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1 Introduction and Summary of Results

Several sticky price models employ a “generalized hazard function”, a function relating the firm’s

price adjustment probability to its state. Such a function provides a tractable description of

the firm’s price setting behavior and allows for a vast variety of empirical hazards to be fitted.

Compared to the workhorse Calvo (1983) model, where the adjustment probability is constant,

a generalized hazard function ⇤(x) allows this probability to depend on the state x, the firm’s

desired adjustment, like the markup deviation from the desired level. Such state dependence is

appealing theoretically, see e.g. Barro (1972); Dixit (1991); Caplin and Spulber (1987); Golosov

and Lucas (2007), and has been found to be relevant empirically, see e.g. Eichenbaum, Jaimovich,

and Rebelo (2011); Gautier and Saout (2015). The notion of a generalized hazard function, and

its derivation from first principles, were developed in seminal “menu-cost” papers by Caballero

and Engel (1993a, 1999, 2007) and Dotsey, King, and Wolman (1999), and later revisited using

information theoretical foundations by Woodford (2009) and Costain and Nakov (2011b). Several

authors have since employed the generalized hazard function in applications and empirical work.1

This paper mostly follows the setup introduced by Caballero and Engel (2007) to frame a broad

class of sticky price models where the firm’s pricing decisions are represented by a generalized

hazard function ⇤ (|x|). The symmetry of the function arises since we focus on economies where

the state is driftless and is subject to idiosyncratic productivity shocks, an accurate benchmark

for low-inflation economies.2 A large number of models are nested by this framework: starting

with two “extreme” versions such as the canonical Calvo model with a constant hazard ⇤ (x) = �

and unbounded x, and the Golosov and Lucas (2007) model with x bounded by the adjustment

threshold ±X and a zero hazard on |x| 2 (0, X) with a spike that can be thought of as an “infinite

hazard” at the adjustment thresholds,3 and other intermediate cases, such as the so called Calvo-

1For recent applications see e.g. Costain and Nakov (2011a); Carvalho and Kryvtsov (2018); Sheremirov (2019);
for empirical work see e.g. Berger and Vavra (2018); Petrella, Santoro, and de la Porte Simonsen (2018), and for
related theoretical work Baley and Blanco (2019).

2See proposition 7 in Alvarez, Le Bihan, and Lippi (2016) for a result explaining why inflation has no first order
e↵ects on the propagation of monetary shocks in this class of models. See Baley and Blanco (2019) for extensions
to large drift, as in the case of large inflation.

3The infinite hazard at the threshold should be thought of as an approximation of the behaviour at an sS barrier.
In our results we make the di↵erent behaviour precise. In Proposition 4 we produce a rigorous approximation of
the behaviour at barrier as a very high hazard rate, which justifies this analogy.
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plus model by Nakamura and Steinsson (2010), the random menu cost problem of Dotsey and

Wolman (2020), as well as the cases discussed above which explicitly use a generalized hazard

function.

We employ this setup to prove five new analytical results which gives a thorough understand the

workings of sticky price models, their mapping to the data, and the propagation of monetary shocks.

First, we establish an invertible mapping between the fundamental cost of price adjustment (menu

cost or information cost) and the “reduced form” generalized hazard function. We consider two

possible foundations underlying this mapping. One, introduced in the seminal work by Caballero

and Engel (1993b), assumes the firm can change its price upon paying a fixed (menu) cost  

that is drawn every period from an unrestricted distribution of costs G( ). We prove that the

mapping between any given menu cost distribution G( ) and the generalized hazard function ⇤(x)

is invertible. This means that any non-decreasing generalized hazard function can be rationalized

by a unique choice of the distribution of the random fixed costs G( ).

While the non-decreasing nature of the generalized hazard function was established by Caballero

and Engel (1993a), we prove the invertibility of the mapping and give an explicit formula to recover

G( ) from any ⇤(x) non-decreasing in |x|. We also provide an identical result for an alternative

foundation with the firm optimally selecting the “probability” of adjustment opportunity in every

period subject to a cost c(·), a simplified version of Woodford (2009), where the cost is modeled

in a rational inattention framework.4 We show that every non-decreasing generalized hazard rate

⇤ can be rationalized by a convex cost function c(·).

Second, we derive a mapping between the theory and the data on the size-distribution of price

changes, which have been heavily used to discipline sticky price models over the past two decades

(see e.g. Klenow and Malin (2010); Cavallo and Rigobon (2016)). We provide an invertible mapping

between the (observed) distribution of price changes Q(�p) with density q(�p), frequency of price

changes Na, and the generalized hazard function ⇤(x). A price change �p = �x is chosen by a

firm with desired adjustment x that is given the option to adjust. A straightforward relation links

the density of price changes q(�x) to the hazard function and the cross-sectional distribution of

4See also Costain and Nakov (2011b) for a sticky price model where firms must pay a cost to increase the
probability of a price change.
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desired adjustments, f(x), namely q(�x)Na = ⇤(x)f(x). Previous contributions such as Berger

and Vavra (2018) retrieve f(x) by postulating a parametric form for ⇤(x) and then using this

relation. We show that, surprisingly to us, ⇤(x) and f(x) are both fully encoded in q(�p) and

Na, and that it is possible to identify both functions using the distribution and frequency of price

changes alone. We derive the expression to retrieve f(x) and ⇤(x) from q(�p) and Na in closed

form. The recovery of the function f(x) from observables relates to the work by Baley and Blanco

(2019) who obtain all the moments of f(x) even in the presence of drift and asymmetries. Using

our first result, we can then recover the entire distribution of random menu cost, G( ). We propose

an estimator for such distributions that is consistent with the theory, and allows for unobserved

heterogeneity among products.

We complement these results by establishing that, under regularity conditions, the survival

function S(t), measuring the distribution of durations of unchanged prices, uniquely identify ⇤(x)

as well. Summarizing, the generalized hazard rate ⇤ is identified either by the distribution of price

changes Q and one temporal statistic (the frequency), or by the distribution of durations S and

one statistic on the size of price changes (the variance).

To illustrate our proposed procedure, we estimate the underlying distribution of price changes,

measure its kurtosis, and recover ⇤(x), f(x), andG( ) using publicly available scraped-price data of

Cavallo’s (2015). Interestingly, accounting for measurement error and aggregation, and correcting

for unobserved heterogeneity, we find values around 2, much smaller values of kurtosis than those

typically reported in the literature, and roughly consistent with the quadratic generalized rate.

Furthermore, we define a statistic C (for “Calvo-ness”) that measures the fraction of price

changes happening independently of the state of the firm. Using our characterization of the rela-

tionship between the observed distribution of price changes and the generalized hazard rate, we

show that C is proportional to q(0), the density of price changes near zero. We estimate C in

Cavallo’s (2015) data set and found it to be about 6%, i.e. about 94% of price changes show some

state dependence.

Third, we establish that the cumulative impulse response (CIR) of output to a once-and-for-all

monetary shock in any model characterized by a generalized hazard function ⇤(x) is a simple
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function of two steady state statistics: the Kurtosis of the distribution of price changes divided

by six times the frequency of price changes. The CIR, namely the area under the output impulse

response function, is a convenient summary measure of the non-neutrality of monetary shocks.

The notion of CIR was introduced in Alvarez, Le Bihan, and Lippi (2016), which showed that

the “kurtosis result” holds for a Calvo-plus model (and multi-product firms), a class that implies

a constant hazard function ⇤(x) = � in the inaction region. Alvarez, Lippi, and Paciello (2016)

showed that the kurtosis results holds in a large class of rational inattention models, as proposed by

Reis (2006), which are purely time dependent.5 This paper provides a substantive extension to the

previous cases: we establish that the kurtosis result holds for any symmetric ⇤(x) function, allowing

for both finite and infinite X.6 This includes decreasing or non-monotone hazard functions (which

are not rationalized by random menu cost models), and hazards with discontinuities corresponding

to mass points in the distribution of menu cost. For instance, this provides a rigorous (negative)

answer to Dotsey and Wolman (2020) who conjecture, based on numerical simulations of a di↵erent

model, that the “kurtosis result” may fail to apply in a model with random menu costs.7

The fourth contribution establishes that within the class of non-decreasing generalized hazard

functions the largest Kurtosis is six, attained by the constant hazard rate model, like the pure

Calvo (1983) case. The smallest one, equal to one, corresponds to the pure (non-random) menu

cost model of Golosov and Lucas (2007). This result is interesting because non-decreasing hazard

rates are an implication of either the random menu cost or the information gathering setup, and

thus it establishes Calvo as an upper bound within this broad classes of models. Indeed, due to

our first result, the class of non-decreasing generalized hazard functions describes the entire set of

models with random menu costs or the entire class of information gathering models. For a Kurtosis

higher than six, the value of the pure Calvo model, one would need to come up with an economic

foundation for a (locally) decreasing hazard function.

5Our initial use of the cumulative response was restricted to problems with zero drift (inflation). In Alvarez and
Lippi (2019, 2020) we extend the result to the cumulated output response for problems featuring a non-zero but
small inflation. Baley and Blanco (2019) extend our result, characterizing the CIR in terms of objects related to the
distribution of price gaps, to any moment of interest for the CIR, and allowing for non-zero drift and asymmetries.

6The only case where this result was already established is the Calvo+ model with ⇤(x) constant on (0, X).
7We conjecture that the reason their numerical simulations fail to establish this property is due to the presence of

a fraction of firms that have flexible prices. In such settings it is essential to properly aggregate across the di↵erent
types of firms. Failing to do so will obfuscate the result, which holds for each firm’s type.
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The fifth contribution studies the scope of the Flexibility Index, F , a notion introduced by Ca-

ballero and Engel (2007) to analyze the link between the microeconomic behavior and aggregate

stickiness. Subsequently this measure has been used by some authors as a summary measure of

monetary non-neutrality, see e.g. Berger and Vavra (2018); Petrella, Santoro, and de la Porte Si-

monsen (2018). We show that the index corresponds to the slope of the impulse response on

impact (right after the shock). For models with barriers, where X is bounded, the flexibility index

is not informative about the non-neutrality since it is always infinite. For models without barriers,

where X is unbounded, F is finite, and can be computed in closed form for isoelastic hazards ⇤,

including the widely used quadratic case. We present non-pathological examples where the same

F corresponds to di↵erent values of the cumulative impulse response, and where F is not even an

accurate summary of the short-term response of output.

