
NBER WORKING PAPER SERIES

THE TERM STRUCTURE OF COVERED INTEREST RATE PARITY VIOLATIONS

Patrick Augustin
Mikhail Chernov

Lukas Schmid
Dongho Song

Working Paper 27231
http://www.nber.org/papers/w27231

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2020, Revised February 2024

The views expressed herein are those of the authors and do not necessarily reflect the views of the 
National Bureau of Economic Research. We thank the editor Stefan Nagel, the associate editor, 
and two referees for their valuable feedback. We are also grateful to Hitesh Doshi, Wenxin Du, 
Gregory Duffee, Nicolae Gârleanu, Valentin Haddad, Ben Hebert, Robert Hodrick, Michael 
Johannes, Lukas Kremens, Wenhao Li, Lars Lochstoer, Hanno Lustig, Tyler Muir, Paolo 
Pasquariello, Yang Song, Fabrice Tourre, Adrien Verdelhan, Irina Zviadadze and participants in 
seminars and conferences sponsored by the University of North Carolina at Chapel Hill Kenan-
Flagler Business School, the Swiss Finance Institute at USI Lugano, the Stockholm School of 
Economics, HEC Liége, Seoul National University, Bocconi University, the Hong Kong Institute 
of Monetary and Financial Research, the 2021 Adam Smith Workshop, the Federal Reserve 
Board, the University of Oklahoma Price College of Business, C. T. Bauer College of Business at 
the University of Houston, 2021 NBER LTAM conference, Texas A&M University, the 
University of Washington Foster School of Business, the University of Toronto Rotman School 
of Management, the University of Southern California Marshall School of Business, HEC 
Montréal, McGill University’s Desautels Faculty of Management, Arizona State University 
Carey School of Business, MIT Sloan School of Management, UCLA Anderson School of 
Management, the 2021 Vienna Symposium on Foreign Exchange Markets, the CDI Virtual 
Derivatives Workshop, and the 2020 David Backus memorial conference. Augustin 
acknowledges the support of the Hong Kong Institute for Monetary and Financial Research for 
this project. An earlier version of the paper was titled “A no-arbitrage perspective on global 
arbitrage opportunities.”

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Patrick Augustin, Mikhail Chernov, Lukas Schmid, and Dongho Song. All rights 
reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit 
permission provided that full credit, including © notice, is given to the source.



The Term Structure of Covered Interest Rate Parity Violations
Patrick Augustin, Mikhail Chernov, Lukas Schmid, and Dongho Song
NBER Working Paper No. 27231
May 2020
JEL No. C01,E43,E44,G12,H60

ABSTRACT

We quantify the impact of risk-based and non-risk-based intermediary constraints (IC) on the 
term structure of CIP violations. Using a stochastic discount factor (SDF) inferred from interest 
rate swaps, we value currency derivatives. The wedge between model-implied and observed 
derivative prices reflects the impact of non-risk-based IC because our SDF incorporates risk-
based IC. There is no wedge at short horizons, while the wedge accounts for 40% of long-term 
CIP violations. Consistent with IC theory, the wedge correlates with the shadow cost of 
intermediary capital, and the SDF-implied interest rate is a weighted average of collateralized and 
uncollateralized interest rates.

Patrick Augustin
Desautels Faculty of Management
McGill University
1001 Sherbrooke Street West, Room 552
Montreal, Qc  H3A 1G5  Canada
and CDI (Canadian Derivatives Institute)
patrick.augustin@mcgill.ca

Mikhail Chernov
Anderson School of Management
University of California, Los Angeles
110 Westwood Plaza, Suite C-417
Los Angeles, CA 90095
and CEPR
and also NBER
mikhail.chernov@anderson.ucla.edu

Lukas Schmid
Marshall School of Business
University of Southern California
and CEPR
lukas@marshall.usc.edu

Dongho Song
Johns Hopkins University
Carey Business School
100 International Drive
Baltimore, MD 21202
dongho.song@jhu.edu



1 Introduction

CIP violations are viewed as prima facie evidence that intermediary constraints (IC)

matter for asset valuation (e.g., Ivashina, Scharfstein, and Stein, 2015; Du, Tepper,

and Verdelhan, 2018). These violations are measured using currency forwards at

short, and using cross-currency basis swaps (XCCY) at long horizons. In this paper

we quantify the impact of IC on CIP violations across its term structure.

IC come in a variety of forms, most notably in form of risk based constraints, such as

those implied by an asset’s volatility or Value-at-Risk, and non-risk based constraints,

such as leverage caps or margin requirements. Measuring the impact of IC constraints

on CIP violations involves delineating the impact of these two types of constraints as

they operate via different channels. The former operate similarly to and jointly with

conventional risk factors via covariance with a stochastic discount factor (SDF). The

latter constraints result in departures from the standard covariance-based framework

and manifest themselves as anomalies.

Separating the two constraints is impossible to accomplish by observing CIP violations

alone. We make progress by introducing a model of risk. By taking a stand on such

a model, we are able to identify the non-risk-based IC component of these violations.

Quantifying this component is our primary focus because it is difficult to disentangle

the effects of risk factors and risk-based IC.

Specifically, we extract an SDF by estimating an affine term structure model that

accurately prices interest rate swaps (IRS) across G10 countries. This model-implied

SDF is particularly relevant because IRS are closely related to XCCY contracts. Insti-

tutional arrangements are similar since both contracts trade over-the-counter among

a similar set of market participants, they have similar collateralization requirements

and cash flows that are contractually linked to LIBOR. Moreover, the IRS market is

highly liquid with a weekly traded notional of one trillion USD and subject to central

clearing, suggesting a relatively small role for non-risk IC.

We show more formally below that if non-risk-based IC do not matter or if they have

a similar impact across the two markets, the IRS-implied SDF would correctly price



XCCY as well. In contrast, if non-risk-based IC do matter, they should manifest

themselves as departures between observed XCCY premiums and the ones implied

by our model. We refer to such departures as ‘IC wedge’.

For example, the traditional measure of the IC wedge used in the literature is the

cross-currency basis (measured as the spread between the forward currency premium

and the difference between LIBOR rates in two countries) and the XCCY premium at

short and long horizons, respectively. Figure 1 offers an example, using the 3-month

basis and the 5-year XCCY premium for the Euro to U.S. Dollar (USD) exchange

rate. Departures from zero for both time series are attributed by the literature to IC.

We use the estimated SDF model to gauge the magnitude and structure of the IC

wedge. That is, we value FX forwards and XCCY. What we discover is that the tra-

ditional benchmark used in the literature to measure CIP violations is an inaccurate

measure of the IC wedge. In fact, the IC wedge is much smaller than the traditional

measures of CIP violations would suggest. For instance, the average 5-year XCCY

rate across countries during the post-crisis period is 22 basis points (bps) in the risk-

based model vs. 25 bps in the data. Our variance decomposition of the 5-year XCCY

rates shows that the risk-based model explains, on average, 60% of the variation in

their levels. Thus, one conclusion is that XCCY and IRS markets are, to a large

degree, priced consistently.

Two elements of our approach drive the risk-based valuation of XCCY close to that

in in the data. First, it is important to account for effective funding rates (EFRs) in

over-the-counter markets when counterparty risk is effectively removed via collater-

alization. Using LIBOR to compute the cross-currency basis may not be appropriate

because it reflects counterparty default risk (Du, Im, and Schreger, 2018).1 We asso-

ciate the mean of the IRS-based SDF with the EFR. Second, XCCY contracts feature

recurring cash flows that are linked to LIBOR. Therefore, both the basis and XCCY

rates are simultaneously zero only when the EFR coincides with LIBOR. Otherwise,

XCCY rates may differ from zero even when the basis is zero or in the absence of IC.

1OIS rates, which also represent uncollateralized interbank lending, are not appropriate either
because they may reflect market segmentation due to unequal access to interest on excess reserves
paid by the Federal Reserve (Bech and Klee, 2011)
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We next assess whether the differences between risk-based and observed prices are

associated with non-risk-based IC. Figure 1 displays the timing of several regulatory

capital and macroprudential regulations that were enacted during our sample pe-

riod. These include the Basel III Capital Requirements Regulation as a framework to

tighten banks’ capital and liquidity requirements (12/2010), the start by major dealer

banks to formally show Fair Value Adjustments on their balance sheets (01/2011),

and the Money Market Fund Reform (10/2016). The various constraints were in-

troduced at different times and, often, long after the emergence of CIP deviations.

Therefore, any given regulation is unlikely to be the sole IC driver of the evidence.

Similarly, Fleckenstein and Longstaff (2020) emphasize the importance of ICs long

before the GFC even in the absence of apparent CIP violations. Thus, we are looking

for a more generic mechanism for interpreting our evidence.

We rely on the margin-based pricing framework of Gârleanu and Pedersen (2011) as

margin constraints existed both before and after the GFC. One prediction of this

framework is that the EFR is a weighted average of the collateralized and uncollat-

eralized interest rates, where the weight is equal to the margin in the fixed-income

derivatives market. To be precise, we interpret margins of the Gârleanu and Pedersen

(2011) model more broadly as all non-risk-based IC and do not only refer to the literal

definition of asset-specific margins. If one approximates the collateralized rate by the

Treasury yield adjusted for convenience and credit risk, and the uncollaterlized rate

by LIBOR, we find indeed that the estimated EFR is closely approximated by the

weighted average of the two.

