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1 Introduction

By the onset of the financial crisis of 2008, the U.S. financial system had become greatly

interconnected. This not only reflected complex relations in interbank and overnight lending, but

also various kinds of securitized lending relations including in the repo market (Gorton and Metrick,

2012). A distinguishing feature of many of these transactions was the need for the lenders to assess not

just their borrowers’ credit worthiness but also the creditworthiness of their borrowers’ borrowers and

so on. These variegated credit relations ground to a halt following the collapse of Lehman Brothers in

September 2008, as many institutions found their access to credit to be frozen (Brunnermeier, 2009;

Adrian et al., 2013).

Although these events have triggered a growing literature investigating the possibility of contagion

in financial networks, the main focus so far has been on ex post contagion, i.e., the possibility that

the failure of an institution triggers financial distress for its counterparties or for other companies

holding its shares.1 However, an even more important dynamic during the crisis was driven by ex ante

considerations: credit freezes induced by the fear that the future liquidity or profitability of borrowers

would be compromised (Afonso et al., 2010; Adrian et al., 2013). Such fears were visible even before the

collapse of Lehman Brothers. The run on Bear Stearns, which started on March 12, 2008, was initiated

by its inability to secure funding in the repo market (Brunnermeier, 2009). This episode was followed

by some hedge funds’ inability to trade outstanding Bear Stearns debt (Kelly, 2008; Burroughs, 2008;

Gorton and Metrick, 2012), largely because institutions such as Goldman Sachs, Credit Suisse, and

Deutsche Bank had “little or no interest to renew repos in the face of concerns over the dealer bank’s

solvency” (Duffie, 2010). Subsequently, the bankruptcy of the hedge fund Carlyle Corporation as well

as the severe distress felt by Merrill Lynch, Washington Mutual, and Wachovia — which led to their

acquisition by other institutions — were triggered by similar credit freezes, even though they did not

have any direct counterparty exposure to Lehman Brothers. A similar credit freeze appears to have

been important in the downfall of the UK bank Northern Rock (Brunnermeier, 2009). Some authors,

such as Allen and Babus (2009), suggest interbank credit freezes may have begun as early as August

2007.

In this paper, we develop an elementary model of ex ante credit freezes. We consider an economy

consisting of depositors with access to funds and entrepreneurs with access to profitable investment

opportunities. The economy also consists of a collection of banks that can intermediate between

the depositors and the entrepreneurs. We capture the possibility of financial intermediation by a

network, according to which each bank can lend to any bank or entrepreneur it is connected to.

The connections in this network may represent existing relationships or trust between the parties.

Interbank contracts are determined by potential lenders making offers to potential borrowers. We

focus on fixed-interest-rate contracts, according to which the lender commits to a pre-specified

interest rate and the borrower can decide to borrow as much as it desires at that rate. A borrower that

is unable to meet its borrowing obligations (say, due to a liquidity shock) defaults and repays nothing

to any of it creditors. Therefore, in anticipation of such an event, a potential lender may alternatively

1For example, see Acemoglu et al. (2015), Cabrales et al. (2016), Elliott et al. (2014), Gai and Kapadia (2010), Jorion and
Zhang (2009), and Allen and Gale (2000).
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decide to “freeze” the borrower’s access to credit in order to avoid potential future losses.

We start by analyzing subgame perfect equilibria of the lending and borrowing game described

above under sequential offers and borrowing, characterizing the terms of the interbank contracts and

the patterns of interbank lending. Though there are many subgame perfect equilibria, we show that

there exists a unique “strong” equilibrium in pure strategies, where decisions to offer and borrow are

robust to other banks deviating slightly from their equilibrium strategies. While the details of this

unique equilibrium may differ depending on the order of offers made, we show that whether there is

ultimately lending to entrepreneurs (who are located at the leaves of the network) is not sensitive to

this choice. We then proceed to characterize the structure of equilibria and conditions for different

types of credit freezes in response to changes in the distribution of future liquidity shocks, which may

increase banks’ default probabilities.

In networks with a single entrepreneur, we show that all credit freezes are monotone and systemic:

an adverse shift in the distribution of shocks can only induce more credit freezes throughout the

economy and, in the extreme, cuts all banks’ access to credit. We further show that credit freezes

in tree networks (where each bank can borrow from at most one other bank) are “simple” in the sense

that they remain confined to the branch of the financial network that experienced the adverse shift.

For a chain (where each bank borrows from and lends to at most one other bank), we provide a tight

characterization of the likelihood of credit freezes in response to changes in the distribution of shocks.

With multiple entrepreneurs, however, the form of potential credit freezes becomes significantly

richer. First, credit freezes may originate not with the affected bank but somewhere else in the

network. Such complex freezes arise because an anticipated (future) liquidity shock to a bank affects

the profitability of banks in very different parts of the network, pushing some of those from a safe

into a precarious position. In particular, one risky bank may cause other banks to have their credit

frozen, even though the afflicted bank, and all of its lenders and borrowers, do not lose access to credit.

Second, the effects of adverse shifts can be non-monotonic, in the sense that greater risks for some

banks can increase overall lending in the network. Such an outcome may arise when the worsening

situation of a bank allows a competitor to take over some of its customers, improve its riskiness and

creditworthiness, and then expand further.

We conclude the paper by considering the role of policy in reducing the extent of credit freezes

in a lending network. Specifically, we allow the central bank to offer assistance to a subset of banks

in the form of a discount window or through asset purchases. When a freeze occurs in a chain, we

show that an untargeted policy, where the central bank improves financial conditions as a whole —

for example, by subsidizing interest rates — does no worse than a targeted policy, which attempts to

alleviate distress in the most vulnerable part of the network. Beyond chains, however, a targeted policy

can be more effective. When freezes are simple, we show that the best targeted policy helps the branch

of the network with banks experiencing a credit freeze. In contrast, with complex freezes, optimal

targeted policies may need to be directed to parts of the network not suffering from credit freezes

(because these seemingly unaffected banks may still be at the epicenter of the crisis). These results

suggest that, as the network becomes more interconnected, the optimal policy response becomes

increasingly more complex and is more sensitive to the underlying financial network structure.
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Related Literature In addition to the literature on ex post contagion in financial networks mentioned

earlier, our paper is related to a growing literature that emphasizes how ex ante fears of declining asset

values or fire sales can induce credit freezes.2 For example, Diamond and Rajan (2011) develop a

model of market freeze based on fears of future fire sales, while Caballero and Simsek (2013) provide

a model of liquidity hoarding where banks that are uninformed about the health of their borrowers’

borrowers may come to fear future contagion and start offloading risky assets for protection. Similar

to our work, credit freezes in these models have their origins in the interconnections in the financial

system. However, and in contrast to the prior literature, our main focus is on how the structural

properties of the financial network shape the fear of contagion and the nature of resulting credit

freezes.

A related strand of literature focuses on endogenous formation of financial networks and the

extent of systemic risk when banks strategically choose their trading partners (Ahnert and Georg, 2018;

Leitner, 2005; Acemoglu et al., 2014; Blume et al., 2011).3 We build on this literature by developing a

framework in which banks endogenously choose the terms of interbank contracts, while taking into

account the potential for future defaults. However, in contrast to this previous work, our focus is on

how these considerations can lead to widespread credit freezes prior, at the network formation stage.

Most immediately related to our work is Anand, Gai, and Marsili (2012), where lending decisions

take the form of a coordination game: banks decide whether to rollover short-term credit when facing

the risk of the borrower defaulting if it cannot secure enough funding from other lenders. Using the

setting proposed by Allen and Babus (2009), they show that an uptick in the risk of a few counterparties

can lead to widespread credit freezes. Similar mechanisms are explored by Ahnert (2016), Infante and

Vardoulakis (2019), Zhou (2016), and Liu (2019). In contrast to these papers, credit freezes in our model

are driven entirely by fundamentals.

Our model of credit freeze combines many of the ideas from this literature, but provides the

following new contribution: in an interconnected financial system, the fear of ex post default cascades

can lead to ex ante credit freezes. These credit freezes negatively impact market liquidity and can

prevent safe institutions from having access to short-term funding. Because of the interconnectedness

of the financial system, decisions to reduce lending can invoke responses from other banks to do

the same. As a result, the propagation of credit freeze throughout the system can destroy the many

benefits of financial interconnectivity. For example, freezes in the interbank lending market can

reduce efficiency for business loans due to monopolistic pricing (as in Corbae and Gofman (2019))

or restrict the redistribution of liquidity to meet reserve/capital requirements (Freixas et al., 2011).

Finally, in contrast to Anand, Gai, and Marsili (2012) and others, we link banks’ ex ante lending

decisions — including the possibility of credit freezes — to models of ex post contagion studied

extensively in earlier literature.

2Brunnermeier (2009) and Duffie (2010) for general discussions.
3 Also see Zawadowski (2013), Farboodi (2017), and Erol (2019), who study how endogenous formation of financial

networks can shape systemic risk.
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2 Model

Consider an economy consisting of a collection of risk-neutral financial institutions denoted by B =

{1, . . . , n}, a unit mass of identical depositors indexed 0, and a finite collection of entrepreneurs E . The

economy lasts for three periods, t = 0, 1, 2. At the initial period, agents can enter into pairwise lending

agreements that specify the interest rates at which they can borrow from one another; borrowing and

lending occur at t = 1 according to the terms specified at t = 0; and all debts are due at t = 2.

The representative depositor is endowed with an unlimited supply of funds at t = 0 and has

access to a linear risk-free technology with a (gross) rate of return r0, which is realized at t = 2. Each

entrepreneur j ∈ E , on the other hand, has access to a safe but “bulky” investment opportunity of size

$1 with a rate of return r∗i , realized at t = 2. Thus, as long as r∗i > r0, there are gains from trade (for one

unit of investment) between entrepreneur i and the representative depositor.

In addition to the depositors and the entrepreneurs, the economy comprises a collection

of financial institutions B (banks, for short) that can serve as potential intermediaries between

depositors and entrepreneurs. Each bank i ∈ B has an asset with random return ηi that is realized

at t = 2. These assets represent the uncertain returns of all outside projects undertaken by the banks

that are not captured in our stylized lending market. Furthermore, every bank i has an outside liability

with face value vi > 0 due at t = 2, which is senior to its all other obligations. These liabilities

may represent employee wages, operational costs, or any other form of senior debt. We refer to the

difference zi = ηi − vi as the (liquidity) shock to bank i and assume that z = (zi)i∈B is distributed

independently across banks according to some probability distribution Q, which we refer to as the

economy’s risk profile.

While there are potential gains from trade between entrepreneurs and depositors, the parties may

not be able to trade with one another directly. We assume that each agent can only enter into pairwise

contracts with a subset of other agents in the economy. Such intermediation frictions may arise due

to transaction costs, agency problems, search frictions, or regulatory restrictions. We represent these

trading frictions by an exogenously-given directed network G of potential lending opportunities, or

(opportunity) network, with each vertex corresponding to an agent (bank, depositor, or entrepreneur)

in the economy. A directed edge is present from agent i to agent j (denoted by i → j) if i and j can

enter into a bilateral contract, with i serving as a lender to j. Given the network of possible trading

relationships G, we define Nin(j) = {i : i→ j ∈ G} and Nout(j) = {k : j → k ∈ G} as the sets of

potential lenders and borrowers of j, respectively. We impose the natural assumption thatNout(i) = ∅
for all entrepreneurs i ∈ E andNin(0) = ∅ for the representative depositor.

2.1 Timing and Interbank Contracts

At t = 0, each agent can offer take-it-or-leave-it fixed-interest rate lending contracts to its potential

borrowers in network G, whereby the lender commits to provide the borrower with as much funds

as desired at the offered interest rate. These offers are made sequentially according to a pre-specified

order, but can be withdrawn at the end of the period.

Formally, we assume that period t = 0 consists of 2n+ 2 sub-periods denoted by τ = 1, . . . , 2n+ 2.
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In sub-period τ ≤ n + 1, agent j = O(τ) has the option to make an offer with a constant interest rate

Rj→k to any potential borrower k ∈ Nout(j), where O : {1, . . . , n + 1} → B ∪ {0} is a mapping that

specifies the order at which agents can make offers to one another at t = 0. The contract with face

value Rj→k is a commitment by j to lend to k at the fixed interest rate Rj→k. We use Rj→k = ∅ to

denote the scenario in which j refuses to make any offer to k. While lenders cannot revise the terms

of the contracts they offer to their potential borrowers, we assume they can opt out of any contract in

the second half of the period once all offers are made. More specifically, in sub-period τ > n+ 1, bank

j = O(τ − n − 1) can choose to withdraw any of the contracts Rj→k made to its potential borrowers

k ∈ Nout(j), in which case, Rj→k = ∅ (which take place in the same order O with which offers are

made). Otherwise, bank j remains committed to lending to k at interest rate Rj→k.4

Once the contracting stage at t = 0 is over, each agent can borrow as much as desired from its

potential lenders at t = 1. The borrowing decisions are made sequentially according to a pre-specified

order L. More specifically, we assume that period t = 1 consists of n + |E| sub-periods and that, at

sub-period τ , agent j = L(τ) chooses to borrow xi→j units of funds from each bank i ∈ Nin(j) at the

pre-specified rate Ri→j , provided that Ri→j 6= ∅. Throughout, we assume that if the lender i cannot

meet its commitments to deliver the funds to all its borrowers at t = 1, it faces a prohibitively large

cost (imposed, say, by a regulator). This assumption therefore guarantees that, in any equilibrium,∑
i∈Nin(j)

xi→j ≥
∑

k∈Nout(j)

xj→k. (1)

The final period, t = 2, corresponds to the time period at which the value of all outside investments

are realized and all debts are due. More specifically, we assume that after the realization of z, each bank

j chooses an amount yj→i to repay its obligation Ri→jxi→j to any lender i that it has borrowed from.