Structure of the paper. The next section provides two foundations for the generalized hazard

function. In the first one (Section 2.1), firms choose when to change prices subject to random

menu costs, distributed according to CDF G. In the second one (Section 2.2), firms choose the

intensity with which they can change prices, subject to a cost function c. In both models, the

optimal decision rule is summarized by a generalized hazard function ⇤. We show that in both

models, given ⇤, one can recover the primitive cost, either the G or c. Section 3 characterizes the

steady-state statistics of a model where the firms’ decisions follow a generalized hazard function.

Section 4 shows how to recover ⇤ starting from an observed distribution of the size of price changes,

and estimate it in Cavallo’s (2015) data set. Section 5 establishes that, under some conditions, the

information encoded by the size distribution of price changes can equivalently be obtained from

the distribution of spell durations. Section 6 discusses the propagation of a once-and-for-all small

aggregate shock in an economy characterized by a generalized hazard function, and proves that its

e↵ect can be summarized by a simple su�cient statistic. Section 7 discusses scope and limitations

of the flexibility index, a summary measure for the non-neutrality of monetary shock that is often

used in the literature.
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2 Foundations of the Generalized hazard function ⇤(x)

The generalized hazard function is a building block of several macro models featuring sticky prices.

It is a function that maps the state of the firm, x, e.g. the deviation of the current markup from

the profit maximizing one, into the likelihood of a price adjustment ⇤(x). Such a function is

appealing to scholars because it allows for substantive flexibility in fitting cross-sectional data on

price setting behavior while, at the same time, having explicit microeconomic foundations. This

section presents two alternative settings for such foundations, and provides an invertible mapping

that allows one to recover the foundations from a given hazard function.

Our first setup uses a random menu cost model, first proposed by Caballero and Engel (1993a)

and elaborated in Caballero and Engel (1999, 2007). A particular case, the Calvo-plus model, was

analyzed by Nakamura and Steinsson (2010). The second setup relates to models of inattention as

in Woodford (2009), where firms choose the arrival rate of opportunities to change prices.8

Both setups feature a firm that maximizes the present discounted value of a per-period profit

function given by �Bx
2, a second order approximation of the profit function, where x is the price

gap, and the parameter B > 0 measures the curvature of the profit function. If prices are not

changed, the price gap x evolves as a standard Brownian Motion with zero drift and variance �2.

The lack of drift indicates that the economy under consideration has no inflation.9 The two setups

di↵er in the friction that prevents the firm from setting x = 0 at all times. In the first, the friction

is due to the presence of random fixed costs of price adjustment; in the second the friction is due

to an information cost.

2.1 The Random Menu Cost Model

The Calvo-plus model supplements the traditional Calvo model with the possibility that the firm

can change its price by paying a fixed menu cost at any time. The advantage of this model is

8In Woodford (2009) the form of the firm’s problem and the specification of c(·) are derived assuming constraints
on information flows.

9See The Online appendix B in Alvarez and Lippi (2014) for a detailed microfoundation of this model. The
focus on a model with zero inflation provides an accurate approximation for economies where inflation is low, as
the e↵ects on decision rules are of second order when inflation is close to zero, as shown theoretically and validated
empirically in Alvarez et al. (2019); Alvarez and Lippi (2020).
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to eliminate a long tail of delayed adjustments that seems counterfactual. The generalized model

allows the firm to draw a fixed menu cost  from a distribution G at random times – arriving at

a Poisson rate  > 0.

As in Caballero and Engel (1993a), we call the di↵erence between the current price of the

firm and its ideal price a “price gap”. We will specify the process for the demand and cost of

the firm, so that the price gap is the state of the firm’s problem. The menu costs drawn by the

firm can be zero or strictly positive. If the cost is zero the firm changes its price to the ideal one

(i.e. it “closes its price gap”). If the firm draws a strictly positive cost, it will either ignore it

or change its price depending on the value of the “price gap” relative to the realization of the

fixed cost. In particular, the optimal decision rule will be characterized by a threshold rule that

gives the maximum adjustment cost that the firm is willing to pay for adjustment. For all fixed

costs smaller than the threshold the firm changes its price, while for larger costs it keeps the price

unchanged.

We also allow the firm to have a price change at any time by paying a (relatively large) fixed

cost, which we denote by  > 0 and refer to as the “deterministic fixed cost”. If  = 1, then the

firm has no such alternative. We can write the value function of the firm, v(x), as:

rv(x) =min

⇢
Bx

2 +
�
2

2
v
00(x) + 

Z  

0

min
n
 +min

x̃

v(x̃)� v(x) , 0
o
dG( ) , r

⇣
 +min

x̃

v(x̃)
⌘�

Two points are worth making. First, given the symmetry of Bx
2, the value function is symmetric

around x = 0. A proof can be constructed by a simple guess and verify argument. Second, if

 = 1 then X = 1, and thus there is no second branch in the Bellman equation. Note that as

long that either r > 0 and/or that  > 0, the value function v is finite and well defined in the case

of  = 1.

The term minx̃ v(x̃) is the value right after adjustment, and given the symmetry of the return

function, we have v(0) = minx̃ v(x̃). Thus we can simply write that for all x

rv(x) = min

⇢
Bx

2 +
�
2

2
v
00(x) + 

Z  

0

min { + v(0)� v(x) , 0}dG( ) , r ( + v(0))

�
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For the case where  < 1 we can use that the optimal decision rule has a threshold X < 1 such

that if |x| � X the firm pays the fixed cost  . Thus we can write

rv(x) =

8
>><

>>:

Bx
2 + �

2

2 v
00(x) + 

v(x)�v(0)R
0

 dG( ) +  [v(0)� v(x)]G (v(x)� v(0)) , |x|  X

r (v(0) + ) , |x| > X

(1)

Note that we can define the threshold function x̄ : [0, ] ! [0, X] as solving

v(x̄( )) = v(0) +  for all  2 [0, ] (2)

It is easy to see that v is increasing in |x|, since the period cost Bx
2 is strictly increasing in |x|,

the uncontrolled process is a brownian motion, and the adjustment cost is independent of x. Since

v is strictly increasing in [0, X], then x̄
0( ) = 1/v0(x̄( )) > 0. We can let the function  ̄(x) be the

inverse of x̄( ).

For simplicity, in the characterization of the problem that follows we will assume a distribution

function G with a continuous density. We require G to be continuously di↵erentiable at all points,

with the possible exception of  = 0. For completeness, Appendix C considers the case of a discrete

distribution G, where  takes finitely many values.10 In either case we have the following smooth

pasting and optimal return point conditions:

v
0(�X) = v

0(X) = v
0(0) = 0 (3)

We are now ready to define the generalized hazard rate, ⇤ : (�X,X) ! R+, which gives the

probability (per unit of time) that a firm with x 2 (�X,X) will change its price. It is defined

by the optimal decision rule, or the value function, as well the Poisson arrival rate  > 0 and the

distribution of fixed cost G:

⇤(x) = G (v (x)� v (0)) for all x 2 (�X,X) . (4)

10The two cases di↵er on whether x̄(·) is a continuous function, and on whether the value function v(·) is twice
di↵erentiable everywhere or it has jump discontinuities on finitely many values. Indeed in the latter case we need
to rewrite the value function since v00(x) is not defined at all points.

8



The function ⇤ is symmetric around x = 0 and weakly increasing in |x|. It is continuous at x if G

is continuous at  = v (x) � v (0), and bounded above by . While the function ⇤ is not defined

at x = ±X, we abuse notation and let ⇤(X) = limx!X ⇤(x) = G ( ) = .

2.1.1 Rationalizing a given generalized hazard ⇤

We next show that any increasing, di↵erentiable, symmetric and bounded hazard rate ⇤ can be

rationalized as the solution to the firm problem in equation (1) by a unique menu cost distribution

G and two parameters {, }. Our proof is constructive: we provide an algorithm to compute

{G,, } from ⇤, proving existence and uniqueness. Indeed G is obtained by solving a linear

ordinary di↵erential equation of the second order. Section 2.2 describes an alternative problem of

the firm that also generates a non-decreasing generalized hazard function. We find this interesting

because it allows us to relate to setups costly information collection, as in Woodford (2009).

The main result in this section shows how to recover the distribution G, with a density G
0 = g,

given ⇤ and the values of three parameters: r, B, and �2. Three remarks are in order. First, the

values of the fixed costs  are measured relative to B, and thus the optimal decision rules depend

only on the distribution of  /B. Second, we show that �2, while in principle unobservable, is

encoded in the frequency and variance of price changes. Thus, once ⇤ is given, we can recover

all the parameters of the firm’s problem, except the discount rate r. Third, while in this section

we consider the case where G is di↵erentiable for  > 0 to simplify the exposition, Appendix C

considers discrete distributions of costs which imply an hazard ⇤ that is a step function. In this

case we can recover G starting from ⇤ by solving a system of linear equations.

Assume the firm faces a distribution G of the menu costs with a density g for all  > 0, and

possibly a mass point at  = 0. In this case its Bellman equation solves

rv(x) = Bx
2 +

�
2

2
v
00(x) +

v(x)�v(0)Z

0

[ + v(0)� v(x)]g( )d + [v(0)� v(x)]G(0) (5)

for all x 2 [�X, 0], and we can use the symmetry of v to define it as v(x) = v(�x). The boundary

conditions are v0(X) = 0 and v(X) = v(0)+ , the smooth pasting and value matching. Note that
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in the interior (0, X) the function v solves a non-linear ordinary di↵erential equation.

Before the main result on the existence of a unique invertible mapping between ⇤ and G, we

state an intermediate result that provides a solution for the value function v and a new auxiliary

function that will be used to solve the general problem. Consider the function ⇤ describing the

probability per unit of time of a price adjustment if the price gap is |x| < X. We have the following:

Lemma 1. Let the function u solve the linear ordinary di↵erential equation

[r + ⇤(x)] u(x) = 2Bx+
�
2

2
u
00(x) for x 2 [0, X] (6)

with boundary conditions u(0) = u(X) = 0. The solution for u is unique. Moreover, v is given by

v(x) = u
0(0)

�
2

2r
+

Z
x

0

u(z)dz for x 2 [0, X] . (7)

The auxiliary function u can readily be used to compute the value function and, as shown

below, to characterize the distribution of costs that rationalizes the postulated hazard function.

