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1 Introduction

A prevalent feature of market economies is heterogeneity of firm and establishment size,
growth, and a host of attributes correlated with size (e.g., productivity, exports, sur-
vival). What are the sources of firm/establishment size and growth heterogeneity? How
does the answer matter for welfare? The macro literature on misallocation studies the
role of productivity vs. remaining sources of dispersion, with special focus on wedges
that distort the size distribution of activity. Other literatures in macro, trade, and IO
have focused on the role of a specific set of attributes of productive units: demand (qual-
ity), markups, or costs. Hottman, Redding and Weinstein (2016) recently integrated
demand, markups and residual costs into an estimation framework, but not wedges (i.e.
departures from the model), finding a dominant role for demand attributes. In the face
of data constraints, assessing the roles of all of these different margins simultaneously
has not been possible. Productivity and wedges are typically identified from structures
that exploit micro data on revenue and input expenditures, while structures that use
product-level data on output prices and quantities have been used to identify quality,
costs and markups.1

We bring these approaches together to jointly identify the contribution of different
dimensions of productivity and different sources of size wedges to firm size and growth,
and consequently to welfare. To do so, we develop a unified conceptual, measurement
and estimation structure that integrates these different dimensions of data and estab-
lishment attributes. Our framework nests the Hsieh and Klenow (2009) model on the
production side and that proposed by Hottman, Redding and Weinstein (2016) on the
demand side. Our framework takes advantage of data on output and input prices and
quantities to measure establishment-level demand shifters, markups, and two distinct
dimensions of idiosyncratic marginal costs: technical efficiency and quality-adjusted in-
put prices. It accounts for the contribution of each of these attributes to establishment
size and growth, and ultimately to welfare, while also allowing for wedges between the
data and the behavior predicted by the model.

We use detailed product-level data on quantities and prices for outputs and inputs
from the Colombian Annual Manufacturing Survey. This is a uniquely rich census of
non-micro manufacturing establishments with data on quantities and prices, at the
detailed product class, for outputs and inputs. We follow individual plants for up to
thirty years (1982-2012). The long time coverage allows us to investigate the role of

1The misallocation literature is extensive. Prominent examples are Restuccia and Rogerson
(2008,2017); Hsieh and Klenow (2009, 2014)) ; Guner, Ventura and Xu (2008); Midrigan and Xu
(2013); Bartelsman et. al. (2013); Bento and Restuccia (2017); Adamopoulos and Restuccia (2014).
Quality is the focus in Brooks (2006); Fieler, Eslava and Xu (2018); Hallak and Schott (2011) Khan-
delwal (2011); Kugler and Verhoogen (2012); Manova and Zhang (2012). Production efficiency vs.
demand is emphasized in Foster, Haltiwanger and Syverson (2008 and 2016), and Eslava et al. (2013).
De Loecker and Warzynski (2012) and De Loecker et al (2020) have focused on markups using an
indirect approach with only revenue and expenditure data.
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different attributes over medium- and long-term life cycle growth.
By technology or technical efficiency we refer to a production function residual

(Foster, Haltiwanger and Syverson, 2008), where production in multiproduct plants
is plant-level revenue deflated with a quality adjusted plant-level deflator. Following
Redding and Weinstein (2020), our deflator allows for product turnover and changing
appeal across products within the establishment. On the demand side, we estimate
plant-specific demand function residuals, that identify greater appeal/quality as the
ability to charge higher prices per unit of product (Hottman, Redding and Weinstein,
2016; Khandelwal,2011; Fieler, Eslava and Xu, 2018). Our specification of demand and
competition allows for idiosyncratic markups, which can also be calculated using our
data. Input costs are directly measured from input price data, separately for materials
and labor, also permitting the construction of quality-adjusted input prices.

Our approach requires, and the richness of the data permits, estimating the param-
eters of the production and demand functions, and doing so disaggregating sectors. We
introduce an estimation technique that jointly estimates the two functions for each sec-
tor, bringing together insights from recent literature on estimating production functions
based on output and input use data and proxy methods, and literature on estimating
demand functions using P and Q data for outputs.2 The joint estimation ensures con-
sistency and separate identification of demand vs. production parameters. Moreover,
the granularity of our data allows estimating different production and demand elastic-
ities for different sectors, and doing so without imposing constant returns to scale. In
contrast to much of the literature estimating demand functions in contexts of multiple
products, we also allow technical efficiency and demand to be correlated, even within
establishments over time.

After estimating plant-specific technical efficiency, demand shifters, markups and
quality-adjusted input prices, we measure the contribution of each to the variability of
sales and life cycle sales growth across plants, and to welfare. We allow for residual
wedges, which in our framework correspond to the gap between actual size at any point
of the life cycle and size implied by the model given measured attributes. Since we
explicitly account for idiosyncratic (quality-adjusted) input price and markup variabil-
ity, the distribution of these wedges is not adequately captured by revenue productivity
dispersion (in contrast to the framework proposed by Hsieh and Klenow’s 2009, 2014,
which is nested in our model).3

Dispersion in demand shifters is not only the main driver of heterogeneity in sales
and sales growth in our data, but also the single measured dimension with greatest

2For production function estimation using proxy methods, see, e.g. Ackerberg, Caves and Frazer
(2015); De Loecker et al. (2016). For demand function estimation see, e..g. Hottman, Redding and
Weinstein (2016); Foster, Haltiwanger and Syverson (2008).

3These wedges are also frequently termed “distortions”, but we prefer the former term since the
idiosyncratic gaps we identify may represent sources of productivity or welfare loss that even the social
planner would face, as they may stem from constraints more technological than institutional in nature,
such as adjustment costs.
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impact on welfare. A dominant role of demand shocks in accounting for sales and sales
growth has been previously found (Hottman, Redding and Weinstein, 2016; and Foster,
Haltiwanger and Syverson, 2016). Full-distribution accounting allows us to identify this
role as stemming from the dynamic appeal in superstar plants, while rapidly contract-
ing technical efficiency is the outstanding characteristic of the worst performers. Love
of variety implies welfare gains from heterogeneity in demand shifters and technical
efficiency, both of which exhibit considerable dispersion. However, shutting down vari-
ability in efficiency has a negligible effect on welfare, while shutting down variability in
demand shifters contracts welfare to 1/5 of its actual value.

Heterogeneous input prices and markups play modest roles in explaining cross sec-
tional sales heterogeneity but are important in explaining welfare. Heterogeneous input
prices dampen sales growth variability by 5.5% while markups reduce it by 1%. For
a subperiod where we can quality-adjust wages, we find that the contribution of the
wage component of input prices is further reduced by almost two thirds after this ad-
justment. Despite their modest contribution to cross sectional variability of sales and
sales growth, welfare increases by almost 30% when dispersion in either markups or
input prices is shut down. The greater importance of markups in welfare relative to
cross sectional variability arises because, though markups exhibit little dispersion in the
overall cross-sectional distribution, a few plants with very large market shares weigh
heavily in aggregate welfare. Quality adjusting wages matters significantly for size dis-
persion as noted above, but not so much for welfare, which is inherently size-weighted.
This suggests that, though an important fraction of wage dispersion reflects quality
heterogeneity rather than frictions or distortions, it is the departure from frictionless
and distortionless labor markets that matters for welfare.

We also find that negatively correlated residual wedges reduce plant revenue vari-
ance by 11 percentage points over the first twenty years of life. Residual wedges are
positive for plants with lowest productivity and negative for those in the top produc-
tivity quartile. Consistent with findings in the misallocation literature, and despite the
fact that we separately account for dispersion in markups and input prices, these cor-
related wedges have important welfare implications. Welfare increases by almost 20%
when the dispersion in these residual wedges is eliminated.

The relative importance of different sources of heterogeneity varies considerably
over the life cycle. Technical efficiency and residual wedges (negatively correlated with
fundamentals) play a relatively more important role for young plants relative to older
ones in the decomposition of sales and sales growth variance. In particular, negative
wedges that dampen actual sales are particularly marked for young plants in the top
quartile of predicted sales (predicted on the basis of productivity, input prices and
markups). For entering establishments in this group, residual wedges dampen sales by
0.7 log points, while the corresponding figure is 0.4 at age 10 and 0.3 at age 20.

Our contribution to the literature is multi-fold. First, we bridge the gap between
distinct approaches to the study of drivers of establishment size and growth, which al-
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ternatively focus on either productivity vs. wedges, or on the roles of demand, cost and
markups. Our framework builds on Hsieh and Klenow (2009, 2014)–henceforth HK–on
the supply side, and on Hottman, Redding and Weinstein (2016)–henceforth HRW–
on the demand side, but puts them together in a unifying framework and unpacks
subcomponents of each. The HK framework focuses on size-to-productivity composite
wedges that can be decomposed into separate components of our framework: idiosyn-
cratic markups, quality-adjusted input prices and residual wedges. Their productivity
measure is in itself a composite of demand factors and technical efficiency. In turn,
the cost component in the HRW framework is a residual bundle of technical efficiency,
input costs and residual wedges, which we identify separately.

Unbundling these different attributes sheds light on crucial features of business per-
formance and its contribution to welfare. While composite HK wedges are a significant
drag on both sales variability and welfare, a large fraction of these effects is explained
by markup and input price dispersion, rather than other sources of wedges. Recent
contributions in the misallocation literature have focused on some such other sources
of HK wedges, such as adjustment costs, information frictions, financial frictions, labor
market frictions (see, e.g., Asker et al., 2014; David and Venkateswaran, 2018; Midrigan
and Xu, 2014; Guner, Ventura and Xu, 2008). We find that the welfare effect of shutting
down dispersion in input prices and markups is twice as large as that of shutting down
residual wedges, while input prices plus markups explain -7% of the -17.7% contribution
of HK wedges to sales growth. Our findings on the importance of input price hetero-
geneity (even adjusting for quality) point to important sources of such heterogeneity,
including frictions in the markets for inputs as well as potentially monopsony power.
Sorting this out should be an important topic for future research.

In addition, the composite HK productivity measure is dominated by demand
shifters relative to technical efficiency: demand dispersion contributes over seven times
more than technical efficiency to the dispersion of sales growth. Moreover, dispersion
in demand is crucial for welfare via love of variety, but technical efficiency dispersion
plays a negligible welfare role. In turn, cost factors play a more important role for sales
growth variability and welfare than would be attributed by the HRW approach alone,
because the negative correlation between technical efficiency and wedges mutes the com-
posite contribution. The -2.7% contribution of the composite HRW ”cost” residual to
the variance of sales growth in our data reflects a positive contribution of 8.3% of cost
factors (13.77% of technical efficiency and -5.44% from input prices), and an additional
drag of -11.1% from residual wedges, which are not inherently a cost/supply side factor.

Second, we contribute to the literature on estimating production functions and to
that on estimating demand functions.4 Our joint estimation of the two functions is an
important novelty. It highlights the importance of relying on output price and quantity

4For production function estimation, we follow Olley and Pakes (1996); Levinsohn and Petrin (2003),
Ackerberg, Caves and Frazer (2015) , and De Loecker et al (2016). For demand estimation, HRW and
Foster et al (2008).
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information at the micro level to distinguish revenue from production parameters, and
the usefulness of including information on the production process (inputs, in particular)
to distinguish demand from supply elasticities. Moreover, our approach to measuring
plant-level production for multiproduct plants underscores the need to take a stance on
the structure of demand, not only to measure plant output in the presence of multiple
products, but to even define it.

Third, we provide an alternative take on the role of markups in establishment het-
erogeneity relative to that in De Loecker et al (2020), who recover a measure of market
power without imposing structure on the demand side. The need to take a stance
on demand in our context also reflects the more general fact that the interpretation
of markups depends on the market structure. As we show, a residual approach using
cost shares of revenue to identify market power leads to measures of market power
that vary with structural markups, structural wedges and specification error, including
unmeasured variability in factor elasticities. Compared with our structural markups,
such measures of market power are much more weakly correlated with demand shifters
and revenue, and more strongly correlated with technical efficiency. Our approach to
markups is closer to that in HRW or Edmond, Midrigan and Xu (2019), which tie
the markup to a specific demand system, and it is complemented with our ability to
separately measure demand elasticities, input price heterogeneity and other sources of
market power.

Finally, our findings contribute to the policy discussion regarding interventions to ad-
dress the limitations to business growth. Our results highlight that size-to-productivity
wedges are important and especially prevalent for young businesses, but also that dimen-
sions internal to businesses are even more important than wedges to explain differential
firm growth. On this internal side, the focus has frequently been on efforts conducive
to improvements in technical efficiency. For instance, research on managerial practices
that impact productivity has focused on production processes and employee manage-
ment (e.g. Bloom and Van Reenen, 2007; Bloom et al. 2016). Our approach highlights
the multidimensional character of growth drivers that are internal to the business, in-
cluding the appeal to custumers and input prices potentially affected by its decisions.
Our results align with those in Atkin et al (2016) and Atkin et al (2019) in pointing at
quality as crucial driver of business growth, and at the fact that quality improvements
may impose costs in terms of technical efficiency. Moreover, the results suggest that
growth based on reducing barriers to quality differentiation is more conducive to welfare
gains than that based on reducing dispersion in technical efficiency across businesses.

While the data infrastructure we use is very rich, it faces limitations particularly
with respect to the increasingly prevalent use of item-level price and quantity data as
in HRW. Our data are at detailed product class level for outputs in each establish-
ment, but not at the item-level. While this prevents us from drawing the rich insights
that emerge from item-level data, the combination of price and quantity data for both
outputs and inputs at the product class level within establishments yields crucial new
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insights that help to bridge the findings of HRW with those from the large literature
using revenue and input expenditure data at the establishment level. We also find it
reassuring that both qualitatively and quantitatively we generate results on the overall
contribution of demand and cost factors to the growth distribution across businesses
that are consistent with alternatively implementing the HRW approach.5 As we note
above, our data infrastructure and approach allow us to unpack their composite cost
residual into distinct efficiency, input price and residual wedge components.

Clearly, our application is to an economy where distortions presumably play a much
larger role in the US. Indeed, our results on the welfare effects of composite wedges for
the Colombian manufacturing sector are in the broad range found by the literature that
applies the HK method to developing countries, including those in Latin America. We
thus see as likely that the relative role we find for Colombia for the different components
of composite wedges (input price variability, markups and residual wedges) applies more
widely to similar countries. At the same time, we also find quantitatively similar results
for the relative role of cost vs. demand and markup components to those found with
data for the US by HRW, which is an indication that our results on the decomposition
of the relative role of demand vs. efficiency and cost factors shed light on that role for
a variety of environments.

Like much of the literature on productivity dispersion and misallocation, our anal-
ysis focuses on establishment-level data and variation. Given that we integrate and
explore demand side variation including the quantification of markups, consideration of
the relationship between establishments and their parent firms is potentially of inter-
est. Unlike for the U.S., Colombia is dominated by single establishment firms.6 Only
about 7 percent of establishments and 16 percent of employment in the Colombian
data are accounted for by multi-plant firms. This implies that the distinction between
establishments and firms is much less critical in our context.

The paper proceeds as follows. Section 2 presents our framework. We then explain
the data used in our empirical work, and the approach we use to measure fundamentals,
including the joint estimation of the parameters of production and demand, respectively
in sections 3 and 4 . Our results on the drivers of size and growth dispersion are
presented in section 5. Section 6 examines the value added of our approach relative
to prior approaches nested in our framework, in terms of characterizing the sources of
size and growth dispersion. The welfare analysis is presented in section 7. Section 8
concludes by providing a more comprehensive view on the implications of our analysis,

5Panel A of Table X of HRW shows that demand (combining appeal/scope) accounts for 107% of
firm sales growth in their data, compared to our finding of 104% in the Colombian data (averaging
across the life cycle). Combined cost factors are a drag of -7% in HRW’s application, while if we
combine the contributions of efficiency, input prices and residual wedges that we find for Colombia,
we account for about -2.7% (with a remaining -1.2% and 104% contribution markups and demand
shifters).

6In the U.S., 80 percent of manufacturing employment is accounted for by establishments owned
by multi-unit etablishment firms.
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and on open questions for future research.

2 Decomposing establishment growth into funda-

mentals vs wedges

We start with a simple model of plant optimal behavior given plant attributes or ”fun-
damentals”, to derive the relationship that should be observed between size growth
and growth in those attributes as a plant ages. We use the words ”plant” and ”es-
tablishment” interchangeably. We also permit establishment size to be impacted by
wedges. The attributes we measure are: 1) the efficiency of the establishment’s pro-
ductive process (which we term TFPQ as in Foster, Haltiwanger and Syverson, 2008,
though we generalize the concept to producers of heterogeneous goods); 2) a demand
shock;7 3) unit prices for inputs, in particular material inputs and labor; 4) markups.
The conceptual framework below defines each of these components.

In the model, the establishment chooses its size optimally given TFPQ, demand
shocks, input prices, and wedges. In the spirit of an accounting exercise the framework
remains silent about the sources of these attributes, and rather asks how the establish-
ment adjusts its size given those fundamentals at time t, and contingent on survival to
that time.8 However, we do explore the empirical cross-sectional relationship between
fundamentals and wedges. In the appendix, we also explore the relationship between
proxies for investment in innovation and lagged fundamentals. We focus on decompos-
ing the determinants of size and growth of surviving establishments up to any given
age, but include robustness analysis of the determinants of survival in appendix H,
which shows that our main results are robust to consideration of selection issues. We
conclude that our findings for plants that survive up to age t are largely driven by the
establishments that survive at least one more year.

We don’t explicitly model dynamic frictions but take the shortcut in recent liter-
ature on misallocation to permit wedges or distortions between frictionless static first
order conditions and actual behavior (e.g. Hsieh and Klenow, 2009). Such distortions
and wedges might capture factors such as adjustment costs, information frictions and

7Hsieh and Klenow (2009, 2014) use the term TFPQ to refer to a composite productivity measure
that lumps together technical efficiency and demand shocks. We refer to this composite concept further
below as TFPQ HK , as a reference to Hsieh and Klenow. Haltiwanger, Kulick and Syverson (2018)
explore properties of TFPQ HK using U.S. data.

8For instance, the seminal models of Hopenhayn (1992) and Melitz (2003), and much of the work
that has since followed in Macroeconomics and Trade. Endogenous productivity-quality growth has
made its way to these models more recently (e.g. Atkenson and Burstein, 2010; Acemoglu et al. 2018;
Hsieh and Klenow, 2014; Fieler, Eslava, and Xu, 2016). The firm’s efforts to strengthen demand may
include investments in building its client base (Foster et al., 2016), and adding new products and/or
improving the quality of its pre-existing product lines. Those to strengthen TFPQ may include
better management of the production process (e.g. Bloom and Van Reenen, 2007) or acquiring better
machines.
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distortions arising from the business climate.9 In the HK framework wedges can also
arise from idiosyncratic variability in input prices and markups, but we explicitly ac-
count for these sources of heterogeneity. This shortcut enables us to use a simple static
model of optimal input determination to frame our analysis of size and growth between
birth and any given age. We permit the wedges or distortions to vary by establishment
age.