To make these repayments, j may use funds generated from its net outside investments zj = ηj − vj
and its own receivable payments,

∑
k∈Nout(j) yk→j . Throughout, we assume that j’s failure to meet its

t = 2 obligations results in two types of costs. First, any shortfall in j’s payments to its creditors results

in a costly liquidation process, which prevents j from paying anything to any of its creditors, that is,

yj→i = 0 if zj +
∑

k yk→j <
∑

k Rk→jxk→j .
5 Second, we assume that if the borrower j defaults on its

obligation to i, it faces an exogenous bankruptcy cost F ≥ 0, which may correspond to reputational

costs and legal fees associated with bankruptcy.

4This stage is introduced to rule out equilibria that may arise due to coordination failures: banks may refuse to extend
credit to others if they worry that no bank will subsequently extend them a credit line with sufficiently favorable terms. The
withdrawal stage in the model rules out the possibility of such miscoordinations. See Di Maggio and Tahbaz-Salehi (2014)
for a discussion.

5This assumption thus rules out the possibility of “fractional defaults” as in Eisenberg and Noe (2001) and Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2015), whereby banks may only default on a fraction of their obligations to their creditors.
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Taken together, the net profit of bank j ∈ B at the end of t = 2 is given by

πj =



zj +
∑
k

yk→j −
∑
i

Ri→jxi→j if zj +
∑
k

yk→j ≥
∑
i

Ri→jxi→j

−F yj→i < Ri→jxi→j for any i ∈ Nin(j)

0 otherwise,

(2)

with the convention that xi→j = 0 (and Ri→jxi→j = 0) if Ri→j = ∅.

2.2 Financial Networks

The interest rate and borrowing decisions at t = 0 and t = 1 can be summarized by the pair

(R,x), where R and x denote the vectors of interest rates and borrowing decisions of all agents,

respectively. Throughout, and with some abuse of terminology, we refer to the tuple (R,x) as the

economy’s financial network. Note that while the underlying (opportunity) network G is assumed to

be exogenous, the financial network (R,x) is an endogenous equilibrium object and depends on the

lenders’ offered contracts as well as the borrowers’ borrowing decisions.

Any financial network (R,x) can alternatively be represented by a pair of directed, weighted

subnetworks of G, capturing the pairwise interest rates and quantities. More specifically, we define

the interest rate network R by removing all potential lender-borrower pairs i → j from G such that

Ri→j = ∅. Hence, while G consists of all agents that can trade with one another at t = 0, the interest

rate network defined by R consists of agents that can trade with each other at t = 1. Similarly, we

define the borrowing network by removing all potential lender-borrower pairs i→ j from G such that

xi→j = 0. Thus, the borrowing network captures the set of agents that end up trading with one another

at t = 1. Note that, by definition, the lending network is necessarily a subnetwork of the interest rate

network.

We say that two financial networks are equivalent if (i) their corresponding borrowing networks

coincide and (ii) the corresponding interest rate networks coincide wherever there is an edge in their

(common) borrowing network. Put differently, (R,x) and (R′,x′) are equivalent if x = x′ and Ri→j =

R′i→j whenever xi→j > 0. Note that two financial networks are equivalent even if their interest rate

networks differ, provided that these differences occur along edges of G where there is no borrowing.

2.3 Solution Concept

We conclude this section by defining our solution concept. Recall that all interest rate offers are made

at t = 0, the borrowing decisions are made at t = 1, and all repayments occur at t = 2. We therefore

proceed by defining and characterizing the equilibrium recursively using backward induction.

We start by focusing on the economy at t = 2, when the financial network and hence all interest

rates R and borrowing decisions x are already determined. Recall that each bank j is committed

to repay Ri→jxi→j to each of its lender i ∈ Nin(j). The bank, however, may not be able to meet its

obligations, in which case it defaults. More specifically, if yk→j denotes the amount that j receives
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from its borrower k, then j defaults if zj +
∑

k∈Nout(j) yk→j <
∑

i∈Nin(j)Ri→jxi→j . Furthermore, recall

that, by assumption, any shortfall in j’s payments to its creditors results in a costly liquidation process

that prevents j from paying anything to any of its creditors. Thus, the amount yj→i that j is able to

repay bank i satisfies

yj→i =

Ri→jxi→j if zj +
∑
k

yk→j ≥
∑
i

Ri→jxi→j

0 otherwise,
(3)

where zj denotes the shock to bank j. Since all repayments occur simultaneously, we can define the

following concept:

Definition 1. Given financial network (R,x) and vector of realized shocks z, a repayment equilibrium

is a collection of interbank repayments y = (yj→i)(j→i)∈G that satisfies the system of equations (3) for

all pairs of banks i and j.

With the above notion in hand, we can now proceed to the borrowing stage at t = 1, when the

quantities are determined.

Definition 2. Given vector of interbank interest rates R, a borrowing equilibrium is a collection of

interbank borrowing decisions x and repayments y(R,x, z) such that

(i) y(R,x, z) is a repayment equilibrium for financial network (R,x) and shock realization z;

(ii) each bank j makes its borrowing decisions (xi→j)i∈Nin(j) to maximize its expected profits in (2).6

Borrowing equilibria have two important properties. First, in any borrowing equilibrium, banks

borrow exactly as much as they lend out, that is, inequality (1) holds as an equality for all banks i. This

is consequence of the fact that both underborrowing and overborrowing are unprofitable: the former

results in a cost imposed by the regulator, whereas the latter requires the bank to pay interest on funds

that are not invested. Second, in any borrowing equilibrium, banks borrow this entire amount from

lenders with the best terms (i.e., lowest interest rate) and split their demand amongst multiple lenders

only if they offer the same exact interest rate.

We are now ready to define the economy’s full equilibrium, which endogenizes the terms of the

contracts at t = 0.

Definition 3. A (subgame perfect) equilibrium is a collection of interest rates R, borrowing decisions

x(R), and repayments y(R,x, z) such that

(i) y(R,x, z) is a repayment equilibrium at t = 2 given the financial network (R,x) and any z;

(ii) the tuple (x,y) is a borrowing equilibrium at t = 1 given the interest rates R;

(iii) each bank i chooses the interest rates (Ri→j)j∈Nout(i) at t = 0 to maximize its expected profits.
6This statement assumes that, given financial network (R,x), the repayment equilibrium at t = 2 is unique for all

realizations of z. We show in the Appendix that, for all z, the repayment equilibrium is indeed unique for any financial
network emerging in equilibrium.
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According to the above definition, each agent chooses an optimal interest rate for every observable

history in the sequential offering stage at t = 0, anticipating that the borrowing decisions and

repayments will be determined via borrowing and repayment equilibria, respectively.

Unlike borrowing equilibria, the interest rate offers made in equilibrium can be quite complex.

For instance, the interest rate offered by bank i to a potential borrower j depends not only on

j’s counterparty risk, but also on the default risk of j’s potential borrowers, that of its borrowers’

borrowers, and so on. Furthermore, the face value of the interest rates also depends on the nature

of the competition induced by the network. Last but not least, there may be multiple subgame perfect

equilibria, as banks could play weakly dominated strategies as a best response.

To rule out such economically uninteresting equilibria, we consider a refinement of our solution

concept defined in Definition 3. This refinement, which we refer to as strong equilibrium, is a variant

of agent-form trembling-hand perfect equilibrium, with the set of trembles restricted to thick-tailed

distributions.7 Importantly, our equilibrium notion implies that, at the sub-period with the option to

make an offer, each bank makes arbitrarily small trembles around its equilibrium offer.8 As we will

show in the subsequent sections, this refinement ensures essential uniqueness of equilibrium in our

game.

3 Equilibrium Characterization

In this section, we first establish the existence of an equilibrium in our environment and show that the

equilibrium financial network is generically unique. We then provide a characterization of financial

networks that are formed in equilibrium. These results will serve as the basis of our comparative statics

analyses in Section 4.

3.1 Existence and Uniqueness

We start with a general existence result.

Theorem 1. Let G denote an arbitrary network.

(a) There exists a repayment equilibrium for any financial network (R,x) and any vector of shocks z.

(b) There exists a borrowing equilibrium for any given vector of interest rates R.

(c) There exists a strong equilibrium in pure strategies.

While Theorem 1 guarantees the existence of a strong equilibrium for any G, in general, the

equilibrium may not be unique. For instance, for any equilibrium in which bank i does not make

an offer to bank j, there are many other equilibria in which bank imakes an offer to bank j, but with a

prohibitively large interest rate; in either case, j will not borrow from i. To rule out such economically

uninteresting multiplicity, we define the following concept:

7This restriction is introduced in order to ensure that the best response of banks when offering interest rates to their
potential borrowers converge to the equilibrium point in question as we take the limit of the trembles towards zero.

8See Appendix A for a formal definition of strong equilibrium and more details on its implications for equilibrium
refinement. This concept is closely related to “trembling-hand perfect equilibrium” in extensive-form games.
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Definition 4. An equilibrium is essentially unique if the financial networks corresponding to all

equilibria are equivalent.

Theorem 2. For any network G and a generic probability distribution Q(z), there is an essentially

unique strong equilibrium in pure strategies.9

The above result thus establishes that, unlike many models of endogenous network formation,

the equilibrium financial network in our environment is essentially unique. In addition to providing

sharp predictions, this uniqueness result enables us to perform meaningful comparative statics on

how changes in the network structure and the economy’s risk profile impact pairwise interest rates,

the extent of borrowing and lending, and defaults in the financial system.

We note that the essential uniqueness result in Theorem 2 only applies to strong equilibria, and

indeed, there are often multiple subgame perfect equilibria: if interest rate trembles are ruled out,

there may be multiple best-response offers in weakly-dominated strategies. For instance, if a bank

anticipates that its contract will be undercut by a competing bank, it would be indifferent between not

offering any contracts and offering a contract at or above the equilibrium interest rate of its competitor

(including contracts that may be unprofitable). The resulting equilibrium rates and flow of funds in

the financial network depend on how such banks break these indifferences, which is pinned-down

only in a strong equilibrium.

As a final remark, we note that the restriction that the probability distributionQ is generic cannot

be dispensed with. For instance, if two banks i and j with identical return distributions compete over

the same potential borrower k, any division of k’s borrowing decisions between i and j corresponds

to a different equilibrium. The genericity restriction on Q rules out such knife-edge indifference

situations that entail multiplicity of equilibria.

3.2 Equilibrium Financial Networks

With Theorems 1 and 2 in hand, we now proceed to characterize the financial networks that are formed

in equilibrium.

Theorem 3. Given any network G and a generic probability distribution Q(z), any strong equilibrium

is equivalent to a strong equilibrium (R∗,x∗) such that

(i) R∗ and x∗ agree, in the sense that R∗i→j 6= ∅ if and only if x∗i→j > 0 for all pairs i and j;

(ii) the common network of R∗ and x∗ is a directed tree.

Recall from Theorem 2 that, generically, all strong equilibria are equivalent to one another.

Theorem 3 provides a characterization of this equivalence class: all strong equilibria are the same

as an equilibrium in which the interest rates offered in equilibrium and all the borrowing occur along

the same directed tree that connects the representative depositor to the entrepreneurs, as depicted in

Figure 1. This is the case irrespective of whether the underlying network G is a directed tree or not.
9Because the standard Lebesgue measure is not well-defined over the space of continuous probability distributions, we

use the notion of generic probability distribution from Ott and Yorke (2005). This notion is based on the use of “probes,” such
as polynomial functions of order k as approximations to smooth probability distributions. Generic properties are those that
hold for almost all order k polynomials. See Appendix C for more details.
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Figure 1. This figure depicts the opportunity network G. Vertices E1 and E2 repressent two entrepreneurs and
vertex 0 represents to the depositor. Solid lines depict pairwise relationships with interest rate offers and positive
borrowing in equilibrium; dashed lines indicate relationships in G with no interest rates offered in equilibrium.

To see the intuition for Theorem 3, first observe that the equilibrium financial network cannot

contain any directed cycles. Suppose to the contrary that there is strictly positive lending along a

(directed) cycle over the financial network. If so, all equilibrium interest rates on such a cycle must

be identical, as otherwise a bank would be lending at a rate that is strictly less than the rate it is

borrowing at. On the other hand, because there is a positive probability of default for all banks, any

bank that borrows and lends at the same exact interest rate is necessarily making negative expected

profits. Thus, the interest rates offered in any equilibrium have to induce an acyclic subnetwork over

G.

The fact that the equilibrium financial network has a tree-like structure (and is therefore acyclic)

then follows from the fact that banks tremble around their interest rate offers. These trembles

guarantee that, no matter the structure of the underlying G, there always exists exactly one “most

competitive” lender for each bank, thus implying that the outcome that all banks except one withdraw

their offers is always an equilibrium.