We now state the main result of this section:

Proposition 1. Fix a discount rate r > 0, the curvature of the profit function B > 0, the

volatility of shocks � > 0, and the threshold X, with X 2 R+ [ {+1}. Consider a generalized

hazard function ⇤(·) : (�X,X) ! R+ that is symmetric around zero, increasing in |x|, di↵eren-

tiable on (0, X), and bounded. There exist real numbers { > 0, > 0}, both positive, and a cost

distribution G(·) : [0, ] ! [0, 1] with a density g(·), continuous on (0, ), and possibly a mass

point G(0) > 0, that uniquely rationalizes ⇤ with a value function that solves equation (5). Using

the auxiliary function u in Lemma 1 and U(x) =
R

x

0 u(z)dz for x 2 (0, X),

 = lim
x"X

⇤(x) ,  = U(X) , G(0) =
⇤(0)


(8)

g (U(x)) =
⇤0(x)

u(x)
for all x 2 (0, X) with  = U(x) (9)
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The proposition allows us to retrieve the primitives of a fully specified price setting problem

starting from any given non-decreasing hazard function ⇤. Note that whenever ⇤(0) > 0 the model

implies a mass point at  = 0. Intuitively, rationalizing a non-zero probability of adjustment when

the gap is small requires a mass point of zero menu costs. Also note that g(·) > 0 requires ⇤0(·) > 0.

Application: a quadratic hazard function. We conclude with an application to a quadratic

generalized hazard function ⇤(x) = ⇤0 + ⇤2x
2 where ⇤0 � 0,⇤2 � 0 and |x| 2 [0, X].11 We can

solve for the auxiliary function u(x) using Lemma 1. This yields a polynomial:

u(x) =
1X

i=0

a2i+1 x
2i+1 (10)

satisfying the ODE in equation (6) and the boundary conditions u(0) = u(X) = 0. Straightforward

application of the method of undetermined coe�cients gives the recursive relation

a3 =
(r + ⇤0)a1 � 2B

3�2
(11)

a2i+1 =
(r + ⇤0)a2i�1 + ⇤2a2i�3

�2 i(2i+ 1)
for i = 2, 3, ... (12)

All coe�cients are determined as a function of a1, which is pinned down by the boundary condition

u(X) = 0. Application of Proposition 1 gives U(x) =
P1

i=1
a2i�1

2i x
2i, the value function v(x) =

a1
�
2

2r + U(x), the arrival rate  = ⇤0 + ⇤2X
2, the distribution function G( ) with

G(0) =
⇤0

⇤0 + ⇤2X
2

(13)

Note that if ⇤0 > 0 the proposition implies a mass point at  = 0. For |x| 2 [0, X], the proposition

gives the menu cost density function

11If ⇤ is symmetric and smooth, it often admits a quadratic approximation close to zero. This feature, mentioned
by Caballero and Engel (2007) and Berger and Vavra (2018), makes quadratic generalized hazard functions especially
appealing. In Appendix I we show that if ⇤ does not admit a quadratic approximation around x = 0, the underlying
density g exhibits non-generic behavior.
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g(U(x)) =
2⇤2x

u(x)
(14)

The limit of the density is finite and positive, lim #0 g( ) = 2⇤2
a1

. This happens because v(x) is

smooth and symmetric, so u(x) = v
0(x) admits a linear approximation close to zero.

2.2 An Optimal Adjustment Intensity Model

In this section we describe an alternative setup that yields a similar mapping between an underlying

cost function and the generalized hazard. Now the firm does not face random menu cost. Instead,

it directly controls the arrival rate of a free opportunity to change prices. At each moment the firm

must pay a flow cost c(`) to obtain an arrival rate `. We assume that the flow cost is increasing

and convex. This will give rise to the choice of the optimal rate of price changes as a function of

the price gap, leading to a generalized hazard function ⇤. As in the previous case, we also allow

the firm to pay a deterministic menu cost  to change its price with certainty. This  will give

rise to a barrier X, and we allow  = 1, in which case this will never be used, so X = 1.

The main result of this section is that, analogously to the previous setup, any increasing

symmetric function ⇤ can be rationalized by some increasing and convex cost function c. One

di↵erence between the two setups is that the resulting ⇤ in this setup does not need to be bounded

above. This justifies the use of some of our examples later on. Additionally, this setup imposes

fewer constraints on the tails of the implied distribution of price changes.

The firm’s problem is:

rv(x) = min

⇢
Bx

2 +
�
2

2
v
00(x) + min

`�0
{` (v(0)� v(x)) + c(`)} , r ( + v(0))

�
(15)

We assume that the cost function c : R+ ! R+ is increasing and convex in `, and that c(`) ! 1

as ` ! 1. We can also allow c to have finitely many flat segments, and do not assume that c

is continuously di↵erentiable. The possibility of kinks in c may be needed to rationalize constant

segments on ⇤. Allowing for flat segments in c implies that the minimizer `⇤ may be an interval

12



for some x, which we can represent with a discontinuity in ⇤ at that value of x. We can now state

a result that echoes the one in Proposition 1:

Proposition 2. Fix a discount rate, curvature, variance, and a value of the threshold (r, B, �
2
, X),

all positive. Let ⇤(·) : (�X,X) ! R+. Assume that ⇤(·) is symmetric around zero, ⇤(x) = ⇤(�x),

increasing in |x|, and di↵erentiable on (0, X). Then, there exists an increasing convex cost func-

tion c(·) : R+ ! R+ that uniquely rationalizes the postulated decision rule as in equation (15).

Moreover, the marginal cost c
0(·) can be constructed by solving a second order linear ordinary

di↵erential equation.

The proof of the statement follows the same logic used in the proof of Proposition 1. Appendix D

provides more details on the solution of this model. Note that observation on the frequency and size

of price changes cannot in general distinguish between the random menu cost model of Section 2.1

and the optimal intensity of price adjustment of this section. In this sense, the generalized hazard

function ⇤ is a more fundamental object. Furthermore, as explained above, the model of this

section allows a slightly larger set of generalized hazard functions ⇤.

3 Steady State observable statistics

In this section we show how to use the hazard function ⇤ to derive several observable statistics

produced by our model in the steady state. In particular, we solve for the implied invariant

distribution of price gaps, with density f(x), the number of price changes per unit of time, Na,

and the distribution of price changes, with density q(�p). We focus on two moments of this

distribution, the variance and the Kurtosis, denoted V ar(�p) and Kurt(�p). The setup allows

for  2 R̄+ ⌘ R+ [ {1}. If  is finite then the inaction range is bounded, X < 1. Otherwise,

the support is unbounded, X = 1. Both cases are encompassed by the analysis of this section.

The starting point of this section is the function ⇤ that summarizes the firm’s optimal decisions:

Assumption 1. Let ⇤ : (�X,X) ! R+, be non-negative, piece-wise continuous, symmetric, i.e.

⇤(x) = ⇤(�x) for all x, with at most finitely many discontinuities xk � 0, and let J ⌘ {xk}. If

X = 1, we assume that there is a � > 0 and 0 < xH < 1 such that ⇤(x) � � for all |x| > xH .

13



Note that if ⇤ is the solution to the firm problem studied in Section 2, then ⇤(x) must be

weakly increasing for x > 0, although Assumption 1 does not impose that.

Next we define the invariant distribution of price gaps, with density f(·) : (�X,X) ! R+.

Importantly, f must be continuous everywhere, continuously di↵erentiable at |x| 2 (0, X), twice

continuously di↵erentiable at all |x| 2 (0, X)/J, and symmetric around x = 0. Given the symmetry,

we only define f on positive real values. It solves the following equations:

f(x)⇤(x) =
�
2

2
f
00(x) for all x 2 [0, X) , x 6= 0 and x /2 J (16)

with boundary conditions:
1

2
=

Z
X

0

f(x)dx and lim
x!X

f(x) = 0 . (17)

Note that if  < 1, then f(X) = 0 is an implication of X being an exit point, i.e. a barrier.

Otherwise it is a requirement for integrability. Figure 1 plots three examples of the invariant

distribution of price gaps which solves equation (16)-(17) for a hazard function with power form

⇤(x) = 
�

x

X

�⌫
. The quadratic case, ⌫ = 2, has been considered for instance by Caballero and

Engel (1993a); Berger and Vavra (2018).

Figure 1: Density function f(x) for the invariant distribution of gaps

Power hazard function: ⇤(x) = 
�

x

X

�⌫
, X < 1
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Frequency of price changes Na. There are two types of price changes: those that occur when

x reaches X, if it is finite, and those that occur when the firm draws a low enough fixed cost. Since

X is an exit point, the number of price changes of the first type is given by �2�
2

2 f
0(X). The sign

is negative because f
0(X) is negative. The 2 in front is becaus the same number of price changes

happens when x reaches X as when x reaches �X. Note that if X = 1 then f
0(X) = 0. The

second type of price changes occurs when |x| < X, which happens with density f(x), and draws a

su�ciently low fixed cost, which happens with probability ⇤(x) per unit of time. This gives

Na = 2

Z
X

0

f(x)⇤(x)dx� �
2

2
f
0(X)

�
. (18)

We remark for future reference that, as shown in Alvarez, Le Bihan, and Lippi (2016) for a very

wide class of models that includes the ones in this paper, the following relation holds for any

feasible policy in this class of menu cost problems:12

Na V ar (�p) = �
2 (19)

This equation will be useful later in applications. We will use s for the fraction of price changes

that occur before hitting the boundary ±X. We can use equation (18) to replace the Kolmogorov

forward equation for f , and integrate by parts to obtain that:

s ⌘
R

X

�X
⇤(x)f(x)dx

Na

= 1� �
2|f 0(X)|
Na

= 1� |f 0(X)|
|f 0(0)| since Na = �

2|f 0(0)| (20)

where |f 0(0)|, with a slight abuse of notation, is the absolute value of either the right or left

derivative of f(x) evaluated at x = 0.

Distribution of price changes. Recall that upon any price change the firm “closes” its gap x,

i.e. the size of the adjustment is �p = �x. If X < 1 then the distribution of price changes has

a mass point at �p = �X. The mass of such price changes is equal to �
2

2 |f
0(X)|. There are also

12The key assumption for this result to hold is that the price gap is closed upon adjustment. This assumption is
not true in e.g. models with high inflation or models with price plans, see Alvarez and Lippi (2020).
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price changes of size |�p| < X that occur when a firm has x < X and draws a su�ciently low fixed

cost. This occurs with probability ⇤(x) per unit of time for a firm with price gap x. Recall also

that at steady state, there is a density f(x) of firms with price gap x. This density is symmetric

around zero. The distribution of price changes is thus symmetric around zero as well. It has the

following form:

�p =

8
>><

>>:

�x w/ density q(�x) ⌘ ⇤(x)f(x)
Na

for x 2 (0, X)

�X w/ probability
�2

2 |f 0(X)|
Na

(21)

Note that 1�s, as defined in equation (20), is also twice the size of the mass point at the boundary

of the support of this distribution.