The model further predicts that the difference between uncollateralized and collateral-

ized interest rates is equal to the shadow cost of capital, which should be proportional

to departures of asset risk premiums from the risk-based framework. We find that

our measures of IC wedges align with the model-implied measure of the shadow cost

of capital. Thus, we attribute the 40% of variation in XCCY not captured by the

risk-based model to the quantitative effects of non-risk-based IC constraints. Fur-

thermore, the shadow cost of capital has only a weak empirical connection to other

proxies of IC used in the literature, such as the leverage of bank holding companies

(He, Kelly, and Manela, 2017) or the trade-weighted U.S. dollar index (Avdjiev, Du,
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Koch, and Shin, 2019; Jiang, Krishnamurthy, and Lustig, 2018).

Haddad and Muir (2021) establish the importance of intermediaries in pricing by

showing that returns of assets that are more intermediated are more sensitive to in-

termediary risk aversion. Similarly, we relate IC wedges to intermediary risk aversion

and examine how their sensitivity to risk aversion relates to the degree of cross-asset

intermediation. We show that swaps are intermediated more than forward contracts,

and that their risk aversion sensitivities line up accordingly. The overall evidence

is consistent with intermediaries’ constraints playing a non-trivial role (40%) in the

determination of variation in XCCY premiums.

In summary, our paper offers a novel quantitative framework that allows gauging the

impact of IC on asset prices. We apply a risk-based framework that prices a set

of relatively less intermediated assets (IRS) to a set of relatively more intermediated

assets (XCCY). The gap between risk-based and observed XCCY valuations is labeled

as IC wedges. Guided by the margin-based asset pricing framework of Gârleanu and

Pedersen (2011), we confirm that IC wedges are IC-related. As a result, we attribute

60% of variation in XCCY to risk-based valuation and 40% to non-risk-based IC.

Related literature

An important literature ascribes post-GFC CIP deviation to IC.2 The existing liter-

ature disagrees, however, about the type of frictions that matter for explaining CIP

deviations. See Du and Schreger (2021) for a review.

Initial explanations point towards frictions in global intermediation of USD funding

(Baba, Packer, and Nagano, 2008; Bottazzi, Luque, Pascoa, and Sundaresan, 2012;

Coffey, Hrung, and Sarkar, 2009; Griffolli and Ranaldo, 2011; McGuire and von Peter,

2012; Ivashina, Scharfstein, and Stein, 2015; Bahaj and Reis, 2018) and risk-based IC

(Baba and Packer, 2009; Coffey, Hrung, and Sarkar, 2009; Csavas, 2016; Levich, 2012;

2Discussions and test of CIP deviations go back to Keynes (1923). For pre-GFC analysis, when
CIP was not violated, see Dooley and Isard (1980); Frenkel and Levich (1975); Fletcher and Taylor
(1994, 1996); Pasquariello (2014); Popper (1993); Taylor (1987, 1989).
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Fong, Valente, and Fung, 2010; Skinner and Mason, 2011; Tuckman and Porfirio, 2003;

Wong, Leung, and Ng, 2016).

Another prominent explanation for large and persistent CIP deviations is linked

to non-risk-based IC (Du, Tepper, and Verdelhan, 2018; Avdjiev, Du, Koch, and

Shin, 2019; Cenedese, Della Corte, and Wang, 2021; Borio, McCauley, McGuire, and

Sushko, 2016; Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel, 2020), which

may be amplified in the presence of hedging demand (Borio, McCauley, McGuire,

and Sushko, 2016; Liao, 2020) or funding shocks (Anderson, Du, and Schlusche,

2019; Liu, 2019). Fang and Liu (2021) highlight interactions between risk-based and

non-risk based constraints.

As mentioned earlier, the introduction of various regulations over time depicted in

Figure 1 suggests that these mechanisms are unlikely to rationalize both the pre- and

post-GFC evidence. Moreover, the evidence does not convey the quantitative impact

of IC on asset valuations. We offer a unified framework that provides a quantita-

tive assessment of how much non-risk-based IC matter. That is a departure from

the literature since we theoretically show that non-zero XCCY rates may naturally

arise even in the absence of IC if LIBOR is an imperfect benchmark for the funding

rate. This perspective differs from the literature that unanimously considers non-zero

XCCY rates as a manifestation of IC.

Like us, Du, Hebert, and Huber (2022) target quantitative implications using a dif-

ferent empirical strategy. They estimate the shadow cost of constraints using returns

of forward CIP trading strategies. Thus, they agree with the rest of the literature

in treating all departures of the cross-currency basis from zero as a manifestation of

IC. While they show that their IC measure is priced in the cross-section of assets, we

identify the pricing of IC as a residual from risk-based CIP valuation that we link to

non-risk-based IC.

Rime, Schrimpf, and Syrstad (2019) take a view that LIBOR-based CIP deviations do

not necessarily imply arbitrage opportunities, like we do. In contrast to us, they use

observable interest rates to estimate feasible transaction costs. Similarly, Kohler and

Müller (2018) argue for another set of observable rates, cross-currency repos, which
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are consistent with CIP. Georgievska (2020) explains CIP deviations with the time-

varying spread between risk-free and collateral rates, a.k.a. collateral rental yield, that

is estimated using observable proxies. Andersen, Duffie, and Song (2019) question

benefits of CIP arbitrage to bank shareholders in the light of required funding value

adjustments. We approach the problem from a fundamentally different perspective

by inferring EFR from related markets with identical cash flows, identical market

participants, and similar institutional arrangements.

Our approach has broader implications for how we think about and interpret other

asset pricing puzzles. Du, Hebert, and Li (2022) adopt a similar approach for ex-

plaining negative swap spreads and CIP violations, Binsbergen, Diamond, and Grot-

teria (2022) for extracting the EFRs of option market makers, and Fleckenstein and

Longstaff (2020) for explaining the Treasury cash-futures basis.

2 Conceptual framework

In this section we outline two key ideas that we use in this paper to develop our

empirical approach and to interpret our findings. First, we review the SDF-based

valuation approach that we use to develop our evidence and quantify the impact of

IC on CIP violations. We term the difference between the SDF-based and traded CIP

valuations the IC wedge. Second, we introduce a variant of the Gârleanu and Pedersen

(2011) model as an equilibrium underpinning of IC wedges in order to interpret the

evidence. In particular, we use that framework to measure the intermediary cost of

capital and to test whether the IC wedges are consistent with the advocated economic

mechanism.

2.1 SDF-based valuation

We follow Andersen, Duffie, and Song (2019) and distinguish between traded prices of

currency-linked derivatives and their fair market valuation. The latter is represented
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by a function of payoffs that satisfies two coherency assumptions: linearity and in-

crease in payoffs. These two assumptions imply the existence, but not necessarily the

uniqueness, of an SDF, M > 0, with the property that the value of any payoff Y is

E(MY ) (we are omitting conditioning and timing of payoffs for brevity).

As Andersen, Duffie, and Song (2019) emphasize, although this description appears to

be similar to that of arbitrage-free valuation, the absence of arbitrage is not assumed

because the SDF is not unique. It is just a representation of how market valuations

are assigned via the SDF. We interpret the difference between market valuations and

traded prices as the quantitative effect of non-risk IC and refer to it as ‘IC wedge’.

In particular, we associate a rate r = − logE(M) with an asset whose payoff is

Y = 1. This rate does not have to coincide with the risk-free rate because of the

potential multiplicity of M. Thus, we interpret r as the EFR of a bank that engages

in collateralized and uncollateralized borrowing and lending.

2.2 The role of intermediary constraints

We present a simple equilibrium framework with constrained financial institutions in

the spirit of Gârleanu and Pedersen (2011). In our setup, these institutions face both

risk and non-risk-based constraints. Time is discrete and there are two dates, t = 0, 1.

We consider two types of financial institutions. Institution A represents constrained

buy side investors, such as pension, mutual, or endowment funds. Institution B

represents sell side investors acting as dealers, e.g., a major investment bank.

Each institution j is endowed with initial wealth W0,j and invests into two types of

risky assets (IRS and XCCY) with returns rk, k = 1, . . . , K. Each type of swap has

multiple maturities, thus K ≥ 2.

Both institutions fund their investments in money markets using either collateralized

loans at the rate rc or uncollateralized loans at the rate ru. While rc may intuitively

be thought of as repo rate, we argue in the Online Appendix that repo rates are
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imperfect proxies for rc in practice. Hence we treat rc as unobservable. The rate ru

may be represented by LIBOR.3

We denote by θuj and θcj institution j’s (dollar) position in uncollateralized and col-

lateralized loans, respectively, and by θkj the positions in the two risky assets. The

positions satisfy the requirement:

θcj + θuj +
K∑
k=1

θkj = W0,j. (1)

Each institution’s budget constraint becomes:

W1,j = θcj(1 + rc) + θuj (1 + ru) +
K∑
k=1

θkj (1 + rk).

We assume that institutions face several constraints. On one hand, institutions man-

age their overall risk exposure using Value-at-Risk or similar risk management tech-

niques. We capture such constraints by modeling institutions as risk-averse with

absolute risk aversion parameters αj. Thus, they exhibit mean-variance preferences,

as in, e.g., Acharya, Lochstoer, and Ramadorai (2013) or Greenwood, Hanson, Stein,

and Sundaram (2020). As in Gârleanu and Pedersen (2011), institution A is more

risk-averse than B, does not participate in the market for uncollateralized loans, and

may face limits for derivatives positions.

On the other hand, institutions face non-risk-based constraints manifested by margins

mi which specify a fraction of the investment that must be financed by an agent’s own

capital. We interpret m as capturing all non-risk-based IC (e.g., leverage constraints,

funding value adjustments, liquidity coverage ratio) and not just the asset-specific

margin requirements.

We thus require, as in Gârleanu and Pedersen (2011), that the total margin capital

3OIS may serve as a more modern version of ru. We focus on LIBOR because all derivative
contracts we consider are explicitly linked to LIBOR. See Augustin, Chernov, Schmid, and Song
(2021) for a comparison of the two rates.