3.3 Robustness

Recall from Section 2 that agents make offers to and borrow from one another sequentially according

to the exogenously-specified orders O and L, respectively. Even though Theorem 2 establishes that

the financial networks formed in the strong equilibria corresponding to a given pair of orders (O,L) all

coincide, in general, the equilibrium financial network may depend on the sequence at which banks

are able to take actions. Our next result establishes that, for networks with a single entrepreneur,

even though this dependence may matter for equilibrium interest rates and the patterns of interbank

lending, it does not impact whether the entrepreneur is eventually funded or not.

Theorem 4. Consider a financial network with a single entrepreneur and let (R,x) and (R′,x′) denote

the financial networks in the essentially unique strong equilibria corresponding to order pairs (O,L)

and (O′,L′), respectively. Then, the entrepreneur is funded in (R,x) if and only if it is funded in (R′,x′).

Recall that the entrepreneur has access to a bulky investment project, and so is either fully funded

or not at all in equilibrium. Theorem 4 thus establishes that the realized gains from trade between

the representative depositor and an entrepreneur, intermediated through the banking system, do not

depend on the order at which various agents can make or accept offers. As a result, whether an
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entrepreneur is funded or not only depends on the nature of intermediation frictions (captured via

the network G) and the underlying distribution of shocks Q(z). However, the order at which various

agents can take their actions may impact how gains from trade are distributed in the economy and

which banks are more resilient to liquidity shocks at t = 2.

4 Credit Freezes in Single-Entrepreneur Economies

Having established the basic equilibrium properties, we now turn to investigating how the interaction

between the financial network architecture and distribution of shocksQ determines the possibility of

a credit freeze in the financial network, formally defined as follows:

Definition 5. Bank or entrepreneur j experiences a credit freeze in financial network (R,x) if all of

j’s potential lenders refuse to extend credit to j, i.e., if Ri→j = ∅ for all j ∈ Nin(j). A credit freeze is

systemic if all entrepreneurs experience a credit freeze.10

It is immediate that for any bank j experiencing a credit freeze, equilibrium borrowing satisfies

xi→j = xj→k = 0 for all i ∈ Nin(j) and all k ∈ Nout(j). Therefore, such a bank j would be frozen out of

the borrowing network entirely, despite the possibility that there may be positive gains from trade.

4.1 Network Architecture

We start our analysis by providing comparative static results on how the economy’s network can shape

the likelihood of credit freezes. To simplify the analysis, we restrict our attention to networks with a

single entrepreneur. While real-world financial networks are significantly more complex, focusing on

such networks enables us to demonstrate banks’ ex ante incentives to borrow to and lend from one

another as well as the ex post consequences of such decisions in the most transparent manner. We

consider economies with multiple entrepreneurs in Section 5.

As a first observation, note that Theorem 3(b) implies that in an economy with a single

entrepreneur, as long as there is systemic no credit freeze, the common network of R∗ and x∗ is

necessarily in the form of a directed chain network from the depositor to the entrepreneur. Our next

result then establishes when such an economy experiences a credit freeze.

Proposition 1. Let G contain a single entrepreneur. The entrepreneur experiences a credit freeze if and

only if it experiences a credit freeze for all chain subnetworks H ⊂ G.

The importance of Proposition 1 is twofold. First, it establishes that, to determine whether the

economy’s single entrepreneur experiences a credit freeze, it is sufficient to restrict attention to the

chain subnetworks that connect the depositor to the entrepreneur in G — as depicted in Figure 2.

Second, it also implies that addition of new financial intermediation opportunities (in the form of

new edges in the network G) reduces the likelihood that the entrepreneur experiences a credit freeze,

as such a change can only increase the number of chain subnetworks through which credit can flow.

11



0 1 2 · · · E1n

Figure 2. Chain network with n banks.

The following corollary formalizes this observation:11

Corollary 1. Let G ⊆ Ḡ denote two networks, each consisting of a single entrepreneur. If the

entrepreneur experiences a credit freeze in Ḡ, then it also experiences a credit freeze in G.

In view of Proposition 1 and Corollary 1, we next turn our attention to chain networks similar to the

one depicted in Figure 2.12 It is easy to see that, in any such economy, all credit freezes are systemic, in

the sense that either the banking system functions as normal and the depositor (indirectly) funds the

entrepreneur, or all banks refuse to extend credit to their respective borrowers.13

To express our next result, we say a risk profileQ is symmetric ifQ(zi) = Q(zj) for all pairs of banks

i and j. We have the following result:

Theorem 5. Let G be a chain network. Then, for generic set of risk profilesQ,

(a) there exists r̄0 < r∗ such that the economy experiences a systemic freeze if and only if r0 > r̄0;

(b) there exists r∗ > r0 such that the economy experiences a systemic freeze if and only if r∗ < r∗;

(c) furthermore, if Q is symmetric, there exists n̄ such that the economy experiences a systemic freeze if

and only if n ≥ n̄.

Taken together, the three parts of Theorem 5 indicate that, even when there are positive gains from

trade, the financial system may not be able to allocate depositors’ excess funds to the entrepreneurs

if there are significant “intermediation frictions”. In the context of the financial network in Figure 2,

intermediation frictions are captured by a long credit chain: adding one more bank to the credit chain

implies that there needs to be one more bank to intermediate funds between the depositor and the

borrower. Since each bank in the credit chain must be compensated for the risk of default in the system

— and this compensation needs to take place via a gap between their borrowing and lending rates — a

long enough credit chain exhausts the gains from trade between the depositor and the entrepreneur.14

Note that this is true even when all banks are almost perfectly safe. The following example clarifies the

working of this mechanism.
10Throughout we refer to credit freezes in order to emphasize that following a change in the distribution of shocks Q, the

decision not to lend by some banks leads to stoppages in credit flows.
11This result only holds for economies with a single entrepreneur. As we show in Section 5, the impact of increased

competition on lending is ambiguous when there are multiple entrepreneurs in the network.
12Note, however, that the chain subnetwork along which lending takes place is endogenously determined, as it depends

on the structure of G and the shock distribution Q. Hence, limiting attention to arbitrary chain networks is not without loss
of generality.

13Formally, there is always a strong equilibrium where either (i) $1 flows from the depositor to the entrepreneur or (ii)
there is a systemic credit freeze. However, there may be other equivalent strong equilibria, for instance, where bank 1 offers
a prohibitively large interest rate to bank 2, but with no flow of funds anywhere in the chain.

14Notice the contrast with Corollary 1: while the corollary considers the addition of a link to a network (with a given set of
banks), this theorem considers adding a new bank to a chain network (which thus removes a link and adds two new links to
the new bank).
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Example 1. Let G denote the n-bank chain with representative depositor 0, banks {1, . . . , n}, and a

single entrepreneur, as in Figure 2. Assume every bank is subject to i.i.d. shocks zi ∈ {−M, ζ}, where

M is some large positive constant, ζ ∈ (0, 1), and return zi = ζ occurs with probability 1− ε, for some

small ε > 0.15 Thus, with a high probability, the bank has a moderate and positive return, but with

some small probability ε, the shock wipes out the bank. To simplify the analysis, we set the default

cost F to 0.

Given the simple structure of the chain, we can solve for equilibrium interest rates recursively.

First, observe that if bank n lends to the entrepreneur, it demands an interest rate Rn→E = r∗, where

r∗ is the rate of return on the entrepreneur’s project. Also note that if bank n−1 lends to bank n, it also

charges r∗, i.e., Rn−1→n = r∗. This is because if n − 1 charges an interest rate above r∗, bank n prefers

not to engage in interbank lending at all. Next, consider the problem of bank n− i− 1 lending to bank

n − i. The former does not receive a repayment from the latter if any of the banks indexed n − i + 1

through n have a bad return, an event that occurs with probability 1− (1−ε)i. Therefore, bank n− i−1

lends to bank n− i if and only if

(1− ε)i+2(ζ +Rn−i−1→n−i −Rn−i−2→n−i−1) ≥ (1− ε)ζ.

The left-hand side of the above equation is the expected profit of n− i− 1 of lending to n− i, whereas

the right-hand side is equal to the bank’s expected profit if it does not engage in interbank lending and

borrowing. Consequently, the equilibrium interest rates satisfy the recursion

Rn−i−1→n−i = Rn−i→n−i+1 −
1− (1− ε)i

(1− ε)i
ζ,

which, coupled with the initial condition Rn−1→n = r∗, leads to the following closed-form expression

for equilibrium interest rates

Rn−i−1→n−i = r∗ + ζi− ζ(1− (1− ε)i)
ε(1− ε)i−1

= r∗ − i(i− 1)ζε/2 + o(ε).

(4)

Equation (4) illustrates that, for small values of ε, the interest rate markups needed to support

interbank lending grow quadratically in the length of the chain. This is because counterparty risk

intensifies with the length of the chain due to fears of downstream defaults. Therefore, holding the

aggregate gains from trade r∗−r0 fixed, a credit freeze arises for any interbank lending chain exceeding

length n̄ =
√

2(r∗ − r0)/(ζε).

We conclude this discussion by noting that, while the breakdown of intermediation in long chains

predicted by Theorem 5 is similar to the results of Di Maggio and Tahbaz-Salehi (2014), the freezes

in the two models are driven by fundamentally different forces. As we argued already, in our model,

banks’ refusal to extend credit lines to potential borrowers is driven by counterparty risk and the fear

of defaults by their direct or indirect borrowers. In contrast, credit freezes in Di Maggio and Tahbaz-

Salehi (2014) are due to the build up of moral hazard over intermediation chains: if intermediation

chains are long enough, the volume or distribution of collateralizable assets may not be sufficient to

counteract the agency problems.
15We restrict ζ to be in (0, 1) so that no bank can fully absorb a counterparty loss. This assumption guarantees that any

default cascade that begins at some agent j propagates upstream to all its direct and indirect lenders.
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4.2 Risk Profile

In our next set of results, we study how changes in the economy’s risk profile — that is, distributionQ
of shocks z — shapes the likelihood and nature of credit freezes.

Definition 6. Risk profile Q′ stochastically dominates Q if Q′i(zi) first-order stochastically dominates

Qi(zi) for all i. If, in addition, Q′i(zi) strictly dominates Qi(zi), we say bank i experiences an adverse

shift in the distribution of shocks (or adverse shift for short) in response to a change fromQ′ toQ.

The notion of stochastic dominance defined above is weaker than the more restrictive notion of

statewise dominance, according to which, for any realized state of the world at t = 2, the liquidity

shocks under Q′ are always more favorable than those under Q for all banks. Furthermore, note that

following an adverse shift in the distribution of shocks, no bank has more liquidity underQ than under

Q′ (in the sense of first-order stochastic dominance) and every bank subject to an adverse shift has

strictly less liquidity in some states of the world at t = 2.

Proposition 2. Let G be a chain network with risk profile Q. If there is no systemic freeze, then there

exists F̄ > 0 such that for all F > F̄ , wheneverQ′ stochastically dominatesQ, there is no systemic freeze

underQ′.

Proposition 2 captures the intuitive result that systemic credit freezes are tightly linked to the risk

faced by the banks: a deterioration in the banks’ returns (in the sense of Definition 6) can result in

more systemic freezes.

We remark that the requirement of a large default costF in Proposition 2 cannot be dispensed with.

On the one hand, a shift in the distribution of shocks towards a dominated distribution decreases the

profitability of bank i (holding the contracts and the borrowing decisions constant), which makes

bank i more likely to default. This, in turn, decreases the profitability of the loans made by i’s direct

and indirect lenders, making lending on the whole less attractive. On the other hand, however, in the

response to such a shift in the risk profile, bank i’s risk attitudes also change: bank i becomes less

averse to potential risky interbank lending. Although its direct and indirect borrowers are now more

likely to default, the limited liability constraint leads to an increase in i’s risk appetite. When the bank

faces a large default cost F , the first effect dominates the second.

Definition 7. Risk profileQ′ has more tail risks than risk profileQ if

(i) Qi(zi)−Q′i(zi) is constant over zi ∈ [−r∗, r∗];

(ii) Qi(zi) single-crossesQ′i(zi) at some λi ≥ r∗;16

for all i.

The first part of the definition ensures that the two distributions are similar “in the middle”. The

second part imposes that all corresponding marginal distributions single-cross at λi ≥ r∗ and thus

guarantees that, while the likelihood of being at or below the single-crossing point λi is the same for

16See Chateauneuf et al. (2004).
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bothQi(zi) andQ′(zi), the liquidity shocks are more likely to take extreme values underQ′ than under

Q. Furthermore, the requirement that the single-crossing points λi are sufficiently positive guarantees

that an increase in the tail risk in sense of Definition 7 does not increase bank i’s likelihood of survival,

even in the event of downstream default. We have the following result:

Proposition 3. Let G be a chain network and supposeQ′ has more tail risks thanQ. If there is a systemic

freeze underQ, then there is a systemic freeze underQ′.

The intuition underlying this result is straightforward. Limited liability implies that an increase

in the tail risk of a bank’s investment (in the sense of Definition 7) (i) increases the bank’s upside risk

conditional on survival, (ii) raises the likelihood of default, but (iii) has only a small impact on its

expected losses in case of default. As a result, an increase in the bank’s tail risk makes lending to this

bank less attractive, while also increasing the likelihood of default cascades to its direct and indirect

lenders. Proposition 3 therefore suggests that any change in market conditions that raises tail risks —

such as greater volatility in the values of the held by the banks — will increase the likelihood of credit

freezes.17

So far we have assumed that liquidity shocks across banks are independent. Next, we study how

the nature of credit freezes depends on the correlation across banks’ liquidity shocks. To simplify

the analysis, we assume that liquidity shocks z = (z1, . . . , zn) are jointly normally distributed with

common mean E[zi] = µ > 0, common variance var(zi) = σ2, and pairwise correlations ρ > −1/(n−1).