Figure 2: Density function q(�p) of the distribution of price changes

Quadratic Hazard function: ⇤(x) = x
2, X = 1, shape parameter: ⌘ ⌘

�
2
�2

� 1
4

Figure 2 plots a few examples of the density of price changes implied by a quadratic hazard

function ⇤(x) = x
2 with an unbounded support X = 1. This uses the definition q(�x) ⌘ ⇤(x)f(x)

Na

from equation (21), where the density of price gaps f solves the Kolmogorov forward equation

equation (16). The generalized hazard function and frequency of price changes alone are su�cient

to construct both f and q.

We note that in the quadratic case the distribution of price changes is indexed by a single
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parameter ⌘ ⌘
�
2
�2

� 1
4 determining its shape, and features no mass points at the boundary of the

inaction region since X = 1. This means s = 1 in terms of equation (20). The parameter ⌘ is

recurring in the class of generalized hazard functions of the power form, and generally determines

the shape of the distributions of price changes.

For future reference we define two useful moments. The variance and the Kurtosis of the price

changes Kurt(�p) can be defined using the distribution in equation (21):

V ar(�p) =
2
hR

X

0 x
2⇤(x)f(x)dx�X

2 �2

2 f
0(X)

i

Na

(22)

Kurt(�p) =
2
hR

X

0 x
4⇤(x)f(x)dx�X

4 �2

2 f
0(X)

i

Na

1

[V ar(�p)]2
(23)

Standardization. It is useful to rescale the firm’s decision rule to isolate the role of the shape

of ⇤ and of other parameters. Standardization clarifies which objects matter conceptually, and

also helps to bring the model to the data, as shown in Section 4. Let’s start with a price-setting

problem represented by the triplet {X,⇤, �2} with �
2
> 0 and ⇤ : (�X,X) ! R+ satisfying

Assumption 1. Given the triplet {X,⇤, �2}, we can compute the corresponding density of price

changes q(·) : (�X,X) ! R, the variance of price changes V ar(�p), the frequency of price changes

Na, and the share of price changes away from the boundaries s. We have the following result:

Proposition 3. Consider an economy characterized by {X,⇤, �2}, and associated q, V ar(�p), Na

and s. For any b > 0 define another economy {X̃, ⇤̃, �̃2
, } where X̃ = bX, ⇤̃(z) = ⇤(z/b) for all

z 2 (�X̃, X̃), and �̃ = b �. These economies feature: (i) the same frequency of price changes,

Ña = Na, (ii) the same fraction of price changes away from the boundaries, s̃ = s, and (iii) the

same shape of the density of price changes, namely: q̃(z) = q(z/b)/b for all z 2 (�X b,X b) .

Note that we can choose b
2 = 1/V ar(�p), for instance, so that the variance of price changes

in the rescaled economy is one, Ṽ ar(�p) = 1. This new economy can then be referred to as

“standardized”. The proposition shows that Kurt(�p) and the share s only depend on the shape

of ⇤, described by ⇤̂. In general, the shape cannot be summarized by a finite number of parameters,

but in some situations a single parameter will su�ce. For instance, below we consider a case where
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⇤ is a power function and ⇤̂ is described by a single parameter.

In addition to the standardization described above, we can also consider transformations akin to

changing the time units, thus only a↵ecting the frequency of adjustment, but not the distribution

of price changes. In particular, consider a scalar k > 0, and define ⇤̂(x) = ⇤(x)/k for all x,

�̂
2 = �

2
/k and X̂ = X. It easy to see that {X̂, ⇤̂, �̂2} has N̂a = kNa and Q̂(x) = Q(x) for all x.13

A useful approximation. We conclude with a proposition showing that for the case in which

 < 1, so that X < 1, the invariant distribution can be accurately approximated by one

corresponding to a generalized hazard function ⇤ with unbounded support and arbitrarily large

values for x > X. This approximation is useful because the case with unbounded support is

somewhat simpler to analyze, since it does not involve discussing the mass points at the boundary

of the inaction region.

Proposition 4. Let X < 1 and let ⇤ : [0, X) ! R+ be a continuous generalized hazard

function, where f : [0, X] ! R+ is its corresponding invariant density, assumed to be symmetric.

Let ⇤k : [0,1) ! R+ be defined as ⇤k(x) = ⇤(x) if x < X and ⇤k(x) = k otherwise. Let also

fk : [0,1) ! R+ be the invariant density associated with ⇤k, also assumed symmetric for negative

x
0
s. Then fk converges uniformly to f in [0, X] as k ! 1.

4 From Price Changes to Price Gaps and Hazards

In this section we show how to recover the invariant density of price gaps f and the adjustment

hazard ⇤ from the observable distribution of price changes. These two objects then allow us to

recover the underlying distribution G of adjustment costs  in a random menu cost model of

Section 2.1. We apply the algorithm to data taken from Cavallo (2015), fitting the distribution of

price changes Q and recovering f , ⇤, and G. For future reference, we pay particular attention to

estimate the kurtosis of the distribution of price changes.

To do this, we first characterize the restrictions that an increasing hazard function ⇤ imposes

on Q and establish a mapping from the observables (price changes) to the distribution of price

13In Appendix H we consider an alternative normalization, suitable for the case where X < 1.
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gaps f and adjustment hazard ⇤. We then propose a non-parametric identification strategy to

identify the distribution of price changes which takes into account unobserved heterogeneity across

di↵erent products consistent with the theory as described in Proposition 3 . We illustrate these

results fitting a flexible functional form to the distributions Q for several product categories in the

dataset from Cavallo (2015). Interestingly, using this data set which have no time aggregation,

arguably minimum measurement error, and accounting for unobserved heterogeneity, we find dis-

tributions with much smaller Kurtosis than in the literature. From this estimated distribution, we

then recover f and ⇤, and from them obtain the distribution of random menu cost G using the

characterization in Proposition 1.

Identification of f and ⇤. We start with a lemma that describes the properties of the distribu-

tion of price changes generated by a generalized hazard function. It only requires Assumption 1:

Proposition 5. Let Q be the CDF of price changes corresponding to a generalized hazard

function ⇤ satisfying Assumption 1. Then, Q is absolutely continuous on (�X,X), so that Q(x) =

Q(�X) +
R

x

�X
q(s)ds for x < X. The density q(·) : (�X,X) 7! R+ is symmetric around zero,

q(x) = q(�x), and continuous at x /2 J. Q has mass points if and only if X < 1, in which case

they are at �X and X, and is fully identified by the collection of all its moments.

The next proposition, which is one of the main results of the paper, obtains the density f of

price gaps from the distribution of price changes. The idea is simple: we integrate the Kolmogorov

forward equation twice and replace �2 as in equation (19). Once we have f , it is straightforward

to get ⇤ using f(x)⇤(x) = q(x)Na.

Proposition 6. Let �p be price changes, and let Q and q be the CDF and corresponding density

of price changes corresponding to a generalized hazard function ⇤ satisfying Assumption 1. Let

Na be the frequency of price changes. The density for the invariant distribution f(x) is given by

f(x) =
2

V ar(�p)

Z
X

x

(1�Q(z)) dz

�
for all x 2 (0, X) (24)

and f(�x) = f(x), where V ar(�p) is the variance of the price changes computed using Q. The
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generalized adjustment hazard ⇤(x) is given by

⇤(x) =
Na V ar(�p)

2

q(x)
R

X

x
(1�Q(z)) dz

for all x 2 [0, X) (25)

and ⇤(�x) = ⇤(x).

Recall that the function ⇤ implied by the models of Section 2.1 and Section 2.2 is increasing

in x 2 (0, X). If ⇤ is increasing in (0, X), the right hand side of equation (25) must be increasing.

At any x where ⇤ is di↵erentiable,

⇤0(x)

⇤(x)
=

q
0(x)

q(x)
+

1�Q(x)
R

X

x
(1�Q(z)) dz

� 0 for all x 2 (0, X), x /2 J (26)

The model of Section 2.1 also implies that ⇤(·) is bounded above on (0, X). If this is the case, the

right hand side of equation (25) must be bounded. If ⇤ is increasing, this is equivalent to

lim
x!X

q(x)
R

X

x
(1�Q(z)) dz

= lim
x!X

q
0(x)

�(1�Q(x))
 C (27)

for some constant C. Moreover, if X < 1, then limx!X(1 � Q(x)) > 0 and hence limx!X q
0(x)

must be finite. If X = 1, then limx!X

q
00(x)
q(x)  C by L’Hopital rule. Note that if q has exponential

tails, equation (27) is satisfied even if X = 1. Moreover, since the model of Section 2.2 does not

imply a bounded ⇤ it does not require equation (27).

A simple measure of state dependence. The expression for ⇤ in Proposition 6 evaluated at

x = 0 can be used to measure a simple index of the lack of state dependence in pricing. We label

it as C, for “Calvo-ness”:

C ⌘ ⇤(0)

Na

(28)

The index C measures the fraction of price changes that happen independently of the price gap

x. In terms of the random menu cost model, it measures the fraction of price changes with no

adjustment cost paid. Alvarez, Le Bihan, and Lippi (2016) use the same statistic to index multi-
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product version of the Calvo+ model. In that special case, the function ⇤ is constant, equal to

⇤(0) for all |x| < X, and then it jumps to infinity, i.e. there is a barrier in this case X is simply

equal to the fraction of price changes that do not occur at the barriers ±X. Clearly, the setup

here is much more general, and the definition captures all the price changes that are unrelated to

the value of the price gap. Hence, C is a broad measure of lack of state dependence. The next

corollary of Proposition 6 shows that C can be measured using data on the distribution of price

changes.

Corollary 1. The fraction of price changes independent of the price gap C defined in equa-

tion (28), is given by

C =
V ar(�p)

2E[|�p|] q(0) . (29)

Moreover, using equation (18) for Na, C  1 if ⇤ is increasing.

The expression in Corollary 1 is intuitive: the fraction of price changes independent of the

state is proportional to the density of price changes at zero, a magnitude that can be estimated.

The constant of proportionality is a ratio of two easily measurable statistics. The importance of

Corollary 1 is that the right hand side of equation (29) involves three observable quantities which

depend exclusively on the distribution of price changes: the density at zero, q(0), and two of its

moments: the variance V ar(�p) and the expected absolute value E[|�p|].