8



cannot exceed the initial endowment, so that

θuj +
K∑
k=1

mk|θkj | ≤ W0,j.

Denoting the shadow cost of institution B’s balance sheet constraint by ψ, we can

write the institution’s Lagrangian as:

LB = θcB(1 + rc) + θuB(1 + ru) +
K∑
k=1

θkBE(1 + rk)

− αB

2
V ar

(
K∑
k=1

θkB(1 + rk)

)
− ψ

(
θuB +

K∑
k=1

mk|θkB| −W0,B

)
,

where the first and second terms in the second row represent risk- and non-risk-based

constraints, respectively.

From the first order conditions for uncollateralized and collateralized loans and ac-

counting for (1), we obtain:

ru − rc = ψ, (2)

allowing us to identify the shadow cost of capital from proxies for ru and rc. From

the first order condition with respect to the risky assets, we get, for asset i:

E(ri − rc) = αB · Cov

(
ri − rc,

K∑
k=1

θkB(r
k − rc)

)
+ ψ ·mi · sgn(θiB). (3)

Thus, risk-based constraints impact the first traditional covariance term. Non-risk-

based constraints appear as departures from the risk premium in the second term.

As a consequence, all else equal, if two assets have the same payoffs, the asset with

the higher margin requirement commands a higher expected return. This is intuitive,

as such an asset ties up more capital. For concreteness, for two risky assets, suppose

m2 > m1, then we have for long positions that E(r2 − r1) = ψ(m2 −m1).
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Now, suppose that mi’s for IRS of all maturities are the same and equal to m. Also,

assume that B holds net positive positions in an IRS of each maturity, i.e., θiB ≥ 0 for

all i corresponding to IRS. Imagine constructing an SDF that values IRS contracts

as described in Section 2.1. Then the rate associated with the mean of such an SDF

is equal to:

r = rc + ψ ·m. (4)

We refer to this rate as effective funding rate (EFR). Combining this equation with

the shadow cost of capital in Equation (2), we obtain that the EFR is a weighted

average of the collateralized and uncollateralized rates:

r = m · ru + (1−m) · rc. (5)

Lastly, applying Equation (3) to value XCCY with r as reference rate, one obtains:

E(ri
′ − r) = αB · Cov

(
ri

′ − rc,
K∑
k=1

θkB(r
k − rc)

)
+ ψ ·

(
m′ · sgn(θi′B)−m

)
, (6)

where the second term reflects the IC wedge. The IC wedge can be zero under two

scenarios. First, non-risk-based constraints are zero in all markets that we consider, in

which case ψ = 0. Second, non-risk-based constraints have the same impact across all

markets and, therefore, cancel out, because m′ = m. These observations underscore

that we consider the relative rather than the absolute impact of non-risk IC. For

instance, if the XCCY market is not affected by non-risk IC, we could still obtain a

non-zero IC wedge as long as the IRS market is subject to non-risk IC. Thus, to have

a sensible measure of the IC impact in our empirical work, we use the arguably less

constrained market (IRS) as a reference and the more constrained market as a target.

We use predictions of this stylized model to interpret the evidence developed in the

rest of the paper. Subsequently, we use continuously compounded rates, which are

approximately equal to simple compounded rates characterized in this section.
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3 CIP in the short and the long run

To separate the effect of risk-based and non-risk-based constraints on asset prices,

one must take a stand on the model of risk. First, we review risk-based valuation

for currency forwards and XCCY. Second, we develop such a model to extract EFRs

on the basis of IRS. This is conceptually aligned with Binsbergen, Diamond, and

Grotteria (2022) and Fleckenstein and Longstaff (2020), who argue that prices of

risky financial assets help identify the funding costs of major investors. Third, we

apply the model to value currency forwards and XCCY.

3.1 Forward rates and short-term cross-currency basis

A currency contract that is struck at time 0 to sell e1 forward at time T for the price

$F0,T has a net USD cash flow of F0,T −ST . These contracts, being overcollateralized

derivatives, generate additional cash flows associated with daily marking to market

and posting of collateral. Johannes and Sundaresan (2007) demonstrate that these

cash flows represent the opportunity cost of collateral, which can be represented as

a dividend yield on an asset. We rely on the SDF-based pricing relation to value a

forward contract and account for these additional cash flows. Thus,

E0(M0,T e
η0,TF0,T ) = S0 · E0(M

∗
0,T e

η∗0,T ), (7)

where η and η∗ represent the domestic and the foreign cost of collateral, respectively,

and M∗ is the foreign SDF. Rearranging terms in Equation (7), we thus have that:

F0,T/S0 = E0(M
∗
0,T e

η∗0,T )/E0(M0,T e
η0,T ). (8)

The forward premium in logs is given by:

f0,T − s0 = logE0(M
∗
0,T e

η∗0,T )− logE0(M0,T e
η0,T ) = T (r′0,T − r∗′0,T ), (9)
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where r′0,T ≡ −T−1 logE0(M0,T e
η0,T ) and r∗

′
0,T ≡ −T−1 logE0(M

∗
0,T e

η∗0,T ) are the corre-

sponding domestic and foreign rates (combined with the extra cash flows for brevity).

The domestic and foreign EFRs, r and r∗, are obtained by setting ηs to zero.

Define the forward premium as ρ0,T = T−1(f0,T − s0). Thus, the forward basis is:

br0,T = ρ0,T − (r′0,T − r∗′0,T ) = 0,

which allows us to connect our framework to the literature on cross-currency bases.

Indeed, the literature on CIP violations (e.g., Du, Tepper, and Verdelhan, 2018)

explores either the LIBOR or OIS forward basis defined as:

bi0,T = ρ0,T − (i0,T − i∗0,T ),

where i and i∗ represent LIBOR or OIS and their foreign counterparts. The bases br

and bi can be equal to zero simultaneously only if there is no substantive economic

difference between r′ and i. That is unlikely, however, because collateralized borrow-

ing costs are lower than uncollateralized borrowing costs, unless counterparty risk is

perceived to be trivial. This was the case for interbank borrowing before the GFC.

Further, the literature on the specialness of U.S. Treasuries (e.g., Du, Im, and Schreger,

2018, Jiang, Krishnamurthy, and Lustig, 2019) evaluates the Treasury forward basis:

by0,T = ρ0,T − (y0,T − y∗0,T ),

where y and y∗ represent U.S. and foreign Treasury yields, respectively. This basis is

interpreted as the relative convenience yield of Treasuries. Implicit in this interpre-

tation is the existence of interest rates at which the basis is equal to zero, which is

consistent with our perspective.

As highlighted in Equation (5), the EFRs, r and r∗ are equal to a weighted average

of secured and unsecured rates, where the former is not easily approximated with an

observable interest rate. The corresponding weight is equal to the “representative”

margin and is not observable either. These observations compel us to treat EFRs as
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unobservable.4 Likewise, the “representative” extra contractual cashflows η are not

observable either.

3.2 Long-term cross-currency basis swap rates

XCCY contracts are OTC derivative instruments that allow investors to simultane-

ously borrow and lend in two different currencies at floating interbank rates such as

LIBOR or EURIBOR. Specifically, it involves an exchange of principal in two differ-

ent currencies both at inception and at the expiration date of the swap, as well as an

exchange of floating cash flows linked to interbank rates. The exchange of face values

of the domestic and foreign legs of XCCY are matched using the spot exchange rate

between both currencies. The price of the XCCY is usually quoted as a fixed spread

X over the floating foreign currency denominated interest rate.

We examine XCCY contracts from the perspective of an investor who, at contract

initiation, pays S0 dollars and receives one euro. Table 1A illustrates the cash flows

associated with such a position. The investor would receive floating dollar interest

payments at the rate it on the USD leg at each date t + 1, and make floating euro

interest payments at the rate i∗t +X on the EUR leg at each date t+ 1.5 The initial

principal payments would have to be reversed at maturity T . The present value of

all expected future cash flows on the USD leg of the XCCY is:

ϕ0,T = S0

(
−1 +

T∑
t=1

E0 [M0,te
η0,tit−1] + E0 [M0,T e

η0,T ]

)
,

and the present value of all expected future cash flows on the EUR leg is:

ϕ∗
0,T = 1−

T∑
t=1

E0

[
M∗

0,te
η∗0,t
(
i∗t−1 +X0,T

)]
− E0

[
M∗

0,T e
η∗0,T
]
.

4Rime, Schrimpf, and Syrstad (2019) take the complementary route of estimating marginal fund-
ing rates using information about wholesale money market funding from non-bank investors.

5To save on notation, we drop the second subscript for interest rates applicable to subsequent
time periods such that it−1,t = it−1.
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Here we assume that the opportunity cost of collateral, expressed in the form of a

dividend yield, is the same as that for forward contracts.

The XCCY is fairly priced if both the USD and the EUR legs have the same value

in USD, i.e., ϕ0,T + S0ϕ
∗
0,T = 0. The condition yields the formula for the constant

maturity XCCY swap rate X0,T :

X0,T =

(
T∑
t=1

E0

[
M∗

0,te
η∗0,t
])−1

× (10)[(
T∑
t=1

E0 [M0,te
η0,tit−1] + E0 [M0,T e

η0,T ]

)
−

(
T∑
t=1

E0

[
M∗

0,te
η∗0,ti∗t−1

]
+ E0

[
M∗

0,T e
η∗0,T
])]

.

