative of the

ATC classification). Using a manually created crosswalk of EphMRA codes to ATC4 codes,

we used the EphMRA codes of the drug candidates to link the drugs to ATC4 classes. A

drug can be linked to many ATC4 classes, and we assigned equal weights of 1 to all ATC4

classes that directly matched to a given drug through their EphMRA codes.

Indirect method: matching via ICD9 codes. An alternative way to link the drug

candidates to ATC4 classes is through the drugs’ areas of therapeutic use (ICD9) provided

by Cortellis. Using the drug to ICD9 crosswalk from Cortellis, we linked to a crosswalk of

ICD9 to ATC4 codes created by Filzmoser et al. (2009), in which the authors assigned a

probabilistic match score of ICD9-ATC4 pairs.24 Since this results in a drug being matched

(indirectly via ICD9) to many ATC4s, we assigned the likelihood of an ATC4 matching to

a drug based on the probabilistic match scores from Filzmoser et al. (2009), such that the

assigned weights sum to 1 for each drug.

For our main analyses, we matched the drug candidates to ATC4 codes using the direct

method via EphMRA codes and used the indirect method via ICD9 codes for drugs with

missing EphMRA codes. As shown in Appendix Table A.6, our results are similar regardless

of the linking method used.

24Filzmoser et al. (2009) merged a dataset of prescriptions (with ATC4 codes) and a dataset of hospital
admissions (with ICD9 codes) at the patient-level. Since the ATC4 code of a patient’s drug matches to many
diagnosis codes of the patient, the authors use a frequency-based measure to calculate a probabilistic match
score of an ICD9-ATC4 pair. They conduct this match specific to gender/age group of the patients. For our
analysis, we take the average match probability across the gender/age groups for a given ICD9-ATC4 pair.
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