Unobserved Heterogeneity. Armed with Proposition 6 we can recover f , ⇤, and the model

primitives, like the distribution of menu cost, using Proposition 1. As an intermediate step,

we discuss how to account for a simple, yet pervasive, form of unobserved heterogeneity in the

estimation of q. We assume that products in a narrowly defined category have the same distribution

of price changes up to an (unobserved) shift in the size, i.e. the distributions have the same

shape but di↵erent scale. Proposition 3 discusses exactly this type of transformation that changes

the scale without a↵ecting shape. The reason we want to account for this form of unobserved

heterogeneity is that, as is well known, a mixture of distributions with identical kurtosis but

di↵erent variances has itself a higher kurtosis.14 The setup is similar to a random e↵ect model,

14See Appendix G for the formal treatment of this result.
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yet without assuming any functional form for the distributions. In particular we use a variation

of Kotlarski (1967)’s lemma. The products (within a category) are indexed by i, and t is the

chronological number of adjustment. Let I be the set of all products and T (i) be the set of

adjustment instances for a product i 2 I. We use the following specification:

�pit = bi�p̃t for i 2 I and t 2 T (i) (30)

Here bi corresponds to the scaling factor b in Proposition 3. The six identification assumtpions are

1. #T (i) > 1, so there are at least two price changes for each i

2. �p̃t are drawn from a distribution Q, described by Proposition 5, for all t 2
S

i2I

3. �p̃t and �p̃s are statistically independent for all t, s 2
S

i2I T (i)

4. bi � 0 are drawn from a distribution H for all i 2 I

5. �p̃t and bi are statistically independent for all i 2 I and t 2
S

i2I T (i)

6. E[(�p̃t)2] = 1 for all t 2
S

i2I T (i)

That the distribution Q is described by Proposition 5 means, in particular, that it is symmetric

around zero. The last assumption is a normalization, since the variances of H and Q are not

identified together. We can show the following result:

Proposition 7. Consider two pairs of integer numbers (j, k) and (j0, k0) such that j+k = j
0+k

0.

Under the assumptions stated above we have:

E[(�p̃t)j]E[(�p̃t)k]

E[(�p̃t)j
0 ]E[(�p̃t)k

0 ]
=

E[(�pit)j(�pis)k]

E[(�pit)j
0(�pis)k

0 ]
(31)

for any (t, s) with t 6= s.

This proposition has two important implications. First, we can establish a recursive expression

for the even moments of the distribution of �p̃t:

E[(�p̃t)
2k+2] = E[(�p̃t)

2k] · E[(�pit)2k+2]

E[(�pit)2k(�pis)2]
for all k � 0 (32)
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which only uses equation (31) and the normalization assumed above that E[(�p̃t)2] = 1. Starting

from the normalized second moment, we can construct all even moments recursively using equa-

tion (32), thus obtaining a non-parametric identification of the density q.15 Second, for future

reference we display an expression for the Kurtosis of �p̃:

Kurt(�p̃t) =
E[(�pit)4]

E[(�pit)2(�pis)2]
=

Kurt(�pit)

1 + corr(�p
2
it
,�p

2
is
)CV (�p

2
it
)CV (�p

2
is
)
for t 6= s (33)

The first equality is how we estimate kurtosis, correcting for this unobserved heterogeneity. The

second equality shows how our method to measure kurtosis amounts to a correction of the kurtosis

computed by pooling di↵erent goods without accounting for heterogeneity. Whenever the squares

of price changes of individual products are positively correlated, as we have systematically found

in the data, the correction leads to a substantial downward adjustment of the estimated kurtosis.

Data and estimation. We use the open access data from Billion Prices Project presented

by Cavallo (2015).16 We have chosen scraped price data to reduce the measurement error present

in other data sets for example due to time aggregation using average revenue. It is important to

avoid this form of measurement error to accurately estimate the kurtosis of the distribution of

price changes, one of the goals of this section. The time span of our sample is between May 2008

and June 2010. From daily data on prices we construct the series of spells together with the size

of the price change at the end of each spell. We trim the sample at price changes larger than 150

log points size in absolute value.17 To fit a symmetric density, for each value �p in the sample we

use points in the band around it and around ��p as well. The left panel of Figure 9 plots the

histogram of price changes for a narrowly defined product category. The right panel presents the

symmetrized histogram with a fitted density. This fitted density is not the underlying density q,

since it is confounded by the unobserved values of bi.

Table 1 presents summary statistics on the seven categories we use, as well as the estimated

kurtosis. The kurtosis is estimated in two ways: first by (incorrectly, according to our assump-

tions) pooling di↵erent products in the same category (p), and second by accounting for product

15This fully characterizes the distribution of �p̃t, since its odd moments are equal to zero due to symmetry.
16Link: http://www.thebillionpricesproject.com/datasets/. We use the US store number 1.
17We remove 87 (larger than 150 log points) out of 326,570 price changes for products with at least three spells.
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Figure 3: Distribution of price changes in a narrow category

Histogram for �p Symmetrized histogram with a fitted density

Pooling all products for category 561, COICOP label “Non-durable household goods”

heterogeneity (u). To implement the latter procedure, we use equation (33). This equation is a

particular case of equation (31) with j = 4, k = 0, and j
0 = k

0 = 2. Importantly, the expectation is

taken over t 6= s, and any such pair (t, s) can be taken to estimate it. Our estimator is constructed

as follows: for any pair (j, k), we estimate E[|�pit|j|�pis|k] by

1

#I

X

i2I

1

#T (i)(#T (i)� 1)

X

t,s2T (i),t 6=s

|�pit|j|�pis|k (34)

where # denotes the number of elements in the set. Note that this estimator includes all available

price changes t, s 2 T (i) for every product, maximizing the use of the data. Individual products

in the sample have around 20 price changes each. Distributions are centered around zero, with

the mean being around one hundredth of the standard deviation. It is evident from the table

that properly accounting for heterogeneity reduces the estimated kurtosis to about half. This

points to a substantial correlation in absolute values of the consecutive squared price changes. In

Appendix B we tabulate implied correlations recovered from equation (33). These turn out to be

in the range between 0.29 and 0.45.

To estimate Q we use a Gamma distribution. In principle, the distribution could be estimated

non-parametrically, since every moment is identified. In practice, this would require estimating a
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Table 1: Summary statistics and kurtosis estimates
Category Number Number Ê(�pit) �̂(�pit) Kurtosis Kurtosis Cpooled C

Products P. changes Pooled w/Unobs. w/Unobs.

Heterog. Heterog.

111 3437 74464 0.002 0.341 3.418 1.656 0.077 0.071

(0.162) (0.071)

119 3225 56527 0.002 0.328 3.831 1.955 0.085 0.064

(0.092) (0.050)

1212 2551 30343 -0.001 0.245 3.524 2.052 0.040 0.039

(0.272) (0.162)

122 1401 27321 0.002 0.342 2.956 1.677 0.118 0.091

(0.089) (0.051)

118 1388 30111 0.003 0.308 3.624 2.044 0.080 0.078

(0.240) (0.118)

117 1154 20995 0.007 0.309 3.487 1.989 0.071 0.058

(0.135) (0.047)

561 1032 17724 0.002 0.260 3.324 1.778 0.034 0.030

(0.221) (0.133)

Categories legend: 111 “bread and cereals”, 119 “other food products”, 1212 “electric appliances for personal

care”, 122 “soft drinks”, 118 “sugar, honey, and confectionary”, 117 “vegetables”, 561 “non-durable household

goods”

large number of moments, substantially decreasing precision. Instead, we estimate the Kurtosis

and use the unit variance restriction to fit the scale and size. The fitted density q is presented

on the left panel of Figure 4 together with the underlying generalized hazard function ⇤ and the

density of price gaps f . In the Appendix B, we detail our algorithm and show extended results from

fitting a mixture of two Gamma distributions, for which we estimate moments using Proposition 7

to fit five parameters: scale and size of the distributions and the weight.

Finally, the right panel contains the distribution of menu cost recovered from the resulting

hazard ⇤. The units on the horizontal axis correspond to the annual profit of the firm. There is no

mass point at zero, since the recovered generalized hazard function has ⇤(0) = 0. Note that the

model with random menu cost can only rationalize a bounded generalized hazard function. Gamma

distribution is convenient, since by Proposition 6 it implies a bounded ⇤. In the Appendix B, we

show the procedure to recover the cost function c corresponding to the model in Section 2.2.
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This model allows for an unbounded ⇤, so we use a power specification ⇤(x) = x
⌫ , deriving the

moments of Q and using the analytical expressions to fit the parameters.

Figure 4: Estimated distribution of price changes and implied cost functions

Estimated q(·), recovered f(·) and ⇤(·) Recovered CDF and density of menu costs

Estimating the degree of state dependence. We now turn to measuring C. We do this in

two ways. First, we ignore the unobserved heterogeneity and assume that the price data for the

narrowest category of goods all come from the same primitives of the model. These primitives

are the generalized hazard function ⇤ (including the value of X, the barrier) and �2. Recall from

Proposition 6 that these objects fully describe the data-generating process, and this mapping is

injective. In this exercise we just estimate all the objects on the right hand side of equation (29).

The results are shown in the column labelled “Cpooled” in Table 1. Their average across categories

is 0.072, i.e. just above 7% of price changes are independent of the state. This small number is

due to the small value of the density q at �p = 0, which is apparent from the right hand side panel

of Figure 9.

Second, we account for unobserved heterogeneity of the type described above. If there is

heterogeneity of this type across products in the narrowest category, using the simple expression

for C from equation (29) produces an upward bias in the estimate. We derive an unbiased estimator,

the result being analogous to the one in Proposition 7. We express this estimator as a function of

the pooled estimator Cpooled and a correction due to the unobserved heterogeneity:
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Proposition 8. Under the assumptions 1-5 stated above,

C = Cpooled
✓
1 +

Cov(b�1
i
, b

2
i
)

E[b�1
i
]E[b2

i
]

◆
< Cpooled (35)

where the two components are given by

Cpooled =
q(0)V ar(�pit)

2E[|�pit|]
and 1 +

Cov(b�1
i
, b

2
i
)

E[b�1
i
]E[b2

i
]
=

E[bi]
E[b�1

i
]E[b2

i
]
=

E[|�pit|�1|�pis|2]
E[|�pit|�1]E[|�pit|2]

for t 6= s

The estimate for Cpooled is obtained from the pooled data, and the correction for unobserved

heterogeneity is measured using the (short) time dimension of the panel. The last column, la-

belled “C w/Unobs. Heterogeneity”, in Table 1 contains the estimation results. Averaging across

categories, the fraction of price changes independent of the state is 0.062 or just above 6%.