By Proposition 3, credit freezes become more likely as σ increases. This is a consequence of the fact

that the probability of a tail event that leads to a default is growing in σ. Our next result relates the

likelihood of a credit freeze to the correlation parameter ρ.

Proposition 4. Suppose that banks’ liquidity shocks are jointly normally distributed. Then, there exists

F > 0 and ρ̄ < 1 such that there is no credit freeze if ρ > ρ̄ and F < F .

The above result is related to the risk-stacking mechanism of Elliot, Hazell, and Georg (2018) and

Jackson and Pernoud (2019). When banks’ liquidity shocks are highly correlated, interbank lending

is less risky: all banks fail in the same states of the world, irrespective of whether they enter into

interbank lending contracts or not. Default cascades are therefore immaterial in the sense that

they do not pose any extra risk on the banks. Banks will then be willing to extend lending to their

potential borrowers. Conversely, as the asset returns become less correlated (or negatively correlated),

interbank loans become less profitable, as this increases the likelihood of a default contagion in

the states of the world where bank i’s returns are positive. Consequently, a sufficient reduction in

correlation ρ results in a credit freeze.18

We conclude this discussion by going beyond the chain network structure and considering credit

freezes in the more general class of economies with a single entrepreneur. To this end, we focus on

adverse shifts to a specific subset of banks, which enables us to isolate credit freezes arising from

network effects from those driven entirely by immediate counterparty concerns.
17These observations also imply that if we allow banks to choose the riskiness of their outside investments, limited liability

may push them towards riskier assets, but with significant negative systemic implications.
18A high bankruptcy cost F encourages banks to diversify in order to avoid costly default. Our assumption that F < F

ensures that the lack of diversification as shocks become more correlated does not dominate the increase in expected profits
from making the loans.
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Proposition 5. Suppose the economy consists of a single entrepreneur and consider adverse shifts to a

subset of banks R ⊆ B. Then, there exists F̄ such that for all F > F̄ credit freezes are monotone in the

sense that

(a) if all banks j ∈ R experienced a credit freeze before the adverse shift, all banks in R continue to

experience a credit freeze;

(b) total lending to the entrepreneur never increases.

Statement (a) of the above proposition establishes the intuitive result that a deterioration in a

bank’s distribution of liquidity shocks cannot result in access to new credit: the bank’s potential

creditors can only face higher risks and hence will be less likely to extend it a credit line. Statement (b)

of Proposition 5 then illustrates that the consequences of such deterioration may propagate further

downstream in the credit chain and potentially lead to a credit freeze for the entrepreneur. This result

is a consequence of the fact that lending in a single-entrepreneur economy is always in the form of a

single intermediation chain from the depositor to the entrepreneur, irrespective of the structure of the

network (Theorem 3). As a result, adverse shifts in the distribution of shocks in the sense of Definition

6 can only divert incentives away from lending along this path of the financial network.19

5 Credit Freezes with Multiple Entrepreneurs

In Section 4, we focused on economies with a single entrepreneur and showed that credit freezes are

systemic (Proposition 1) and monotone (Proposition 5). In this section, we show that in economies

with multiple entrepreneurs, credit freezes may take more complex forms. In particular, we show that,

in the presence of multiple entrepreneurs, credit freezes are not necessarily systemic (in the sense

that only some part of the financial network may come to a standstill), they may occur in the part

of the network not affected by adverse shifts, and that the response to an adverse shift may be non-

monotone. We establish these results by means of a series of examples.

5.1 Simple Freezes

We first focus on networks G in the form of directed trees by assuming that every bank has exactly one

potential lender, though it may have multiple potential borrowers.20 This structural restriction shuts

down any effect arising from competition between banks over lending contracts. We investigate the

effect of competition in the next subsection.

Definition 8. Consider adverse shifts to a subset of banksR ⊂ B. We say any resulting freeze is simple

if, for each bank j ∈ R there exists a bank j∗ ∈ B such that:

(i) bank j is a direct or indirect borrower of j∗;

19Note that, in this proposition, we assume large values of F to control for risk attitudes, as in Proposition 2 (see the
discussion in Section 4.2).

20Recall from Theorem 3 that while, in equilibrium, interbank borrowing and lending always occurs in a tree structure, the
opportunity network G need not be a tree. We now separately consider the implications of a tree opportunity network.
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(ii) all banks experiencing a credit freeze after the adverse shift are also (direct or indirect) borrowers

of j∗.

In the context of the directed tree networks we consider in this subsection, a simple freeze

corresponds to a scenario in which all banks belong to the same subtree of the network. From

Proposition 1, since all credit freezes with a single entrepreneur are systemic, they are also simple.

Proposition 6. If G is a directed tree, adverse shifts in the distribution of shocks induce only simple

freezes.

To illustrate the nature of credit freezes and how they may propagate in directed trees, we next

provide two examples. Our first example illustrates how an adverse shift to bank i can cause credit

freezes to initiate at bank i, and then propagate upstream and downstream to its potential lenders

and borrowers, leading to a credit freeze in an entire subtree of the network. Our second example

shows why, even though freezes are simple in tree networks, an adverse shift may lead to an increase

in total lending (regardless of F ), an outcome that is impossible in single-entrepreneur economies

(Proposition 5).
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Figure 3. The financial network before (panel a) and after (panel b) an adverse distributional shock to
bank 6. Solid lines depict relationships in interbank lending in equilibrium, whereas dashed lines represent
relationships in G (i.e., opportunities) which are not used in equilibrium (i.e., credit freezes).

Example 2 (Propagation of simple freezes). Consider the network in Figure 3(a) and suppose the

parameters are such that all banks lend to their designated borrowers in equilibrium. Next, consider

an adverse shift to bank 6 that increases the bank’s likelihood of default. A sufficient increase in bank

6’s default likelihood would make it unprofitable for bank 3 to lend to bank 6, thus resulting in a credit

freeze for entrepreneurs E3 and E4.

But note that the adverse shift to bank 6 may also result in a credit freeze for entrepreneur E2, as

depicted in Figure 3(b), even though there is no direct or indirect lending relationship between bank
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6 and E2. To see this possibility, note that before the shift in the shock distribution, bank 3 (indirectly)

funded the three entrepreneurs and all these loans were profitable. After the adverse shift, however,

the only profitable lending available to bank 3 would be to fundE2 via bank 5. However, this reduction

in bank 3’s profitability reduces bank 1’s incentive to lend to bank 3: bank 3 is less profitable, while

facing the same or even perhaps higher default risk. This may make the loan to bank 3 unprofitable

at any interest rate, thereby creating a freeze from bank 1 to bank 3. As bank 3 loses access to credit,

bank 5 and entrepreneur E2 also experience a credit freeze.
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Figure 4. The financial network before (panel a) and after (panel b) a shock to bank 3. Solid lines depict
relationships in interbank lending in equilibrium, while dashed lines represent relationships in G that are not
used in equilibrium (i.e., credit freezes).

Example 3 (Non-monotone freeze in trees). Consider the economy depicted in Figure 4. To directly

contrast with Proposition 2, suppose that F →∞, so that default is very costly. Let the liquidity shock

to each bank i be zi ∈ {−ζi,+κ} for some κ� 0, where both outcomes are equally likely. Furthermore,

let us assume that ζ1 = ζ3 = 0, and that 0 < ζ2 < ζ4 < 1.

In such an economy, bank 1 faces a trade-off between the volume of the loan and the interest rate

it can charge. On the one hand, if bank 1 charges R1→2 = r∗ − ζ2, then bank 2 charges R2→3 = r∗ to

bank 3 but does not offer a credit line to bank 4. On the other hand, if bank 1 charges R1→2 = r∗ − ζ4,

then bank 2 will still charge bank 3 an interest rate of R2→3 = r∗ but in addition offers a contract with

interest rateR2→4 = r∗− ζ4 to bank 4, thus, effectively, doubling the loan amount from bank 1 to bank

2. Hence, if the gains from trade satisfy (r∗ − r0) < 2ζ4 − ζ2, then bank 1 will charge R1→2 = r∗ − ζ2

and bank 2 only makes an offer to bank 3, with the resulting equilibrium financial network depicted

in Figure 4(a).

Now suppose we introduce a positive shift in the distribution of shocks for bank 3 that increases

the magnitude of the negative shock from ζ3 = 0 to ζ3 = ζ4− ζ2 > 0. As long as ζ4 < (r∗−r0) < 2ζ4− ζ2,

bank 1 will offer the contract R1→2 = r∗ − ζ4 (or infinitesimally less) and bank 2 offers the contracts of

R2→3 = r∗ − ζ3 and R2→4 = r∗ − ζ4 to banks 3 and 4, respectively. Because the lending path through

bank 3 is more risky, bank 1 must charge a lower interest rate to bank 2 to support lending along
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any path, which now makes the larger loan volume more attractive. This results in the equilibrium

financial network depicted in Figure 4(b).

To summarize, even though freezes in trees are simple, the propagation of adverse shifts is

substantially richer than in networks with a single entrepreneur. First, credit freezes can spread both

upstream and downstream in the network. Second, adverse shifts can increase, rather than reduce,

lending, because they change the relative profitability of different banks in the network, potentially

shifting funding towards banks that can then significantly expand their own lending.

5.2 Complex Freezes

We now turn our attention to more general network structures and show that freezes can be complex

in non-tree-like economies, in the sense that properties (i) or (ii) of Definition 8 may no longer be

satisfied.

We illustrate such a possibility with three examples. First, we demonstrate how an adverse shift

in the distribution of shocks in one part of the network can lead to a freeze in an entirely different

segment. Second, we provide an example where a bank experiencing an adverse shift may not lose

credit but can cause a freeze for other banks. And lastly, much like in Example 3, we show how an

adverse shift in one part of the network can induce more lending somewhere else.

Example 4 (Freezes in multiple branches). Consider the economy depicted in Figure 5. Similarly to

Example 1, assume that zi = ζ > 0 with probability pi and zi = −M with probability 1 − pi, where

M is some large positive constant. We assume that p1 = p2 = p4 = p6 = 1, thus implying that

the corresponding banks are always safe (conditional on no downstream defaults). Additionally, we

assume that banks A, B, and C never default so that R0→A = R0→B = R0→C = r0. Finally, we assume

that p5 < p3 < 1, so that there is only a small probability banks 3 and 5 experience a bad liquidity

shock, but bank 5 is riskier than bank 3.

Suppose the equilibrium financial network before the adverse shift is pictured in Figure 5(a). The

chain from bank A to entrepreneur 2 poses no risk, so bank A would be willing to charge r0 + δ for

any δ > 0 which will undercut bank B given the risk from bank 3. As long as bank 5 is not too risky,

bank C has an incentive to lend to bank 5 and capture the profits from both entrepreneurs (E3 and

E4), despite the competition from bank 3 who only offers a loan to E3. As long as bank 3 presents

some risk, it can be shown that bankC will be willing to undercut bankB’s offer to bank 3 because the

existence of an additional entrepreneur boosts profits.

Now suppose we introduce an adverse shift in the distribution of shocks to bank 2. For simplicity,

suppose the asset it is holding is revealed as very toxic, so it is believed that p2 ≈ 0. The equilibrium

lending network is now given by Figure 5(b). The reasoning is as follows. Bank 1 will never lend to

bank 2 since it will almost certainly default. This implies that bank B no longer faces competition in

its lending along the chain to E2 via banks 3 and 4. Since the risk of bank 3 is lower than that of bank

5, and bank B has (indirect) monopolistic access to E2, the loan is profitable enough that it can now

compete with bank C over bank 6 (and indirectly, E3) as well. Given that bank 5 will not be able to

compete with bank 3 over bank 6, bank C may find the loan to bank 5 no longer profitable, resulting

in a credit freeze for E4.
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Figure 5. The financial network before (panel a) and after (panel b) an adverse distributional shock to
bank 2. Solid lines depict relationships in interbank lending in equilibrium, whereas dashed lines represent
relationships in G that are not used in equilibrium (i.e., credit freezes).

In summary, unlike the simple freezes in Definition 8, an adverse shift for bank 2 results not only in

credit freezes in the branch of the financial network that bank 2 belongs to (i.e.,A), but also in a credit

freeze in branch C, with E4 losing access to funding as a result.
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Figure 6. The financial network before (panel a) and after (panel b) an adverse distributional shock to bank 1.
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Example 5 (Freeze only in an unaffected branch). Consider the economy depicted in Figure 6(a),

where the larger entrepreneur denotes a more profitable one (i.e., a larger r∗i ). Let us again use the

setup of the previous example, with zi ∈ {−M, ζ} and zi = ζ with probability pi, all independently

distributed. Also suppose that banks A, B, and C never default (so that R0→A = R0→B = R0→C = r0)

and that bank 1 is perfectly safe conditional on no downstream defaults (i.e., p1 = 1). Finally, suppose

p3 < p2 < 1.