For developing the theoretical predictions, we treat input prices as exogenous and
potentially idiosyncratic for the common composite input. Empirically we consider mul-
tiple inputs and make efforts to take into account input heterogeneity through quality
adjusting prices. Given that idiosyncratic input prices turn out to play a non-trivial
role empirically, we discuss below the potential sources of the variation in input prices
even after adjusting for quality.

2.1 Plant Optimization

Consider an establishment indexed by f , that produces output Qft using a composite
input Xft to maximize its profits, with technology

Qft = AftX
γ
ft = aftAtX

γ
ft (1)

Aft is the establishment’s technical efficiency, which we term TFPQ following Fos-
ter, Haltiwanger and Syverson (2008). Aft has an aggregate and an idiosyncratic com-
ponent (At and aft). γ is the returns to scale (in production) parameter. Equation
(1) defines aft as the (idiosyncratic) efficiency of the productive process: how much
output the establishment obtains from a unit of a basket of inputs. Establishment f
may be uni- or multi-product. Section 2.2 below discusses the definition of output Q
for multi-product establishments.

We use a CES preference structure (specified in more detail below) that yields
demand at the establishment level to be given by:

Pft = DftQ
− 1
σ

ft = DtdftQ
− 1
σ

ft (2)

where Dft is a demand shifter, and σ is the elasticity of substitution between establish-
ments . Dft has aggregate and idiosyncratic components Dt = Pt and dft, respectively.10

9This shortcut has limitations as the idiosyncratic distortions that we permit don’t provide the
discipline that formally modeling dynamic frictions imply. See, e.g., Asker, Collard-Wexler and De-
Loecker (2014), Decker et. al. (2020), and David and Venkateswaran (2018). But it has the advantage
in subsuming in a simple measure different types of frictions and distortions, including those that
capture dynamic considerations.

10Dt = Pt

(
Et
Pt

)
where Et is aggregate (sectoral) expenditure, and the aggregate (sectoral) price

index is given by Pt =
(∑NF

f=1 d
σ
ftP

1−σ
ft

) 1
1−σ

. NF is the number of establishments in the sector.
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Establishment appeal dft is measured from equation (2) as the variation in estab-
lishment price holding quantities constant, beyond aggregate effects. We refer to dft
generically as the establishment’s (idiosyncratic) demand shock, intuitively capturing
quality/appeal as will become clear in our discussion of demand primitives further be-
low. Notice also that, multiplying (2) by Qft :

Rft = DtdftQ
1− 1

σ
ft = Dt

(
QQ
ft

)σ−1
σ

(3)

where QQ
ft is quality-adjusted output defined as d

σ
σ−1

ft Qft. The idiosyncratic component
of sales is, thus, driven by quality adjusted output. Using the CES preference structure
discussed in more detail below, from which demand equation (2) can be derived, it is
apparent that idiosyncratic establishment sales are closely linked to consumer welfare.
Consequently, the distribution of establishment sales growth is the central focus of our
analysis of the establishment growth distribution.

Putting together technology and demand, the establishment chooses its scale Xft to
maximize profits

Max
Xit

(1− τft)PftQft − CftXft = (1− τft)DftA
1− 1

σ
ft X

γ(1− 1
σ )

ft − CftXft

taking as given Aft, Dft, and unit costs of the composite input, denoted Cft. There
may be idiosyncratic wedges τft, that lead to a gap between an establishment’s actual
scale and that which would be implied by the static model given its fundamental at-
tributes.11 Such wedges capture, for instance, adjustment costs that may be present in
terms of changing the scale or mix of inputs or building up a customer base, product-
specific tariffs, financing constraints, information frictions, and size-dependent regula-
tions or taxes. Adjustment costs break the link between actual adjustment and the
“desired adjustment”.12 Financing constraints may similarly limit the ability of the
establishment to undertake optimal investments, and force it to remain smaller than
optimal and even potentially exit the market during liquidity crunches even if its present
discounted value is positive.13 The resulting τft may be correlated with plant fundamen-
tals themselves. By their very nature, adjustment costs and financing constraints are
typically correlated with plant fundamentals. Size-dependent regulations are another
prominent example of correlated wedges.14

11As in Restuccia and Rogerson, 2009 and Hsieh and Klenow, 2009. Further below, we also consider
factor-specific distortions that, for given choice of Xit, affect the relative choice of a given input with
respect to others.

12See, for instance, Caballero, Engel and Haltiwanger (1995, 1997), Eslava, Haltiwanger, Kugler,
and Kugler (2010) and Asker et. al. (2014).

13Gopinath et al. (2017), Eslava et al. (2018)
14E.g. Garcia-Santana and Pijoan-Mas (2014) and Garicano et al. (2016).
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We allow establishments to hold market power, so that an establishment’s market
share may be non-negligible. This also implies that, in choosing its optimal scale, an
establishment does not take as given the aggregate price index, Pt. Under these con-
ditions and the CES demand structure developed in section 2.2, variability in markups
across establishments stems from market power (i.e., establishments take into account
their impact on sectoral prices):

µft =
σ

(σ − 1)

1

(1− sft)
(4)

Where µft is the establishment’s markup and sft =
Rft
Et

(proof: Appendix D). As
in Hsieh and Klenow (2009, 2014), marginal cost is defined inclusive of wedges, so

that µft =
Pft

∂CTft
∂Qft

(1−τ)−1
where CT is total cost. In our application, the demand and

production parameters are constant across establishments within sectors (at the three
digit level of the ISIC revision 3 classification for Colombia, of which there are 22
manufacturing sectors). An establishment’s relevant market is defined as the group of
producers of the plant’s most important CPC 3-digit product, of which there are 112
such groups, so that sft is f ’s revenue share in its CPC 3-digit group.

Profit maximization yields optimal input demand Xft =

(
DftA

1− 1
σ

ft γ

Cftµft(1−τft)
−1

) 1

1−γ(1− 1
σ )

,

which is then used to obtain optimal sales and life-cycle growth of sales as functions of
fundamentals (Dft, Aft, and Cft), wedges τ , and parameters:

Rft = dκ1
fta

κ2
ftpm

−φκ2

ft w−βκ2

ft µ−γκ2

ft (χ̂tχft)
1− 1

σ (5)

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−βκ2
(
µft
µf0

)−γκ2
(
χ̂t
χ0

χft
χf0

)1− 1
σ

where κ1 = 1

1−γ(1− 1
σ )

, κ2 =
(
1− 1

σ

)
κ1, and we have further assumed Xft =

K
β
γ

ftL
α
γ

ftM
φ
γ

ft, so that Cft is the corresponding Cobb-Douglas aggregate of the growth
of different input prices. Among input prices, two are observed in the data: the price
of material inputs, Pmft, and average wage per worker, Wft. As noted above, dft and
aft are the idiosyncratic components of Dft and Aft. Similarly, pmft and wft are the
idiosyncratic components of Pmft and Wft. Aggregate components, from Dt, At and Ct
are lumped into χt and χ̂t. Crucially, χft = (1− τft)γκ1 captures idiosyncratic wedges,

so we refer to χ
1− 1

σ
ft = (1− τft)γκ1(1− 1

σ ) as a ”sales wedge”. The second line is obtained
by dividing each optimal outcome in period t by its optimal level at birth (t = 0)(see
Appendix B).15

15There is some slight abuse of notation here as t is used for calendar time and then for every firm
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Equation system (5) is the focus of our analysis of the distribution of establishment
revenue and establishment revenue growth. We start with the level and growth of
(idiosyncratic) attributes that we can measure. Among these,dft, aft,µft,wft, pmft are,
respectively, idiosyncratic demand shocks, TFPQ, markups, and shocks to wages and
material input prices. The wedges that an establishment faces may be age-specific.

2.2 CES Demand Structure

In this subsection, we show that the establishment-level demand structure used above
is consistent with single-product producers as well as multiproduct producers using a
CES preference structure. Taking into account multiproduct producers is important
in our context, where two thirds of observations correspond to multiproduct producers.
We define and measure establishment-level output in a manner that allows for within
establishment changes in product mix and product appeal over time. The theoretical
structure is such that we can measure output as revenue deflated with an appropriate
establishment-level price index. As long as different products within an establishment
are not perfect substitutes, that price index reflects product turnover and changing
product appeal across existing products. To accomplish this we use the CUPI approach
developed by Redding and Weinstein (2020) but also build on insights of Hottman et.
al. (2016).

Specifically, in the context of multiproduct establishments we allow establishment

output Qft to be a CES composite of individual products Qft =

(∑
Ωft
dfjtq

σw−1
σw

fjt

) σw
σw−1

,

where qfjt is period t sales of good j produced by establishment f , the weights dfjt
reflect consumers’ relative preference for different goods within the basket offered by
establishment f , σw is the elasticity of substitution between products within f , and Ωf

t

is the basket of goods produced by f in year t. That is, consumers derive utility from
a composite CES utility function, with a CES layer for establishments and another for
products within establishments. Consumer’s utility in this general CES structure in
period t is given by:

we create our life cycle measures by dividing its outcomes and determinants at some given age by
those outcomes and determinants at birth. We use the ratio of these variables at age t to age at birth
(t = 0).
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U (Q1t, ..., QNt) =

(∑
It

dftQ
σ−1
σ

ft

) σ
σ−1

(6)

where Qft =

∑
Ωft

dfjtq
σw−1
σw

fjt


σw
σw−1

(7)

s.t.

NFt∑
f=1

∑
Ωft

pfjtqfjt = Et; (8)

∏
Ωft

d

1

‖Ω
f
t ‖

fjt = 1;
∏
It

d
1
‖It‖
it = 1 (9)

where pfjt is the price of qfjt, and It is the set of establishments in period t. We refer to
dfjt and dft as, respectively product (within establishment) and establishment appeal
or demand shocks, defined as in equations (6) and (7). They correspond to the weight,
in consumer preferences, of product fj in establishment f ′s basket of products, and
of establishment f in the set of establishments. Given normalizations in equation (9),
product appeal dfjt captures the valuation of attributes specific to good fj relative
to other goods produced by establishment f , while establishment appeal dft captures
attributes that are common to all goods provided by establishment f , such as the
establishment’s customer service and average quality of establishment f ’s products, in
a constant utility framework. Both establishment and product appeal may vary over
time besides varying across establishments.

Equation (7) defines real output for an establishment in this multiproduct frame-
work. In a multiproduct-establishment context it is not possible to define real output
in absence of assumptions about demand. The concept of real output “in theory equals
nominal output divided by a price index, but the choice of price index is not arbitrary:
it is determined by the utility function” (Hottman et al., 2016, page 1349). We define
the real output of a multi-product establishment as an aggregate of single-product out-
puts, in which each product receives a weight equal to its appeal to custumers, relative
to that of other products within the establishment. Given (9), this real output mea-
sure is normalized by the average appeal of products within the establishment. The
crucial relevant assumption here is that products within establishments are not per-
fect substitutes so that tracking product turnover and changing product appeal within
establishments is critical for measuring establishment-level output.

Consumer optimization implies that the period t demand for product fj and the
establishment revenue are, respectively, given by

13



qfjt = dσftd
σw
fjt

(
Pft
Pt

)−σ (
pfjt
Pft

)−σw Et
Pt

(10)

Rft = QftPft = dσftP
1−σ
ft

Et

P 1−σ
t

(11)

where

Pt =

(∑
It

dσftP
1−σ
ft

) 1
(1−σ)

(12)

Dividing (11) by Pft and solving for Pft,
16 we obtain

Pft = DftQ
− 1
σ

ft = DtdftQ
− 1
σ

ft (13)

where the establishment-level price index is given by:

Pft =

∑
Ωft

dσwfjtp
1−σw
fjt

 1
(1−σw)

(14)

Given the nested CES demand, the establishment will charge the same markup on
all products.17

Observe that (13) is identical to (2). This consistency is important as we use (14)
to construct establishment-level prices, using the CUPI framework of Redding and We-
instein (2020) to express this price index in terms of observables. It is also useful to
note that in using (11) one obtains the analogous interpretation of measured estab-
lishment appeal (dft) used by Hottman et al (2016): dft captures sales holding prices
constant. This is akin to quality as defined by Khandelwal (2010), Hallak and Schott

16We follow Redding and Weinstein (2020) in our treatment of product entry and exit. They don’t
formally model the decisions to add and subtract products but rationalize the entry and exit of products
through assumptions on the patterns of product specific demand shocks. That is, they assume products
enter when the product specific demand shock switches from zero to positive and exits when the reverse
occurs. We rationalize product entry and exit in the same manner. We consider multi-product plants
mostly for the purpose of obtaining a plant-level price deflator that takes into account changing multi-
product activity.

17See Appendix S2 of Hottman et. al. (2016). In this nested environment the producer’s optimization
problem can be decomposed into two steps. The producer first chooses the composite index of products.
It then chooses individual products to minimize the composite total cost subject to the optimal level
of producer-level output. It is optimal for the producer to equate the ratio of marginal costs across
products to the ratio of marginal utilities. Since consumers maximization yields that the ratio of
marginal utilities across products is equal to the ratio of prices this implies the markups must be the
same across products. One important difference with Hottman et. al. (2016) is that we don’t permit
product-specific random cost shocks.
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(2011), Fieler, Eslava and Xu (2016), and others. Foster et al (2016), in turn, interpret
establishment appeal as capturing the strength of the business’ client base.

Establishments that produce multiple products matter in our framework for three
reasons. First, our cost/production structure is at the establishment-level. That is, we
specify the cost/production function as being based on total output of the establishment
rather than product specific cost/production functions as in Hottman et. al. (2016).
We make this assumption for more than the convenience that our input use data are
at the establishment level. Our view is that if one queried most establishments (in our
case – really plants) to specify input costs (capital, labor, materials and energy) on a
product specific basis they would be unable to do so since multiple costs are shared
across products (i.e., there is joint production). That is, an establishment is not sim-
ply a collection of separable lines of production. A second reason that establishments
matter here is some may be large enough in the market that they don’t take the sec-
toral output price as given. That is, we depart from monopolistic competition. At a
deeper level, establishments are our object of interest because they are clearly relevant
empirical objects. Third, there may be cannibalization between products of the same
establishment. For these reasons, we specify an establishment-level profit maximization
problem but one that recognizes multi-product producers for purposes of measuring
establishment-level price deflators and in turn output.

3 Data

3.1 Annual Manufacturing Survey

We use data from the Colombian Annual Manufacturing Survey (AMS) from 1982 to
2012. The survey, collected by the Colombian official statistical bureau DANE, covers
all manufacturing establishments (=plants) belonging to firms that own at least one
plant with 10 or more employees, or those with production value exceeding a level
close to US$100,000. Our sample contains 17,351 plants over the whole period, with
4,352 plants in the average year.18 Over 90% of plants in the AMS (i.e. over 90%
manufacturing plants in Colombia with size over the inclusion threshold) belong to
single-plant firms, so that the distinction between plants and firms is not as crucial in
our context as it is in others.

Each establishment is assigned a unique ID that allows us to follow it over time.
Since a plant’s ID does not depend on an ID for the firm that owns the plant, it is not
modified with changes in ownership, and such changes are not mistakenly identified as
plant births and deaths. 19

18We have constrained the sample to plants born after 1969, for greater comparability across plants
of the section of the life cycle that we characterize.

19Plant IDs in the survey were modified in 1992 and 1993. To follow establishments over that
period, we use the official correspondence that maps one into the other.The correspondence seems to
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Surveyed establishments are asked to report their level of production and sales, as
well as their use of employment and other inputs, their purchases of fixed assets, and
the value of their payroll. We construct a measure of plant-level wage per worker by
dividing payroll into number of employees, and obtain the capital stock using perpetual
inventory methods, initializing at book value of the year the plant enters the survey.
Sector IDs are also reported, at the 3-digit level of the ISIC revision 2 classification.20

A unique feature of the AMS, crucial for our ability to decompose fundamental
sources of growth, is that inputs and products are reported at a detailed level. Plants
report separately each material input used and product produced, at a level of disag-
gregation corresponding to seven digits of the ISIC classification (close to six-digits in
the Harmonized System). For each of these detailed inputs and products, plants report
separately quantities and values used or produced, so that plant-specific unit prices can
be computed for both individual inputs and individual outputs. The average (median)
plant produces 3.56 (2) products per year and employs 11.15 (9) inputs per year (Table
2).

By taking advantage of product-plant-specific prices, we can produce plant-level
price indices for both inputs and outputs, and as a result generate measures of produc-
tivity based on output, estimate demand shocks, and consider the role of input prices
in plant growth. Details on how we go about these estimations are provided in section
4. Our product level data are not at the detailed UPC code level used by Hottman
et. al. (2016), which implies the limitations discussed in the introduction, but we ob-
serve them at the plant-by-product-by-year level, which offers key advantages relative
to other data sources. Unlike UPC codes, our product-level information is available by
plant (physical location of production) rather than the aggregate firm, and is jointly
observed with input use by that plant. And, unlike transactions data for imports (used,
for instance by Feenstra, 2004, and Broda and Weinstein, 2006), we observe them not
only at the product level (at similar levels of disaggregations with respect to imports
transactions data) but by producer at a physical location.

Importantly for this study, the plant’s initial year of operation is also recorded–
again, unaffected by changes in ownership. We use that information to calculate an
establishment’s age in each year of our sample. Though we can only follow establish-
ments from the time of entry into the survey, we can determine their correct age, and
follow a subsample from birth. Based on that restricted subsample, we generate mea-
surement adjustment factors that we then use to estimate life-cycle growth even for
plants that we do not observe from birth.21 We restrict all of our analyses to plants

be imperfect (as suggested by apparent high exit in 92 and high entry in 93), but even for actual
continuers that are incorrectly classified as entries or exits, our age variable is correct (see further
below).

20The ISIC classification in the survey changed from revision 2 to revision 3 over our period of
observation. The three-digit level of disaggregation of revision 2 is the level at which a reliable corre-
spondence between the two classifications exists.

21See Appendix 1.2 for details.
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born after 1969. Our decomposition results are in general robust to using the subsample
observed from birth rather than the full sample, although estimated with less precision
and for a shorter life-span. About a third of plants in our sample are observed from
birth. There is also exit in our sample, at a rate of approximately 7% per year. Our
analysis includes both stayers and exiters, which we examine separately in Appendix
H.