The correction multiplier is smaller than one because 1/bi and b
2
i
are negatively correlated. Of

course, if data for all products i in the narrowest category come from the same model primitives

(⇤, X, �
2), then there is no variation in bi, and C = Cpooled.

5 Duration Analysis and Generalized Hazard Rate

In this section we consider the Survival and the Hazard Rate as functions of the duration of the

price spells. Duration-based functions are often used in sticky price models. It is interesting

to know whether the information encoded in them is di↵erent from that encoded in the size-

distribution of price changes used above. We establish conditions for a non-trivial equivalence

result: the distribution of durations and the variance of price changes together contain the same

information about the fundamentals of the model as the distribution of price changes and frequency

of adjustment. The distribution of spells with one statistic on the size of changes (the variance) is

as informative as the size-distribution of changes and one temporal statistic (the frequency).

Denote by S(t) the Survival function, the probability that a price spell lasts at least t units of

time. We will show that, when X = 1, an analytical Survival Function S uniquely identifies an
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analytical Generalized Hazard Rate function ⇤. When X = 1, the Survival function is given by

S(t) = E
h
e
�

R t
0 ⇤(x(s))ds | x(0) = 0

i
for all t � 0 (36)

where the expectation is taken with respect to the paths of the drift-less Brownian motion x with

variance per unit of time equal to �2. The value of S(t) is the Feynman-Kac formula evaluated at

x = 0. The hazard rate h(t) = �S
0(t)/S(t) measures the probability per unit of time of a price

spell ending conditional on lasting at least t. For example, the Survival function and its associated

hazard rate for the case of a quadratic generalized hazard rate ⇤(x) = ⇤(0) + x
2 are:

S(t) =
e
�t⇤(0)

⇣
cosh

⇣
t

p
2�2

⌘⌘ 1
2

and h(t) = ⇤(0) +

r

�2

2
tanh

⇣
t

p
2�2

⌘
for all t � 0 (37)

This was obtained by Kac in his seminal study of what we now know as the Kac formula. The

next lemma gives the main technical result to establish the link between the Survival function,

which can in principle be measured in the data, and the generalized hazard function ⇤(x).

Lemma 2. Fix a value of �2
> 0, and assume that X = 1. Assume that S is related to ⇤ by

equation (36). The derivatives of the Survival function S a time t = 0 and the derivatives of ⇤ at

x = 0 are related by the recursively generated functions {Fn} as follows:

@
n
S(t)

@tn

���
t=0

= Fn(0) and all n = 1, 2, . . . where Fn(·) are given by (38)

Fn+1(x) =
�
2

2

@
2
Fn(x)

@x2
� ⇤(x)Fn(x) for all x 2 R and n = 1, 2, . . . and (39)

F1(x) = �⇤(x) for all x 2 R (40)

Lemma 2 is the base of an algorithm to compute the derivatives of S at t = 0 given ⇤ and the

derivatives of ⇤ at x = 0 given S. Using this lemma, we obtain the main result of this section:

Proposition 9. Assume that �2
> 0, X = 1, and ⇤ satisfies Assumption 1. Let S be the

Survival function of ⇤, as in equation (36). If the generalized hazard function ⇤ is analytical, then
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the Survival function S uniquely identifies ⇤. Likewise, if the Survival function S is analytical,

then the generalized hazard function ⇤ uniquely identifies S.

As remarked before, Lemma 2 gives an algorithm to recursively compute an expansion of S

based on the derivatives of ⇤, or an expansion of ⇤ based on the derivatives of S. An implication of

Lemma 2 and Proposition 9 is that the hazard rate and its first three derivatives at zero duration

(t = 0) are given by particularly simple expressions involving the level and first two even derivatives

of the generalized hazard function evaluated at zero price gap, i.e. x = 0:

h(0) = ⇤(0) � 0 ,
@h(t)

@t
|t=0 =

�
2

2

@
2⇤(x)

@x2
|x=0 ,

@
2
h(t)

@t2
|t=0 =

✓
�
2

2

◆2
@
4⇤(x)

@x4
|x=0 ,

and
@
3
h(t)

@t3
|t=0 =

✓
�
2

2

◆3
@
6⇤(x)

@x6
|x=0 � 4

✓
�
2

2

@
2⇤(x)

@x2
|x=0

◆2

These formulas give a simple connection between the local behavior of ⇤ around x = 0 and h around

t = 0. Note that if ⇤(x) is, in addition of being symmetric and di↵erentiable in x, increasing in

|x| around x = 0, then ⇤00(0) > 0, and hence the hazard rate as function of duration, h(t), must

be increasing in duration, at least for small durations t. Likewise, if ⇤(x) were decreasing in |x|

around x = 0, then ⇤00(0) < 0 and hence h(t) must be locally decreasing in duration.

Comparing with the case of Proposition 6, in this case we use much more restrictive conditions

for ⇤, and obtain a more cumbersome representation — an infinite expansion instead of a closed-

form expression involving an integral. In spite of this Proposition 6 and Proposition 9 have the

same flavor: they show that if ⇤ is analytical and X = 1, then ⇤ can be fully identified either

using the information contained in the Survival function, i.e duration on price changes, and �
2,

which can be recovered from Na and the variance of price changes with equation (19). Of course,

this also means that the information on the survival function and the size distribution of price

changes can be used as an over-identifying test of the model.

Finally, we can also estimate C ⌘ ⇤(0)/Na, the fraction of price changes independent of the

state, by using duration data. Given the results above, C can be estimated as h(0)/Na. This can

be an alternative to the estimates presented in Table 1 using the size distribution of price changes.

As in Section 4, a correction of unobserved heterogeneity may be important.

29



6 A Su�cient Statistic for Monetary Shocks

This section characterizes the real output e↵ect of monetary shocks using a simple summary

statistic, the cumulative output generated by a once and for all monetary shock. This is the area

under the output’s impulse response function. It combines in a single value the persistence and the

size of the output response. The key result we present is that for small monetary shocks, like the

ones typically considered in the literature, the area is completely encoded by the kurtosis and the

frequency of price changes. These two moments are thus su�cient to compare di↵erent models.

We also find that, among the models with non-decreasing adjustment hazards, the kurtosis of

price changes is maximized in the Calvo model. As was established above, only a non-decreasing

generalized hazard function can be rationalized by random menu costs. Calvo model is the limiting

case with no randomness and no option to adjust, so it minimizes the amount of selection and

hence maximizes the output response. To establish this, we develop a general result that compares

kurtoses generated by two di↵erent hazard functions.

The contribution to the cumulative impulse response of a firm with price gap x is

m(x) = �E
Z

⌧

0

x(t)dt | x(0) = x

�
(41)

where ⌧ is the stopping time defined as the first time when x(t) hits ±X or a reduction in adjust-

ment costs causes the firm to change price. This stopping time is stochastic, so the expectation

accounts for both the di↵usion of the firm’s price gap and the possible event of adjustment that

happens with a Poisson intensity ⇤(x(t)). In words, m(x) is the expected (cumulative) price gap

of a firm that starts with a gap x. Notice that in the Calvo case, where ⇤(x) = � is independent

of x, we immediately obtain m(x) = �x/�, where 1/� is the expected duration of a price spell.

The definition above uses the steady state decision rule ⇤(x), thus ignoring the general equi-

librium feedback e↵ect of the shock on the firm’s decision. In Proposition 7 of Alvarez and Lippi

(2014) it is shown that, given a combination of the general equilibrium setup in Golosov and Lucas

(2007) and the lack of the strategic complementarities, these general equilibrium e↵ects are of sec-

ond order. In addition, we use the fact that after the first price change the expected contribution
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to output of each firm is zero, since positive and negative output contributions are equally likely, so

m(0) = 0. This allows us to characterize the propagation of the monetary shocks without tracking

the time evolution of the whole price gap distribution.

The expectation in the right hand side of equation (41) is with respect to the process for x,

a jump-di↵usion with jump intensity ⇤(x), di↵usion variance �2, and zero drift. The function

m : [�X,X] ! R is once continuously di↵erentiable, antisymmetric around x = 0, and satisfies:

m(x)⇤(x) = �x+
�
2

2
m

00(x) for all x at which ⇤ is continuous (42)

0 = m(X) if X < 1 and lim
x!1

|m(x)|
x

 1

infy ⇤(y)
if X = 1 . (43)

Now we can define the cumulative impulse response to a monetary shock of size � as

M(�) =

Z
X

�X

m(x� �)f(x)dx . (44)

This is simply the aggregate contribution of the firms to the cumulative impulse response. The

response of a firm with the price gap x before the shock is m(x� �).

Let {X,⇤, �2} characterize an economy, with its corresponding invariant density f and firm’s

contribution to CIR, m. Let {X̃, ⇤̃, �̃2} be the standardized economy, defined as in Proposition 3,

that has its associated {f̃ , m̃} with m̃ defined as m̃(z) = m(z/b)/b for b
2 = 1/V ar(�p) and

satisfying the corresponding ODE with the boundary conditions for �̃2 and X̃. Define M̃(�), the

cumulative impulse response of output to a monetary shock for the standardized economy, as

M̃(�) =

Z
X̃��

�X̃

m̃(x) f̃(x+ �) dx (45)

The next proposition relates the CIR of output in an economy to the one of its standardized

version by scaling the monetary shock with the steady-state standard deviation of price changes.

In words, for small monetary shocks the dispersion of price changes is immaterial, although in

general the size of monetary shocks should be measured relative to the steady-state dispersion of

price changes.
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Proposition 10. Let M and M̃ be the cumulative impulse responses of an economy {X,⇤, �2}

with Std(�p) = V ar(�p)1/2 and the corresponding standardized economy {X̃, ⇤̃, �̃2}. Then

M(�) = M̃
✓

�

Std(�p)

◆
Std(�p) (46)

and thus M0(0) = M̃0(0).

The proof is immediate, using the properties of m̃ and f̃ established above, di↵erentiating

equation (45), and evaluating at � = 0. Summarizing, Proposition 10 says that for small monetary

shocks, the steady state standard deviation of the price changes is not important. For large shocks

it clearly is. For example, take the case X < 1. For � � 2X̄, we have M(�) = 0, because the

shock displaces all the firms far enough, and they adjust immediately. Since the standardized

version has X̃ = X/Std(�p), this shows the importance of the size of the shock for large values.18

The marginal version of this cumulative impulse response is

M0(0) = �
Z

X

�X

m
0(x)f(x)dx (47)

This term can be used for a linear approximation of M around zero. Our main result is that it

can be expressed as a function of two su�cient statistics: Kurt(�p), the kurtosis of the steady

state distribution of price changes, and Na, frequency of price changes.