Because bank 2 is safer than bank 3, bank B may be able to undercut the interest rate bank C

charges to bank 3, thereby making bank 2 more competitive over E3. On the other hand, it cannot

undercut the interest rate bank A charges bank 1, therefore bank B will provide at most a $1 loan,

which indirectly funds E3. However, for sufficiently low p2, it may be the case that such a loan is not

profitable enough to warrant lending given the risk from bank 2. Therefore, bank B will freeze credit

to bank 2. Because the branch funded by bank C has access to two entrepreneurs (one of which is

monopolistic, E4), lending is still profitable to E3. All entrepreneurs receive access to funding, as

pictured in Figure 6(a).

Now suppose we introduce a small adverse shift in the distribution of shocks to bank 1, say, by

increasing its probability of a bad return so that p′1 < p3 < p2 < 1. The branch funded by bank B may

now be able to compete over E2, which increases the profitability of the loan. Since bank 2 is also less

risky than bank 3, this implies that it can compete over E3, which may in turn induce a freeze from

bank C. As a consequence, bank 3 (and E4) lose access to credit, despite the fact that the adverse shift

occurs at bank 1, who continues to have access to credit from bank A, as seen in Figure 6(b).

We observe that after an adverse shift to bank 1, bank A continues to lend to bank 1 and

entrepreneur E1 still obtains funding along the branch with bank A. However, entrepreneur E4 and

banks C and 3 lose access to credit, despite experiencing no change in riskiness along their branch.
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E2 E3E1

(a) before the distributional shock
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3 4
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(b) after the distributional shock

Figure 7. The financial network before (panel a) and after (panel b) an adverse distributional shock to bank 3.

Example 6 (Non-monotone freezes). This example illustrates another type of non-monotone freezes,

whereby adverse shifts, by removing previous lending opportunities, actually improve overall lending.

As such, it is also a bridge to our discussion in the next subsection on the relationship between
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competition and credit.

Consider the economy depicted in Figure 7. As before, let zi ∈ {−M, ζ} for some large positive

constant M and zi = ζ with probability pi. Suppose banks 1 and 2 never default and that p4 < p3 < 1

initially. In equilibrium, bank 3 will be more competitive than bank 4: R1→3 ≤ R2→4. With only E3,

it may be unprofitable for bank 2 to lend to bank 4 altogether, so entrepreneur 3 is not funded. Now

suppose bank 3 experiences and adverse shift, which allows bank 4 to be more competitive over E2

because it will receive R1→3 ≤ R2→4. This may be sufficient to make the loan profitable (which now

funds bothE2 andE3). As long as the risk of bank 3 does not increase too much,E1 will still be funded

(because this loan is initially sufficiently profitable). Hence, the increase in risk to bank 3 increases the

total amount of lending in the system, and in particular allows bank 4 to gain access to credit. In other

words, introducing greater risk into the system may lead to a counterintuitive increase in lending.

5.3 Competition and Freezes

In this subsection, we study the consequences of increasing competition in the network. As

demonstrated in Section 4, with a single entrepreneur, increasing the number of links within a given

network of banks makes credit freezes less likely. Similarly, the same logic implies that in an economy

with multiple entrepreneurs, reducing intermediation frictions can create less risky intermediation

chains between a depositor and an entrepreneur, thereby alleviating credit freezes. However, there is

also a counteracting effect from adding new links, which arises from competition. As a consequence of

this latter effect, a reduction in the intermediation frictions between the depositor and entrepreneurs

— in the form of adding additional lending opportunities — does not guarantee an increase in

aggregate lending. The following example illustrates such a possibility.
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3 4

E2 E3E1

(a) Before 4→ E2

0

1 2

3 4

E2 E3E1

(b) After 4→ E2

Figure 8. The opportunity network before (panel a) and after (panel b) adding the opportunity 4 → E2, under
risk profileQ∗.

Example 7 (Effects from competition). Consider the economy depicted in Figure 8, where we define

risk profile Q∗ as the one where bank 4 is more likely to default than bank 3, and banks 1 and 2 never

default. By adding a link from bank 4 to E2, E3 gains access to credit and no agent loses access to
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(b) After 3→ E2

Figure 9. The opportunity network before (panel a) and after (panel b) adding the opportunity 3 → E2, under
risk profileQ∗∗.

credit. The mechanism for this expansion of credit is different than the one we saw in Section 4, which

was to shorten the chain along which credit travel to the entrepreneur. In contrast, here the new link

to entrepreneur E2 makes bank 4 more profitable and this then enables it to also fund entrepreneur

E3.

Conversely, Figure 9 shows how competition can reduce lending. Now, under risk profileQ∗∗ bank

3 is slightly more likely to default than bank 4, and banks 1 and 2 never default. Consequently, before

the new link is added, bank 4 has monopolistic access over E2 and E3. However, after, bank 3 is able

to undercut bank 4, which reduces the profits from the loans made by bank 4. This may induce bank

2 to freeze credit to bank 4, with E3 losing credit. In this case, adding a new link made total lending

decrease.

Therefore, even though adding new links only decreases the intermediation frictions between

depositors and entrepreneurs, the impact on total lending is ambiguous because competition impacts

the profitability of different banks’ loans.

6 Extensions

We consider two short extensions of interest. First, we show that the fear of future liquidity

problems can trigger additional financial intermediation in order to insulate small institutions from

counterparty risk. This endogenous intermediation takes the form of a large institution bearing the

risk from smaller banks’ potential defaults. However, this redistribution of risk in the network can lead

to a systemic credit freeze if the large bank’s future solvency becomes questionable. Second, we show

that more complex financial networks may emerge when banks are allowed to offer more complex

lending contracts. However, our earlier qualitative results on credit freezes remain robust to such

changes.
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6.1 Risk-Bearing Capacity

Recall from Theorem 5(c) that, as long as the risk profile Q is symmetric, the likelihood of a systemic

credit freeze increases in the length of the chain. This, however, is no longer true if the risk profile is

not symmetric. To illustrate such a possibility, we define a risk-bearing bank as a bank that is always

safe, regardless of whether its borrowers repay the loan. That is, bank i is risk-bearing if zi ≥ r∗ with

high probability, so that bank i will almost never default.

Proposition 7. Consider the chain network G with n banks and generate a new chain network G′ via

the subdivision of an arc i → (i + 1) in G by adding a risk-bearing bank j between i and i + 1 (i.e.,

i → j → (i + 1)). For sufficiently large F ,21 there is a credit freeze in G′ only if there is a credit freeze in

G.

Therefore, Proposition 7 offers an alternative perspective to Theorem 5, in that additional

intermediation can reduce the likelihood of a credit freeze. This is a consequence of the fact that

risk-bearing banks act as firebreaks in the cascade of defaults. Channeling funds through such banks

thus reduces systemic risk and allows banks to borrow and lend profitably at lower interest rates.22

0 α β E1

Ω

Figure 10. Intermediation Network.

For illustration, consider the network shown in Figure 10, where the initial network is a chain

consisting of two banks (α and β). We now add a new bank Ω with high risk-bearing capacity, so that

bank α, instead of providing funds directly to bank β, has to go through Ω. Though this lengthens the

intermediation chain, Ω offers bank α protection against the potential default of β, making a systemic

freeze less likely. Thus, bank Ω here plays a role akin to the role played by dealer banks during times of

credit distress. As emphasized by Duffie (2010):

“Other dealer banks are increasingly being asked to enter derivatives trades, called

‘novations,’ that have the effect of inserting the other dealers between Beta and its original

derivatives counterparties, insulating those counterparties from Beta’s default risk.”

Viewed through the prism of the above quote, Proposition 7 shows the possibility for novations,

or channeling funds through an additional intermediary, can reduce the extent of credit freeze in

21We require sufficiently large F for the same reason as in Proposition 2 and Proposition 5: bank Ω with high risk-bearing
capacity is more risk-averse to lending; this guarantees that there is no shift in risk attitudes by channeling funds through the
additional intermediary.

22In the context of Example 1, inserting a risk-bearing bank resets the compensating interest rate differential between the
borrower and lender back to 0. Hence, if a fraction of the banks have risk-bearing capacity, then these differentials do not
grow unboundedly as the chain gets longer.
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the network. This can also provide an alternative rationale for the endogenous emergence of core-

periphery structures in financial networks (Afonso et al. (2014), Gofman (2011), Bech and Atalay

(2010)).23 However, as the number of novations from other banks (other than α) to bank Ω increases,

or the solvency of bank Ω itself is called into question, its risk-bearing capacity may drop, potentially

triggering a systemic freeze.

6.2 Quantity Restrictions

We conclude this section by allowing banks to write contracts that not only specify the interest rate

but also the maximum amount they are willing to lend to each borrower. Formally, instead of each

bank i offering an interest rate Ri→j and allowing bank j to decide how much to borrow, bank i may

also specify an upper bound x̄i→j for every potential borrower j ∈ Nin(i). At t = 2, each bank j may

borrow as much as it desires up to the limit specified by the contract, i.e., xi→j ≤ x̄i→j .

Proposition 8. Suppose banks may limit the amount of lending to each borrower. Then,

(a) the equilibrium financial network is directed acyclic (and x∗ and R∗ agree);

(b) there is systemic freeze in the economy with quantity-restricted contracts only if there is systemic

freeze in the original economy, without quantity-restricted contracts.

Proposition 8(a) shows that under quantity-restricted contracts, the equilibrium financial network

is directed acyclic. This contrasts with our baseline framework, where the equilibrium financial

network is generically a tree. This is because, in general, one of the paths to an entrepreneur has a

lower cost than all other paths, ruling out the possibility that two banks are simultaneously supplying

credit to the entrepreneur or to a bank supplying credit to the entrepreneur, and so on. Even though

the form of the equilibrium financial network is more general under quantity restrictions, the major

properties of credit freezes, including examples of non-monotonicity and complex freeze, still hold

with contracts of this form.

0 1

2

E1

3

4

Figure 11. Directed Acyclic Network.

23Note that this effect is distinct from the one emphasized by Farboodi (2017). In Farboodi (2017), core banks have higher-
return but riskier projects, allowing peripheral banks to obtain intermediation rents using their own source of funds, which in
turn creates inefficient levels of systemic risk. In our case, we obtain essentially the opposite result: voluntary intermediation
comes from the fact that peripheral banks can insulate themselves and reduce potential default cascades by channeling
funds through larger “safer” intermediaries who are unlikely to default.
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Example 8 (Directed acyclic networks with quantity-restrictions). Consider the network in Figure 11.

Suppose bank 1 is perfectly safe (i.e., z1 = κ � 0), banks 2 and 3 have z2 = ζ2 < 1 and z3 = ζ3 < 1

(but with ζ2 + ζ3 > 1), and bank 4 has z4 ∈ {−M,κ} with equal probabilities, where M is some large

positive constant and κ � 0. Then, bank 4 defaults with probability 1/2, and bank 2 (resp. bank 3)

defaults if bank 4 defaults when R1→2x1→2 > ζ2 (resp. R1→3x1→3 > ζ3). By setting x̄1→2 < ζ2 and

x̄1→3 < ζ3, bank 1 ensures that it gets repaid with probability 1, which is strictly more profitable than

lending to only bank 2 or bank 3, who would then repay with probability only 1/2. However, when

no quantity restrictions are in place, bank 4 borrows from the bank offering a lower interest rate, thus

forcing either bank 2 or bank 3 to borrow the entire amount, which in turn generates repayment risk

to bank 1. This argument thus clarifies that the equilibrium financial network is not a directed tree,

but instead given by Figure 11.

7 Policy Responses

By definition, a credit freeze occurs when banks, despite the presence of gains from trade, refuse to

extend credit to their corresponding borrowers. As a result, credit freezes are in general inefficient. In

this section, we investigate potential policy responses by a regulator aimed at reducing inefficiencies

arising from freezes throughout the financial network.

As illustrated by our various results and examples in Section 5, the extent and nature of credit

freezes can be quite complex. This makes characterizing the optimal policy response for a general

economy quite challenging. Instead of providing a detailed characterization of the optimal policy,

we take the approach of showing that as the financial system becomes more interconnected, the

policymaker must implement ever more sophisticated policies to handle credit freezes. Our results

thus indicate that knowledge of the underlying risks and the lending network is of critical importance

when conducting policy.

We also demonstrate through analytical results and examples that naive policies can sometimes

exacerbate the likelihood of systemic credit freezes. Furthermore, we show that implementing the

wrong policy (e.g., one that treats a complex freeze as a simple freeze) can be worse than doing

nothing. We additionally show that, generally, the optimal policy can be significantly cheaper than

the overall amount of lending it restores, and even sometimes costless. This makes a strong case for

central bank involvement in the event of systemic freezes.24

Our results follow the thread of Sections 4 and 5 by considering optimal policies in networks with a

single entrepreneur and then multiple entrepreneurs. Throughout, we assume that the regulator’s

main policy instrument is liquidity injection, either in the form of asset purchases or a discount

window. In the context of our framework, we model such a liquidity injection policy by assuming

that the regulator can provide additional liquidity to bank j through a higher zj ; that is, a positive shift

in the distribution of shocks affecting bank j.