3.2 Plant-level prices built from observables

A crucial feature of our theoretical framework is that it allows the evolution of the
plant size distribution to respond to changes in relative product appeal, both within
the plant and across plants. Output can be adjusted for appeal (or quality) differences
across products within the establishment by properly deflating revenue with the exact

plant level price index, Pft =
(∑

Ωft
dσwfjtp

1−σw
fjt

) 1

(1−σw )
. Since the index depends on

unobservable σw and {dfjt} and thus cannot be constructed readily from observables,
we use Redding and Weinstein’s (2020) CES Unified Price Index (CUPI) approach.
Redding and Weinstein (2020) and Appendix A show that the CUPI is the appropriate
empirical analogue of our theoretical price index. The CUPI adjusts prices to take into
account the evolution of the distribution of in-plant product appeal shifters, emanating
both from changes in appeal for continuing products and the entry/exit of products.

In particular, the CUPI log change in f ′s price index is given by:

ln
Pft
Pft−1

=
∑

Ωft,t−1

ln

(
pfjt
pfjt−1

) 1

‖Ω
f
t,t−1‖ +

1

σw − 1

(
lnλQRWft + lnλQfeeft

)
(15)

Ωf
t,t−1 is the set of goods produced by plant f in both period t and t − 1. λQfeeft =∑

Ω
f
t,t−1

sfjt∑
Ω
f
t,t−1

sfjt−1
is Feenstra’s (2004) adjustment for within-plant appeal changes from the

entry/exit of products. That is, we take into account product entry and exit. λQRWft =∏
Ωft,t−1

(
s∗fjt

s∗
fjt−1,Ω

f
t,t−1

) 1

‖Ωt,t−1‖
is Redding-Weinstein’s adjustment for changes in relative ap-

peal for continuing products within the plant, which deals with consumer valuation bias
that affects traditional approaches to the empirical implementation of theory-motivated
price indices.22 The derivation of the CUPI price index from our theoretical price index

22Sato (1976) and Vartia (1976) show how the theoretical price index can be implemented empirically
under the assumption of invariant firm appeal shocks and constant baskets of goods. Feenstra (2004)
derives an empirical adjustment of the Sato-Vartia approach that takes into account changing baskets
of goods, keeping the assumption of a constant firm appeal distribution for continuing products. It is
this last assumption that the UPI relaxes.
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14 is presented in Appendix A. The derivation requires imposing the normalization that∑
Ωft,t−1

ln d

1

‖Ωt,t−1‖
fjt = 0. That is, the CUPI adjusts for relative appeal changes within

the plant, while average appeal changes for the plant are captured by dft.

Building recursively from a base yearB and denoting P ∗ft =
t∏

l=B+1

[ ∏
Ωt,t−1

(
pfjt
pfjt−1

) 1

‖Ωt,t−1‖
]

,

ΛQRW
ft =

t∏
l=B+1

[(
λQRWfl

)]
and ΛQfee

ft =
t∏

l=B+1

[(
λQfeefl

)]
, we obtain:

Pft = PfB ∗ P ∗ft ∗
(

ΛQRW
ft ΛQfee

ft

) 1
σw−1

(16)

= PfB ∗ P ∗ft ∗
(

ΛQ
ft

) 1
σw−1

where PfB is the plant-specific price index at the plant’s base year B. We initialize
each plant’s price index at PfB, which takes into account the average price level in
year B and the deviation of plant f ′s product’s prices from the average prices in the

respective product category in that year. PfB, P ∗ft,
(

ΛQ
ft

)
can be directly calculated in

the data. σw is estimated as explained in the following section. Details are provided in
Appendix A.23

We also obtain a measure of materials by deflating material expenditure by plant-
level price indices for materials, pmft, using information on prices and quantities of
material inputs at the detailed product class level. We construct pmft using an analo-
gous approach to that used to construct output prices.

4 Estimating TFPQ and demand shocks

Calculating TFPQ and demand shocks requires estimating the production and demand
functions, (1) and (13). Once the coefficients of these functions have been estimated,
TFPQ is the residual from (1) and the demand shock is the residual from (13).

We implement a joint estimation procedure. Jointly estimating the two equations
allows us to take full advantage of the information to which we have access to sepa-
rate supply from demand in the data. As a result, we can estimate production rather
than revenue elasticities, even for multiproduct plants, and simultaneously obtain un-
biased estimates of σ and σw. We impose a set of moment conditions that requires

23In an alternative approach against which we compare our baseline quality-adjusted prices (adjusted
for quality differences within the firm), we examine the robustness of our results to using “statistical”
price indices based on either constant baskets of goods, or on divisia approaches, and to the Sato-
Vartia-Feenstra approach. These are discussed in appendix I. We find that the impact of deflating
with quality-adjusted plant-level price indices is more important on the output relative to the input
side.
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less structure overall, and weaker restrictions on the covariance between TFPQ and
demand shocks, than other usual estimation methods of the demand-supply system in
multiproduct settings. This is in part possible thanks to the fact that we have access
to price and quantity information for both inputs and outputs. Data on inputs informs
the estimation directly about the production side, thus allowing us to separate it from
demand under weaker restrictions than if we only used information on prices and quan-
tities for outputs (as in, for instance, Broda and Weinstein, 2006, or Hottman, Redding
and Weinstein, 2016). Data on prices allows us to properly estimate both production
and revenue elasticities.

Beyond the usual simultaneity biases and restrictions on supply vs demand , the
estimation of (1) and (13) faces the problem that, until we have an estimate of σw, we

are unable to properly construct Pft, and thus Qft =
Rft
Pft

(see section 3.2). We therefore

rely on Pft’s two separate components from equation 16: P ∗ft and ΛQ
ft. We define

Q∗ft =
Rft

PfBP ∗ft
= Qft ∗

(
ΛQ
ft

) 1
σw−1

(17)

and proceed in three steps to address this limitation:

1. (This step only sketched here, details provided in the following subsection) Jointly
estimate the coefficients of the production function (1), the demand function (13),

and σw using Q∗ft =
Rft

PfBP
∗
ft

= Qft ∗
(

ΛQ
ft

) 1
σw−1

and P ∗ft =
Pft(ΛQft)

−1
σw−1

PfB
as the

respective dependent variables / regressors of these two functions . We carry ΛQ
ft

as a separate regressor in each equation to deal with potential biases induced by
the–at this point–still partial estimation of revenue deflators. In particular, not
explicitly accounting for changes in product quality and variety within the plant
leads to ”quality ” and ”variety” biases in the estimation of production function
coefficients, as described by De Roux et al (2020). ΛQ

ft explicitly accounts for
those changes, freeing our estimates from those biases. We similarly introduce
separately M∗

ft and ΛM
ft in the production function (where M∗

ft = materials expenditure

PMfBPM
∗
ft

,

and ΛM
ft is the adjustment factor for the prices of materials analogous to ΛQ

ft see
Appendix A). The joint estimation is conducted separately for each three-digit
sector. The parameters {α, β, φ, σ, and σw} used in the analysis are those
estimated in this step.

2. Use the estimated elasticity σ̂w for the respective three-digit sector to obtain

Pft = PfB ∗ P ∗ft ∗
(

ΛQ
ft

) 1
σ̂w−1

and subsequently Qft =
(
Rft
Pft

)
. Proceed in an

analogous way to obtain a quantity index for materials, Mft.

3. Using Pft, Qft,Mft (now properly estimated) and the estimated coefficients of the
production and demand functions, obtain residuals TFPQft and Dft. In estimat-
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ing TFPQft and Dft as residuals at this stage, we first deviate Pft, Qft,Mft, Lft
and Kft from sector*year effects, so that from this stage on, only idiosyncratic
variation in TFPQft and Dft is considered. More generally, our application only
considers idiosyncratic (within sector-year) variation.

We now explain step 1 in detail.

4.1 Joint production-demand function estimation

We want to jointly estimate the log production and demand functions:

lnQft = α lnKft + β lnLft + φ lnMft + lnAft (18)

and

lnPft = − 1

σ
lnQft + lnDft (19)

where Qft =
(
Rft
Pft

)
. Using (16) and (17), the system can be rewritten:

lnQ∗ft = α lnKft + β lnLft + φ lnM∗
ft +

1

σw − 1
ln ΛQ

ft −
φ

σw − 1
ln ΛM

ft + lnAft (20)

and

ln(P ∗ftPfB) = − 1

σ
lnQ∗ft −

(
1

σw − 1

)(
σ − 1

σ

)
ln ΛQ

ft + lnDft (21)

In practice, we estimate the parameters of (20) and (21), which are transformations
of the original production and demand functions, rather than those original forms.

The usual main concern in estimating these functions is simultaneity bias. In the
production function, this is the problem that factor demands are chosen as a function
of the residual Aft. A standard approach to deal with this problem is the use of proxy
methods as in Olley and Pakes (1996); Levinsohn and Petrin (2003); Ackerberg, Caves
and Frazer (2015, ACF henceforth); De Loecker and Warzinski (2012); and many others.
In the demand function, simultaneity arises because both price and quantity respond
to demand shocks. Usual demand estimation approaches rely on assumptions regarding
orthogonality between demand and supply shocks at some particular level. Foster et
al (2008, 2016) and Eslava et al (2004, 2013) impose orthogonality between the levels
of TFPQ and demand shocks, while in Broda and Weinstein (2006) and Hottman,
Redding and Weinstein (2020) double-differenced demand and marginal cost shocks are
assumed orthogonal.

We build on these approaches, but take advantage of prices and quantities for both
inputs and outputs, and the consequent possibility of jointly estimating (20) and (21),
to relax the assumptions about covariance between demand and supply shocks that
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identify the elasticities of substitution across and within establishments. We rely on
flexible laws of motion for TFPQ and Dft:

lnAft = πA0 + πA1 lnAft−1 + πA2 lnA
2
ft−1 + πA3 lnA

3
ft−1 + ξAft

lnDft = πD0 + πD1 lnDft−1 + πA2 lnD2
ft−1 + πA3 lnD3

ft−1 + ξDft

That is, ξAft and ξDft are, respectively, the stochastic component of the innovation
to TFPQ and Dft. Given this structure, our identification of production and demand
elasticities (α, β, φ, σ, σw) uses standard GMM procedures, imposing the following set
of moment conditions (further details provided in Appendix F):

E



lnM∗
ft−1 × ξAft

lnLft × ξAft
lnKft × ξAft

lnDft−1 × ξAft
lnAft−1 × ξDft

lnAft
lnDft


= 0 (22)

As in ACF-based methods, we purge measurement error in a first stage of the esti-
mation (Appendix F) and assume that, depending on whether inputs are freely adjusted
or quasi-fixed, they respond to stochastic innovations to TFPQ contemporaneously or
with a lag, respectively. Meanwhile, the conditions that Dft−1 must be orthogonal to
ξAft while Aft−1 must be orthogonal to ξDft identify σ and σw, following the logic that the
slope of the demand function can be inferred taking advantage of shocks to supply.24

More precisely, in the production side we assume that materials are freely adjusted
while the demand for capital and labor is assumed quasi-fixed. Thus, in (22) we require
lagged materials demand to be orthogonal to current TFPQ innovations, while L and
K are required to be contemporaneously orthogonal to ξAft. The assumption that K is
quasi-fixed is standard, as is that indicating that M adjusts freely.25 L is also assumed
quasi-fixed in our context because important adjustment costs have been estimated for
the Colombian labor market (e.g. Eslava et al. 2013). We thus follow De Loecker et.
al. (2016) in treating L as quasi-fixed for purposes of estimation.

As for the assumptions that identify demand elasticities, Foster et al (2008, 2016)
and Eslava et al (2013) relied on the logic that shocks to production identify the de-
mand curvature, but imposed orthogonality between demand and technology shocks

24Production elasticities are initialized at MCO estimates, while σ is initialized at the estimate from
an IV regression where TFPQft is used as an instrument in the demand equation. Using this initial
estimate for σ for each sector, σw is initialized at a level such that σw

σ equals the σw
σ ratio for the

median sector in Hottman, Redding and Weinstein (2016).
25For lnMft−1 to be useful in the identification of φ, it must be the case that input prices are highy

persistent. The AR1 coefficient for log materials prices is 0.95 in our sample.
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in levels (Aft and Dft). This effectively precludes the possibility that establishments
endogenously invest in quality when they perceive better returns (as would be the case
with higher TFPQ), or that they acquire technologies that increase production costs to
produce better quality.26 Hottman, Redding and Weinstein (2016) and Broda and We-
instein (2006, 2010) address these concerns by imposing orthogonality between double-
differenced demand and supply shocks (double differencing over time and varieties).
Orthogonality between the double-differenced shocks may still be a strong assumption
if, even within product groups, changes in quality require changes in production tech-
nologies. Given our ability to specify demand and production separately using the
price and quantity data of both output and inputs, we impose E(lnDft−1 × ξAft) and
E(lnAft−1×ξDft) which permit a correlation between TFPQ and demand even over time
within the plant. While we are still taking advantage of shocks to the supply curve to
identify elasticities on the demand side, we only require that innovations in technical
efficiency in period t be orthogonal to demand in levels in t−1, and that innovations in
demand in period t be orthogonal to TFPQ in levels in t− 1, where these innovations
come from a very flexible law of motion for TFP and Dt.

Notice also that TFPQ obtained as a residual from quality-adjusted Q is stripped
of apparent changes in productivity related to within-establishment appeal changes,
eliminating a source of correlation between appeal and technical efficiency stemming
from measurement error. Moreover, since we use plant-specific deflators for both output
and inputs, our estimation is not subject to the usual bias stemming from unobserved
input prices (De Loecker et al. 2016).27

We implement this estimation separately for each three digit sector of ISIC revision
3, adapted for Colombia (CIIU-AC by its acronym in Spanish). There are 22 manu-
facturing sectors at this level. The estimated factor and demand elasticities are sum-
marized in Table 1 and listed in Appendix L. Our results reveal close to constant scale
in production at the three-digits sector level for most sectors. The estimated elastici-
ties of substitution across products within the establishment and across establishments
stand at averages (over sectors) of 3.5 and 1.92, respectively, with substantial cross-
sector variation (see Appendix I). The revenue function curvature parameter stands at
an average 0.47 with a maximum of 0.68, by contrast to the 0.67 curvature parameter
implied by usual assumptions of CRS in production, CES demand and an elasticity of
substitution of 3. The level of σ is crucial in determining the role played by wedges (see
Appendix C).

It is encouraging that we obtain plausible factor elasticities for most sectors at the

26R&D decisions that are endogenous to current profitability and affect future profitability, for
instance, are present in Aw, Roberts and Xu, 2011. Their framework does not separately identify the
demand and technology components of profitability, but both could plausibly respond dynamically.
In turn, the idea that quality is more costly to produce appears in Fieler, Eslava, and Xu (2018), to
characterize cross sectional correlations between quality and size.

27De Loecker et al (2016), use plant-level deflators for output but not for inputs. This induces a bias
stemming from unobserved input price heterogeneity.
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three digits sector level. Proxy methods for the estimation of production functions are
usually implemented in estimations at the two-digit level, and frequently yield implau-
sible results–in particular negative estimated factor coefficients for several sectors–at
finer levels of disaggregation.28

Table 1: Factor and demand elasticities

β α φ σw σ σw/σ γ γ(1− 1/σ)

Average 0.36 0.15 0.51 3.50 1.92 1.82 1.02 0.46
Min 0.16 0.04 0.10 2.15 1.20 1.76 0.92 0.17
Max 0.60 0.40 0.70 4.73 2.66 1.99 1.22 0.68

5 Results

We use the within-plant estimated demand elasticity σ̂w to construct lnPft = ln
(
PfBP ∗ft

)
+

1
σ̂w−1

ln ΛQ
ft and subsequently recover Qft =

Rft
Pft

. We proceed in an analogous way to

construct pmft and Mft.
29 We then use Qft, Mft and Pft to obtain the residuals Aft

and Dft. We use the estimated σ (at the three digit level of ISIC revision 3) to obtain
the markup µft = σ

(σ−1)
1

(1−sft)
. For markup estimation, we use plant f ’s market share

sft as its revenue share in its relevant product group, defined at the three digit group of
the product classification. Products are classified according to the international CPC
classification. There are 112 product groups at the CPC three digit level (while our
”sectors” classification, defined using Colombian ISIC three digit level, has 22 classes),
with an average number of plants close to 50, and a median of 17.

From this point, we work only with the within-sector variability of all variables of
interest. In particular, we deviate all outcome variables (revenue, employment, capital,
materials, output prices and input prices) from sector*year effects. Also, as previ-
ously stated, when building TFPQ, D, and µ we only exploit idiosyncratic (i.e. within
sector*year) variation in the levels of outcomes. It is this variables deviated from sec-

tor*year effects that we use when building life cycle growth for any variable (
Zft
Z0t

for

each variable Z for each variable Z).30

28If fully unconstrained, our joint estimation does deliver a negative factor labor elasticity for textiles
(sector 321). We assign to that sector the average elasticities across 3 digit sectors of 2 digit sector 32,
corresponding to textiles, apparel and leather industries.

29I.e. we use the same measurement approach incorporating multi-materials inputs to construct the
plant-level deflator for materials, and use it to deflate expenditures in materials to arrive at materials
inputs. For each plant, we use for materials the same elasticity of substitution used for outputs.

30We also winsorize life cycle growth for each variable at 1% and 99% to eliminate outliers that may
drive the results of our decompositions.
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5.1 Plant attributes

Table 2 presents basic summary statistics for (the idiosyncratic component of) sales
and our estimates of output, output prices, lnAft, lnDft, the sales wedge (in logs),

markups and input prices. The sales wedge, lnχ
1− 1

σ
ft = ln (1− τft)γκ1(1− 1

σ ), is obtained
as a residual from equation 5, since we have measures of all other components.31

We note that we have adjusted materials prices for quality, but have not done the
same for wages as yet due to data constraints. In section 7.1 we do quality-adjust wages
for a subperiod for which this is possible.

Idiosyncratic dispersion in sales, output, output prices, TFPQ, demand, wedges
and input prices is large. TFPQ is strongly negatively correlated with output prices,
which is intuitive to the extent that more efficient production allows charging lower
prices (consistent with findings for Colombia in Eslava et al., 2013, and for commodity
like products in the US in Foster et al. 2008, 2016, though by contrast with those
products endogenous quality is more relevant in our context). To the extent that quality
is more difficult to produce, demand shocks and technical efficiency may be negatively
correlated. This is indeed, though weakly, the case in our estimates, also consistent with
Forlani et al. (2018). Also especially interesting is the negative and strong correlation
of wedges with TFPQ and demand shocks, suggesting that the plants with the best
fundamentals face greater barriers, i.e. correlated wedges. (It is worth noting that sales,
demand shocks, TFPQ and sales wedges exhibit an important degree of persistence,
but that this is much lower for wedges than for the rest: 0.76 for wedges compared to
over 0.93 for the rest, see Appendix E.) These basic correlation patterns are echoed in
our decompositions below.