Proposition 11. Let ⇤(x) be any function satisfying Assumption 1. Then the cumulative

impulse response for a small monetary shock is given by the ratio of two steady state statistics:

M(�) =
Kurt(�p)

6Na

� + o(�2) (48)

The approximation is accurate up to second order terms, so the remainder is of order �3. This

happens since M00(0) is zero, which follows from M being an antisymmetric function, because m

18A similar result was shown in Alvarez and Lippi (2014) for the case of multiproduct firms, which only overlap
with the current set up for the Golosov and Lucas case — with one product per firm.
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is antisymmetric and f is symmetric.

Our results from Proposition 1 and Proposition 17 show that only weakly increasing ⇤ can be

rationalized by the solution of a firm problem subject to random menu costs. But Assumption 1

allows for a very large class of generalized hazard functions, including decreasing and non-monotone

ones. Proposition 11 holds for such functions too. It makes no reference to the micro-foundations

behind ⇤ and hence also applies to setups where firms’s behaviour is not described by an increasing

hazard. An example is the model in Woodford (2009), where firms conduct costly reviews and

have imperfect recall and access to their state. Also Costain and Nakov (2011b) use generalized

hazard functions, without linking them to random menu costs.

Aggregation across heterogenous firms. We briefly discuss how the above results can be

applied to economies composed of heterogenous firms. Assume that there are S groups of firms

with di↵erent parameters, each with an expenditure weight e(s) > 0, N(s) price changes per unit

of time, and a distribution of price changes with kurtosis Kurt(s). In this case, after repeating

the arguments above for each group and aggregating, we obtain that the area under the IRF of

aggregate output for a small monetary shock � is

M(�) = �M0(0) + o(�2) =
�

6

X

s2S

e(s)

Na(s)
Kurt(s) + o(�2) =

�

6
D

X

s2S

d(s)Kurt(s) + o(�2) (49)

where D is the expenditure-weighted average duration of prices D ⌘
P

s2S
e(s)
Na(s)

, and d(s) ⌘ e(s)
Na(s)D

are weights that take into account both relative expenditures and durations. When all groups have

the same durations, then d(s) = e(s) and M is proportional to the average of the kurtosis of the

sectors. As explained in Section 4, and shown in Proposition 18 in Appendix G, this average

is also di↵erent from the kurtosis of the pooled data. This applies even if all the groups have

the same kurtosis.19 However, if groups are heterogenous in duration (or expenditures), then the

kurtoses of the groups with longer duration (or higher expenditures) receive a higher weight in the

computation of M. Suppose for instance that a fraction of firms have flexible prices (zero duration

in our model, or infinitely many price changes per unit of time), as in Dotsey and Wolman (2020).

19The e↵ect of heterogeneity in Na(�pi) on aggregation is well known for the Calvo model: D is di↵erent from
the average of Na(�pi)’s, see for example Carvalho (2006) and Nakamura and Steinsson (2010).
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The above formula implies that the group of the flexible price firms are excluded (zero duration

yields a zero weight), and that the cumulative impulse response (CIR) is computed on the mass of

firms with sticky prices. Notice that this is di↵erent from computing the CIR as the ratio of the

cross-sectional average kurtosis and the average frequency. Since the latter is diverging because of

the firms with flexible prices, the CIR computed this way would be zero, while obviously it is not.

Kurtosis. The next proposition shows the properties of generalized hazard functions that de-

termine the Kurtosis of price changes. We will concentrate on the case where we will hold the

adjustment frequency constant. Recall that that fixing the frequency of price changes can be ac-

complished as fixing the units of time. This procedure allows us to isolate the e↵ect of a change

in ⇤ on selection from its e↵ect on the frequency. Moreover, with the frequency fixed, the kurtosis

of price changes directly maps into the approximate cumulative impulse response.

Proposition 12. Fix Na and consider two hazard functions ⇤1(x) and ⇤2(x) with the corre-

sponding boundaries X1 and X2, where 0 < X2  X1  1. Let ⇤1(0) > ⇤2(0) and let the function

⇤1(x)�⇤2(x) change sign at most once. Then, ⇤1(x) generates a higher kurtosis of price changes.

The condition that ⇤1 �⇤2 changes sign only once means that it is positive at first and maybe

negative for x far from zero. This is to say that ⇤1 generates more adjustment for smaller x,

and ⇤2 generates more for larger ones. Selection is therefore more pronounced with ⇤2, and the

kurtosis of price changes is lower. There are two interesting corollaries of this result. The first is

that for a fixed X the highest kurtosis is attained by the constant generalized hazard function.

This corresponds to the Calvo+ case:

Corollary 2. Fix Na, the number of adjustments per unit of time, and X < 1. The function

⇤(x) that is constant on (�X,X) maximizes the kurtosis of the price changes over all functions

⇤(x) that are weakly increasing on (0, X) and satisfy Assumption 1.

Second, a constant hazard function in combination with the infinite boundary X maximizes

the kurtosis of price changes over all weakly increasing hazards. This is the pure Calvo case:
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Corollary 3. Fix Na. The constant function ⇤(x) ⌘ � maximizes the kurtosis of the price

changes over all weakly increasing functions ⇤(x) satisfying Assumption 1.

By Proposition 11, it also means a constant ⇤ maximizes M0(0) for a fixed Na. This highlights

the role of selection. A strictly increasing rate of adjustment ⇤ implies positive selection, so the

firms with larger deviations are more likely to adjust. When ⇤ is flat, there is no selection, so the

price changers are drawn randomly from the population. Shocks are accommodated more slowly in

this case, because the adjustment frequency does not depend on how much a firm needs to adjust,

so the response of price takes longer, and hence the response of output is larger.

Finally, Proposition 12 sheds some light on the relationship between the strength of state

dependence and the magnitude of output response. As we noted before, one measure of the strength

of state dependence is the index C ⌘ ⇤(0)/Na, the share of adjustment happening independently of

the price gap. We can show that, holding constant the shape of ⇤ (captured by its curvature) and

adjustment frequency, this index co-moves with the Kurtosis. Hence, a higher share of adjustment

independent of x means a stronger output response for the same shape of the hazard.

Define the curvature of the function ⇤ as

k(x) =
⇤00(x)x

⇤0(x)
(50)

To understand what it means for two functions to have the same curvature, take some arbitrary

⇤ and decompose it into two parts, the intercept and the rest: ⇤(x) = ⇤(0) + (⇤(x)�⇤(0)). Now

consider two simple linear transformations of the two parts of the hazard:

⇤1(x) = a1⇤(0) + b1(⇤(x)� ⇤(0)), ⇤2(x) = a2⇤(0) + b2(⇤(x)� ⇤(0)) (51)

The transformation scales the intercept and the rest with di↵erent numbers, changing the strength

of state dependence but broadly preserving the shape (it is easy to see that both ⇤1 and ⇤2 have

the same curvature as ⇤). When ⇤1 and ⇤2 generate the same adjustment frequency, the one with

a weaker state dependence (higher C) corresponds to a higher Kurtosis.
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Corollary 4. Consider two generalized hazard functions ⇤1(x) and ⇤2(x) with the same

boundary X  1. Furthermore, assume that they have the same curvature k everywhere and the

frequency of adjustment Na. Then Kurt1(�p) > Kurt2(�p) if and only if C1 > C2.

An immediate implication of the Corollary 4 is that for two economies with the same frequency

of price changes and the same curvature of the generalized hazard function, the one with higher

value of C has a higher cumulative impulse response after a monetary shock.

6.1 Illustration with a power hazard function

In this section we describe the case where the generalized hazard function is a power function with

the power parameter ⌫. In particular, we let ⇤(x) = |x/X|⌫ on (�X,X) for some ⌫ � 0. This

functional form nests Calvo-plus models with ⌫ = 0 and quadratic generalized hazard functions

with ⌫ = 2.

We use this example to illustrate how the parameters a↵ecting the shape of ⇤ determine the

Kurtosis of price changes. To do this, we first show that, with ⌫ fixed, the Kurtosis of price

changes varies one-to-one with the share of adjustments from strictly between the barriers, s.

This highlights the role of selection: the output response is weaker when fewer firms reach the

boundaries, because fewer firms are close to adjustment right before a monetary shock happens.

Second, we show that for any s the Kurtosis of price changes decreases monotonically with the

power ⌫, which governs the shape of ⇤.

We now describe the invariant density f . Upon a renormalization, we can solve for a symmetric

density f̂(z) defined by f̂(z) = Xf (zX). The function f̂ satisfies

⇢z
⌫
f̂(z) = f̂

00(z) with f̂(1) = 0 and

Z 1

0

f̂(z)dz =
1

2
(52)

where ⇢ ⌘ 2X2
/�

2. The solution to equation (52) is given by

f̂(z) = c1

p
z I 1

⌫+2

✓
2
p
⇢

⌫ + 2
z

⌫+2
2

◆
+ c2

p
z K 1

⌫+2

✓
2
p
⇢

⌫ + 2
z

⌫+2
2

◆
for all z 2 [�1, 1] (53)
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This is a combination of modified Bessel functions of the first and second kind I 1
⌫+2

and K 1
⌫+2

of order 1
⌫+2 , where the constants c1, c2 are chosen to satisfy the two boundary conditions described

in equation (52). The form f̂ depends on the parameters (⇢, ⌫) that capture adjustment coming

from random menu costs. Note that if X = 1 then c1 = 0.

From the previous result, we can see that if two models have the same (⌫, ⇢), then the distri-

bution of price changes in one is a rescaling of that in the other. The dimensionless statistics such

as the kurtosis, the fraction of adjustment strictly within the boundaries s, or equivalent the mass

of Q on ±X, are the same. We can summarize this result as follows:

Proposition 13. Let ⇤(x) = |x/X|⌫ . The Kurtosis of price changes, the share of adjustments

strictly between the boundaries, and the frequency of price changes satisfy: Kurt(�p) = K̂(⇢, ⌫),

s = Ŝ(⇢, ⌫), and Na = �
2

X2 N̂(⇢, ⌫) respectively, where these functions have no other parameters.

For fixed ⌫, the function Ŝ(·, ⌫) is increasing in ⇢, and K̂(·, ⌫) is decreasing in ⇢.

Using this proposition we can fix s, say to s = 1, or X = 1, then Kurt(�p) is just a function

of ⌫ only, displayed in Figure 5. Alternatively, fixing ⌫ we have that Kurt(�p) is only a function

of the fraction of price changes strictly between barriers, s as displayed in Figure 6 below.