24For discussions of optimal policies in models based on ex post contagion, see Bernard, Capponi, and Stiglitz (2019) and
Kanik (2019).
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7.1 General Findings

Consider a central bank with a budget B > 0 and suppose the space of available policy options is

a vector of interventions ε = {ε0, . . . , εn} such that
∑n

i=0 εi ≤ B. By intervening, the central bank

introduces a shift in the distribution of shocks, where z′i = zi + εi for every bank i.25 A positive εi can

be interpreted as providing funds directly to bank i, either to be lent out or to insulate the bank from

default, whereas εi < 0 corresponds to a policy that absorbs liquidity at bank i (i.e., an asset sell-off).26

Similarly, ε0 > 0 represents a cash injection at the depositor, who is then required to invest in the

interbank market (and not the outside risk-free technology).27 Given the set of feasible policies, we

say the central bank implements an untargeted policy if it provides assistance to the economy only

through the depositor (i.e., ε0 = B). Otherwise, we say it implements a targeted policy, providing

assistance directly to some banks in the network.

Throughout, we assume the central bank’s objective is to maximize the realized gains from trade,

given by
∑

j∈E∗(r
∗
j − r0), where E∗ is the set of entrepreneurs that are able to fund their projects.

Proposition 9. An untargeted policy is optimal in networks with a single entrepreneur.

The intuition for this result is as follows. An untargeted policy that allocates all the funds to the

depositor allows her to charge lower interest rates profitably, as these funds are provided at little

opportunity cost. This in turn induces all other lenders (which are direct and indirect borrowers of

the depositor) to also charge lower interest rates in equilibrium, facilitating lending throughout the

chain. Because interest rates at t = 0 can be used as a tool to redistribute future liquidity at t = 2, such

an untargeted policy can necessarily mimic a targeted policy, as interest rates adjust in equilibrium

to account for the differences. However, the converse is not necessarily true: by providing funds

further downstream, a bank cannot leverage the interest rate as an instrument to redistribute liquidity

further upstream. This is because the interest rate payment of a downstream bank is conditional on its

solvency at t = 2, whereas an adjustment of an upstream interest rate is equivalent to a cash transfer

at t = 0. Therefore, with a single entrepreneur, an untargeted policy outperforms all targeted policies.

Our next result focuses on economies with multiple entrepreneurs and considers credit freezes

that arise in response to adverse shifts for a single bank. While the policymaker only observes the

realized equilibrium financial network and not the underlying opportunity network G, we identify an

effective rescue policy as if the central banker knew which bank experienced an adverse shift, or what

the underlying (opportunity) network G was.

Proposition 10. Suppose that a financial network experiences an adverse shift of the form zj = zj − δ
25For simplicity, we are modeling this policy intervention as a direct liquidity injection or transfer. It is equivalent to a

subsidized loan from the central bank. In particular, if the bank has to repay the central bank an amount riεi (where ri is the
discount interest rate from the central bank) at time t = 2, provided that doing so does not put the bank in default, then all
of our results apply identically.

26While in reality asset purchases do not target a single bank, we think of such a policy as targeting the distressed assets
composing this bank’s balance sheet. For instance, the Fed’s policy to purchase mortgage-backed securities (MBS) during
the crisis was in-part designed to target large dealer banks whose balance sheets comprised of sizable MBS positions.

27Providing the depositor with liquidity does not change her incentives for lending, so the central bank must condition
these funds on their use for interbank lending. The policy is equivalent to one where the central bank acts as a “depositor”
itself, and directly lends to banks connected to the depositor in G (but not others).
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Figure 12. Example 9 after Policy.

for a single bank that leads to a simple freeze.28 Moreover, assume no bank linked to the depositor has

a credit freeze. Then there exists a budget B∗ and some bank j∗ that is a (direct or indirect) lender to all

banks with frozen credit, such that:

(a) A targeted policy which targets only (direct or indirect) borrowers of bank j∗ can restore all lending

without introducing any additional credit freezes.

(b) Any untargeted policy restoring lending requires some budget B∗∗ > B∗.

The above result thus establishes that, when freezes are simple, there is a very natural policy to

restore full lending: the central bank should spend its entire budget on rescuing banks in distressed

parts of the network. While this policy is not necessarily optimal, it nonetheless outperforms the

untargeted policy and will not inadvertently lead to credit freeze elsewhere in the network.

One consequence of the above result is that, even in the event of a simple freeze, having network

knowledge is crucial for conducting policy, though a policymaker may limit his or her scope to banks

without access to credit.29

7.2 Other Policy Features

In the case of complex freezes, it may be impossible to relieve all credit freezes by using the class of

policies in Proposition 10. We illustrate this insight below by revisiting Example 5.

Example 9 (Ineffective policy with complex freeze). Consider Figure 6(b) from Example 5, which is

the financial network after an adverse shift to bank 1.Recall that banks A, B, and C are always safe,

whereas banks 1, 2, and 3 receive a positive liquidity shock zi = ζ with probabilities p1, p2, and p3,

where p1 < p3 < p2 < 1. In this network, bank 3 and E4 lose access to credit after an adverse shift

to bank 1, despite the fact that bank 1 still has access to credit (i.e., Figure 6(b)). The only policy of

the form described in Proposition 10 is one that targets the distressed bank 3. When ε3 > 0 is small,

28This adverse shift corresponds to a leftward shift of the distribution function Q(zj). The amount of the shift, δ, is the
anticipated liquidity shock bank j now faces.

29This result is in the same spirit as Jackson and Pernoud (2019), but relates to ex ante rescue policies (before the realization
of liquidity shocks) to ensure lending markets continue to function when future solvencies are in-question.
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the financial network remains as in Figure 6(b). When ε3 is large, bank C becomes insulated from a

negative shock to bank 3, which allows it to lend profitably to bank 3 at a lower interest rate, who

will then also undercut bank 2 in lending to E3. However, such a policy may make the chain from

bank B to bank 2 to E2 unprofitable. Furthermore, given the added risk at bank 1, the chain from

bank A abstains from lending toE2 altogether, resulting in the financial network pictured in Figure 12.

Therefore, under any policy that targets bank 3, eitherE2 orE4 does not have access to credit. A better

policy is to alleviate the risk at bank 1, which would obtain lending for all entrepreneurs, as pictured

in Figure 6(a).

The above example illustrates that it may be necessary for the policymaker to intervene in counter-

intuitive ways, for example by targeting a bank with access to credit than one without. Because

central bank intervention can impact competition and the flow of profits from lending elsewhere

in the network, these interventions can have non-trivial impacts on credit freezes across the entire

system.

Another policy option is to directly lend to entrepreneurs to ensure that their projects are funded.

In general, policy-makers may not have the know-how to identify high-quality entrepreneurs or may

lack the ability to monitor their post-borrowing behavior. In addition, the same economic mechanism

that makes optimal interventions sometimes take place away from the source of an adverse shift

also implies that it may be more efficient to intervene in the financial network as opposed to lend

directly to the entrepreneurs. The next example illustrates this point by showing that lending directly

to entrepreneurs may be much more expensive than optimally targeting part of the financial network,

as the latter strategy exploits the equilibrium responses of other banks following the intervention.
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Figure 13. Opportunity Network for Example 10.

Example 10 (Direct lending to entrepreneurs). Consider the tree opportunity network depicted in

Figure 13, consisting of m+ 1 banks and m entrepreneurs. We assume that shock to bank 1 is given by
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z1 = M � 0 with probability 1, z2 ∈ {−ζ, 0} where z2 = 0 with probability p, while zi = 0 for banks

i ∈ {3, . . . ,m + 2}. Also, let us assume F = 0, pr∗ < r0, and m(r∗ − r0) < ζ. It is easy to verify that,

absent any interventions, no entrepreneur receives access to credit. This is because bank 2 defaults if

it is hit with a negative shock and bank 1 cannot be sufficiently compensated for this risk.

Now consider a policy that provides funding directly to the entrepreneurs. The key observation

is that the central bank must provide the entire loan of $1 to an entrepreneur in order to ensure the

entrepreneur can invest in the project. To see this, note that if the central bank lends less than $1

to entrepreneur j, then the entrepreneur must raise the shortfall from bank j + 1. Clearly, the total

amount of the loans from each bank j + 1 to its corresponding entrepreneur j is equal to the amount

of loans from bank 2, which does not affect the probability that bank 2 will default on its repayment to

bank 1, as bank 2 defaults as long as it is hit with a negative shock. But since pr∗ < r0, andm(r∗− r0) <

ζ, bank 1 still does not find it profitable to lend to bank 2 (in any amount). Taken together, these

observations imply that, to alleviate all credit freezes by targeting entrepreneurs directly, the central

bank must spend a budget of m.

Instead, consider a policy where the central bank provides funding to bank 2 for ζ to be repaid at

no interest (i.e., r2 = 1). Then banks 1, . . . ,m+ 2 are safe almost surely, and so all entrepreneurs have

access to credit following this policy, given that r∗− r0 > 0. Moreover, when r∗− r0 � 1, ζ � m, which

implies that a policy targeting bank 2 does much better than one that provides the entrepreneurs with

funding directly. This example therefore shows that an intervention in parts of the network with the

bottleneck may be more cost-effective than directly lending to entrepreneurs because it encourages

additional lending by other banks.

Finally, we end this subsection by comment on two (at first) counterintuitive aspects of policy.

First, when there are non-monotone freezes, optimal policy can increase lending in a costless manner.

Recall from Example 3 that removing liquidity from bank 3 actually increased the total amount of

lending in the system because it created incentives for banks to lower interest rates and increase loan

volume. Second, Example 6, also shows that policy interventions aimed at increasing lending can

backfire and reduce overall financial intermediation. In particular, a policy that provides a positive

shock to bank 3 prevents bank 4 from funding additional entrepreneurs due to competition effects.

While stylized, these examples indicate that certain policies that decrease the likelihood of survival

of certain banks (from, say, asset sales driving the price of assets down) can actually increase total

lending in the system. Liquidity injections by the central bank can lead to perverse effects, reduce

total lending, and exacerbate or even cause a credit freeze.

7.3 Large Exposure Limits

We conclude this section by briefly discussing a different form of policy, namely, exposure limits

chosen by means of prudential regulation. For simplicity, we assume exposure limit policies allow

the regulator to restrict the exposure between any pair of institutions, such as the current 15% limits

for G-SIB (globally systemically important financial institutions) to G-SIB exposures outlined by the

Basel Committee.30 By the means of an example, we show that an exposure limit imposed by a banking

30See https://www.bis.org/publ/bcbs283.pdf.
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regulator can result in more lending. Importantly, this example demonstrates that, even if individual

banks can adopt such limits themselves, they may not have the incentives for doing so, thus indicating

the importance of imposing exposure limits by an outside regulator.
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Figure 14. The financial network before (panel a) and after (panel b) large exposure limit regulations.

Example 11 (Exposure Limits). We suppose that banks use contracts of the form in Section 6.2, which

specify both an interest rate R and a quantity limit x̄ on lending. Consider the opportunity network

shown in Figure 14, where bank 1 has shock distribution z1 = M � 0 almost surely, bank 2 has z2 = 0

almost surely, and banks 3 through m + 2 have zi ∈ {−M, 0} where zi = 0 with probability p. For

simplicity, suppose F = 0.

For any interest rate R1→2 < r∗ offered to bank 2, bank 2’s best response (without any quantity

restrictions) is to chargeE1 exactly r∗ and offer loans at the rate r∗ only to one bank out of 3, . . . ,m+ 2

(say, bank 3) who lends to E2. If bank 3 experiences a negative shock, then it fails to repay bank 2,

which in turn would fail to repay bank 1. Bank 1 may consider this unprofitable, thereby restricting

bank 2’s contract to x̄1→2 = 1, so bank 2 only lends to entrepreneur E1, and entrepreneur E2

experiences a credit freeze.

Now suppose a regulator imposes exposure limits so that x̄2→j = 1/m for all j ≥ 3. Then the

only way E2 can receive access to funding is if bank 2 lends exactly x2→j = 1/m for all j. When m is

sufficiently large, this diversification guarantees that bank 2 will be repaid almost exactly pr∗, which

decreases the likelihood that bank 2 defaults. In this situation, bank 1 will offer x̄1→2 = 2 because the

additional loan reaching E2 no longer (severely) increases the default risk of bank 2. Therefore, after

imposing the exposure limits, E2 receives access to funding.

When bank 1 extends credit to bank 2, it faces the following moral hazard problem: because bank 2

does not internalize the loss to bank 1 in its default, bank 2 maximizes its expected profit by exposing

itself to counterparty risk from only one bank. Because of this, bank 1 must discipline bank 2 by

restricting the size of the loan. However, exposure limits set by the regulator provide this discipline
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exogenously: because bank 2 is now forced to diversify, she reduces her expected profits but decreases

her default likelihood at the same time. This allows bank 1 to extend additional credit to bank 2

knowing these regulatory limits will prevent bank 2 from taking excessive risk.

8 Conclusion

In this paper, we provided a model of ex ante credit freezes caused by fears of ex post contagion

over financial network. Our model is motivated by recent credit market turbulences. For example,

at the beginning of the 2008 financial crisis, many financial institutions had difficulty raising short-

term funding due to uncertainty about their and their counterparties’ future solvency, which made

potential lenders stop lending or demand greater risk premia and haircuts. Fear of lenders about

future contagion also played a central role in the financial troubles of Bear Stearns even prior to the

collapse of Lehman Brothers in September 2008.

In our model, a set of banks are connected to each other via an opportunity network. The

leaves of this network represent entrepreneurs in need of funding and at the root is a depositor

with sufficient funds. The network thus intermediates between the depositor and the entrepreneurs,

and the structure of the network captures both opportunities for intermediation and various types

of intermediation frictions (which preclude certain direct paths from being used because of lack of

reputation or working relationship between banks). Crucially, the structure of the network determines

both the interest rates that banks charge each other and to the entrepreneurs, and the exact path of

credit in equilibrium.