Intuitively, the XCCY rate is pinned down by the difference in prices between two

floating rate notes tied to LIBOR. Floating rate notes are valued at par at the interest

rate reset date provided that the discount rate is equivalent to the floating rate coupon

(Duffie and Singleton, 1997; Litzenberger, 1992; Ramaswamy and Sundaresan, 1986).

A discount rate other than LIBOR would imply a non-zero X without violating no-

arbitrage conditions.

Anecdotally, full collateralization, which was prevalent by the late 1990s, led market

participants to use the OIS rates instead of the LIBOR rates for discounting starting

in 2007. By the end of 2008, the whole industry had switched to OIS (e.g., Cameron,

2013, Hull and White, 2013, Spears, 2019). That would immediately imply a non-zero

X. The advantage of our valuation via the SDF is that we do not have to take a stand

on a specific reference rate to obtain the discount factor. The empirical question is

whether an estimate of X can quantitatively be similar to the observed one while

simultaneously respecting a zero basis.

3.3 A risk-based valuation framework

If the collection of M and M∗ were observable, we could evaluate expressions in

Equations (9) and (10) and compare them to the observed forward premiums and
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XCCY rates, respectively. The difference would tell us about the quantitative effects

of non-risk-based constraints. In practice, we have to estimate M and M∗.

We infer domestic and foreign SDFs from IRS rates because the XCCY cash flows

are, by no-arbitrage, linked to those of IRS contracts. Specifically, we swap both the

USD and the EUR interest rates into fixed rates using an IRS in each currency, at

prices CMS and CMS∗, respectively (CMS stands for “constant maturity swaps”).

We illustrate these cash flows in Table 1B.

The net cash flows of the USD leg π0,T of the fixed-for-fixed XCCY are given by:

π0,T = S0

(
−1 +

T∑
t=1

CMS0,TE0 [M0,te
η0,t ] + E0 [M0,T e

η0,T ]

)

and the present value of expected future cash flows on the EUR leg is given by:

π∗
0,T =

(
+1−

T∑
t=1

(
CMS∗

0,T +X0,T

)
E0

[
M∗

0,te
η∗0,t
]
− E0

[
M∗

0,T e
η∗0,T
])

.

Since XCCY is priced fairly if π0,T + S0π
∗
0,T = 0, we get another expression for X0,T :

X0,T =

(
T∑
t=1

E0

[
M∗

0,te
η∗0,t
])−1

× (11)(
CMS0,T

T∑
t=1

E0 [M0,te
η0,t ]− CMS∗

0,T

T∑
t=1

E0

[
M∗

0,te
η∗0,t
]
+ E0 [M0,T e

η0,T ]− E0

[
M∗

0,T e
η∗0,T
])

.

Thus, we express the XCCY rate in terms of (observable) interest swap rates and

(unobserved) discount factors, M0,t and M
∗
0,t.

Now we can develop a model of the SDFs. We describe our model for the U.S. only.

All other countries have the same notation augmented with asterisks. We assume

that the unobservable state is captured by a vector zt that follows a VAR(1):

zt+1 = Φzt + Σεt+1,
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and the “dividend yield” associated with costly collateral is ηt = δη,0 + δ⊤η zt.

Next we have to specify how the contract reference rate LIBOR, it, and the EFR, rt

depend on the state. In doing so we have to accommodate essentially a structural

break in the data. Before the crisis, LIBOR was treated as de-facto funding rate,

i.e., bi ≈ 0. This perspective agrees with the widespread pre-crisis view in academia

and industry that i is a better proxy for r than a Treasury yield y, because of the

convenience premium present in Treasuries and the “refreshed AA” quality of banks

in the LIBOR panel. Clearly, this is no longer the case in the post-crisis environment.

Thus, we posit that rt = it + ut, ut ∼ (0, σ2
u) before the crisis (December 2007).

The variance of the observation noise ut is selected to be 1% of the variance of 1-

month LIBOR. After the crisis, there is a credit spread between LIBOR and the EFR.

Specifically, the one-month LIBOR rate is:

it = δi,0 + δ⊤i zt.

The EFR is:

rt = it − δr,0 − δ⊤r zt.

This assumption is consistent with the intensity-based approach to modeling credit

risk (e.g., Duffie and Singleton, 1999).

This specification raises a concern that we potentially mix the effect of the onset of

the zero-lower bound (ZLB) environment with the increase in the credit risk of the

banking sector. We use the “reverse” formulation of riskless and credit-risky rates,

where the credit spread is subtracted from the credit-risky rate, to highlight that the

model of the observed LIBOR/swap curve is the same throughout our sample. Thus,

the structural break assumption does not affect the model performance due to the

ZLB with respect to the observables. We offer additional analysis of the interaction

with the ZLB issue in the Online Appendix.

The SDF is:

− logMt,t+1 = rt + ν⊤t νt/2 + νtεt+1,
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where the conditional volatility of the log SDF, νt = Σ−1(ν0 + ν · zt), is often referred

to as the price of risk. The conditional mean of the log SDF is related to the EFR

rt. This is consistent with the frameworks laid out in Section 2: the constructed SDF

is set up to value IRS only; the mean of that SDF reflects the shadow cost of capital

and margin in this market as per Equation (4).6

We connect it to LIBOR rates corresponding to longer horizons via hypothetical LI-

BOR bonds L0,T discounted at the continuously compounded yield i0,T = T−1 log(1+

iq0,T · T · 30/360) where iq0,T denotes a quoted LIBOR rate and T ≤ 12 corresponds to

maturities of up to 12 months.7 As a result,

L0,T ≡ exp (−i0,T · T ) = E0

[
M0,T e

∑T−1
t=0 (δr,0+δ⊤r zt)

]
,

modeled without dividend yield η because LIBOR represents uncollateralized lending.

Now we can use the 3-month LIBOR rates for computing the IRS. Here we discount

all cash flows accounting for the cost of collateral ηt. Standard arguments then imply:

CMS0,T =

T∑
t=1

E0 [M0,te
η0,tit−1]

T∑
t=1

E0 [M0,teη0,T ]

. (12)

This representation of the IRS is stylized to conserve on notation. In the implemen-

tation, we account for the actual payment frequencies of the contracts. We discuss

institutional details in the Online Appendix.

As highlighted earlier, this is the simplest model one could entertain. The model lacks

various forms of heteroscedasticity (regimes, stochastic volatility). It also does not

account for various regulatory changes that took place in the money markets during

6That we do not estimate the ‘true’ risk-free rate is not a limitation of our framework, but a
manifestation of the lack of uncontroversial risk-free assets. If such asset existed, we could have
included its price into our estimation and the estimated r would be interpreted as the risk-free rate.

7The day count convention for LIBOR rates is act/360. We use 30/360 as the daycount convention
given that it is numerically close to act/360, and it simplifies the implementation.

17



our sample. All these features would help us fit the data better, although with loss of

parsimony. Our objective is not to provide the best possible fit, but to examine how

much of the XCCY valuation can be captured using a set of baseline assumptions.

3.4 Empirical strategy

We estimate the model specified in the previous section using the standard state-

space framework. We treat the state variables as latent. IRS prices and 3-month

cross-currency bases are used in observation equations. Because IRS rates depend

non-linearly on the state, we use Bayesian MCMC methods to estimate the model

parameters and the state realizations. Details are provided in the Online Appendix.

As specified, the model is under-identified. We adopt the canonical form used by

Joslin, Le, and Singleton (2013) and choose the latent state zt so that the matrix Φ−ν
governing the dynamics under the risk-adjusted distribution is diagonal. Further,

because both loadings δi and covariance matrix Σ control the scale of it, we set the

former to unity. All other parameters are free.

We need extra consideration in addition to the standard identification restrictions.

That is because we have two reference interest rates in the model (i and r), and one

of them (r) is not observable. Furthermore, the cost of collateral (η) is not observable

either.

We treat the U.S. different from all other countries in that we first estimate the model

using the U.S. data, and subsequently estimate the remaining countries one by one

conditional on the output from the U.S. estimation. In the U.S. data estimation, we

rely on the non-linearity of the IRS rates to identify the variation in r controlled by

δr. That is because r contributes differently to the numerator and denominator of

CMS in Equation (12) (the constant δr,0 cancels out). To identify δr,0, we bound the

post-GFC sample average of the wedge to be E
[
δr,0 + δ⊤r zt

]
≤ 100 bps (annualized).

This interval is fairly wide, incorporating a wide range of different views about likely

deviation of EFR with respect to LIBOR. Lastly, the cost of collateral appears in the
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valuation of IRS, but not LIBOR. That helps with identifying η separately from r.

In practice, because identification comes from only few observations at the short end

of the curve, it is difficult to pin down the time-varying component of η, so we treat

it as a constant.

Moving on to other countries, the identification strategy for r that we use for the U.S.

has practical problems. On one hand, the short-maturity IRS rates are insensitive to

variations of δr, and so the identification mostly comes from the very long end of the

IRS curve (e.g., 20 or 30 years). On the other hand, some countries have missing data

precisely on that very long end of the swap curve. Lastly, while set identification,

which we use for δr,0 in the U.S., can be appealing as it does not require any strong

parameter restrictions, we cannot continue using this strategy for other countries as

it defeats our purpose of gauging the magnitude and structure of the IC wedge. To

tackle this issue, we assume that at the 3-month horizon br is close to zero throughout

the whole sample (up to the usual measurement error used in state-space models).

This assumption is similar to that of Binsbergen, Diamond, and Grotteria (2022)

and Fleckenstein and Longstaff (2020) who identify “risk-free rates” from derivative

prices. Similar to the U.S., η is identified off from the difference between IRS and

LIBOR.

4 Evidence

We first discuss the data, and then present the model’s implications for the forward

basis and XCCY rates.