Though markups display relatively modest variation across plants, they are posi-
tively correlated with TFPQ, D and wages, besides plant size. They are also positively

correlated with our sales wedge (1− τft)γκ1(1− 1
σ ). It is natural to ask how our approach

to measuring the markup compares to the approach to markups in De Loecker and co-
author’s work (2012, 2016, 2020). Denoting the markup calculated with such approach
as µDL , Appendix B shows that under the demand and production structure in this
paper the following relationship holds:

µDLft ≡
θvft

CvftVft

PftQft

=
µft

(1− τft)

where Vft is some variable input, Cv
ft its unit cost and θvft is the output elasticity

for the variable input. We calculate µ̂DLft = φ
pmftMft
Rft

, referred to as ”Markup DL” in

Table 2. µ̂DLft displays a very modest (positive) correlation with µft, and is strongly
negatively correlated with the sales wedge. Its correlation with sales is negative, and

31χt is no longer relevant once we focus solely on within sector*year variation.
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Table 2: Descriptive statistics

Panel A. Number of plants, number of products and materials per plant-year
Number of plants Number of products per plant Number of materials per plant

Total Avg. year Avg. P25 P50 P75 Avg. P25 P50 P75

17,351 4,352 3.56 1 2 5 11.15 5 9 14

Panel B.Standard deviations and correlation coefficient for outcomes and fundamentals
(within sector*year, all variables in logs, average sector)

Standard
Deviation

Sales Output Output
prices

TFPQ Demand
Shock

Input
prices

Average
wage

Markup Markup
DL

Sales
Wedge

Sales 1.426 1.000
Output 1.568 0.902 1.000
Output prices 0.647 0.011 -0.409 1.000
TFPQ 0.775 0.217 0.506 -0.720 1.000
Demand Shock 0.840 0.921 0.675 0.375 -0.064 1.000
Input prices 0.609 -0.041 -0.103 0.157 0.260 0.022 1.000
Average wage 0.422 0.609 0.528 0.062 0.144 0.585 -0.001 1.000
Markup 0.116 0.505 0.455 0.002 0.112 0.465 -0.013 0.343 1.000
Markup DL 0.633 -0.083 -0.045 0.091 0.235 0.025 -0.086 0.114 0.041 1.000
Sales Wedge 0.409 -0.147 -0.106 -0.068 -0.420 -0.160 0.002 0.046 0.144 -0.534 1.000
Lagged Demand Shock 0.832 0.883 0.654 0.350 -0.085 0.956 0.017 0.581 0.465 0.012 -0.089

Note: The sample includes fewer plants than the original Manufacturing Survey, especially in the early years of the sample,
due to the restriction of plants born after 1969.

that with demand shocks very weak. Compared with µft, µ̂
DL
ft displays much weaker

correlations with sales and demand shifters, and a stronger correlation with TFPQ. The
variance of µ̂DLft (within sector*year) is more than twice the variance of

µft

(1−τft)
. This

discrepancy can be accounted for by specification or measurement error in θvft, or by a
factor-specific wedge as discussed in appendix B. Such a factor specific wedge is already
implicitly incorporated in the sales wedge which captures all factors that account for any
discrepancy between actual and model consistent sales. However, factor-specific wedges
enter into factor-specific first order conditions beyond the sales wedge since such wedges
impact not only the overall scale of establishment activity but also the factor mix as
well. We don’t emphasize the role of such factor-specific wedges since our objective is
to characterize the determinants of size and growth in terms of overall sales. 32

32Hsieh and Klenow (2009) allow for such factor-specific wedges but like this paper focus much
of their attention on the composite wedge impacting the scale of activity of businesses. Blackwood,
Haltiwanger and Wolf (2020) explore these issues in more depth. In terms of the current setting, if

we make explicit the factor-specific wedge then this yields the expression
µft(1−τvft)

(1−τft) to the right of the

equal sign in equation (5.1). Using a structural decomposition such as we use below (and described
in detail in appendix G), we find that about 65% of the variance of markup DL is accounted for by
this factor-specific distortion. More discussion of the possible sources of this factor-specific wedge is
provided in appendix B.
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5.2 Growth over the life cycle

We build growth of variable Z over the life cycle of a plant at a given age as
Zf,age
Zf,0

where

Zf0 is the level of Z at f ′s birth, calculated as the average for ages 0 to 2. By averaging
over the plant’s first few years in operation we deal with measurement error coming, for
instance, from partial-year reporting (e.g. if the plant was in operation for only part of
its initial year). A plant’s age in year t is the difference between the current year, t

The solid black lines in Figure 1 present mean growth from birth for output, sales and
employment. As in the rest of figures throughout the paper, we use a logarithmic scale.
Revenue grows four-fold on average by age 25. For comparison with existing literature
on life-cycle growth, the right panel presents analogous results for employment:

Lft
L0t

.
By age 10 the average establishment has almost doubled its number of workers, and 25
years after birth employment it has grown more than three-fold.33

Figure 1: Distribution of life cycle growth
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These average growth dynamics, however, hide considerable heterogeneity. Median
growth (dashed line) falls under mean growth for all panels, highlighting the fact that it
is a minority of fast-growing plants that drive mean growth. Related, the distribution
of plant growth is highly skewed. It is this heterogeneity and its welfare implications
that we aim to explain in the analysis below.

33 For revenue and employment, we have
Rfa
Rf0

= 1.59 and
Lfa
Lf0

= 1.4 when a = 5,
Rfa
Rf0

= 2.17 and
Lfa
Lf0

= 1.93 when a = 10, and
Rfa
Rf0

= 4.03 and
Lfa
Lf0

= 3.22 when a = 25.
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We emphasize that we can measure life cycle growth directly using longitudinal
data for each plant, rather than relying on cross-cohort comparisons. This approach
addresses the usual selection concern in the literature of business’ life cycle growth. Still,
we can only characterize and decompose growth for survivors. Appendix H describes
life-cycle growth for exits-to-be, showing that the patterns in Figure 1 are mainly driven
by plants that will survive (so the exit bias is small).

Figure 2 displays the life cycle growth of TFPQ and demand shocks, markups,
material input prices and wages. The average growth of demand shocks dominates that
of input prices, and both dominate the average growth of TFPQ and markups over
the life cycle. By age 25, TFPQ has not grown compared to birth on average, while
the demand shifter has grown on average close to two-fold. Part of what is driving
the contradicting TFPQ-demand patterns in Figure 2 is the evolution of the negative
correlation between the life cycle growth of TFPQ and that of demand shocks. At age
3, the correlation is 0.07, moving to -0.08 at age 10 and -0.12 at age 20. The rapid rise
of product appeal/quality over the life cycle comes at the cost of dampening the growth
of TFPQ. The interplay between output prices and demand shocks is also interesting:
with growing output over the life cycle, downward sloping demand would imply that the
plant would have to charge ever shrinking prices over its life cycle, unless the appeal of f
to costumers changed over time. We do not observe such fall in output prices, signaling
increasing ability of the establishment to sell more at given prices. By construction,
this is what the life cycle growth of the demand shock, D̂ft, captures. Markups barely
vary over the life cycle and across deciles of the distribution, to the point that the
variation is not observable to the naked eye compared to the scale of variation of other
fundamentals. As we will see below, when we consider activity-weighted distributions
and related measures (e.g., welfare), markups play an important role as a relatively
small share of very large plants have very high markups.

5.3 Decomposing revenue and revenue growth into its sources

We now decompose the variance of Rft and
Rft
Rf0

into contributions associated with

different fundamental sources (equation (5)). We follow a two stage procedure, similar to
that in Hottman et al. (2016), whose details are provided in Appendix G. As we prove in
that Appendix, the contribution of growth in each (log) fundamental to the variance of
growth of (log) sales depends on the covariance and relative variances between the two.
In particular, the contribution of the life cycle growth of TFPQ to the life cycle growth

of sales is given by the product: κ2 ∗ corr
(
ait
ai0
, Rit
Ri0

)
∗
std
(
ait
ai0

)
std
(
Rit
Ri0

) where κ2 is the structural

parameter associated with TFPQ in the decomposition equation 5, reproduced below:
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Figure 2: Distribution of fundamentals
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Rft = dκ1
fta

κ2
ftpm

−φκ2

ft w−βκ2

ft µ−γκ2

ft (χ̂tχft)
1− 1

σ

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−βκ2
(
µft
µf0

)−γκ2
(
χ̂t
χ0

χft
χf0

)1− 1
σ

(23)

where κ1 = 1

1−γ(1− 1
σ )

, κ2 =
(
1− 1

σ

)
κ1, and γ and σ have been estimated as explained

above. The contribution of other sources of growth is calculated in an analogous manner.

The term (χft)
1− 1

σ in (23) is calculated as a residual, since all of the other com-
ponents are either measured or estimated. χ̂t = 1 since we focus solely on within
sector*year variation.

χft
χf0

captures life cycle growth in wedges, including distortions
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Table 3: Decomposition of sales, unweighted and revenue weighted by ages.

Panel A: Unweighted
Levels decomposition Growth decomposition

Weighted
avg. ages

Age 3 Age 10 Age 20 Weighted
avg. ages

Age 3 Age 10 Age 20

TFPQ 0.098 0.117 0.094 0.088 0.138 0.219 0.142 0.109
Demand shock 1.025 1.031 1.030 1.023 1.039 1.025 1.043 1.041
Material prices 0.003 0.005 -0.001 0.006 -0.018 -0.022 -0.017 -0.019
Wages -0.052 -0.053 -0.053 -0.054 -0.037 -0.046 -0.037 -0.036
Markup -0.025 -0.024 -0.027 -0.024 -0.012 -0.010 -0.011 -0.013
Sales wedge -0.049 -0.076 -0.043 -0.040 -0.111 -0.166 -0.120 -0.081

Panel B: Revenue weighted
Levels decomposition Growth decomposition

Weighted
avg. ages

Age 3 Age 10 Age 20 Weighted
avg. ages

Age 3 Age 10 Age 20

TFPQ 0.121 0.145 0.123 0.136 0.210 0.256 0.207 0.101
Demand shock 1.098 1.075 1.074 1.088 1.060 1.027 1.070 1.013
Material prices 0.003 0.021 -0.009 0.014 -0.009 0.009 -0.029 0.010
Wages -0.086 -0.079 -0.070 -0.130 -0.041 -0.083 -0.039 -0.011
Markup -0.178 -0.083 -0.149 -0.200 -0.057 -0.038 -0.042 -0.074
Sales wedge 0.043 -0.078 0.031 0.091 -0.164 -0.172 -0.167 -0.039

from regulations, adjustment costs, and other factors, and measurement error. Because
these sales wedge simply reflects the gap between actual growth and that predicted
by measured attributes through the lens of our model, it reflects all sources for such
gaps, including some that may be correlated with fundamentals themselves. Thus,
these wedges may imply exacerbated growth if plants with better fundamentals also
exhibit higher wedges than plants with worse fundamentals, or dampened growth in
the opposite case.

Results are presented in Table 3.34 We find that the structural contribution of
fundamentals, rather than residual wedges, explains the bulk of cross sectional variation
in sales and sales growth over the life cycle. Taken together, fundamentals in fact
account for more than 100% of the variance of sales and sales growth across plants within
a sector (a fact we turn to further below). Averaging over ages, we find contributions to
the variance of revenue level of the demand shock, TFPQ, input prices, markups and
structural wedges, respectively equal to 1.03, 0.1, -0.05, -0.03, -0.05. In terms of life
cycle grow the wedges make a stronger (negative) contribution compensated by a larger
contribution of TFPQ and a weaker markup role. In particular, the contributions of
demand shock, TFPQ, input prices, markups and structural wedges, are respectively

34We implement the variance decomposition by ages. See Appendix G for results.
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equal to 1.04, 0.14, -0.06, -0.01 and -0.11. In the revenue weighted decomposition, the
difference in levels vs growth in the contribution of markups, TFPQ and wedges is
exacerbated (Panel B of Table 3).

The most outstanding feature of these results is the overwhelming role of the demand
shock: its weight in the variance decomposition is over seven times as important as
TFPQ to explain idiosyncratic sales in levels and growth, on both unweighted and a
revenue-weighted bases. It is even larger compared to the contributions of input prices
and markups. Mechanically, this reflects the fact that, for the average sector and pooling
across ages, the covariance of demand shocks growth with sales growth is more than six-
fold that between TFPQ growth and sales growth, and the coefficient associated with
demand growth in equation (23) is also much larger than that for TFPQ. The negative
correlation between TFPQ and demand shocks also plays a role in these patterns.

Input prices and markups make much smaller, but not negligible, contributions, with
markups being particularly important in levels and with revenue weighting.The minor
contribution of markups to the variance of sales growth, especially on an unweighted
basis reflects market shares concentrated around zero and barely changing over the life
cycle in most sectors. A few plants in some sectors hold large market shares, however,
which explains the more significant role of markups for the variance of revenue levels,
especially on a weighted basis. We also show in section 7 that the large markups of
large plants have crucial welfare implications.

The dominance of demand-side fundamentals over supply side in explaining the
variance in sales resonates with recent findings in the literature (Hottman et al. 2016,
Foster et al. 2016). It is, however, noticeable that this finding survives the expansion of
the measurement framework to explicitly account for wedges. The availability of price
and quantity data together with data on input use, rare in the literature and enabled by
the richness of the Colombian data, is crucial to identify wedges from the gap between
actual growth and that predicted by the host of attributes that we measure (see detailed
discussion in section 6).

Input prices, especially that of labor, play a dampening role for the variability of
sales. This is consistent with Table 2 that shows a positive correlation between input
prices and wages in particular with TFPQ and demand. The variation in wages across
plants might reflect many factors, including the geographic segmentation of labor mar-
kets as well as institutional barriers or other frictions in the labor market. However,
the correlations in Table 2 suggest that wages variability might also rather reflect un-
measured quality differences since, by contrast to material inputs prices we are unable
to quality adjust wages for our entire sample period. Section 7.1 explores the role of
these different mechanisms for a subperiod in which quality adjustment is possible. Pre-
viewing those results, adjusting wages for labor quality reduces the contribution of wage
dispersion in accounting for sales growth heterogeneity and increases the contribution of
TFPQ. This is not surprising as adjusting for labor quality impacts the measurement
of technical efficiency. The effect of quality adjusting wages, however, is not large even
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for TFPQ and wages, and does not affect other components, so we proceed with our
main full sample results as a baseline that provides robust inferences.

Another important feature of these results is that the remaining wedge also con-
tributes negatively to the variance of life cycle growth of sales (or, equivalently, quality
adjusted output). That is, the different sources of wedges captured in this term dampen
the effect of measured attributes on sales, implying that high-productivity high-appeal
plants sell and grow less relative to low-productivity and appeal plants than their respec-
tive productivity and appeal would imply. The effect is quantitatively large, especially
for revenue growth: pooling ages, sales growth dispersion is dampened by about 11%
with respect to that implied by fundamentals. That is, Colombian manufacturing plants
face significant size-correlated wedges that de-link actual growth from the fundamental
attributes of plants.

Figure 3: Actual sales vs. sales predicted based on observed attributes, by
age

By quartiles of predicted sales
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Figure 3 shows the mechanics behind the negative contribution of structural wedges:
the average gap between actual revenue (black solid line) and revenue explained by
measured attributes (grey solid line) is positive for plants with low predicted size and
negative for those in the highest percentiles of predicted size. Predicted revenue corre-
sponds to revenue in equation (23) setting χft = 0. Figure 3 implies that it is plants
with weak fundamentals that face positive residual wedges while those with strongest
fundamentals face the opposite situation, in particular at young ages. A similar pattern
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is observed if we predict growth based solely on technical efficiency and demand shifters,
though in that case the gap between predicted and actual size is larger in absolute value,
given the dampening effect of markup and input price variability jointly.

Figure 4: Variance decomposition of the life cycle growth of sales, by age
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The contributions of the different attributes to sales and the life cycle growth of sales
vary depending on the horizon of growth considered (Table 3 and Figure 4). Demand
becomes increasingly important compared to TFPQ over longer horizons. The ratio of
contributions to the growth of revenue of demand relative to TFPQ is close to 4.7 at
age 3, but by age 20 it has more than doubled, to 9.6. This is because the correlation
between sales growth and TFPQ growth decreases for older plants, while that between
sales and demand remains fairly stable . These patterns echo the increasing negative
correlation between TFPQ and demand shocks over the life cycle. Wedges, interestingly,
play a more important dampening role at the youngest ages. Figure 3 shows that the
decreasing importance of residual wedges over the life cycle is driven primarily by the
top quartile of predicted sales. These top performers face a negative wedge that is much
larger at younger ages, decreasing in absolute value from 0.7 log points at birth to 0.4
at age 10 and 0.27 at age 25.

Appendix H shows that these general patterns are robust to selection, in the sense
of being similar for survivors-to-be and exits-to-be. However, TFPQ plays a relatively
more important role vis-a-vis demand for the latter than the former.

Figure 5 indicates that plants in the highest percentiles of predicted growth have
both higher average demand growth and higher average TFPQ growth than those with
low predicted growth. Interestingly, the superstar plants (those in the upper quartile
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of growth in fundamentals) differ from the rest most clearly in terms of the growth
of demand. In the opposite end of the distribution, the most outstanding feature of
bottom quartile plants is weak TFPQ growth.35

Figure 5: Life cycle growth of measured attributes
By quartiles of predicted sales growth
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6 Robustness and the Value Added from Building

Up Jointly from P, Q and inputs data

6.1 Value added of bringing P and Q data to the Hsieh-Klenow
framework

In absence of data on input and output prices HK decompose revenue into a measure
of productivity that combines our TFPQ and D shocks, which we label as TFPQ HK,
and a residual wedge that captures all determinants of size other than efficiency and de-

mand.36 They start from revenue, which in our notation is given by: Rft = DftQ
1− 1

σ
ft =

35We conduct a similar decomposition for the growth of output, rather that sales, finding similar
results. See Appendix G.