We characterize the subgame perfect equilibria and a refinement thereof, strong equilibrium, in

this setup. We show that adverse shifts in the distribution of bank returns can cause ex ante credit

freezes. At the root of these freezes is the fear that negative shocks will lead to bank failures and thus

contagion. The nature of these freezes depends intricately on the structure of the financial network.

This is not only because the path of lending is determined by the financial network, but also because

interest rate markups, and thus bank profitability and likelihood of future collapse, depend on the

competition that financial interconnections induce among banks. These two channels together lead

to potentially complex credit freezes.

We show that in networks with a single entrepreneur, all credit freezes are simple, in the sense

that they originate with banks that are directly affected by adverse shifts and impact only the single

branch of the network that was exposed to the adverse shift. However, in networks with a richer set

of interconnections, complex credit freezes can emerge. These may have their epicenters not with

the banks that are directly affected, but elsewhere in the network and may lead to a spillovers from

branch of the financial network to the other. Such complex freezes arise because adverse shifts in the

distribution of shocks change markups and the likelihood of survival of banks in different parts of the

network.

We also show that complex freezes necessitate more nuanced policy interventions. In the case of

credit chains, untargeted policies are optimal. In more general networks, as long as credit freezes are

simple, targeted policies that directly help affected banks are optimal. If, however, credit freezes are

complex, targeted policies may need to be directed to different parts of the network.
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An interesting area of future research is to consider more general lending contracts as well as

dynamic lending relationships. Though in related models, more sophisticated lending contracts can

create greater resilience to shocks (by preventing inefficient liquidation), in our network setting more

sophisticated contracts can also open the way to even more complex financial freezes, because new

forces of competition and risk emerge. Our analysis highlights the need for future work focused

on empirically and theoretically investigating the nature of complex freezes and optimal policy

responses.
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A Appendix: Strong Equilibrium

In this appendix, we provide a refinement of the economy’s (subgame perfect) equilibrium in

Definition 3 by considering a variant of agent-form trembling-hand perfect equilibrium, according

to which banks may tremble around the interest rates offered in equilibrium, with the set of trembles

restricted to thick-tailed distributions.

To formalize this concept, let εm = (εm,ij)(i,j)∈G denote a vector of random variables with

distribution Hm, where each εm,ij is drawn independently from a distribution with full support over

R+ and cumulative distribution functionHm,ij . We say the sequence {Hm}∞m=1 generates a sequence of

thick-tailed trembles if (i) limm→∞ εm,ij = 0 almost surely for all i, (ii) limm→∞(1−Hm(x))/H ′m(x) = 0,

and (iii) limm→∞H
′′
m(x)/H ′m(x) <∞ for all x > 0.

Definition 9. Let {Hm}nm=1 denote any sequence of distribution functions generating a sequence of

thick-tailed trembles {εm}∞m=1. A strong equilibrium is a collection of interest rate offers R̄, borrowing

decisions x(R), and repayments y(R,x, z), such that there exists a sequence (R̄m,xm,ym) where (i)

(R̄m,xm,ym) is a subgame perfect equilibrium subject to the trembles R̃m,ij = R̄m,ij + εm,ij for all m,

and (ii) limm→∞ ||(R̄m,xm,ym)− (R̄,x,y)||∞ = 0.

Recall from our discussion in Section 2 that there may be multiple subgame perfect equilibria,

as banks could play weakly dominated strategies as best responses. Allowing for trembles in the

strong equilibrium then rules out such equilibria. To see the role of thick-tailed trembles, note that,

in general, banks face a tradeoff whenever they offer a higher interest rate to a potential borrower. On

the one hand, conditional on being the most competitive lender, a higher rate ensures a higher profit

margin for the bank. On the other hand, the higher rate also increases the likelihood that the bank is

undercut by any of its competitors. Fat-tailed trembles ensure that the latter effect always dominates

the former. As a result, less competitive banks (i.e., those with higher borrowing costs themselves)

elect to charge just enough of a premium to break-even in expectation (accounting for the the risk of

lending).

B Appendix: Proofs

Auxiliary Lemmas

Lemma 1. In every (strong) borrowing equilibrium:

{i ∈ Nin(j) : xi→j > 0} = arg min
i∈Nin(j)

Ri→j

and
∑

i∈Nin(j) xi→j =
∑

k∈Nout(j) xj→k.

Proof. We prove this by backward induction on L. For the last bank j ∈ L to borrow, suppose that

bank j borrows some amount x∗i→j > 0 from a lender i with Ri→j > mini∈Nin(j)Ri→j . Since there are

no restrictions on borrowing, bank j could borrow x∗i→j from some bank i∗ = arg mini∈Nin(j)Ri→j and

increase its profit by x∗i→j(Ri→j −Ri∗→j). This dominates borrowing from a more expensive lender, so

this cannot be the case in equilibrium. Similarly, if
∑

i∈Nin(j) xi→j <
∑

k∈Nout(j) xj→k, then bank j pays
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the prohibitive shortfall cost, whereas if
∑

i∈Nin(j) xi→j + δ =
∑

k∈Nout(j) xj→k for some δ > 0, bank j

loses (Ri∗→j−1)δ whenever it does not default and nothing when it does. Since the former occurs with

positive probability (see Lemma 2), doing such is not profitable.

Now consider some bank j borrowing at time τ in L. By the inductive hypothesis, it is clear that

no bank borrowing after j conditions its borrowing decision on who bank j borrows from. Via the

same logic as before, it is clear then that bank j borrows entirely from bank i = arg mini∈Nin(j)Ri→j .

Similarly, by the inductive hypothesis, the borrowing decisions of any banks k ∈ Nout(j) are not

affected by bank j’s borrowing decision, except possibly if both j → k and k → j. Since in the

perturbed game we have Rj→k 6= Rk→j almost surely, it cannot be that both j = arg minRj→k and

k = arg minRk→j , so either xj→k = 0 always or k does not condition its borrowing on the decision of

j. Therefore, just by the same reasoning as before, we must have
∑

i∈Nin(j) xi→j =
∑

k∈Nout(j) xj→k for

bank j, completing the inductive step.

Lemma 2. IfQ(z) is generic then for anyK ⊂ B, the probability the set of banksK default and the set of

banks B\K do not default is always positive and never equal to 1.

Proof. By Example 3.9 in Ott and Yorke (2005),Q(zi) must be unbounded for all zi. Since profits from

interbank lending for bank j,
∑

k∈Nout(j) yk→j are bounded above by (n + |E|)r∗, for every bank j we

know there exists probability pj > 0 such that zj < (n+|E|)r∗, and so bank j defaults. By independence,

the probability banks K default is at least (min pj)
|K|. Similarly, the most bank j could owe (even

without repayments) is (n + |E|)r∗, and for every bank j we know there exists probability pj > 0 such

that zj > (n + |E|)r∗, and so bank j does not default. By independence, the probability some bank

i ∈ K does not default is pi, so the set of banksK do not default with probability at least pi > 0.

Lemma 3. In any single-entrepreneur network G, there is a systemic freeze if and only if there

exists no path P = 0 → i1 → · · · → ik → E (where E is an entrepreneur) with interest rates

{R0→i1 , Ri1→i2 , · · · , Rik→E} ≡ RP such that E[πj ] ≥ E[(zj)+] for all agents j on P , given Rk→` = ∅
for all k → ` not on P (where E is over the realizations of z).

Informally, this condition says there is a systemic freeze (i.e., no interbank lending) if and only if

we cannot construct a path from the depositor to the entrepreneur, such that all banks prefer to lend

at these interest rates than not engage in interbank lending at all.

Proof. For the “if” direction, we prove the contrapositive: if there is no systemic freeze, then there

must exist a path P = 0 → i1 → · · · → ik → E where the interest rates RP give us E[πj ] ≥ E[(zj)+].

By Theorem 3, we know the financial network x∗ is an intermediation path P from the depositor to

entrepreneur. Assume, however, this path has at least one bank j with E[πj ] < E[(zj)+]. By definition of

the equilibrium, bank j is aware that no other bank in P acting later will withdraw its offer conditional

on j not withdrawing, and moreover, all banks will borrow and lend so that P is the financial network.

Therefore, it bank j has a profitable one-shot deviation to withdraw its offer, contradicting that this is

an equilibrium.

For the “only if” direction, suppose there exists a path P = 0 → i1 → · · · → ik → E where some

interest rates RP give us E[πj ] ≥ E[(zj)+] for all j ∈ P . By means of contradiction, suppose there is
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a systemic freeze. Consider the last agent i∗ to act in O on the path P . Conditional on Rk→` = ∅ for

all k → `, and given the interest rates R∗P up until agent i∗ (not necessarily equal to RP ) such that

agent i∗ can offer some Ri∗ and satisfy E[(zi∗)+] ≤ E[πi∗ ] and E[(zj)+] ≤ E[πj ] for all banks j on P .

Then it is a best-response for bank i∗ to offer some Ri∗ , and no bank on P to withdraw (which does

at least as well as E[(zi∗)+]). By backward induction, we see that every bank i on this path P can offer

some Ri such that E[(zj)+] ≤ E[πj ] for all banks j ∈ P , and that conditional on offering Ri, bank j

does (weakly) better than offering ∅. Since these offers do affect those banks outside of P , it is still an

equilibrium for these banks to offer ∅. However, repeating this argument, we see that the first bank to

offer according toO in P would prefer to offer to the next bank in P as opposed to not offer (i.e., offer

∅), and then not withdraw the contract. This contradicts the assumption that a systemic freeze was

the equilibrium.

Proof of Theorem 1

To prove part (a), we construct a repayment equilibrium for every realization of z, iteratively (let τ be

the τ th iteration). LetDτ ⊂ B ∪ E be the set of entrepreneurs in default at iteration τ . At τ = 0, assume

Dτ = B∪E . At each τ ≥ 1, for each bank j, if zj +
∑

k∈Nout(j)\Dτ−1
Rj→kxj→k ≥

∑
i∈Nin(j)Ri→jxi→j , then

do not include j in Dτ−1, otherwise do. For entrepreneur k, at each τ ≥ 1, if r∗ ≥
∑

j∈Nin(k)Rj→kxj→k,

then do not include k inDτ−1, otherwise do.

We prove this algorithm constructs a repayment equilibrium. First notice that if j 6∈ Dτ then j 6∈ Dτ ′
for all τ ′ ≥ τ . This can be shown by induction: in the base case, the set of non-defaulting banks is

empty, so this set can only increase. At the inductive step, we note that
∑

k∈Nout(j)\Dτ−1
Rj→kxj→k ≥∑

k∈Nout(j)\Dτ−2
Rj→kxj→k, so each bank (or entrepreneur) will be able to meet its obligations in all

τ ′ ≥ τ if it can at τ . Since Dτ is a decreasing set, and there are finitely many banks, we are guaranteed

this algorithm terminates at some τ∗ with either Dτ∗ = Dτ∗−1 or Dτ∗ = ∅. In the latter case, we know

Dτ∗+1 = Dτ∗ so it is without loss of generality to consider only the former. We claim this admits a

repayment equilibrium. For each bank j 6∈ Dτ∗ we have:

zj +
∑

k∈Nout(j)\Dτ∗
Rj→kxj→k = zj +

∑
k∈Nout(j)\Dτ∗−1

Rj→kxj→k ≥
∑

i∈Nin(j)

Ri→jxi→j

and for each bank j ∈ Dτ∗ we have:

zj +
∑

k∈Nout(j)\Dτ∗
Rj→kxj→k = zj +

∑
k∈Nout(j)\Dτ∗−1

Rj→kxj→k <
∑

i∈Nin(j)

Ri→jxi→j

(and similar for entrepreneurs), which proves the claim.

For any R, and given the existence of a repayment equilibrium, the borrowing stage is a finite

extensive-form game with perfect information (where the terminal nodes represent “random” payoffs,

but where the banks maximize according to expected utility of equation (2)). By Zermelo’s theorem,

there exists a pure strategy borrowing equilibrium that can always be derived through backward

induction, which establishes part (b).

Taking the borrowing equilibrium as given, the weak (subgame) perfect equilibrium also exists in

pure strategies by Zermelo’s theorem. In the strong equilibrium, for every perturbed game, after each
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offer, nature makes a move which perturbs the offer randomly (see Appendix A). To show this, we

amend Zermelo’s theorem for every node in the game-tree. For agent j = O(n + 1) offering last, she

simply chooses:

R∗j ∈ arg max
R∈R|Nout(j)|

E[πj(R)|Hj ]

where utility πj is given in equation (2), Hj is the entire history of offers, and expectation is over the

interest rate trembles of agent j. For agent i = O(t) offering at time t, she simply chooses:

R∗i ∈ arg max
R∈R|Nout(i)|

E[πi(R,R−i)|Hi]

where utility πi is given in equation (2) taking the actions R−i of all future agents {k : O−1(k) > O−1(i)}
as given by backward-induction, hi is the history of offers for agents {k : O−1(k) < O−1(i)}, and the

expectation is over the interest rate trembles of agent i and all future offering agents {k : O−1(k) ≥
O−1(i)}. Both the interest rate offers and borrowing decisions are in pure strategies. Therefore, every

perturbed game has a (subgame perfect) equilibrium in pure strategies. By the convergence and

uniqueness of these equilibria in Theorem 2 with trembles given in Appendix A, we see there exists

a strong equilibrium in pure strategies.