4.1 Data

We use a panel data set on interest and exchange rates for G11 countries from January

2000 to December 2019. G11 currencies include the USD, JPY, GBP, CAD, EUR,
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AUD, CHF, NZD, SEK, DKK, NOK.8 Specifically, we obtain information on spot

and forward exchange rates with maturities of 1, 3, 6, and 12 months. We adopt the

convention of measuring exchange rates as the USD price per unit of foreign currency.

We also source closing prices for XCCY rates with maturities of 1, 3, 5, 7, 10, 15,

20, and 30 years. In addition to data on exchange rates, we source country-specific

information on Treasury yields, interbank rates (LIBOR), and interest swap rates

with matching maturities. For comparability, our data set is similar to that in Du,

Tepper, and Verdelhan (2018). All data are sourced from Bloomberg. Details about

data sources are discussed in the Online Appendix.

The black lines in Figure 2 display the 3-month and 6-month LIBOR bases, bi0,T ,

and XCCY rates X0,T for the 5-year and 20-year contracts, for selected currencies,

NZD, EUR, and JPY. The full set is provided in the Online Appendix. The set

of left columns in Figure 3 provide the corresponding summary statistics. Tables

supporting this figure are provided in the Online Appendix. The magnitudes are

largely consistent with Du, Tepper, and Verdelhan (2018) with a proviso that we

have a longer sample, and a slightly different delineation between the pre-, during,

and post-crisis periods. Table 2A displays the results from a principal component

analysis (PCA) of XCCY rates by currency. The rates exhibit a clear factor structure

with three factors explaining most of the variation in their term structure.

4.2 Results

Fitting an affine term structure model to a swap curve is a standard exercise that is

not expected to yield many surprises. Table 2B shows that the LIBOR-IRS curves

exhibit a two- to three-factor structure. Pricing errors are rather large when one uses

three factors (e.g., Collin-Dufresne, Goldstein, and Jones, 2008, Dai and Singleton,

2000). The primary reason is that it is hard to capture jointly the short end of the

swap curve that is driven by LIBOR rates and the long end that is driven by actual

swaps. Thus, we ultimately choose the dimension of zt to be 4 in our model.

8DKK is pegged to EUR, but we are not duplicating the analysis because of our focus on the
valuation of forward and XCCY contracts rather than their realized payoffs. As we have shown, the
valuation primarily depends on the local interest rates.

20



4.2.1 Forward bases

As one measure of fit, we report a dimension of the model that is particularly relevant

for us. The first row of Figure 2 displays the time-series of the 3-month basis computed

using the EFR, br0,0.25, (blue line). The column labeled ‘Model’ in Panel A of Figure

3 shows the summary statistics. Overall, the basis is close to zero in contrast to the

LIBOR basis.

The second row of Figure 2 and the column labeled ‘Model’ in Panel B of Figure

3 report similar information for the 6-month basis br0,0.5. The 6-month forward rates

were not used for estimation, so this is a first glimpse of our model’s extrapolation

capacity. While the fit is not as good as at the 3-month horizon, br is much closer to

zero and less volatile than the companion LIBOR basis bi.

Interpreting this evidence through the lens of Equation (6), we conclude that the

impact of non-risk-based IC is similar across the IRS and currency forward markets.

As a consequence, returns in the excess of the EFR reflect only risk-based compensa-

tion. Since we used the 3-month forward premium to identify the EFR parameters,

we also report the model-implied results at the 6-month horizon, which was not used

for estimation at all.

4.2.2 XCCY rates

We use the estimated SDFsM andM∗ to construct XCCY rates using Equation (11).

The third and fourth rows of Figure 2 and the column labeled ‘Model’ in Panels C

and D of Figure 3 display the results for 5-year and 20-year contracts, respectively.

We observe that the average market valuations implied by our model of the SDFs are

quite close to the traded prices. For instance, the average difference in the case of

5-year instruments is 3 bps with the average traded price at 25 bps.

The model mechanically generates the change around the crisis because our modeling

assumptions allow for departures between r and i. The economic interpretation of the
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specific quantitative effect is straightforward: the spread reflects the riskiness of the

banking sector implicit in LIBOR. After the crisis, the relation between the traded

and the theoretical X is weaker, reflecting the fact that the SDF model can match

the general trend in XCCY rates, but not the local deviations.

As a result, there is meaningful time-series variation in the differences between the

traded and theoretical valuations. Before the crisis, the two are visually similar.

During the crisis, we see a broad switch in the level of X. For some currencies, like

CHF, EUR, or GBP the switch in market valuation is broadly consistent with the

observed one. In some cases, like CAD or SEK, the change is less dramatic. Still, it

is consistent with the evidence.

Next, we resort to a simple variance decomposition to quantify how much variation

in observed XCCY rates is explained by our SDF model. We exploit the fact that IC

wedges are orthogonal to the model-based swap rates, by the model estimation design,

in population. We report in the first row of Table 3 the fraction of the variance of

the observed XCCY rate levels explained by the model. On average, it is 60%. The

remaining 40% is, therefore, attributed to the IC wedges.

Thus, although the SDF-based valuation framework plays a major role in understand-

ing the behaviour of CIP, the contribution of IC is important as well. As discussed

in Section 2.2 in the context of Equation (6), the IC wedges reflect the relative effect

of non-risk-based constraints that are not accounted for by the SDF-based frame-

work. An alternative interpretation is that the difference between the theoretical

and observed values of X reflect a misspecification of the SDF model. In that case

the wedges would be unrelated to various measures of IC. We disentangle these two

possibilities in the subsequent analysis.

5 Interpretation of the evidence

We first relate the estimated EFRs to observable variables. Second, we assess whether

variation in the IC wedges correlates with non-risk-based constraints.
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The first exercise has a dual purpose: investigate the source of the empirical success

of our model and develop economic intuition for the estimated EFRs. One might

worry that our results are driven by the dividend yield η, which mechanically adjusts

LIBOR, as a proxy for r, so that r′ = r− η prices assets correctly. That we set η to a

constant should alleviate this concern as r, rather than r′, is doing all the work in our

model. Also, η is small ranging between 10 and 19 bps (annualized) across countries.

More broadly, it is useful to understand the drivers of EFRs in fixed-income swap

markets. In particular, it would be helpful to know if it can be interpreted as the

risk-free rate rather than the representative lending rate of dealers in this market.

Thus, one would want to understand the relation of r to other variables.

The second exercise allows us to to verify the IC origins of the gaps between traded

and theoretical prices of derivatives and to quantify the impact of IC on valuation.

5.1 Effective funding rates

What would be an appropriate observable proxy for the EFR r? We use two ap-

proaches to address this question. First, we construct such a proxy by theorizing

about the relation between various observable rates that could yield an approxima-

tion of the risk-free rate. The margin-based asset pricing theory tells us, however,

that the EFR should not be equal to risk-free rate unless margins are zero. Therefore,

as our second approach, we implement a panel regression that allows us to consider

a large number of possibly relevant variables, and select the ones that co-move with

r in a significant fashion.

Yields on Treasury bonds, y0,T , continue to serve as a natural starting point when

thinking about risk-free rates. We know three reasons for why that may not be a

good proxy. Dealers cannot fund themselves at government rates. Next, Treasury

yields reflect a convenience premium (e.g., Krishnamurthy and Vissing-Jorgensen,

2012). Lastly, in the post-crisis environment, Treasury yields reflect credit risk (e.g.,

Chernov, Schmid, and Schneider, 2020).
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With these considerations in mind, we study the following proxy for the risk-free rate:

r̃0,T ≡ y0,T + λ0,T − CDS0,T ,

where λ is the convenience premium and CDS is a premium on a sovereign credit

default swap. The yield and CDS information are readily available. We use the U.S.

Refcorp - Treasury spread to estimate λ in the U.S. (Longstaff, 2004; Joslin, Li, and

Song, 2019).9 Having obtained the U.S. convenience premium λ, we obtain the foreign

λ∗ from the Treasury basis via:

λ∗0,T = λ0,T − by0,T + (CDS∗
0,T − CDS0,T ) + (η∗0,T − η0,T ).

As mentioned earlier, the last term is small and constant in our model. Du, Im, and

Schreger (2018) and Jiang, Krishnamurthy, and Lustig (2018, 2019) work through

similar computations in their empirical work. The key difference is that they do not

estimate country-specific λ separately.

Because reliable CDS information is available only at maturities starting at 1 year, the

shortest interest rate that we can evaluate is for T = 1 year. Figure 4 plots r0,T and

its proxy r̃0,T . We see that the proxy is tracking the EFR quite well. The connection

between the EFR and the risk-free rate is not perfect and departures between the two

are evident. Japan has the largest discrepancies. The observed differences between r

and r̃ are not surprising. Even if there is no noise associated with the ingredients of

r̃, it does not account for risk associated with the interbank market, and so it may

not be capturing the EFR of dealers as described in Equation (5).

As the relation between the conjectured and the estimated EFRs is not perfect, we

investigate other variables. Our candidates are the ingredients of r̃ taken separately:

Treasury yields, CDS premiums, and liquidity proxies. We also consider their combi-

nations: y+ λ (convenience-adjusted Treasury), y−CDS (credit-risk-adjusted Trea-

sury), and r̃ itself. Furthermore, we consider rates at which banks can fund themselves

9The bonds of the Resolution Funding Corporation (Refcorp) are as safe as U.S. Treasuries
because its debt is effectively guaranteed by the U.S. government. The Refcorp bonds also have the
same tax treatment.
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on an uncollateralized basis. This includes LIBOR as a pre-GFC reference rate, and

OIS as a post-GFC reference rate for swap contracts. Finally, we consider a set of

U.S - only variables: the effective Federal Funds rate (EFFR) as another measure

of near-money rates, the certificate of deposit - Treasury spread as a measure of the

opportunity cost of collateral (Nagel, 2016), and the interest rates implicit in S&P

500 option box spreads (Binsbergen, Diamond, and Grotteria, 2022). We provide a

detailed overview of all data sources in the Online Appendix.