36See the appendix to HK (2009) where they extend their model to account for D shocks. What
we label TFPQ HK is what is called TFPQ by HK. Haltiwanger, Kulick and Syverson (2018) also
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Dft

(
AftX

γ
ft

)1− 1
σ . With estimates of γ and σ one can obtain the composite shock

TFPQ HK solely from revenue and input data as:

TFPQ HKft = R
1/(1− 1

σ
)

ft /Xγ
ft = AftD

1

1− 1
σ

ft (24)

Revenue can then be expressed as:

Rft =

{
TFPQ HKft

[
(1− τft)
Cftµft

]γ} 1− 1
σ

1−γ(1− 1
σ )

(25)

That is, the HK residual wedge is a composite measure of wedges, the ”HK wedge”=(
(1− τft)

(1−τft)
Cftµft

)γ
, just as TFPQ HK is a composite measure of efficiency and de-

mand. A widely used implication of HK’s framework is that wedges can be esti-
mated from the idiosyncratic component of TFPR HK =

Rft
Xft

. Replacing optimal

input demand Xft =

(
DftA

1− 1
σ

ft γ

Cftµft(1−τft)
−1

) 1

1−γ(1− 1
σ )

we obtain TFPR HKft =
Cftµft

γ(1−τft)
,

so TFPR HK variability reflects variation not only τ , but also in markups and input
prices.37 We thus observe that the composite wedges we obtain from (25) are analogous
to those that can be obtained from TFPR HK but also that, given the importance of
input variability in our data to explain the growth distribution, TFPR HK dispersion
cannot be used to infer the dispersion of τ .

Figure 6, left panel, contrasts the by-age decomposition of life-cycle growth using
the TFPQ HK approach (grey lines) with that of our approach (black lines). To

calculate TFPQ HKft = R
1/(1− 1

σ
)

ft /Xγ
ft we use our estimates of σ, φ, β, α, and the

implied X = M
φ
γ

ftL
β
γ

ftK
α
γ

ft. The figure shows that a non-negligible fraction of the variation
explained by the HK composite wedges in the two-way (HK) decomposition is due to
the contribution of variable input prices and markups (6.6% out of the 18% assigned
to wedges in 6a). It is clearly instructive to isolate the contribution of input prices and
markups from residual wedges; input price and markup variability may well be related to
market distortions but may also reflect structural features (e.g., market segmentation)
of input and output markets. Figure 6, however, also shows that the message that
correlated wedges affect young plants the most is still present using the HK approach,
since the contribution of input prices and markups does not vary significantly over
the life cycle. Another important insight from Figure 6 is that using TFPQ HK

explore properties of TFPQ HK constructed from revenue and input data compared to TFPQ and
demand shocks constructed from price and quantity data.

37If, as originally defined in Foster et al (2008), we rather defined TFPR as
Rft
Xγft

, TFPR dispersion

would also reflect Aft and Dft dispersion. Their definition of TFPRft = PftAft. TFPR HKft

corresponds to HK’s definition if γ = 1.

34



misses the much larger contribution of demand relative to TFPQ, and the changing
relative contribution of these two dimensions over the life cycle. As stated the relative
contribution of demand to TFPQ doubles from age 3 to age 20, something the HK
decomposition is silent about. Figure 5 shows that the increasingly dominant role of
demand is driven by the upper quartile ”superstar” plants while weak TFPQ growth
dominates the poorly performing lower quartiles. These insights about the relative role
of TFPQ vs. demand, and the relevance of input prices and markups in the HK
composite wedge, are not possible in a two-way decomposition based on revenue data.

Another important gain of using detailed P and Q data stems from the ability
to estimate sector-specific parameters for both demand and production. Appendix C
reports results with the composite TFPQ HK approach following the usual practice
in the misallocation literature of imposing monopolistic competition; γ = 1; φ, β, α
equal to the corresponding cost shares in each sector; and a common σ for all sectors.
Results show that the estimated contribution of wedges closely depends on the level and
dispersion of σ and of the implied curvature of the revenue function. The estimated
contribution of wedges grows with σ in a manner that is not linear (see Figure C1 in
Appendix C). For this reason, the estimated contribution of wedges is different if σ is
allowed to vary compared to imposing a common σ equal to the average of the variable
σ.

Figure 6: Hsieh-Klenow and Hottman-Redding-Weinstein decompositions
using the same elasticities used in the baseline decomposition

HK vs Baseline Decompositions HRW vs Baseline Decompositions

These figures reproduce the structural decomposition considering, alternatively, the components considered by Hsieh and
Klenow (2009, 2014) and Hottman, Redding and Weinstein (2016). Components of our baseline decomposition (from
Figure 3) are depicted in black. If they are not also component of the HK or HRW decomposition in the respective
panel, while components of the HK and HRW are depicted in grey in the respective panel.
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6.2 Value added of bringing input data to the Hottman-Redding-
Weinstein framework

The differential contribution of demand vs. cost-side shocks to plant sales is explored by
Hottman, Redding and Weinstein (HRW, 2016). Using the demand structure also used
in our framework, they decompose sales into the contributions of observed prices and
demand shocks obtained using the estimated elasticity of substitution, and subsequently
decompose price into the contributions of markups–computed as in equation (4)–and
residual marginal costs:

µft =
Pft

∂CTft
∂Qft

(1− τ)−1

where CT is total cost. These residual marginal costs, given by
∂CTft
∂Qft

(1 − τ)−1, thus

capture idiosyncratic variation in costs (from input price variability and technical effi-
ciency), as well as wedges. Importantly, wedges are not inherently driven by cost/sup-
ply side factors. For example, they could reflect the adjustment costs associated with
building up a customer base. See Appendix K for greater details.

Since we fully rely on HRW’s demand structure and the implied specification of
markups, the contribution of the demand shock and markup are, by construction, the
contributions one would obtain in their conceptual approach for given substitution
elasticity.38 The availability of data on input use and input prices, beyond P and Q
data on the output side, which their approach already employs, allows us to further
decompose their marginal cost component into input prices, TFPQ and wedges.

The right panel of Figure 6 illustrates the by-age decomposition of revenue growth
obtained in our data with the HRW approach (components in grey) vs. our baseline
decomposition (components in black, plus demand and markup, which are separately
identified in both HRW and our approach). As in their results for consumer goods in
the US, demand shocks explain the bulk of sales growth variation, and markups play a
modest role. But the negative and negligible, flat over ages, pattern estimated for the
contribution of marginal costs is a combination of the positive contribution of TFPQ
and the dampening role of wedges and input prices in the context of our application,
each of them negatively correlated with sales. The lumping together of input cost,
efficiency and wedges also misses the rich life cycle dynamics of each of these factors.
Technical efficiency becomes less important, as do wedges, for older businesses but this
pattern is missed completely in the HRW approach. Related, the increasing magnitude
of the inverse correlation between demand and TFPQ over the life cycle is missed in
the HRW approach.

38We refer here to their conceptual approach to the decomposition of sales volatility. Given the dif-
ferences in their data infrastructure relative to ours, their identification of the demand and supply/cost
components is related but distinct from our approach.
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7 Welfare implications of heterogeneity in wedges

and plant fundamentals

We use U =
(∑

It
dftQ

σ−1
σ

ft

) σ
σ−1

in equation 6 to analyze welfare implications of het-

erogeneous wedges and fundamentals. Replacing equation 1 into this expression after
having inserted the optimal expression for Xft, we obtain an expression for welfare
that, up to aggregate shocks, can be calculated from plant attributes and wedges that
we have estimated:

U =

(∑
It

dftQ
σ−1
σ

ft

) σ
σ−1

=

(∑
It

dft(d
γκ1

ft a
1+γκ2

ft pm−φκ1

ft w−βκ1

ft µ−γκ1

ft χtχft)
σ−1
σ

) σ
σ−1

(26)

where χft is the residual χft =
Qft

d
γκ1
ft a

1+γκ2
ft pm

−φκ1
ft w

−βκ1
ft µ

−γκ1
ft

. We build a series of coun-

terfactual welfare ratios, where welfare is compared to what its level would be in the
hypothetical efficient situation where the composite (HK) wedge is set to one:

U count

UHKeff
=

(∑
It
dcountft Q

countσ−1
σ

ft

) σ
σ−1

(∑
It
dftQ

HKeff σ−1
σ

ft

) σ
σ−1

(27)

QHKeff
ft is the value obtained by setting the composite HK wedge equal to one:(

pm−φκ1

ft w−βκ1

ft µ−γκ1

ft χft

)
= 1. This replicates the HK exercise that accounts for the

productivity loss implied by composite wedges; as noted in HK’s Appendix II, welfare
is synonymous with productivity if demand shocks are explicitly accounted for as we
do in our framework. Aggregate shocks χt cancel out in expression (27). This measure
of welfare is for a single sector. We compute this ratio for the average sector including
on a revenue-weighted basis. The latter is equivalent to Cobb-Douglas aggregation
across sectors neglecting any between sector aggregation effects that arise from goods
in one sector being used in the production of other sectors. The approach of using a
nested CES within sectors with multi-product producers and Cobb-Douglas aggregation
between sectors is used in HRW.39

In different additional counterfactual cases we set dft, aft,pmft,wft, and/or µft to
1, keeping χft at its actual level. In another case, we set χft = 1, keeping the other
components at their actual levels. We compare our results for (27) to a benchmark case

39Hsieh and Klenow (2009) also use Cobb-Douglas aggregation across sectors. Baqaee and Farhi
(2020) show the importance of taking into account the input-output structure of the economy in
aggregating across sectors. We don’t explore such implications but doing so would be of interest in
future research with our data infrastructure with price and quantity data for both outputs and inputs
at the plant-level.
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where the numerator corresponds to actual welfare, that is, all plant attributes are at
their actual levels. Table 4 presents the results of this analysis.

Panel A quantifies the welfare gap attributed to the presence of HK wedges (the
benchmark, described two paragraphs above, that replicates HK measurement of wel-
fare costs of wedges). Columns 1 and 2 show a large gap: for the average sector, actual
welfare is about 50% of its efficient level, i.e. what it would be in absence of HK
wedges. This is in the broad range found by HK for India and China, and by Busso
et al (2013) for Latin America, applying the same methodology. The figure is some-
what lower (45%) on a revenue-weighted basis, because it is in the largest sectors where
wedges are largest. Large sectors tend to display high elasticities of substitution, which
implies that optimality would shift more resources to the plants with highest composite
productivity (TFPQ HK), while in fact these sectors tend to be large precisely because
they are fractioning revenue in a large number of plants.40

Table 4: Welfare relative to HK efficient welfare, different scenarios with
sector-level parameters

Average
Sector

Average Sector -
Revenue Weighted

(1) (2)

Panel A: Actual to HK Efficient Welfare

0.496 0.453

Panel B: Counterfactual to HK Efficient Welfare

Plant attribute
set to
counterfactual
level (constant
mean value =1)

D+TFPQ (TFPQ HK) 0.122 0.079
Demand Shock 0.093 0.054
TFPQ 0.525 0.450
Input prices + Markup 0.818 0.696
Input prices 0.635 0.592
Markup 0.630 0.525
Sales wedge 0.587 0.559

Panel B of Table 4 further analyzes the impact of shutting down variability in each
of the sources of plant heterogeneity considered in the analysis, individually and in
combinations. (Because the different components are correlated with each other, the
impact of shutting down two components simultaneously may be larger or smaller than
the sum of the impact of shutting them individually). The fact that consumers in
our model display love for variety tends to reduce welfare when TFPQ HK variability

40While it is not their primary focus, Baqaee and Farhi (2020) find that taking into account hetero-
geneity in elasticities of substitution is important for their generalized measure of allocative efficiency.
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is shut down. On an unweighted basis, this reduces welfare from 50% to 12% of its
efficient level. More interestingly, this is completely attributable to the effect of shutting
down quality (or D) heterogeneity.41 The impact on welfare of shutting down TFPQ
variability is negligible. The welfare analysis highlights once again the differential role
of TFPQ vs. demand, now in terms of welfare.

On a similar note, unpacking HK wedges into their components sheds light on the
sources of welfare losses from these wedges. In particular, heterogeneity in input prices
and markups explains most of the welfare loss from HK wedges. Collapsing them both
to their mean value (of 1), while keeping TFPQ HK at its actual value, brings welfare
to 82% of its efficient level for the average sector. Shutting down variability in the
residual wedge has a more modest impact of moving welfare to 59% of the efficient
level.

Interestingly, in contrast to the fact that input prices play a much more important
role than markups in explaining cross sectional variability, both factors are similarly
relevant to determine welfare. In both cases collapsing variability in the attribute
increases welfare from 0.5 to 0.63 of the efficient level. The reason for the contrast with
the cross sectional results in Table 3 is the combination of two factors: 1) while there
is little variability in markups because most market shares are close to zero, a few large
plants exhibit large markups; 2) the decomposition of the top panel of Table 3 explains
cross plant dispersion on an unweighted basis, while aggregate welfare in (26), by its
very nature, ”weights” plants according to their appeal to consumers. Large markups
thus play a much more important role in explaining aggregates than in explaining
”unweighted” cross-plant variation. In fact, the bottom panel of Table 3, displaying the
revenue-weighted decomposition, already shows a much larger role for markups than in
the top panel. Table 5 illustrates that a few plants exhibit market shares well above
their sectors’ mean shares, despite the very low variability in markups shown in Table
2.

7.1 Robustness to quality-adjusting wages

Our counterfactual welfare analysis shows that heterogeneity in input prices implies
non-negligible welfare loses. Input price heterogeneity, as previously discussed, may re-
flect input market frictions or accompanying distortions, as well as input heterogeneity.
Although we have adjusted materials prices for quality (within the plant) the same is
not true of wages, since the data does not break labor into skill categories for the full
extent of our estimation period. To address the relative importance of quality hetero-
geneity for labor, we now take advantage of data on broad skill categories available
for 2000-2012. The available skill categories are production workers without tertiary
education, production workers with tertiary education and administrative workers. We

41In results reported in Appendix L, we have also explored the effect of shutting down variability
over the life cycle.
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Table 5: Distribution of Largest Plants’ Markup Relative
to Sector*Year Average

Largest Second Third

Average 1.84 1.11 1.05
10 1.07 1.01 0.98
25 1.13 1.04 1.01
50 1.27 1.09 1.04
75 1.60 1.16 1.07
90 2.33 1.25 1.12
95 3.45 1.32 1.15
99 11.09 1.50 1.22

Max 81.08 1.83 1.39
N 713 713 713

There are 23 sectors in 31 years (23× 31 = 713)

which gives one observation per sector*year.

construct, for that subperiod, quality-adjusted wages using an approach analogous to
that of we use to build quality-adjusted materials and output prices.42

Implementing our decomposition with this alternative measure of wages rather than
the average wage per worker reduces the negative contribution of wages for 2000-2012
from -0.028 to -0.01, compensating it with a reduced positive contribution of TFPQ
(Panel A). That is, quality heterogeneity explains almost a third of the dampening
role of unadjusted wages over the variance of sales, suggesting that plant growth is
accompanied by skill growth, thereby increasing cost and curbing revenue growth. The
remaining -0.010 is our estimate of the dampening effect of dispersion in quality-adjusted
wages. The latter may stem from frictions or from distortions in the labor market that
accompany such frictions. For example, market segmentation due to search frictions
can enhance monopsony power.

Interestingly, the welfare effect of input prices and markups is not much changed if
wages are quality adjusted (Panels B and C). That is, wage quality adjustment matters

42That is, labeling quality adjusted wages as ŵft and denoting the set of the three skill categories

in the data as Ωw, the wage index is given by ln
ŵft
ŵft−1

=
∑
j∈Ωw

ln
(

wfjt
wfjt−1

) 1
3

+ 1
σw−1 lnλw,QRWft

where λw,QRWft =
∏

j∈Ωw

(
swfjt
swfjt−1

) 1
3

and swfjt is the share of skill class j in f ’s payroll at time t. We then

build a quality-adjusted labor input given by the payroll deflated with our adjusted wages. TFPQ
is also re-calculated using this quality adjusted input. We conduct our welfare analysis using these
adjusted data. For completeness, we also conduct the sales growth decomposition with this adjustment.
Results are presented in Table 6.
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Table 6: Decomposition of life cycle growth and counterfactual analysis to
quality adjustment of wages

Unadjusted wage Q-adj. Wage
1982-2012 2000-2012 2000-2012

Panel A: Decomposition of life cycle growth of sales

TFPQ 0.138 0.165 0.146
Demand Shock 1.039 1.042 1.042
Pm -0.018 -0.010 -0.010
Wages -0.037 -0.028 -0.010
Markup -0.012 -0.010 -0.010
Sales wedge -0.111 -0.159 -0.158

Panel B: Actual to HK Efficient Welfare (sector level parameters, average sector)

0.496 0.511 0.517

Panel C: Counterfactual to HK Efficient Welfare (sector level parameters, average sector)

Plant attribute
set to
counterfact. level

D+TFPQ (TFPQ HK) 0.122 0.116 0.118
Demand Shock 0.093 0.090 0.091
TFPQ 0.525 0.563 0.587
Input prices + Markup 0.818 0.781 0.782
Input prices 0.635 0.644 0.639
Markup 0.630 0.611 0.619
Sales wedge 0.587 0.607 0.621

significantly for size dispersion, but not so much for welfare, which is size-weighted. This
suggests that wage dispersion affects welfare mainly because it captures monopsony
power, or other frictions, associated to the largest establishments, rather than because
of the extent to which it reflects heterogeneity in the quality of the labor input. We
don’t further explore such issues in our analysis but the finding that input prices matter
even after quality adjustment, and that this is the case especially for welfare, suggests
this is an important area for future research.

8 Conclusion

Our use of product-level price and quantity data on outputs and inputs for plants
enables us to overcome a host of conceptual, measurement and estimation challenges
in the literature. However, our findings raise a number of questions and point to
important areas for future research. First, while we are able to attribute a large part
of the role of HK wedges to input price and markups dispersion, our remaining wedges
are still a black box. Identifying the specific sources of wedges that dampen output
and sales growth especially for young plants, beyond input prices and markups that
we analyze, is one area of research. One natural candidate is adjustment costs that
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especially impact young businesses. These may include the costs of developing and
accumulating organizational capital (such as the customer base). Our finding that
between-plant differences in demand become more important in accounting for output
growth volatility for more mature plants is consistent with this hypothesis. Also, the
fact that we decompose composite productivity into its technical efficiency and demand
components yields guidance as to the potential source of wedges dampening growth.

Size-dependent policies and other characteristics of the regulatory environment are
another set of candidate explanations behind our structural wedges, which we find to be
highly negatively correlated with productivity, both in terms of efficiency and quality.
Colombia is a country that underwent dramatic reforms over our sample period, some of
them displaying cross-sectional variability (such as product-specific reductions to import
tariffs in the early 1990s), and thus offers fruitful ground for investigating the impact
of the regulatory environment on life-cycle dynamics. Future work that explored the
relationship between regulatory and tariff reform and the evolution of the fundamentals
and wedges we identify would be of interest.