Figure 5: Kurtosis of power hazard function as ⌫ varies

Hazard function ⇤(x) =  x
⌫ and X = 1
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Figure 5 displays the value of Kurt(�p) for the case where X = 1 as a function of ⌫. Note

that Kurtosis goes from 6, corresponding to ⌫ = 0, or pure Calvo, to a value of 1, corresponding

to ⌫ ! 1 which approximates Golosov and Lucas. Increases in ⌫ clearly change the shape of ⇤,

making it more convex, which is reflected in lower kurtosis of price changes. This illustrates how

the shape of ⇤ determines the selection e↵ect on price changes. Note that for ⌫ = 2, the quadratic

case, Kurt(�p) ⇡ 1.75.

Figure 6: Kurtosis behavior with a power hazard function as s varies

Hazard function ⇤(x) = 
�

x

X

�⌫
and X < 1

Figure 6 displays the value of Kurt(�p) for the case of X < 1 as a function of s, the fraction

of price changes strictly between the boundaries. We display such relationship for three values of

⌫. Note that fixing ⌫, as we change ⇢, and obtain a larger share of price changes strictly inside the

barriers s, which corresponds to a lower Kurt(�p). This illustrate the smaller selection e↵ect of

price changes when barriers are hit less often. Recall that s = 0 is equivalent to X = 1. For each

value of s, the di↵erence lines shows that curvature ⌫ corresponds to lower Kurt(�p).
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7 Flexibility Index: scope and limitations

Caballero and Engel (2007) introduced the concept of the Flexibility Index (F), subsequently

used in several studies such as Berger and Vavra (2018), as an inverse measure of monetary

nonneutrality. We show below that F measures the slope of the impulse response of prices right

after a small once-and-for-all monetary shock. Below we define F in terms of the model, using

Caballero and Engel’s (2007) formula, and study the extent to which it is an accurate summary of

the model’s non-neutrality. We show that for models with barriers, where X < 1, the flexibility

index is always infinite. This prompts us to focus on the cases without barriers, X = 1, where

F is finite. In such cases we can compare F with the summary measure given by the cumulative

impulse response defined in equation (44). We display non-pathological simple examples where

the F is not an accurate summary of the e↵ect on output, neither of its cumulative response, nor

of its short term response.

The IRF of the aggregate price level after a shock � can be written as

P(t, �) = ⌦(�) +

Z
t

0

!(s, �) ds (54)

where !(s, �) is the flow contribution to the IRF at time s > 0, and ⌦(�) is the time t = 0 jump in

the price level. By definition @

@t
P(t, �) = !(t, �). The flow value of the IRF of the aggregate price

level at time t > 0 is given by

!(t, �) = �
Z

X

�X

x⇤(x)f(x, t)dx+X�
2 [f 0(�X, t)� f

0(X, t)]

where f(x, t) is the distribution of the price gaps among the firms that have not adjusted prices t

units of time after the monetary shock. The first term is the change of prices across the distribution

of price gaps at time t, with f(x, t) solving the time dependent Kolmogorov Forward Equation:

@tf(x, t) = �⇤(x)f(x, t) + �
2

2
@xxf(x, t) for all x 2 [�X,X] and t � 0, (55)

f(X, t) = f(�X, t) = 0 for all t > 0, and f(x, 0) = f0(x) for all x 2 [�X,X] (56)
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The initial jump is given by

⌦(�) =

Z �X+�

�X

(�x+ �) f0(x) dx (57)

The initial distribution f0 that we consider is a uniform shift by � of some distribution f̂ :

Assumption 2. The initial condition is f0(x) = f̂(x + �), where f̂ i) equals zero at the

bounds, 0 = f̂(�X̄) = f̂(X̄), ii) increases close to the lower bound, 0 < f̂
0(�X̄) < 1, and iii) is

di↵erentiable on (�X̄, 0).

We write f0(x) = f̂
0(x)� + o(�) and consider the case of small �. Note that the assumptions

allow f̂ to be the invariant distribution corresponding to {X,⇤, �2}, but they do not require it. In

particular, f̂ can be any distribution that has for any strictly positive time evolved according to

equation (55) and equation (56). The Flexibility index is defined as F ⌘ @

@�
!(0, �)|�=0, which is

equivalent to the definition in equation (17) in Caballero and Engel (2007).

Proposition 14. Let ⌦ and ! be the jump and flow values of the IRF of prices at t = 0.

Let X < 1, let ⇤ satisfy Assumption 1, and assume that the initial distribution f0 satisfies

Assumption 2. Then ⌦(0) = ⌦0(�)|�=0 = 0. Moreover, @�!(0, �)|�=0 = 1 and !(0, 0) = 0. Thus, if

X < 1, the flexibility index is infinite for any ⇤.

Because of this result we will move to analyze the flexibility index for models with X = 1,

where it is finite. We will will do so for a family of hazard functions which is a slight generalization

of the one treated in Section 6.1.

7.1 Power plus family of generalized hazard functions

We consider a simple four parameter family of models where ⇤(x) = ⇤(0) + x
⌫ . We label this

case as power-plus, because it adds a constant to the power case. Besides ⇤(0), , and ⌫, the other

parameter of the model is �2. We introduce the parameter ⌘ and let ↵ be the adjusted intercept:

⌘ =

✓
2

�2

◆ 1
⌫+2

, ↵ =
⇤(0)⌘⌫


. (58)
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The quadratic case is ⌫ = 2 and ↵ = 0. This adjusted intercept measures the relative magnitude

of ⇤(0) and the slope , increasing in the former and decreasing in the latter. We will show that

for a fixed power the Kurtosis, adjustment frequency, and the flexibility index only depend on ↵.

Proposition 15. Fix �
2 and let ⇤(x) be a power-plus hazard function parameterized by

(,⇤(0), ⌫). The adjustment frequency, the kurtosis of price changes, and the flexibility index are

Na =
⌘
2
�
2

2
Ñ(⌫,↵) (59)

Kurt(�p)

6Na

=
1

⌘2�2
K̃(⌫,↵) (60)

F =
⌘
2
�
2

2
(Ñ(⌫,↵)(1 + ⌫)� ⌫↵) (61)

where Ñ(⌫,↵) and K̃(⌫,↵) only depend on ⌫ and ↵; Ñ(0,↵) ⌘ 1 + ↵, and K̃(0,↵) ⌘ 2/(1 + ↵).

With no intercept, the flexibility index and adjustment frequency are related by a simple formula

via the elasticity of the hazard:

F = Na(1 + ⌫) (62)

If two models have the same (⌫,↵), the density of price changes in one is a rescaling of that

in the other. This implies that kurtosis (and other dimensionless statistics) is the same. If ⌘ also

coincides in the two models, the distributions of price changes are identical.

The power-plus parameterization allows us to illustrate substantial disconnect between the CIR

and the flexibility index. In one example where we vary one parameter at time: in this case the

flexibility index and the cumulative IRF move in the same direction. In the second example we

change three parameters at a time and show how for the same flexibility index cumulative IRF

can vary substantially, even keeping the adjustment frequency fixed.

Proposition 16. Assume that ⇤ is given by a power-plus function. Fix (⌫,�2) and take two

di↵erent power plus generalized hazard functions ⇤1 and ⇤2. If they generate the same frequency

Na, then Kurt1(�p) > Kurt2(�p) if and only if F1 < F2.
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This result is not surprising, since we are varying one parameter only. This comparative static

exercise is very far away from the idea of a “su�cient statistic”, where one finds a statistic that

summarizes significant outputs of a class of models. Even the simple power-plus parameterization

a↵ords much more flexibility than varying one parameter can o↵er.

Now we turn to the second case, where we argue that, however intuitive this might be, relying

on the flexibility index can be quite misleading. In Figure 7 we display a number of economies

with the same adjustment frequency Na, and with the same Flexibility Index F , but with very

di↵erent cumulative response to a monetary shock. That is, we vary the parameters in such a way

that both F and Na stay constant, while M0(0) varies substantially. This is done by increasing

the power parameter ⌫ and finding the pairs (⇤(0),) that keep Na and F constant. We solve this

problem numerically and find that for the same Na and F the Kurtosis of price changes varies by

90% when ⌫ increases from 2 to 20, as plotted on the Figure 7. The slope of the impulse response

at t = 0 does not capture the area under it quite well.

Figure 7: Values of Kurt(�p) or CIR relative to the case of ⌫ = 2, all cases have F = 3, Na = 1

In Figure 8 we take two examples from the previous plot, one with ⌫ = 2 and the other with

⌫ = 10, and display the entire output impulse response function Y (t) as a function of time t. Thus,

both IRF’s have the same frequency Na and flexibility index F . The areas under both IRF’s are
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clearly di↵erent, the one for ⌫ = 10 is at least 50% larger than the one for ⌫ = 2, consistent with

the values displayed on Figure 7. By construction the slope of Y (·) at t = 0 is the same for both

cases (i.e. for ⌫ = 2 and ⌫ = 10), since both IRF’s have the same Flexibility index F . Yet, the

slopes of both impulse responses starts to di↵er substantially even for low values of t. Since in

both cases Na = 1, the values of time in the horizontal axis can be measured in terms of expected

adjustment time. For instance, if prices change on average three times a year, meaning Na = 3,

then t = 1 represents 4 months. The ratio of the two IRF evaluated at t = 1 is higher than 4,

namely Y10(1)/Y2(1) ⇡ 4.4. This example shows that even the short run output e↵ect can be

substantially di↵erent with the same flexibility index.

Figure 8: Impulse Responses for power plus case, both cases with same F and Na
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8 Conclusion

We discuss the economic foundations of the generalized hazard function, a flexible modeling block

used in several sticky-price setups, and map it to the primitives underlying the firm’s optimiza-
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tion. We show how to identify the generalized hazard function using observable objects, such as

the distribution of price changes, and provide a procedure to recover the hazard and the other

microeconomic primitives from data. On the analytical side, we extend the “Kurtosis result” of

Alvarez, Le Bihan, and Lippi (2016) to a considerably larger class of models and prove that the

Calvo model yields the maximum amount of monetary non-neutrality within the broad class of

models we consider. Within a narrower class where the inaction region is bounded, the upper

bound is Calvo+. Our empirical strategy addresses unobserved heterogeneity in di↵erent prod-

ucts, which we show can be important in estimating the Kurtosis of price changes, and hence in

quantifying the real e↵ects of monetary shocks. Finally, we show that another convenient account-

ing measure for sticky price models, the flexibility index, can sometimes be a poor summary of

monetary non-neutrality, both over the long-term as well as over the short-term.
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