Table 4 provides evidence regarding the relation between changes in r and changes in

candidate variables by regressing the former on the latter at a monthly frequency.10

We run regressions for individual variables and for all of them taken together. Not

all of them are available at each horizon. We focus on tenors T of 3 months and

1 year. The row MAT reflects which horizon is used for a specific regression. The

two multivariate regressions in columns (12) and (13) include all the variables that

are available at the two horizons, respectively. We run panel regressions and add

currency fixed effects to focus on the within currency variation. We add month fixed

effects to absorb unobserved common variation across currencies. In particular, these

fixed effects account for the role of USD swap lines extended to foreign central banks

in stress periods (Bahaj and Reis, 2018; Coffey, Hrung, and Sarkar, 2009), capital

shocks to common arbitrageurs, coordinated monetary policy, or regulatory reforms.

The common U.S. variables are not compatible with month fixed effects as they are

absorbed by them. Thus, U.S. variables do not appear in the multivariate regressions,

and we do not use month fixed effects in the corresponding univariate regressions.

When evaluating the univariate regressions, we focus on the magnitude of the esti-

mated coefficient (the closer to 1 the better) and the within R2. The leading variables

here are LIBOR and the convenience-adjusted Treasury with coefficients of 0.94 and

0.80, respectively, and R2 around 0.8. The weakest variables are the U.S.-only ones:

EFFR, CD-Treasury spread with coefficients of about 0.2 and R2 below 0.07, and

CDS, which is insignificant on its own. Our initial proxy for the EFR r̃ is close to

the most important variables with a coefficient of 0.7 and R2 of 0.7.

10We implement regressions in changes due to the strong persistence of both left- and right-hand
side variables, which increases the risk of spurious results.
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Moving to multivariate regressions, we find that, at the 3-month horizon, convenience-

adjusted Treasury rates and LIBOR are the two variables that remain significant.

Initially, we have allowed y and λ to appear separately, but the estimated coefficients

were nearly identical, so we have combined them into one intuitive variable with no

loss in R2. We had also included the other candidate variables in the multivariate

regression, but we subsequently removed them because they turned out to be statis-

tically insignificant. Significance of LIBOR is consistent with the representation of

EFR as a weighted average of the collateralized and uncollaterlized rates.

At the 1-year horizon, the CDS premium emerges as a variable that is statistically

important in addition to LIBOR and the convenience-adjusted Treasury rates. The

negative coefficient is intuitive, as it implicitly adjusts Treasuries for credit risk. Thus

our proxy for the risk-free rate r̃ is selected as a significant variable.

One may try mapping the 1-year results to Equation (5) and infer the implicit costs

of non-risk-based constraints. Since the regression coefficients on LIBOR and r̃ are

0.38 and 0.50, Equation (5) would imply a cost m = 0.38.11 The two coefficients do

not add up to 1, which could be due to month and currency fixed effects, potentially

omitted variables, and because r̃ is a noisy proxy for rc. Thus, the link to Equation

(5), although attractive, should be considered with caution.

It is interesting that OIS is not significant in multivariate regressions. Some might

view this as surprising in the context of the common wisdom that the right discount

rate for swaps must be OIS because of collateralization. Our evidence is consistent

with Rime, Schrimpf, and Syrstad (2019) who argue that OIS contracts, being deriva-

tives, are not well suited for raising funds.

Figures 4 and 5 compare the estimated r with the best prediction according to the

multivariate regressions presented in columns (12) and (13) in Table 4. The pre-

dictions are for the changes, so we obtain predictions for levels by cumulating the

11The implicit value of m matches the baseline calibration of Gârleanu and Pedersen (2011), who
use m = 0.4. Margins vary quite a bit between low values for derivatives and high values for funded
assets. As Gârleanu and Pedersen (2011) point out, margins are opaque and their estimates also
depend on the specific combination of brokers and clients and the time period. Given that we
interpret m as a cost associated with a host of non-risk-based constraints, not just margins only, the
value 0.38 may be considered plausible.

26



changes. At the 1-year horizon, the predicted r is more accurate than r̃ and, in fact,

is very close to r. At the 3-month horizon, the prediction tracks r almost perfectly.

5.2 Is the EFR different from LIBOR?

As mentioned earlier, one concern could be that LIBOR is a good proxy for the EFR

and, thus, all the explanatory power in the model is driven by the extra cash flows in

the form of the dividend yield η. First, Figure 5 explicitly compares our EFR with

LIBOR. It is evident that i is substantively different from r during the post-crisis

period (they are similar before the crisis as part of our identification strategy, up to

a noise term). The EFR is lower than LIBOR, consistent with the theory.12

As a further characterization of the difference between the EFR and LIBOR, we con-

sider the theoretical connection between this difference and XCCY rates X. The

SDF-based framework suggests that XCCY rates are zero only under the strong as-

sumption that the EFR is identical to LIBOR. Thus, under the null of our model,

XCCY rate deviations from zero should be positively related to the differences be-

tween observed LIBOR rates and our model-implied EFRs.

We test this hypothesis by projecting, in a pooled cross-section, the absolute values

of the observed 5-year XCCY rates on the 3-month i− r spread. We cluster standard

errors by month to account for cross-sectional dependence in the residuals. The results

are reported in Table 5.

In column (1), we find that XCCY rates deviate on average about 22 bps more from

the zero benchmark when the i − r spread is greater by one percentage point. In

column (2), we add monthly time fixed effects for a fairer comparison across periods.

That specification suggests a 28 bps XCCY rate in absolute value for a 100 bps

12The EFR is lower than LIBOR and negative during the post-GFC period for some countries, in
particular for the Euro area (and Denmark), Switzerland and Japan. This evidence is consistent with
the corresponding Central Banks adopting negative interest rate policies (NIRP) in 2012, manifested
via negative LIBOR rates in Figure 5. We provide in the Online Appendix confidence bands to the
estimated EFRs. Accounting for statistical uncertainty implies less dramatic departures from zero.
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spread between LIBOR and r. This is economically significant, as 28 bps corresponds

approximately to the average cross-country XCCY rate in the post-crisis period.

In columns (3) and (4), we add those variables that are significant in explaining the

dynamics of model-implied interest rates, the convenience-adjusted Treasury rates

and the CDS premium. As we do not have CDS rates with a 3-month maturity, we

use the 6-month rate instead. Neither of those two variables significantly changes the

magnitude or the significance of the relation between XCCY rates and i− r spreads.

In the specification in column (5), we further add currency fixed effects to soak up the

average difference in cross-country XCCY rates. Even in that case, we find a positive

and statistically significant relation between XCCY rates and i− r spreads.

5.3 IC wedges

While our SDF-implied XCCY rates match the evidence reasonably well, there are

differences from observed rates. These differences could reflect model misspecification

or IC wedges due to differences in margins and positioning across the IRS and XCCY

markets, as highlighted in Section 2.2.

We use the Gârleanu and Pedersen (2011) framework outlined in Section 2.2 to dis-

tinguish between the two interpretations. Equation (3) suggests that departures from

the risk-based valuation should be related to the shadow cost of capital, which equals

the difference between collateralized and uncollateralized interest rates. Since we do

not observe the former, we exploit its relation to the EFR. Equations (2) and (5)

imply that the difference between LIBOR and EFR, ru − r, is also proportional to

the shadow cost of capital ψ.

Armed with this observation we evaluate whether the differences between SDF-

implied and observed XCCY rates, XCCY e, are related to ru − r, which we label ψ

for simplicity. We regress changes in XCCY e on changes in ψ and control variables.

We measure the shadow cost of capital in two different ways, using U.S. interest rates

or using the first principal component of ru − r across countries in our sample. We
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focus on the three-month maturity for better comparability to other variables, but

we find qualitatively similar results using the one-month maturity.

We consider three broad groups of control variables, starting with the intermediary

factors advocated in the literature. Specifically, we measure IC using the capital

ratios of bank holding companies (He, Kelly, and Manela, 2017, HKM), the trade-

weighted U.S. dollar index, which proxies for the limited willingness of intermediaries

to provide USD funding and demand for USD associated with the convenience of USD

assets (Avdjiev, Du, Koch, and Shin, 2019; Jiang, Krishnamurthy, and Lustig, 2018).

We also considered the leverage of security broker-dealers (Adrian, Etula, and Muir,

2014, AEM), but do not report it because it is measured quarterly, and, therefore,

not comparable to other variables in multivariate regressions.

Second, we consider measures of uncertainty: the Jurado, Ludvigson, and Ng (2015)

real, macroeconomic, and financial uncertainty measures; the Bekaert and Hoerova

(2014) uncertainty and risk aversion measures; and the CBOE VIX index. We only

report results for variables that remain significant in multivariate regressions.

In the third group we use indicators of the opportunity cost of money like the cer-

tificate of deposit rate over Treasury yield spread (Nagel, 2016), or of distress in the

banking sector like the U.S. LIBOR-OIS spread. The latter is insignificant. See the

Online Appendix for details.

The results in Table 6 indicate that ψ is significant regardless of the specific proxy.