Our findings provide insights into the relative importance of the variance in funda-
mentals in explaining plant growth, inviting further research into the ultimate sources
of the variance in these fundamentals. While our current framework allows for wedges
that are correlated with current fundamentals, and in fact we find that they are (in-
versely) correlated, we do not take explicit account of the endogenous response of the
variance of fundamentals over the life cycle to past performance and past wedges. Re-
search that sheds light on the endogenous determinants of the variance in the supply
side (TFPQ) and demand side fundamentals should have a high priority in future re-
search. In exploratory analysis shown in Appendix E we find evidence that TFPQ and
demand shocks are highly persistent and part of this persistence reflects that observ-
able indicators of endogenous innovation such as R&D expenditures are increasing in
lagged fundamentals. We also find suggestive evidence that wedges influence the evo-
lution of fundamentals but the quantitative impact of lagged wedges on current period
fundamentals or current period R&D expenditures is relatively small.

Another interesting area for future research is to explore approaches that take ad-
vantage of establishment level prices on outputs and inputs to study the role of variation
in technology and markups at the plant-level. Recent analyses by De Loecker, Eeck-
hout and Unger (2020) highlight the potentially important role of markup dispersion
across producers. They present evidence of substantial dispersion in markups across
producers using an approach that is flexible on the structure of demand but that has
the potential limitation of attributing to markups variation that may come from the
structure of technology across producers. Our analysis using plant-level quality ad-
justed prices, while more restrictive in the sense of imposing a given demand structure,
highlights challenges for pursuing this agenda. As we emphasize, even measuring plant-
level output and inputs for multi-product plants who use a variety of inputs requires
taking a stand on the demand structure. Tackling technology and markup heterogene-
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ity in this multi-product, multi-input environment with ongoing quality change will be
a challenge.
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1 Appendix A: price indices

1.1 CUPI price index

Our baseline results use Redding and Weinstein’s (2018) CUPI price indices
at the plant level as deflators. Here, we follow Redding and Weinstein (2018)
to derive the CUPI index in the context of our model. The change in prices
from one period to the next in our model is:

Pft
Pft−1

=

( ∑
Ωft
dσ

w

fjtp
1−σw
fjt∑

Ωft
dσ

w

fjt−1p
1−σw
fjt−1

) 1
1−σw

(1)

Defining as Ωf
t,t−1 the set of goods that is common to both periods, and

multiplying both the numerator and the denominator by(∑
Ωft,t−1

dσ
w

fjt−1p
1−σw
fjt−1 ∗

∑
Ωft,t−1

dσ
w

fjtp
1−σw
fjt

) 1
1−σw

we obtain:
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Pft
Pft−1

=

( ∑
Ωft
dσ

w

fjtp
1−σw
fjt∑

Ωft,t−1
dσ

w

fjtp
1−σw
fjt

∑
Ωft,t−1

dσ
w

fjt−1p
1−σw
fjt−1∑

Ωft−1
dσ

w

fjt−1p
1−σw
fjt−1

∑
Ωft,t−1

dσ
w

fjtp
1−σw
fjt∑

Ωft,t−1
dσ

w

fjt−1p
1−σw
fjt−1

) 1
1−σw

(2)

=
λft−1,Ωft,t−1

λft,Ωft,t−1

( ∑
Ωft,t−1

dσ
w

fjtp
1−σw
fjt∑

Ωft,t−1
dσ

w

fjt−1p
1−σw
fjt−1

) 1
1−σw

(3)

where λft−1,Ωft,t−1
=

(∑
Ω
f
t,t−1

dσ
w

fjt−1p
1−σw
fjt−1∑

Ω
f
t−1

dσ
w
fjt−1p

1−σw
fjt−1

) 1
1−σw

and λft,Ωft,t−1
=

(∑
Ω
f
t,t−1

dσ
w

fjtp
1−σw
fjt∑

Ω
f
t
dσ
w
fjtp

1−σw
fjt

) 1
1−σw

.

Furthermore, since

sfjt =
pfjtqfjt
Rft

=
p1−σw
fjt

(
dσ

w

fjt

)
P 1−σw
fjt

(4)

we have that:

λft−1,Ωft,t−1
=

∑
Ωft,t−1

dσ
w

fjt−1p
1−σw
fjt−1∑

Ωft−1
dσ

w

fjt−1p
1−σw
fjt−1


1

1−σw

=

∑
Ωft,t−1

sfjt−1


1

1−σw

That is,
(
λft−1,Ωft,t−1

)1−σw
is the share of period t− 1 expenditures devoted

to goods that are common to both periods. Similarly,
(
λft,Ωft,t−1

)1−σw
is the

share of period t expenditure devoted to goods common to both periods.
With this, the change in prices between the two periods (equation (1))

can be written:

Pft
Pft−1

=

( ∑
Ωft,t−1

sfjt∑
Ωft,t−1

sfjt−1

) 1
σw−1 P ∗ft

P ∗
ft−1,Ωft,t−1

=
(
λQfeeft

) 1
σw−1 P ∗ft

P ∗
ft−1,Ωft,t−1

(5)

where P ∗ft =
(∑

Ωft,t−1
dσ

w

fjtp
1−σw
fjt

) 1
1−σw

is a period t price index for the bas-

ket of goods common to t and t−1 for firm f , and P ∗
ft−1,Ωft,t−1

=
(∑

Ωft,t−1
dσ

w

fjt−1p
1−σw
fjt−1

) 1
1−σw

2



is a period t− 1 price index for that same basket. Term

∑
Ω
f
t,t−1

sfjt∑
Ω
f
t,t−1

sfjt−1
= λQfeeft

is the Feenstra adjustment for changing varieties, expressed in terms of ob-
servables.

Moreover, the Marshalian demands, given by qfjt = dσ
w

ft d
σw

fjt

(
Pft
Pt

)−σw (
pfjt
Pft

)−σw
Et
Pt

,

imply

s∗fjt =
dσ

w

ft d
σw

fjt

(
Pft
Pt

)−σw p1−σw
fjt

P−σw
ft

Et
Pt∑
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w
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σw
fjt

(
Pft
Pt

)−σw p1−σw
fjt

P−σw
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Et
Pt
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fjt(

P ∗ft
)1−σw
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fjt−1,Ωft,t−1

=
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w

ft−1d
σw

fjt−1

(
Pft−1

Pt−1

)−σw p1−σw
fjt−1

P−σw
ft−1

Et−1

Pt−1∑
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dσ
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ft−1d
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fjt−1

(
Pft−1
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)−σw p1−σw
fjt−1
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dσ

w

fjt−1p
1−σw
fjt−1(

P ∗
ft−1,Ωft,t−1

)1−σw

Dividing s∗fjt by s∗
fjt−1,Ωft,t−1

and rearranging, we obtain

(
pfjt
pfjt−1

)
=

 P ∗ft
P ∗
ft−1,Ωft,t−1

 s∗fjt
s∗
fjt−1,Ωft,t−1

 1
1−σw (

dfjt
dfjt−1

)− σw

1−σw

Given this, for plant-product weights ωft = 1

‖Ωft,t−1‖
such that

∑
Ωft,t−1

ωft,t−1 =

1 we can write,

∑
Ωft,t−1

ln

(
pfjt
pfjt−1

) 1

‖Ω
f
t,t−1‖

= ln

 P ∗ft
P ∗
ft−1,Ωft,t−1

+
1

(1− σw)

∑
Ωft,t−1
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 s∗fjt
s∗
fjt−1,Ωft,t−1
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+
σw

σw − 1
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(
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3



where the first right-hand-side term takes into account that
∑

Ωft,t−1

s∗
fjt,Ωft,t−1

=

1. Shocks dfjt have been defined relative to plant appeal, dft, such that∏
Ωft,t−1

d

1

‖Ω
f
t,t−1‖

fjt = 1, with the implication that

∑
Ωft,t−1

ln
(

dfjt
dfjt−1

) 1

‖Ω
f
t,t−1‖ = 0. Notice that this normalization still allows

for a distribution of product appeal that varies over time. 1

The consecutively common good price index growth

(
P ∗
ft

P ∗
ft−1,Ω

f
t,t−1

)
there-

fore corresponds to

ln

 P ∗ft
P ∗
ft−1,Ωft,t−1

 =
∑

Ωft,t−1

ln

(
pfjt
pfjt−1

) 1

‖Ω
f
t,t−1‖− 1

(1− σw)

∑
Ωft,t−1

ln

 s∗fjt
s∗
fjt−1,Ωft,t−1

 1

‖Ω
f
t,t−1‖

=
∑

Ωft,t−1

ln

(
pfjt
pfjt−1

) 1

‖Ω
f
t,t−1‖ − 1

(1− σw)
lnλQRWft

The term lnλQRWft =
∑

Ωft,t−1

ln

(
s∗fjt

s∗
fjt−1,Ω

f
t,t−1

) 1

‖Ω
f
t,t−1‖

adjusts for changes

in appeal for continuing products, addressing the consumer valuation bias.
Plugging into equation (5), we obtain

ln
Pft
Pft−1

=
∑

Ωft,t−1

ln

(
pfjt
pfjt−1

) 1

‖Ω
f
t,t−1‖ − 1

(1− σw)

(
lnλQRWft + lnλQfeeft

)
(6)

1This is by contrast to empirical price indices that weight across products with variable
weights ωfjt 6= ωft, such as the commonly used Sato-Vartia approach (Sato, 1974, Vartia,

1974, Feenstra, 2004). Under such variable weights the assumption
∑

Ωf
t,t−1

ln
(

dfjt

dfjt−1

)ωfjt

=

0 does not hold. The fact that traditional approaches using variable weights ignore this
term leads to what Redding and Weinstein (2017) have called the ”consumer valuation
bias” the traditional empirical approaches to economically motivated price indices.
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We similarly obtain a measure of materials by deflating material expendi-
ture by plant-level price indices for materials, pmft, using information on in-
dividual prices and quantities of material inputs. We construct pmft using an
analogous approach to that used to construct output prices. The underlying
assumption is that Mft, the index of materials quantities used, is a CES ag-
gregate of individual inputs. As is the case with output prices, until we have
an estimate of the elasticity of substitution, we can only build a consecutively-
common-basket price index pm∗ft for plant f , and carry an adjustment factor

ΛM
ft = ΛMRW

ft ΛMfee
ft for which we later adjust prices. In particular, we deflate

materials expenditures to obtain M∗
ft =

materials expenditureft
pmfBpm

∗
ft

= Mft∗
(
ΛM
ft

) 1
σw−1 .

Once we have obtained an estimate of the elasticity of substitution we calcu-

late pmft = pmfB ∗pm∗ft∗
(
ΛM
ft

) 1
σw−1 , which is one of the fundamentals on the

cost side in our growth decomposition. We use this price index as deflator
for materials expenditure to obtain our TFPQ measure. We use for inputs
the same elasticity of substitution estimated for outputs. We recognize that
using the same elasticity for inputs and outputs is a strong assumption, but
find that it does no affect our results in an important way. In particular, we
find in Appendix I that using a Divisia price index (with updated input mix
each period) generates about the same contribution for materials prices in
sales and output volatility as the UPI. The Divisia materials price index does
not depend on the elasticity of substitution, suggesting that this assumption
is not critical for our results.

1.2 Initializing a plant’s CUPI price index

A plant’s price index is constructed as

Pft = PfB ∗ P ∗ft ∗
(

ΛQ
ft

) 1
σw−1

The initial level PfB, where B is the base year for plant f , is constructed

as: PfB = Pbase,B
∏
ΩfB

(
pfjB
p
jB

)sfjB
, where p

jB
is the geometric average of the

price of product j in year B across plants, year B is the first year in which
plant f is present in the survey, and Pbase,B is an overall base. We use 1982
as the base year, so Pbase,1982 = 1. For plants with B 6= 1982, Pbase,B is set
equal to the geometric mean of the price index across plants that we observe
prior to year B. Notice that our approach takes advantage of cross sectional
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variability across plants for any given product or input j. In the plant’s base

year B,
(
PfjB
PjB

)
= 1 for the average producer of product j. For other plants,

it will capture dispersion in price levels around that average.2

1.3 Sato-Vartia indices

The Sato-Vartia approach (used in the results in Appendix C) is an alterna-

tive way of computing ln

(
P ∗
ft

P ∗
ft−1,Ω

f
t,t−1

)
, using weights ωSVfjt,t−1 =

(s∗fjt−s
∗
fjt−1,t)

ln s∗
fjt

−ln s∗
fjt−1,t∑

Ω
f
t,t−1

(
(s∗
fjt

−s∗
fjt−1,t

)

ln s∗
fjt

−ln s∗
fjt−1,t

)

and imposing − σ
σ−1

∑
Ωft,t−1

ln
(

dfjt
dfjt−1

)ωSVfjt
= 0. That is, ln

(
P ∗
ft

P ∗
ft−1,Ω

f
t,t−1

)SV

=

∑
Ωft,t−1

ln
(

pfjt
pfjt−1

)ωSVfjt
.

Notice, in the derivation above, that when using variable weights ωfjt 6=
ωft, the assumption

∑
Ωft,t−1

ln
(

dfjt
dfjt−1

)ωfjt
= 0 would not hold. In the Sato-

Vartia case, since product demand shocks
dfjt
dfjt−1

are positively correlated

with the weights ωSVfjt,t−1 (Redding-Weinstein, 2020),
∑

Ωft,t−1

ln
(

dfjt
dfjt−1

)ωSVfjt
> 1

and the consumer valuation bias would be positive. That is, the Sato Vartia
approach likely overstates price inflation for the common goods produced by

2We deal with excessive noise from partial year reporting and other sources by elimi-
nating outliers. In particular, in any given year we consider only products that represent
at least 2% of sales of the respective plant. Shares are re-calculated accordingly for this
restricted basket. We also winsorize the 2% tails at each step of the process of build-

ing price indices. In particular, we winsorize

∑
Ω
f
l,l−1

sfjl∑
Ω
f
l,l−1

sfjl−1
;
∏

Ωf
t,t−1

(
s∗fjt

s∗
fjt−1,Ω

f
t,t−1

) 1

‖Ωt,t−1‖
;

pfjt

pfjt−1
;

P∗
ft

P∗
ft−1,Ω

f
t,t−1

;
Pft

Pft−1
.

We also winsorize adjustment factors at the 5% level. Extreme changes in the baskets
of goods, where common (t,t − 1) products represent a negligible share of revenue in

either t or t − 1 imply extreme values for ln ΛQft. These extreme changes may partly
reflect measurement error in an enviroment where baskets of goods are auto-reported into
relatively wide product components.
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plant f in both t − 1 and t. Such overstatement of price inflation implies
understatement of quantity growth and therefore TFPQ.

1.4 Törnqvist index

Appendix C also presents results using Törnqvist indices, first imposing a
basket of goods that is fixed over the life cycle and constant weights for
them, and then imposing constant baskets only over consecutive periods (the
”divisia” case). Törnqvist indices for the growth of prices of plant f at time

t are constructed as
Pft
Pft−1

=
∏

Ωft,t−1

(
pfjt
pfjt−1

)sfjt
.

In the constant baskets of goods version of the Törnqvist index, Ωf
t,t−1 =

Ωf is a basket of all products ever produced (or materials ever used) by plant
f , and sfj is the average share of j in that basket of products (or materials)
plant f produces over the whole period. In this approach, the plant level
index is initialized at lnPfA =

∑
Ωf
sfj (ln pfjA − ln pjA). If product j is not

produced (or used as input) in years t or t−1 (or both), ∆ ln(Pfjt) is inputed
at the average growth of the price of that product (or input) for other plants
within the sector. If no plant in the sector produces that good in t, then the
average over all plants is used, independent of sector.

The divisia version of the Törnqvist index is similar, but Ωf
t,t−1 is the

basket of goods produced by f in either t or t − 1 and sfjt is the average
share of product j in plant f ′s sales over t and t− 1.

Törnqvist prices with a constant basket of products do not quality-adjust
prices in any way, for either product turnover of changing quality of surviv-
ing products. Compared to this version, all versions allowing for evolving
baskets of goods (including divisia) have the advantage of capturing evolving
expenditure shares over time and therefore quality-adjusting prices, but the
disadvantage of being more biased by errors from product coding and coarse
aggregation, which are more likely in our context than in that of prices from
scan bar codes (Hottman et al 2016). Compared to our baseline estimation
with UPI prices, even versions with changing baskets quality-adjust in a less
precise (i.e. not exact) manner, by imposing restrictions to the extent to
which appeal many vary.
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2 Appendix B: firm’s problem

Firm chooses Xt to solve:

Max
{Xft}

πft = (1− τft)Rft − CftXft = DftA
1− 1

σ
ft X

γ(1− 1
σ )

ft − CftXft

where Rft = PftQft = DftQ
1− 1

σ
ft = dftE

1
σ
t P

1− 1
σ

t Q
1− 1

σ
ft and Qft = AftX

γ
ft.

Optimal input demand is

Xft =

(1− τft)DftA
1− 1

σ
ft γ

µftCft

 1

1−γ(1− 1
σ )

(7)

Proof. If the firm has market power, then ∂Pt
∂Xft

6= 0. The first order condition

for the firm is then given by

(1− τft)
(

1− 1

σ

)(
Rft

Qft

+
Rft

Pft

∂Pt
∂Qft

)
∂Qft

∂Xft

= Cft

(1− τft)
(

1− 1

σ

)
Rft

Qft

(
1 +

Qft

Pft

∂Pt
∂Qft

)
∂Qft

∂Xft

= Cft

(1− τft)
(
σ − 1

σ

)
DftQ

− 1
σ

ft (1− sft)
∂Qft

∂Xft

= Cft

(1− τft)
µft

DftQ
− 1
σ

ft

(
γAftX

γ−1
ft

)
= Cft (8)

(1− τft)DftA
1− 1

σ
ft γ

µftCft
= X

1−γ(1− 1
σ )

ft (9)

Where the third line uses Sheppard’s lemma
(
− ∂Pt
∂Qft

Qft
Pt

= sft

)
, and the

fourth line uses µ−1 = 1 −
(

1
σ

+
(
σ−1
σ

)
sft
)

=
σ−1−(σ−1)sft

σ
=

(σ−1)(1−sft)
σ

(see

Appendix D). Therefore Xft =

(
(1−τft)DftA

1− 1
σ

ft γ

µftCft

) 1

1−γ(1− 1
σ )

.