In columns (1) and (4), we control for currency fixed effects to absorb cross-currency

differences in XCCY changes. The estimated coefficient also changes little in sign

when we move from the univariate regressions in columns (1) and (4) to multivariate

regressions with controls in columns (2) to (3) and (5) to (6). The negative sign

of the coefficient suggests negative net positions in XCCY by the least risk averse

dealer. Although this interpretation might be taking the margin-based framework

too literally, it is not inconsistent with recent work by Du, Hebert, and Li (2022),

who suggest that dealers reduce CIP arbitrage activity and increase Treasury swap

spread positions in the post-GFC period.
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Overall, the evidence suggests that the component of XCCY premiums that is not

explained by the IRS-implied SDF can be interpreted as IC wedges, i.e., premiums

reflecting IC. Revisiting Table 3, 40% of XCCY premium is thus attributed to IC.

The literature has explored many IC proxies. We check, in Table 7, whether our

measure of shadow cost of capital brings novel information for research considerations.

We, therefore, regress changes in ψ on changes in similar proxies for “intermediary

variables” from the literature discussed in the context of Table 6. We report only

those coefficients that remain statistically significant in univariate regressions.

While some of the variables in Table 7 are statistically significant, the amount of

variation in ψ they explain remains low, according to the R2 of the regressions. This

suggests that our theoretically motivated shadow cost of capital could represent a

new tool for the study of the impact of IC on asset valuations.

Last, but not least, we evaluate if intermediary risk aversion affects the cross-section

of IC wedges in the spirit of Haddad and Muir (2021). In this context, we interpret

IC wedges as excess returns after hedging out the risk-based pricing components.

Haddad and Muir (2021) caution that a cross-sectional relation between excess re-

turns and factor exposures to intermediary health may simply reflect high excess

returns in times when dealers happen to be constrained. They suggest overcoming

this interpretation by focusing on a cross-section of asset classes. Evidence in favor of

intermediary-based asset pricing is tied to a positive cross-sectional relation between

the cost of intermediation for a given asset class and its exposure to intermediary risk

aversion. Their empirical proxies for intermediary risk aversion can be more broadly

interpreted as intermediary health that may limit intermediaries’ ability to take ad-

vantage of arbitrage opportunities. Thus, we conduct similar cross-sectional tests for

the IC wedges of both 5-year XCCY rates and 6-month forward premiums.

Specifically, we regress changes in IC wedges on the Haddad and Muir (2021) in-

termediary risk aversion factor to estimate the exposure to intermediary risk. We

then relate these beta exposures to the proportion of turnover that is intermediated

through dealers in each corresponding market. In its 2019 triennial survey on OTC
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derivative products, the Bank for International Settlement reports, by currency, how

much dealers account for the turnover in forward and swap markets, respectively.

The results in Figure 6 convey two messages. First, for all currencies, FX swaps

are on average more intermediated through dealers than FX forwards. Second, there

appears to be a positive link between the amount of dealer activity and exposure of

IC wedges associated with XCCY to intermediary risk aversion, while that relation

is much noisier for forward premiums.

6 Conclusion

In the era following the GFC, prices in exchange rate markets have exhibited patterns

that are unusual from the perspective of classical textbook theories, and are, therefore,

considered to be anomalies. CIP has been violated at both short and long horizons,

as suggested by a non-zero LIBOR basis and XCCY that have traded at non-zero

prices. These violations have prominently been linked to various types of IC.

We examine the dynamics of the term structure of CIP violations across G11 curren-

cies in a unifying framework. Specifically, we quantify the impact of non-risk-based

IC on CIP violations and differentiate that from the quantitative impact of risk-based

IC and other conventional sources of risk.

For our analysis, we back out a stochastic discount factor from plain vanilla interest

rate swap contracts and use this discount factor to price forward exchange rates and

XCCY across all eleven currencies. Using that discount factor, we find no evidence

of short-term CIP violations and explain about 60% of long-term CIP violations.

We rely on IC theory to interpret the wedge between model-implied and observed

long-term CIP violations. Consistent with the theory, we find that the wedge corre-

lates with the shadow cost of intermediary capital, and that IC wedges line up with

the degree of intermediation of the different forward and XCCY contracts. We also

provide evidence that the effective funding rate is a weighted average of collateralized

and uncollateralized interest rates.
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Figure 1: CIP deviations for the Euro. We display the log three-month LIBOR
basis, defined as the difference between the forward-spot exchange rate premium and
the LIBOR interest rate differential in the corresponding currencies, f − s− (i− i∗),
and the 5-year cross-currency basis swap rate for the Euro vs. the U.S. dollar. The
swap exchanges interest payments reflecting LIBOR rates in the two countries. The
swap rate is quoted as the spread over the EURIBOR-based interest payments. The
sample period is January 2000 to December 2019. Source: Bloomberg. We high-
light several regulatory capital and macroprudential regulations that were enacted
during our sample period: SEC Net Capital Rule; Basel II; Basel II Trading Book;
Dodd-Frank Act; Basel III; Fair Value Adjustments; Supplementary Leverage Ratio
Regulation; Enhanced Supplementary Leverage Regulation; Overnight Reverse Re-
purchase Facility; Liquidity Coverage Ratio; Money Market Fund Reform. Source:
Adrian, Boyarchenko, and Shachar (2017), Andersen, Duffie, and Song (2019), Fleck-
enstein and Longstaff (2020).
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Figure 2: Time-series of forward basis and XCCY for NZD, EUR, and JPY.
In these figures, we report the time series of the forward basis (3 and 6 months, based
on LIBOR in the data and on EFR in the model) or XCCY rates (5 and 20 years)
implied from the model and compare it with the data. The sample period is January
2000 to December 2019. Source: Bloomberg. Similar results for other G11 currencies
are provided in the Online Appendix.
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Figure 3: Forward basis and XCCY rate. We report the mean of the forward basis

(based on LIBOR in the data and on EFR in the model) and the cross-currency basis swap

rate (in bps). We also report the cross-sectional average of absolute rates, AVG. All exchange

rates are expressed as the USD price per unit of foreign currency. We report statistics for

the G10 currencies. The countries and currencies are denoted by their usual abbreviations:

Australian dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), Danish krone (DKK),

Euro (EUR), British pound (GBP), Japanese yen (JPY), Norwegian krone (NOK), New

Zealand dollar (NZD), and Swedish krona (SEK). The sample period is January 2000 to

December 2019. Source: Bloomberg. Tables with supporting numbers are provided in the

Online Appendix.
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Figure 4: Comparison of 1Y Interest Rate Proxies. Each figure compares the
model-implied 1-year interest rate to the predicted one and given by ∆r = −0.01 +
0.38·∆LIBOR+0.50·∆(Treasury+λ)−0.50·∆CDS, where LIBOR corresponds to the
country-specific Libor/interbank rate, Treasury corresponds to the country-specific
Treasury rate, and λ refers to the country-specific convenience yield, computed as the
Treasury basis plus the U.S. Refcorp-Treasury spread, and CDS corresponds to the
country-specific 1-year local currency denominated CDS premium (we use the USD
denomination if the local currency CDS is not available). We use G11 currencies,
i.e., USD, JPY, GBP, CAD, EUR, AUD, CHF, NZD, SEK, DKK, and NOK. We use
Libor rates for USD, JPY, GBP, CHF, Cdor rates for Canada, Euribor rates for EUR,
BBSW rates for AUD, BKBM rates for NZD, Stibor rates for SEK, Cibor rates for
DKK, Nibor rates for NOK. The sample period is January 2000 to December 2019.
Source: Bloomberg.
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Figure 5: Comparison of 3M Interest Rate Proxies. Each figure compares
the model-implied 3-month interest rate to the predicted one and given by ∆r =
−0.00 + 0.49 · ∆LIBOR+0.51 · ∆(Treasury+λ), where LIBOR corresponds to the
country-specific Libor/interbank rate, Treasury corresponds to the country-specific
Treasury rate, and λ refers to the country-specific convenience yield, computed as
the Treasury basis plus the U.S. Refcorp-Treasury spread. We use G11 currencies,
i.e., USD, JPY, GBP, CAD, EUR, AUD, CHF, NZD, SEK, DKK, and NOK. We use
Libor rates for USD, JPY, GBP, CHF, Cdor rates for Canada, Euribor rates for EUR,
BBSW rates for AUD, BKBM rates for NZD, Stibor rates for SEK, Cibor rates for
DKK, Nibor rates for NOK. The sample period is January 2000 to December 2019.
Source: Bloomberg.
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Figure 6: Factor Exposure of XCCY Basis Swap Spread and Forward Pre-
mium Deviations. For each of JPY, GBP, CAD, EUR, AUD, CHF, NZD, SEK,
NOK, we regress changes in the spread between the observed and model-implied (i) 5-
year XCCY basis swap rate and (ii) the 6-month forward premium on the Haddad and
Muir (2021) intermediary risk aversion factor, i.e., ∆XCCY e

t+1 = α+β ·RFt+εt. We

then project the estimated raw betas β̂ on the fraction of foreign exchange turnover
accounted for by intermediaries. In its 2019 triennial Central Bank survey on for-
eign exchange turnover, the BIS provides information on the fraction of turnover
acccounted for by intermediaries for FX forwards and FX swaps, respectively. The
sample period is 2000Q1 to 2017Q3.
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Table 1: Cash flows from a plain vanilla and fixed-for-fixed cross-currency basis swap

Panel A in this table illustrates the cash flows generated by a stylized cross-currency basis

swap that receives the floating interest rate of it on the USD leg at each date t+1, and pays

the floating interest rates i∗t +X on the EUR leg at each date t+1. The price of the cross-

currency basis swap is given by X. S indicates the USD value per unit of foreign currency.