Suppose Xft = K
α
γ

ftL
β
γ

ftM
φ
γ

ft where K, L and M are, respectively, capital,
labor and material inputs, and γ = α + β + φ. Consequently, Cft is itself a
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Cobb Douglas aggregate of factor prices: Cft = r
α
γ

t w
β
γ

ftpm
φ
γ

ft. We note that
we do not have information on the rental price of capital, which we assume
constant across plants (within a sector). Consequently,

Xft

Xf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φ
γ
κ1
(
wft
wf0

)−β
γ
κ1

κtκ̂ft (10)

Lft
Lf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−κ1+(α+φ)κ2

t

ϑtϑft (11)

Qft

Qf0

=

(
dft
df0

)γκ1
(
aft
af0

)κ1
(
pmft

pmf0

)−φκ1
(
wft
wf0

)−βκ1

χtχft (12)

where κ1 = 1

1−γ(1− 1
σ )

; κ2 =
(
1− 1

σ

)
κ1; χt =

(
Dt
D0

)κ1
(
At
A0

)1+κ2
(
Ct
C0

)−κ1
(
r
−ακ1
t

r
−ακ1
0

)
captures aggregate growth between birth and age t, and χft =

(1−τft)
γκ1

(1−τf0)
γκ1 cap-

tures residual variation from wedges, and the unobserved user cost of capital;

κ̂ft = χ
1
γ

ft and χt = κ
1
γ

t

(
At
A0

)−1

. We have used the fact that 1+γκ1

(
1− 1

σ

)
=

κ1.

Moreover, since Rft = DftQ
1− 1

σ
ft and 1 + γκ1

(
1− 1

σ

)
= κ1 then

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−βκ2
(
µft
µf0

)−γκ2

(χ̂tχft)
1− 1

σ

Notice also that 8 can be re-written as:

(1− τft)
µft

DftQ
− 1
σ

ft θ
v
ft = Cft

(1− τft)
µft

Pftθ
v
ft =

CftXft

Qft

θvft
CftXft
PftQft

=
µft

(1− τft)

where θvft is the output elasticity of a variable factor V and we have used

Pft = DftQ
− 1
σ

ft . The expression
θvft

CftXft
PftQft

is markup ”a-la-De Loecker”, which
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is here shown to equal a ratio between the model’s markup, µft, and the
revenue wedge (1− τft).

Empirically, we estimate µ̂DLft = φ
pmftMft
Rft

, because M is the only variable

factor in our estimations. As discussed in the main text, using this expression
for the markup µDLft yields a discrepancy between the ratio of estimated
output elasticity to the cost share of revenue and the ratio of the model’s
markup and the revenue wedge. This discrepancy can be accounted for by a
factor-specific wedge yielding:

µ̂DLft =
φ

CftXft
PftQft

=
µft(1− τ vft)

(1− τft)

The factor-specific wedge is already implicitly incorporated in the sales wedge
as the latter is a composite wedge measure that captures any source of dis-
crepancy between actual and sales implied by the static model based on
model parameters and fundamentals. Factor-specific wedges will have an
impact on scale but also will impact factor mix. This implies that there is
an additional potential impact of a factor-specific wedge on first-order con-
ditions for individual inputs. This factor-specific wedge may have a variety
of sources including factor-specific frictions and wedges, measurement and
specification issues. The latter includes, for example, differences in the ac-
tual vs. estimated factor elasticity for the variable factor. If we use equation
(2) and the type of structural decomposition presented in appendix G, we
find that about 65% of measured µ̂DLft is accounted for by the factor-specific
wedge.

3 Appendix C: Sensitivity to Revenue Cur-

vature

To assess the contribution of TFPQ HKft and composite wedges to sales

growth, we first calculate TFPQ HKft = R
1/(1− 1

σ
)

ft /Xγ
ft using our estimates

of σ, φ, β, α, and the implied X = M
φ
γ

ftL
β
γ

ftK
α
γ

ft. We call this calculation
TFPQ HKft ”unconstrained”, since we use detailed parameter estimates
that would be hard to obtain if one were constrained by the lack of plant-
level data on prices. We also build an estimate of TFPQ HKft ”constrained”
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where, following usual practice, we impose monopolistic competition, γ = 1,
φ, β, α equal to the corresponding cost shares, and a constant number for σ
(as in the macro misallocation literature).3 While in the unconstrained case
M is the materials quantitities index built deflating with our UPI plant-level
deflators for materials, in the constrained one it is materials expenditure
deflated with the PPI.

Table C1. Decomposition of sales under baseline and constrained
fundamentals

Structural

(1) (2) (3) (4) (5)

TFPQ HK unconstrained 1.182
TFPQ HK constrained 0.917 1.161 1.178
TFPQ 0.138
Demand shock 1.039
ln Input prices -0.018
ln Average wage -0.037
ln Markup -0.012
Sales Wedge -0.111
Composite (HK) Sales Wedge -0.182 0.083 -0.161 -0.178

Avg Rev Curvature 0.462 0.462 0.462 0.666 0.675
Max Rev Curvature 0.675 0.675 0.462 0.666 0.675

TFPQ-HK is a function of TFPQ, demand shocks, and the elasticity of substi-
tution. The unconstrained version uses the factor and substitution elasticities
estimated using P and Q data, reported in Table 1. The constrained version uses
cost shares as factor elasticities consistent with CRS in production and a demand
elasticity consistent with the curvature of the revenue function in the reported
column.

3Under these assumptions, µit = µ = σ
σ−1 . Since cost minimization implies β =

wftLft

Cost γ =
wftLft

Rft
µ (Hall, 1994), we impose for each sector β =

∑
f
wftLft∑
f
Rft

σ
σ−1 , calculating

β first for each year and then averaging over years. We proceed similarly for φ, and then
obtain α = 1− β − φ.
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Figure C1 and Table C1 depict the contribution of wedges for different
levels of σ and, therefore, of the curvature of the revenue function. The esti-
mated contribution of wedges to sales is higher when the revenue curvature
parameter γ

(
1− 1

σ

)
is high (i.e. curvature is low), and that the increase is

nonlinear: in sectors when γ
(
1− 1

σ

)
is close to 1, wedges tend to dominate

the contribution of fundamentals.

Figure C1: Wedges vs Revenue Curvature (by 3-digit sector)

4 Appendix D: markups

The firm’s (potentially variable) markup after the distortion, µft =
Pft

mcft(1−τft)
−1 ,

is given by:

µft =
1

1−
(

1
σ
−
(
σ−1
σ

)
sft
) =

σ

(σ − 1) (1− sft)
(13)

Proof. Max
Qft

(1− τft)PftQft−CT leads to first orden condition
(
Pft +Qft

dPft
dQft

)
=

mcft

(1−τft)
. Dividing by Pft we obtain 1

µft
= 1 +

Qft
Pft

dPft
dQft

= 1− ε−1 (where we
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have denoted εft ≡ −Qft
Pft

dPft
dQft

), so that

µft =

(
εft

εft − 1

)
(14)

In turn, underQft = dσftP
−σ
ft

Et
P 1−σ
t

and its implication that Pft = dftQ
− 1
σ

ft

(
Et

P 1−σ
t

) 1
σ

=

dftQ
− 1
σ

ft

(
Qt
P−σ
t

) 1
σ

and allowing for market power so that dPt
dQft
6= 0, the inverse

of the demand elasticity as perceived by the firm (ε−1
ft ≡ −

dPft
dQft

Qft
Pft

) is:

ε−1
ft = −

(
∂Pft
∂Qft

+
∂Pft
∂Pt

∂Pt
∂Qft

)
Qft

Pft
(15)

= −
(
− 1

σ

Pft
Qft

+

(
σ − 1

σ

)
Pft
Pt

∂Pt
∂Qft

)
Qft

Pft

=

(
1

σ
−
(
σ − 1

σ

)
∂Pt
∂Qft

Qft

Pt

)
=

(
1

σ
+

(
σ − 1

σ

)
sft

)
(16)

where the last line uses Sheppard’s lemma: − ∂Pt
∂Qft

Qft
Pt

= sft.

Equations (14) and (16) together imply µ−1
ft = 1−ε−1

ft = 1−
(

1
σ

+
(
σ−1
σ

)
sft
)

=(
σ−1
σ
−
(
σ−1
σ

)
sft
)
, so that

µft =
1

1−
(

1
σ

+
(
σ−1
σ

)
sft
)

µ =
σ

σ − 1
if sft = 0

The markup µft = σ

(σ−1)(1−sft)
is increasing in the firm’s market share.

Thus, the markup is itself a function of fundamentals:

sft =
PftQft

Et
=
DftQ

1− 1
σ

ft

Et
=
DftA

1− 1
σ

ft X
γ(1− 1

σ )
ft

Et
(17)

=
DftA

1− 1
σ

ft

Et

γ (1− τft)
(
1− 1

σ

)
DftA

1− 1
σ

ft

Cftµft
(
σ−1
σ

)


γ(1− 1
σ )

1−γ(1− 1
σ )

(18)
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so that

sft

(
σ − (σ − 1)sft

σ − (σ − 1)sft − 1

) γ(1− 1
σ )

1−γ(1− 1
σ )

=
D

1

1−γ(1− 1
σ )

ft A

1− 1
σ

1−γ(1− 1
σ )

ft

Et

(
γ (1− τft)

(
1− 1

σ

)
Cft
(
σ−1
σ

) ) γ(1− 1
σ )

1−γ(1− 1
σ )

The LHS is increasing in s and the RHS is increasing in D and A, and
decreasing in τ and C. Thus, sft and the markup are increasing in D and
A, and decreasing in τ and C.

5 Appendix E: Persistence in Fundamentals

and Endogenous Innovation

Firm choices depend on productivity components such as D and A, which is
the sense in which these are fundamentals. We take them as given when a
firm chooses its size, but note that our results should help guide future work,
both theoretical and empirical, about the specific drivers of measured produc-
tivity. To further understand the nature of TFPQ vs. demand shock, and
potential mechanisms through which businesses accumulate each of them, we
have studied the relationship between these fundamentals and reported in-
novation efforts. The Colombian Manufacturing Survey can be merged with
the Innovation Survey at the level of the firm (tax ID). Since 2006 firms re-
port number of innovations by type, defined by categories named ”product”,
”process”, and ”organizational” innovation. They also report innovation ex-
penditures, unfortunately not broken down in the same categories.

Results from our structural decomposition of growth show that, given
fundamentals, high-fundamentals plants are being implicitly taxed while low-
fundamentals plants are implicitly subsidized (by the environment, not nec-
essarily by the government). Causality in the opposite direction is also likely:
technical efficiency and product-plant appeal, while partly determined by ex-
ogenous stochastic dynamics (as in, e.g., Hopenhayn (1992) and Hopenhayn
and Rogerson (1993)), partly also result from endogenous investments to im-
prove performance (as in Acemoglu et. al., 2017, or Aw, Roberts and Xu,
2011). In the latter class of models, firms invest in future fundamentals (e.g.
via R&D expenditure) to the extent that they expect high returns from such
investments. High fundamentals plants should, therefore, invest more in a
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context with persistence in fundamentals. Since wedges make future prof-
itability less dependent in fundamentals, they should reduce the incentive to
invest given by high fundamentals, especially if wedges are negatively cor-
related with fundamentals (e.g. HK, 2014). Wedges may also have a direct
effect on investment if, for instance, the presence of fixed costs of production
implies that a subsidy directly increases the chances of surviving to enjoy the
returns from R&D.

Table E1 presents an OLS analysis of the persistence in wedges, and the
role of lagged wedges for the evolution of sales, output, TFPQ and demand.4

Wedges are standardized to facilitate interpretation. Both structural wedges
(upper panel) and reduced form wedges exhibit considerable positive persis-
tence, though less so in the case of structural wedges. This is consistent with
structural wedges in part reflecting non-convex adjustment costs. Such cost
generate a wedge that is correlated with fundamentals and that only persists
up to the moment in which the benefit of adjusting overcomes its fixed cost.

Wedges are persistent, with an AR1 coefficient of 0.76 (column 1 of Table
E1). As in models of endogenous fundamentals, contemporaneous fundamen-
tals and wedges correlate with higher lagged wedges (higher implicit lagged
subsidies), even after controlling for persistence in fundamentals, but wedges
do not account for much variation in outcomes and fundamentals. For ex-
ample, a one standard deviation increase in lagged structural wedges yields
a 0.07 increase in TFPQ and a 0.02 increase in demand. These are small
effects relative to the standard deviations of TFPQ and demand reported
in Table 2 (0.78 and 0.84, respectively). 5 In turn, as hypothesized, the in-
teraction effect between the lagged dependent variable and lagged structural
wedges (negatively correlated with lagged fundamentals, as seen above) is
negative. That is, while higher lagged structural wedges boost outcomes
and fundamentals, they correlate with reduced persistence in outcomes and
fundamentals. But, the interacted effects are also very small.

4As background, the standard deviation of reduced-form (uncorrelated) wedges lies in
the same ball-park as the standard deviation of TFPQ and demand (Table 2), while that
of structural wedges doubles that (all in log points).

5Lagged wedges also have modest impact on current output and sales.
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Table E1. Wedge and Fundamental persistence

(1) (2) (3) (4) (5)
VARIABLES Sales Wedge

(subsidy)
Output Sales TFPQ Demand shock

Structural sales wedge (both orthogonal and correlated sources)

Lagged Dependent Variable 0.985*** 0.988*** 0.936*** 0.984***
(0.001) (0.001) (0.001) (0.001)

Lagged sales wedge (subsidy, standarized) 0.757*** 0.038*** 0.0434*** 0.067*** 0.024***
(0.002) (0.001) (0.001) (0.001) (0.001)

Lagged sales wedge (subsidy,
standarized)*Lagged DV

-0.013*** -0.013*** -0.011*** -0.014***
(0.001) (0.001) (0.001) (0.001)

Constant 0.035*** -0.012*** -0.021*** -0.015*** -0.013***
(0.002) (0.001) (0.001) (0.001) (0.001)

Observations 114,231 114,231 114,231 114,231 114,231
R-squared 0.561 0.931 0.933 0.803 0.928
Sector*Time FE Yes Yes Yes Yes Yes

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

6 Appendix F: details for the joint estimation

of production and demand functions

As in proxy methods for the estimation of the production function, the joint
estimation of production and demand is preceded by a first stage that ensures
that TFPQ can be proxied by an observable factor, in this case materials,
which is conditionally monotonic in TFPQ. The free input Mft is a function
of TFPQft, conditional on quasi-fixed inputs. The FOC for materials is

Mft =
φ(1− τft)Rft

pmft

(1− 1/σ)

=
φ(1− τft)PftQft

pmft

(1− 1/σ)

M1−φ
ft =

PftAftK
α
ftL

β
ft(1− τft)(φσ−1

σ
)

pmft

Within a sector, φ and σ display no variability. We thus re-write
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lnMft = h

(
lnAft, lnKft, lnLft, ln

P ∗ftPfB

PM∗
ftPMfB

, ln ΛQ
ft, ln Λm

ft, ln sft

)

We have included sft since we do not observe τ but know that all firm choices
that ultimately feed into sft are a function of τ (we have measures for all
the other variable terms in the material’s FOC). In particular, we condition
on a flexible polinomial on sft rather than τft. Furthermore, we have used

Pft = P ∗ftPfB

(
ΛQ
ft

) 1
σ−1

and pmft = PM∗
ftPMfB

(
ΛM
ft

) 1
σ−1 . Inverting, we

obtain

lnAft = h−1

(
lnMft, lnKft, lnLft, ln

P ∗
ftPfB

PM∗
ftPMfB

, ln ΛQ
ft, ln Λm

ft, ln sft

)
≡

h−1
(−→
W
)

.

Incorporating this expression, recognizing that Qft is subject to measure-
ment error and other shocks not observed by either the econometrician or
the firm at the time of making input choices, and denoting by Q̂ft = Qftεft
measured Qft, we write:

Q̂ft = α lnKft + β lnLft + φ lnMft + h−1
(−→
W
)

+ εft

so that

Q̂∗ft = α lnKft + β lnLft + φ lnMft −
1

σ − 1
ln ΛQ

ft +
φ

σ − 1
ln ΛM

ft (19)

+h−1
(−→
W
)

+ εft

where εft is measurement error, and the ”∗” refers to the fact that we are

estimating the transformed Q∗ft =
Rft
P ∗
ft

rather than Qft =
Rft
Pft

.

In the first stage we proxy productivity and eliminate measurement error

by estimating 19 through a flexible third-degree polinomial ϕ∗
(−→
W
)

estimated

via OLS and obtaining the predicted ϕ̂∗
(−→
W
)

.

We then estimate the system of demand and production functions replac-

ing lnQ∗ft with ϕ∗
(−→
W
)

in the production function. We use GMM methods

and rely on the moment conditions presented in the main text for identifica-
tion. Our estimates of production coefficients are initialized at the respective
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OLS estimates of the production function augmented with ΛQ
ft and ΛM

ft re-

gressors (coefficients for ΛQ
ft and ΛM

ft also freely estimated by OLS). Our σ
estimate is initialized through an IV estimation of demand function, where
the instrument for Q is the residual from the OLS production function. The
IV procedure follows the spirit of Foster et al (2008), though only for initial-
ization.

We obtain a negative elasticity of production to labor in sector 321. We
assign to 321 factor elasticities in production and elasticities of substitution
equal to the averages of these parameters for the other sectors in activity 32
(i.e. sectors 322, 323 and 324).

7 Appendix G: Variance decomposition

This appendix explains the structural and reduced form variance decomposi-
tions presented in Figures 5 and 6. We follow a two stage procedure, similar
to that in Hottman et al. (2016).

7.1 Structural decomposition

The structural decomposition for sales and sales growth is guided by:

Rft = dκ1
fta

κ2
ftpm

−φκ2

ft w−βκ2

ft µ−γκ2

ft (χ̂tχft)
1− 1

σ

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−βκ2
(
µft
µf0

)−γκ2

(χ̂tχft)
1− 1

σ(20)

1. Guided by the above equation, we obtain lnχft as a residual from the
following equation:

ln
Rft

Rf0

= βD ln

(
dft
df0

)
+ βA ln

(
aft
af0

)
+ βµ ln

µft
µf0

(21)

+βM ln

(
pmft

pmf0

)
+ βw ln

(
wft
wf0

)
+ ln (χft)

(1− 1
σ )

where βD = κ1; βA = κ2; βµ = −γκ2; βM = −φκ2; βw = −βκ2; κ1 =
1

1−γ(1− 1
σ )

; κ2 =
(
1− 1

σ

)
κ1. We calculate these parameters using our esti-

mates of factor elasticities in technology and the elasticity of substitution.
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Because we use these parameters that stem from the structure of the model,
we label the residual as a “structural” wedge. The fundamentals dft, aft,
pmft and wft correspond to the idiosyncratic components of demand, tech-
nology and input price shocks, estimated as already described (Dft = Dtdft
and so on).

2. We then estimate the following equations:

βD ln

(
dft
df0

)
= ρ0,D + ρD ln

Rft

Rf0

+ νft,D (22)

βA ln

(
aft
af0

)
= ρ0,A + ρA ln

Rft

Rf0

+ νft,A

βµ ln

(
g (sft)

g (sf0)

)
= ρ0,µ + ρµ ln

Rft

Rf0

+ νft,A

βM ln

(
pmft

pmf0

)
= ρ0,M + ρM ln

Rft

Rf0

+ νft,M

βw ln

(
wft
wf0

)
= ρ0,w + ρw ln

Rft

Rf0

+ νft,w

ln ̂̃χft = ρ0,υ + ρυ ln
Rft

Rf0

+ νft,υ

We now prove that the contribution of each fundamental to the variance
of sales equals the ratio of its covariance with sales to the variance of sales
multiplited by its structural parameter in equation 21. Also that, by the
properties of OLS, the contribution of the different factors considered add
up to 1. We conduct the proof for the two-covariance case for simplicity

For any given log-linear equation (such as 21):

Yf = β1X1f + β2X2f + εi (23)

If one estimates by OLS The set of equations

β1X1f = γ1,0 + γ1Yf + ν1i (24)

β2X2f = γ1,0 + γ2Yf + ν2i (25)

and
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εf = γε,0 + γεYf + νεf (26)

The estimated parameters for j = {1, 2} are:

γ̂j =
Cov(βjXjf , Yf )

V ar(Yf )
= βj

Cov(Xjf , Yf )

V ar (Yf )

= βjCorr(Xji, Yf )

(
V ar(Xjf )

V ar (Yf )

) 1
2

Since εf = Yf − (β1X1f + β2X2f ), γ̂ε can be re-written as:

γ̂ε =
Cov(Yf − (β1X1f + β2X2f ), Yf )

V ar (Yf )

=
V ar (Yf )− β1Cov(X1f , Yf )− β2Cov(X2f , Yf )

V ar (Yf )
= 1− γ̂1 − γ̂2

Results for this decomposition are reported in Table 3 and Figure 3 of
the main text. Figure 3 is reproduced in the top left panel of Figure G1.
We conduct an analogous decomposition for output growth, following the
corresponding equation in the main text, and report its results in the bottom
left panel of Figure G1.

7.2 Reduced form decomposition

The reduced form decomposition follows a procedure analogous to the one
just described, but where the first stage estimates an OLS coefficient for each
fundamental rather than imposing the coefficients imposed by our structure.
In particular, the first stage estimates by OLS

ln
Rft

Rf0

= βrD ln

(
dft
df0

)
+ βrA ln

(
aft
af0

)
+ βrµ ln

µft
µf0

(27)

+βrM ln

(
pmft

pmf0

)
+ βrw ln

(
wft
wf0

)
+ ln (χft)

(1− 1
σ )

where the ”r” index in each coefficient stands for ”reduced form”. Once
OLS estimates of each of these coefficients are obtained, the second stage
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is implemented as in the structural decomposition, replacing each βx with
βrx, where x stands for any fundamental. Results of this decomposition are
reported in Figure G1, right panels.

7.3 Decomposition by ages

To conduct the decomposition by ages, we expand equations 21 and 22 to
include interactions with the different age groups. Suppose there are two
mutualy exclusive groups: B and C. We redefine the equation 21 as:

Yf = β1X1f + β2X2f + εi (28)

ln
Qft

Qf0

= β1,CX1fdCf + β1,BX1fdBf (29)

+β2,CX2fdCf + β2,BX2fdBf + εi (30)

where dCf = 1 if f belongs to group C (say, an age), and everything else
as defined previously.

The new decomposition equation for, say, X1 will be given by:

β1,CX1fdCf + β1,BX1fdBf = γC1YfdCf + γB1YfdBf + ν1f (31)

εf = γCεYfdCf + γBεYfdBf + νεf (32)

Just as before ˆγC1 + ˆγCε = ˆγB1 + ˆγBε = 1.

8 Appendix H: Selection

By construction we focus on survivor growth: growth from birth to age a of
plants that have survived to age a. However, because we are able to follow
life cycle growth directly at the plant level–by contrast to cross sectional com-
parisons of cohorts–the usual concern that selection drives average growth
because size at the initial age is biased downwards by exits-to-be does not
apply. We compare plant i’s size at age a to i’s own birth size. It is the case,
still, that plants that eventually exit may grow slower than others before
they exit and, in that sense, even true life-cycle average growth is affected
by selection: if the exiting plant had instead continued to the following age,
average growth would have been lower. Figure H1 illustrates that this is
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Figure G1: Life cycle growth variance decomposition by age
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indeed the case, since the life-cycle growth of plants that exit in the next
period does depart significantly, downwards, from that of continuers. But,
this growth of plants that exit only affects marginally the overall average.
That is, the average patterns described in the previous paragraph are mainly
driven by continuous plants (plants of age t that continue on to age t + 1).
Still, in this section, we also explore how fundamentals relate to selection vs.
continuer growth.

Figure H2 illustrates average growth of fundamentals separately for plants
that continue for at least one additional year and those that exit the follow-
ing year. The most noteworthy difference is much poorer growth in demand
shocks for plants about to exit compared to those that will continue, sugges-
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Figure H1: Life cycle growth
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tive of demand side fundamentals being particularly important determinants
of exit.

Figure H3 further carries our decomposition of drivers of output growth
for these two groups of plants. We present three-year moving averages be-
cause the patterns for plants about to exit are noisy.6 Fundamentals still
play an important role for exiters in explaining their growth from birth to
the moment in which they are about to exit. Despite demand shocks being
the dimension where most marked differences are observed between exits-to-
be and continuers, especially for young ages (Figure H2), TFPQ tends to
play a slightly more significant (at least more sustained) role in explaining
growth up to age t for plants about to exit compared to continuers, likely
capturing the extremely poor TFPQ behavior of exits-to-be.

6Since each point (age) in a figure for plants about to exit contains the plants that will
exit at age+1, the plants included in a given line are different for each age. This explains
the noisy patterns.
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Figure H2: Life cycle growth of fundamentals: exiters vs.
continuers
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8.1 Appendix I: The value of Quality Adjustment

UPI plant price indices adjust real output for intra-firm quality/appeal dif-
ferences. Moreover, in the context of UPI prices, sales measure output that is
additionally adjusted for cross-plant quality differences. We now compare re-
sults to what would be obtained under two alternatives to price measurement.
First, we implement a “statistical” approach based on Törnqvist indices for
a constant basket of goods within the plant or, alternatively, on the divisia
price index that allows that basket to change and uses average t, t−1 expendi-
ture shares. We implement a second alternative approach, using prices based
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Figure H3: Life cycle growth decomposition by age
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on the insights offered by Sato (1976), Vartia (1976) and Feenstra (1994).
The Sato-Vartia approach is economically motivated but keeps appeal shifters
and baskets of goods constant over two consecutive periods, implying a much
slower quality adjustment for both continuing products and those that enter
and exit. The Feenstra adjustment for changing varieties incorporated into
our UPI approach can also be added to the Sato-Vartia index to adjust for
changing baskets of goods over consecutive periods (it was, in fact, originally
implemented by Feenstra, 2004, within the Sato-Vartia approach). The UPI,
meanwhile, allows for both changing baskets of goods and varying appeal
shifters, dimensions of flexibility which respectively deal with the ”consumer
valuation bias” and the ”variety bias” (Redding and Weinstein, 2020). (For
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a detailed discussion of each of these alternatives, contrasted with the UPI,
see Appendix A, and Redding and Weinstein, 2020).

In each approach, the aggregation from the plant to the sector level is
analogous to the aggregation from the product to the plant level, using
weights and shares that correspond to the basket of plants in aggregate expen-
diture by contrast to the basket of products in plants’ sales. For theory-based
indices this is directly implied by theory. For statistical indices we impose it
for consistency.

If the quality mix within the plant improves over time, plant-level quality
adjusted price indices will grow less than unadjusted ones, as a result yielding
less deflated output growth and less TFPQ growth. This composes with
overall plant quality growth to imply economically motivated aggregate prices
that grow less than unadjusted ones. Not properly adjusting plant-level
prices for quality changes biases estimated idiosyncratic output and technical
efficiency growth downwards because such estimates will ignore the part of
price increases that reflects increasing valuation of goods and the services of
plants to their costumers, and thus mistakenly translate those price increases
into welfare decreases for given expenditure. Figure I1 shows that output and
TFPQ growth are dampened when revenue is deflated with price indices that
do not adjust for quality.
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Figure I1: Distribution of output and fundamentals life cycle
growth
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Figure I2 displays growth decomposition results using alternative price
indices. Adjusting output for quality changes assigns a larger weight to tech-
nical efficiency, TFPQ, and a lesser role to demand or wedges, in explaining
output life cycle growth . While with constant-weights-Törnqvist-indices
TFPQ and demand are estimated to contribute roughly equally to growth,
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TFPQ is assigned progressively more relative importance as one moves to
the Sato-Vartia and then to the UPI approaches, in particular in the output
decomposition. Quality adjusting prices matters much more in decompos-
ing output than for sales because, beyond the more precise measurement of
fundamentals when quality is adjusted for, the measure of output itself is af-
fected by price indices. In addition, quality adjusting materials input prices
plays more of a modest role than quality adjusting output prices.

Figure I2: Life-cycle growth variance decomposition
Structural parameters, alternative price indices
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9 Appendix K: Hottman, Redding and We-

instein framework accounting explicitly for

wedges

Our framework closely follows the modeling of the demand side in Hottman,
Redding and Weinstein (2016). On the cost side, however, they model total
costs rather than efficiency and input prices individually, and do so at the
product level rathe than the firm level. They also abstract from wedges.
Expanding HRW’s framework to include wedges explicitly, and focusing on
the case of uniproduct firms where their approach and ours are equivalent,
the firm solves:

Max
Qft

(1− τft)PftQft − CTft (Qft)

where CTft (Qft) is total cost as a function of output. Profit maximiza-

tion leads to first orden condition
(
Pft +Qft

dPft
dQft

)
=

∂CTft
∂Qft

(1−τft)
, so that at the

optimum

µft =
Pft

∂CTft
∂Qft

(1− τft)−1
(33)

. The associated optimal markup is given by (see appendix D):

µft =
1

1−
(

1
σ

+
(
σ−1
σ

)
sft
) (34)

Moreover, our demand structure is the same as in HRW. The implied
demand function in the case of a uniproduct firm is:

Qft = dσft

(
Pft
Pt

)−σ
Et
Pt

(35)

or

Rft = dσft

(
Pft
Pt

)1−σ

Et (36)

Pft
Pt

= d
σ
σ−1

ft s
1

1−σ
ft (37)
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where Rft = PftQft is firm sales and sft =
Rft
Eft

is the firm’s share in aggregate

(sector) sales. Equation 35 is HRW’s equation (5) for the uniproduct case

(where dft = ϕ
σ−1
σ

ft and ϕft is the notation used in HRW. Equation 37 is
obtained by direct manipulation of 36.

Replacing the optimal markup rule 33 into 36 HRW decompose firm sales
into:

Rft = dσft
Et

P 1−σ
t

µft ∂CTft
∂Qft

1− τft

1−σ

(38)

which is equivalent to HRW’s equation (16). To see the equivalence, notice

that in the uniproduct case
∂CTfjt
∂Qfjt

=
∂CTft
∂Qft

(where j is a product and HRW

have denoted by γ̃ft the average marginal cost across products of a firm),

and that dft = ϕ
σ−1
σ

ft . Firm sales variability can thus be decomposed into
variation attributable to : 1) an aggregate component; 2) firm idiosyncratic
demand dft; 3) firm markup; 4) a distortion-adjusted marginal cost

mcft

(1−τft)
.

HRW’s empirical procedure is as follows:
1) Estimate the demand function 35, in differences with respect to aggre-

gates and over time, to obtain σ and decompose price (observable) into dft
(not observable) and sft (observable).

2) Estimate the markup µft based on observables, using 34.
3) With these components decompose the idiosyncratic variation of sales

from equation 38 into the contributions of dft, µft and the residual compo-

nent:

∂CTft
∂Qft

(1−τft)
. This is a distortion-adjusted marginal cost component, which

HRW do not further decompose into its
∂CTft
∂Qft

and (1− τft) components.

10 Appendix L: Supplementary results

Production function coefficients by sector are shown in Table L1.
Counterfactual analysis of the impact of life cycle of wedges and funda-

mentals on welfare.
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Table L1. Factor and demand elasticities by sector

Sector β α φ σw σ σw/σ γ γ(1− 1/σ)

311 0.27 0.08 0.70 3.38 1.86 1.82 1.06 0.49
313 0.28 0.04 0.67 4.34 2.18 1.99 0.99 0.54
321 0.19 0.11 0.63 4.02 2.24 1.79 0.94 0.51
322 0.16 0.11 0.65 4.63 2.55 1.81 0.92 0.56
323 0.22 0.13 0.58 3.21 1.77 1.81 0.93 0.41
324 0.20 0.10 0.67 4.22 2.40 1.76 0.97 0.56
331 0.25 0.13 0.59 3.19 1.75 1.83 0.97 0.42
332 0.29 0.07 0.62 2.87 1.58 1.82 0.98 0.36
341 0.36 0.11 0.57 2.15 1.20 1.79 1.04 0.17
342 0.53 0.21 0.26 2.52 1.40 1.80 1.01 0.29
351 0.43 0.28 0.37 4.73 2.66 1.78 1.08 0.68
352 0.39 0.19 0.49 3.35 1.83 1.82 1.07 0.49
355 0.59 0.09 0.39 4.17 2.28 1.83 1.07 0.60
356 0.38 0.14 0.54 2.52 1.38 1.82 1.06 0.29
362 0.60 0.40 0.10 3.01 1.69 1.78 1.09 0.45
369 0.50 0.21 0.37 4.51 2.51 1.80 1.07 0.65
371 0.57 0.17 0.48 3.11 1.67 1.86 1.22 0.49
381 0.29 0.13 0.54 2.63 1.45 1.81 0.95 0.30
382 0.40 0.08 0.50 3.33 1.81 1.83 0.98 0.44
383 0.32 0.08 0.60 3.29 1.85 1.78 1.00 0.46
384 0.28 0.10 0.62 4.49 2.45 1.84 0.99 0.59
385 0.42 0.21 0.33 3.65 2.00 1.82 0.96 0.48
390 0.33 0.17 0.49 3.21 1.77 1.81 0.99 0.43

Average 0.36 0.15 0.51 3.50 1.92 1.82 1.02 0.46
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Table L2: Counterfactual welfare - relative to HK efficient
welfare. Average sector, sector-level parameters

Specific plant
attributes set to

constant mean value

Specific attributes of high
life-cycle growth plants

(>P75) set to average life
cycle growth for the rest

Specific attributes of low life
cycle growth plants (<P25)

set to average life cycle
growth for the rest

(1) (2) (3)

Benchmark: Actual to HK Efficient Welfare 0.496 0.496 0.496

Plant attribute
set to
counterfactual
level

D+TFPQ (TFPQ HK) 0.122 0.207 0.416
Demand Shock 0.093 0.159 0.433
TFPQ 0.525 0.471 0.462
Input prices + Markup 0.818 0.587 0.311
Input prices 0.635 0.553 0.468
Markup 0.630 0.511 0.302
Sales wedge 0.587 0.539 0.468

Table L3. Decomposition of DeLoecker Markups

Structural Reduced
Markup 0.009 0.001
Sales wedge 0.345 0.280
Residual 0.646 0.719
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Table L4: Sector classifications (3 digit ISIC)

Sector Description Observations

311 Food manufacturing (311 and 312). 24013
313 Beverage industries (313) and Tobacco indsutries (314). 2024
321 Manufacture of textiles. 6440
322 Manufacture of wearing apparel, except footwear. 16818
323 Manufacture of leather and products of leather, leather substitutes and fur, except

footwar and wearing apparel.
2444

324 Manufacture of footwear, except vulcanized or moulded rubber or plastic footwear. 5929
331 Manufacture of wood and wood products, except furniture. 3250
332 Manufacture of furniture and fixtures, except primarily of metal. 7201
341 Manufacture of paper and paper products. 3075
342 Printing, publishing and allied industries. 7205
351 Manufacture of industrial chemicals. 2200
352 Manufacture of other chemical products (352); Petroleum refineries (353); Manu-

facture of miscellaneous products of petroleum and coal (354).
7157

355 Manufacture of rubber products. 1543
356 Manufacture of plastic products not elsewhere classified. 8694
362 Manufacture of pottery, china and eathenware (361) and Manufacture of glass and

glass products (362).
1630

369 Manufacture of structural clay products. 4455
371 Basic metal industries (371 and 372). 1842
381 Manufacture of cutlery, band tools and general hardware. 10287
382 Manufacture of machinery except electrical. 7041
383 Manufacture of electrical machinery, apparatus, appliances and supplies. 3802
384 Manufacture of transport equipment. 3768
385 Manufacutre of professional and scientific, and measuring and controlling equip-

ment not elsewhere classified, and of photographic and optical goods.
957

390 Other manufacturing industries. 3152

Table L5. Sector classifications for first 15 sectors at 3 digit CPC

Sector Description Observations

211 Meat and meat products 2685
212 Prepared and preserved fish 223
213 Prepared and preserved vegetables 279
214 Fruit juices and vegetable juices 127
215 Prepared and preserved fruit and nuts 807
216 Animal and vegetable oils and fats (216); Cotton linters (217); Oil-cake and other

residues resulting from the extraction of vegetable fats or oils; flours and meals
of oil seeds or oleaginous fruits, except those of mustard; vegetable waxes, except
triglycerides; degras; residues resulting from the treatment of fatty substances or
animal or vegetable waxes (218)

757

221 Processed liquid milk and cream 368
229 Other dairy products 1918
231 Grain mill products 2981
232 Starches and starch products; sugars and sugar syrups n.e.c 179
233 Preparations used in animal feeding 1019
234 Bakery products 8309
235 Sugar 324
236 Cocoa, chocolate and sugar confectionery 835
237 Pasta, macaroni, noodles, couscous and similar farinaceous products 484
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Table L6. Distribution of 3 digit CPC sector sizes

Min P25 P50 P75 Max Average

Observations in sector 32 305 484 1191 18322 1183
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