Panel B transforms the plain vanilla cross-currency basis swap into a stylized fixed-for-fixed

cross-currency basis swap, constructed as a package of a standard cross-currency basis swap

that receives the floating interest rate of it on the USD leg at each date t + 1, and pays

the floating interest rates i∗t + X on the EUR leg at each date t + 1. The notional face

values of the domestic and foreign legs are matched using the spot exchange rate S0, where

S indicates the USD value per unit of foreign currency. The floating payments in each

currency are converted into fixed payments using plain vanilla interest rate swaps at prices

CMS and CMS∗ respectively.

S = $1/e1 Cash flows at time

XC Basis Swap 0 t T

Panel A XC Swap EUR Leg + e1 − e
(
i∗t−1 +X

)
− e

(
i∗T−1 +X

)
− e1

USD Leg − $S0 + $S0it−1 + $S0iT−1 + $S0

e IRS Fix Leg − eCMS∗ − eCMS∗

Float Leg + ei∗t−1 + ei∗T−1

Panel B

$ IRS Float Leg − $S0it−1 − $S0iT−1

Fix Leg + $S0CMS + $S0CMS
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Table 2: Factor structure in cross-currency and interest swap rates - By currency

This table reports the results from a principal component analysis (PCA). We report the cumulative
proportion of variance explained by the five first principal components (PC1 to PC5). We use G11
currencies, i.e., USD, JPY, GBP, CAD, EUR, AUD, CHF, NZD, SEK, DKK, and NOK. In Panel A,
we focus on the term structure of cross-currency basis swaps using maturities of 1y, 3y, 5y, 7y, 10y,
15y, 30y, except for NZD, which omits 30y. In Panel B, we examine the factor structure across all
interbank (LIBOR) and IRS rates. For the former we use maturities of 1m, 3m, 6m, and 1y, except
for NOK, which omits 1y. We use Libor rates for USD, JPY, GBP, CHF, Cdor rates for Canada,
Euribor rates for EUR, BBSW rates for AUD, BKBM rates for NZD, Stibor rates for SEK, Cibor
rates for DKK, Nibor rates for NOK. For the latter we use maturities of 1y, 3y, 5y, 7y, 10y, 15y, 30y.
The sample period is January 2000 to December 2019. Source: Bloomberg

(A) XCCY USD JPY GBP CAD EUR AUD CHF NZD SEK DKK NOK

PC1 – 87.78 79.40 72.07 87.43 81.56 89.60 93.72 69.45 88.44 88.49
PC2 – 96.30 95.94 91.13 98.01 95.17 97.74 98.12 95.13 98.29 96.45
PC3 – 99.71 98.56 97.93 99.37 98.88 99.44 99.72 98.62 99.44 99.07
PC4 – 99.95 99.51 99.35 99.89 99.61 99.87 99.86 99.70 99.79 99.50
PC5 – 99.99 99.89 99.76 99.97 99.88 99.94 99.95 99.84 99.90 99.72

(B) LIBOR+IRS USD JPY GBP CAD EUR AUD CHF NZD SEK DKK NOK
PC1 88.89 79.30 94.24 87.65 96.26 96.31 94.52 88.85 82.17 95.22 93.03
PC2 99.31 96.41 99.45 99.24 99.62 99.52 99.53 99.60 98.84 99.60 99.30
PC3 99.81 98.44 99.84 99.78 99.87 99.82 99.83 99.83 99.72 99.84 99.83
PC4 99.93 99.66 99.92 99.91 99.96 99.91 99.92 99.90 99.88 99.95 99.93
PC5 99.98 99.83 99.98 99.96 99.99 99.97 99.98 99.95 99.96 99.98 99.97
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Table 3: Model-implied Variance Decomposition

This table reports the model-implied variance decomposition for the levels (XCCY m) of 5-year
XCCY swaps. Define XCCY d to be the observed 5-year XCCY rate in the data, XCCY m to be the
5-year XCCY rate implied by the no-arbitrage model. The residual XCCY e = XCCY d−XCCY m

is orthogonal to XCCY m by construction (in population). That property lends natural variance
decomposition of XCCY d. All ratios are reported in %. We report the average ratios across
currencies and all ratios at the currency level. We use G11 currencies excluding USD, i.e., JPY,
GBP, CAD, EUR, AUD, CHF, NZD, SEK, DKK, and NOK. The sample period is January 2000 to
December 2019.

MEAN JPY GBP CAD EUR AUD CHF NZD SEK DKK NOK

% Explained by Model 59.37 53.90 62.18 46.93 63.52 68.14 76.17 65.34 35.67 73.24 48.59
% Explained by Error 40.63 46.10 37.82 53.07 36.48 31.86 23.83 34.66 64.33 26.76 51.41
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Table 5: XCCY Rates and Spreads between LIBOR and Model-Implied Interest Rates

In this table, we report results from the panel regressions where we project the absolute values of
the observed 5-year XCCY rates (

∣∣XCCY 5yD
∣∣) on the spread between LIBOR and model-implied

interest rates at the 3-month maturity (3M(i−r)). At the country level, we control for the Treasury
yield adjusted for the convenience premium (Treasury +λ), and the CDS premium. The data
frequency is monthly based on the last available monthly information. Standard errors are clustered
by month. We indicate whether regressions contain currency or monthly time fixed effects, and we
report the adjusted R2 values from the panel regressions. We use the G11 currencies except for the
USD: JPY, GBP, CAD, EUR, AUD, CHF, NZD, SEK, DKK, and NOK. For NOK, we lack data on
OIS rates and 1y NIBOR rates. The sample period is January 2008 to December 2019.

(1) (2) (3) (4) (5)
VARIABLES

∣∣XCCY 5yD
∣∣ ∣∣XCCY 5yD

∣∣ ∣∣XCCY 5yD
∣∣ ∣∣XCCY 5yD

∣∣ ∣∣XCCY 5yD
∣∣

3M(i− r) 21.98*** 28.34*** 26.15*** 25.96*** 27.77***
(1.41) (1.99) (2.09) (2.54) (3.28)

Treasury+λ -0.84*** -1.09*** 1.96**
(0.27) (0.34) (0.77)

CDS 12.78* 7.03
(6.50) (4.49)

Constant 15.74*** 13.18*** 15.05*** 15.09*** 11.43***
(0.62) (0.80) (1.00) (1.17) (1.56)

OBSERVATIONS 1,405 1,405 1,405 1,269 1,269
CCY FE NO NO NO NO YES
MONTH FE NO YES YES YES YES
MAT 3M 3M 3M 3M 3M
adj.R2 0.175 0.182 0.185 0.195 0.766
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Table 6: Spread between Model-implied and Observed 5y-XCCY Basis Swap Rates

In this table, we report results from the panel regressions where we project changes in the spread
between the model-implied and the observed 5-year XCCY basis swap rates (∆XCCY e ) on changes
in the shadow cost of constraints measured as the difference between an uncollateralized (i.e., Libor)
and collateralized (i.e., EFR) interest rate for the USD (ψus3m) or based on the first principal
component of the shadow cost of constraints across all currencies (ψpc3m). Since the sign of a
principal component is undetermined, we switch the sign on the coefficients of ψpc3m to align with
that of ψus3m. We also control for other proxy candidates for shadow cost of constraints: the He,
Kelly, and Manela (2017) intermediary capital ratio factor (HKM-ICR); the trade-weighted U.S.
dollar index (USD Factor); the Bekaert-Horeova uncertainty (BH-UC); the VIX index (VIX); the
certificate of deposit rate over Treasury yield spread (CD-Treasury); the Jurado, Ludvigson, and Ng
(2015) financial uncertainty (JNL-FU12). All tenors for pricing errors are based on 5 year contracts.
The data frequency is monthly based on the last available monthly information. Standard errors are
robust and adjusted for heteroscedasticity. All regressions contain currency fixed effects and column
(11) contains time fixed effects, and we report the within and adjusted R2 values from the panel
regressions. We use the G11 currencies excluding the USD: JPY, GBP, CAD, EUR, AUD, CHF,
NZD, SEK, DKK, and NOK. The sample period is January 2000 to December 2019.

(1) (2) (3) (4) (5) (6)
∆XCCY e ∆XCCY e ∆XCCY e ∆XCCY e ∆XCCY e ∆XCCY e

ψus3m -44.84*** -39.41*** -32.54***
(7.49) (6.48) (6.83)

ψpc3m -1.34*** -1.38*** -1.73***
(0.26) (0.25) (0.25)

HKM-ICR 138.33*** 336.90*** 230.46*** 517.87***
(39.01) (81.88) (39.34) (71.65)

BH-RA -0.10*** -0.10** -0.10** -0.06
(0.04) (0.04) (0.04) (0.04)

BH-UC -0.13*** -0.12** -0.14*** -0.11**
(0.04) (0.05) (0.05) (0.05)

VIX 0.49*** 0.57*** 0.44*** 0.46***
(0.16) (0.18) (0.16) (0.16)

CD-Treasury 1.71* 1.91* 2.65*** 2.46**
(0.91) (1.06) (0.97) (1.03)

JNL-FU12 0.88 -0.65 -4.99 -8.51*
(3.06) (5.11) (3.19) (4.95)

USD FACTOR -0.35*** -0.72***
(0.12) (0.12)

Constant 0.14 -0.77 0.72 -0.01 4.90 8.29*
(0.11) (2.94) (4.87) (0.12) (3.07) (4.71)

OBSERVATIONS 2,354 2,228 1,509 2,354 2,228 1,509
CCY FE YES YES YES YES YES YES
MONTH FE NO NO NO NO NO NO
MAT 5Y 5Y 5Y 5Y 5Y 5Y
w.R2 0.078 0.105 0.126 0.053 0.101 0.167
adj.R2 0.075 0.101 0.121 0.050 0.097 0.162
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