Proof of Theorem 2

By Theorem 3,31 we know that the financial network (R∗,x∗) is a directed tree. Let T be a strong

topological order on this network. Then working from the agents closest to the depositor, we can

solve for the unique repayment equilibrium via backward induction. In particular, for bank j at

topological index T (j), we know that yj→i = 0 for some bank i ∈ Nin(j) if zj +
∑

k∈Nout(j) yk→j −∑
i∈Nin(j)Ri→jxi→j < 0, otherwise yj→i = Ri→jxi→j , where

∑
k∈Nout(j) yk→j is known because T (k) >

T (j) for all k ∈ Nout(j). Therefore, we can iteratively compute the repayment equilibrium for any z,

which is uniquely determined.

For any set of interest rates R in a perturbed game, we know that with probability 1 no two interest

rates are identical, so borrowing takes the form given in Lemma 1 (i.e., a directed tree) . Let us consider

the set X∗, the lim supn→∞ of borrowing networks (i.e., the set of all equilibrium borrowing networks

which appear infinitely often as n → ∞). Such a set X∗ is necessarily non-empty. Suppose there are

two distinct lending trees T, T ′ appearing in X∗. Consider some bank j that lies at the intersection

of these trees but borrows from different lenders i and i′ in T and T ′, respectively. By construction

of X∗, as εm
a.s.→ 0, bank i lends to bank j∗ with positive probability and bank i′ lends to bank j∗ also

with positive probability. It clearly cannot be the case that i and i′ make positive profits as εm
a.s.→ 0,

given the (strong) equilibrium interest rates R∗,R
′
∗, respectively. Otherwise, whichever bank makes

positive profits can reduce its interest rate by an arbitrarily small amount, which as εm
a.s.→ 0 would

guarantee that it has the unique lowest interest rate and makes arbitrarily close to the same (positive)

profits. Let ∂πmi (resp. ∂πmi′) denote the marginal profit of lending to bank j∗ for bank i (resp. bank

31Note that we cite Theorem 2 in the proof of Theorem 3 to show it is a directed tree, but we are leveraging only uniqueness
of the interest rate and borrowing stages, and not the unique repayment equilibrium, which is the only time we use
Theorem 3 in this proof.
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i′). Therefore, limm→∞ EQ[∂π′mi′ ] = EQ[∂πmi] = 0 is a necessary condition.32 For a generic Q and

a generic tuple of interest rates Ri→j , R′i′→j (holding others constant) this will not be satisfied (see

Appendix C, Proposition 12(c)). Thus, the tuple of Ri→j , R′i′→j where (marginal) profits for bank i

and bank i′ are zero, lie on a set of measure zero. Let us induct on the path from j∗ to the depositor

in both T and T ′. To do so, replace i with the unique lender of i in T (call it `) and replace i′ with

the unique lender of i′ in T ′ (call it `′). If these agents are not distinct, then we can replace j∗ from

before with `∗ = ` = `′ and repeat the above argument. Otherwise, by the same reasoning as the

above, it must be the case that ` and `′ do not make positive (marginal) profits when lending to i and

i′, respectively. We can repeat this argument as needed until we either: (i) reach the depositor or

(ii) reach an intermediation chain from the depositor to some bank β∗ which is the same in both T

and T ′. In the former case, for generic Q and a given risk-free rate r0, the only interest rates charged

to banks in T and T ′ that allow both to be strong equilibria lie on a set of measure zero. By similar

reasoning as before (using Ott and Yorke (2005)), the expected profit of the depositor is generically

larger either under T or T ′, and by charging an arbitrarily small difference in interest rate, can change

the equilibrium to either T or T ′ with probability 1. Similarly, for the intermediation chain from the

depositor to bank β∗ can be replaced by an “equivalent depositor” with a different risk-free rate r̃0 of

the outside technology. Therefore, bothQ (on the rest of the network) and r̃0 are generic, so the same

argument applies. Finally, either β∗ or the depositor is better of deviating to a marginally different

offer (which has an arbitrarily small impact on profits in either T or T ′), but necessarily induces either

T or T ′ to never be the borrowing network. This means in a strong equilibrium, there will be a unique

lending network x∗ (i.e., the set X∗ is a singleton).

To show R∗ is essentially unique in the strong equilibrium, it is enough to prove that no bank is

indifferent between offering any two interest rates whenever xi→j > 0 (the result then follows from

Zermelo’s theorem and that other offers do not affect payoffs). We do this by backward induction on

the offer order O. Consider some bank j who takes as given its interest rate offers and chooses R̄j .

Agent j maximizes its (marginal) profit of lending to bank k ∈ Nout(j), taking as given offers to banks

k′ ∈ Nout(j)\{k}. Then, it chooses R̄∗j→k ∈ arg maxR̃j→k E[∂πj→k(R̃j→k)]. If x∗j→k > 0 with positive

probability (bounded away from zero) as εm → 0 it is clear by Lemma 1 that R̄∗j→k → minj′ Rj′→k

(where the min includes competing banks j′ over k who do not immediately withdraw in the following

stage). Otherwise, as we concluded before, bank j’s offer to bank k does not affect the essential

uniqueness of R∗. For the inductive step, consider some other bank j′ that offers, taking as given

the history all interest rate offers, and all (relevant) future offers as known with certainty, given Rj (by

the inductive assumption, since no bank is indifferent when its offer is relevant). As before, agent

j maximizes its (marginal) profit of lending to bank k ∈ Nout(j), taking as given offers to banks

k′ ∈ Nout(j)\{k}. If x∗j→k > 0 with positive probability (bounded away from zero) as εm → 0, then

R̄∗j→k → R∗j→k = arg maxRj→k EQ[∂πj→k(Rj→k)], which is unique by genericity ofQ (and uniqueness of

32Note that these expectations depend on the offer order O, but are simply integrals over realizations of liquidity shocks,
as is the form in Ott and Yorke (2005), given that banks are not indifferent between making multiple offers for Ri→j when
xi→j > 0 as shown in the following paragraph.
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future “relevant” offers), see Proposition 12(d) in Appendix C. Otherwise, bank j’s offer solves:

R̄∗j→k = arg max
R̄j→k

EQ[∂πj→k(R̄j→k + εj→k,m)]

= arg max
R̄j→k

EQ
[
∂πj→k(R̄j→k + εj→k,m)

∣∣∣R̄j→k + εj→k,m ≤ min
j′,j′′
{R̃j′→k, R̄j′′→k(R̃j→k) + εj′→k,m}

]
· P
[
R̄j→k + εj→k,m ≤ min

j′,j′′
{R̃j′→k, R̄j′′→k(R̃j→k) + εj′→k,m}

]
As εm → 0, the above converges to:

R̄∗j→k = arg max
R̄j→k

EQ
[
∂πj→k(R̄j→k)

∣∣∣R̄j→k ≤ min
j′,j′′
{R̃j′→k, R̄j′′→k(R̃j→k)}

]
· P
[
R̄j→k ≤ min

j′,j′′
{R̃j′→k, R̄j′′→k(R̄j→k)}

]
= arg max

R̄j→k

∫
Q
∂πj→k(R̄j→k)

∏
j′′

(
1−Hm

(
R̄j′′→k(R̄j→k)− R̄j→k

))
dQ

=⇒
∫
Q

∂ ∂πj→k
∂R̄j→k

∏
j′′

(
1−Hm(R̄j′′→k − R̄j→k)

)
+ ∂πj→k(R̄j→k)

∑
j′′

[
1−

∂R̄j′′→k
∂R̄j→k

]
H ′m

(
R̄j′′→k(R̄j→k)− R̄j→k

) ∏
j′′′ 6=j′′

(
1−Hm

(
Rj′′′→k − R̄j→k

))
dQ = 0

By the assumption onHm in Appendix A, it is clear thatEQ[∂πj→k(R̄j→k)]→ 0 asm→∞ in equilibrium

if ∂R̄j′′→k/∂R̄j→k remains (sufficiently) bounded away from 1. For this consider j′′’s problem:

R̄∗j′′→k(R̃j′→k) = arg max
R̄j′′→k

EQ
[
∂πj′′→k(R̄j′′→k + εj→k,m)

∣∣∣R̄j′′→k + εj′′→k,m ≤ min
j′
R̃j′,k

]
· P
[
R̄j′′→k + εj′′→k,m ≤ min

j′
R̃j′,k

]
= arg max

R̄j′′→k

∫
Q

∫ minj′ R̃j′→k−R̄j′′→k

−∞
∂πj′′→k(R̄j′′→k + α) dH(α) dQ

By the fundamental theorem of calculus, our first-order condition reduces to:

=⇒
∫
Q
H ′
(

min
j′
R̃j′→k − R̄∗j′′→k

)(
∂πj′′→k

(
min
j′
R̃j′→k

))
= 0

By the implicit function theorem, we observe that:∫
Q

[
H ′′
(

min
j′
R̃j′→k − R̄∗j′′→k

)(
∂πj′′→k

(
min
j′
R̃j′→k

))(
1−

∂R̄∗j′′→k

∂minj′ R̃j′→k

)

+H ′
(

min
j′
R̃j′→k − R̄∗j′′→k

)
∂ ∂πj′′→k

∂minj′ R̃j′→k

]
dQ = 0

which implies ∂R̄j′′→k/∂minj′ R̃j′→k is (sufficiently) bounded away from 1 as m → ∞, given that

limm→∞H
′′
m/H

′
m <∞, as assumed in Appendix A.

Finally, as we saw before, this implies by genericity there is a unique offer R̄j→k that gives bank j

zero (expected) profits, via the inductive step and given the history of offers. Therefore, the interest

rates R are unique in the strong equilibrium.
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Proof of Theorem 3

(i): Clearly if xi→j > 0 in the borrowing equilibrium, then Ri→j 6= ∅. Otherwise if xi→j = 0 and

Ri→j = R∗ 6= ∅ (otherwise, we are done), consider the withdrawal decision of bank i in the offer stage.

Because the remaining subgame is perfect information, bank i’s information set assigns probability 1

to bank i choosing xi→j = 0 in the borrowing stage. This means bank i is indifferent to offering R∗

and offering Ri→j = ∅ (i.e., withdrawing). Moreover, by Lemma 1 this deviation does not affect the

future withdrawal decisions of banks k 6= i or the borrowing decisions of banks k 6= j. By induction, it

can therefore be established there exists a strong equilibrium where Ri→j = ∅ if and only if xi→j = 0

(which is the contrapositive of the statement).

(ii): We first claim the financial network cannot contain any directed cycles. Suppose to the

contrary we have a cycle of banks i0 → i2 → ik → i0 such that xiα→iα+1
> 0 (with mod k). Take

x = minα xiα→iα+1
> 0. Consider the case where Riα→iα+1

≥ Riα+1→iα+2
for some α. Then after

observing all interest rate offers, bank iα+1’s decision to not withdraw the offer to iα+2 is dominated

by withdrawing. If bank iα+1 withdraws, by Lemma 1 it can borrow xiα→iα+1
> x less from its lenders

and lend less to bank iα+1 by the same amount. In the event that bank iα+1 is insolvent, both give the

same payoff; in the event that bank iα+1 is solvent, bank iα+1 gets at least as much payoff when bank

iα+2 is solvent (and strictly more whenRiα→iα+1
> Riα+1→iα+2

), and gains at leastRiα→iα+1
· x > 0 when

bank iα+2 is insolvent. Since the latter event occurs with positive probability by Lemma 2, withdrawing

dominates not withdrawing bank iα+2’s offer, so in equilibrium we must have Riα→iα+1
< Riα+1→iα+2

for all α. But because this is a cycle starting and ending at the same bank i0, this cannot be.

Now by definition of strong equilibrium (Appendix A), for any perturbed game, no distinct interest

rate offers are identical with probability 1. By Lemma 1, the borrowing equilibrium consists of every

bank and entrepreneur borrowing from its cheapest lender. Therefore, every bank borrows from at

most one other bank, which implies x∗ (and by part (a), R∗ as well), is a directed tree. By Theorem 2,

the (unique) financial network of the strong equilibrium (which is the limit of perturbed games) must

also be a directed tree.

Proof of Theorem 4

In a single-entrepreneur network, this is a direct consequence of Lemma 3, since the existence of

a systemic freeze depends only the risk profile Q and the network G and not the order of actions

(O,L). For multiple entrepreneurs, identical reasoning as Lemma 3 can be extended to the case of

trees, which are guaranteed to be the structure of the financial network in Theorem 3, except where

we replace the profitable path P in Lemma 3 with profitable tree T .

Proof of Proposition 1

First, we show that if the entrepreneur has a credit freeze in G, then it has a credit freeze in every chain

subnetwork H ⊂ G. We prove the contrapositive: if there is lending to the entrepreneur in some chain

H, then there must be lending in G. By Lemma 3, we know there exist some interest rates RP along

the path P = H with E[πj ] ≥ E[(zj)+] for all j on this path. In G, because P ⊂ G, the same set of
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interest rates RP along P does not change E[πj ] (becauseRk→` = ∅ for all (k → `) ∈ G\H). Therefore,

applying Lemma 3 again, we see there is no systemic credit freeze in G, so the sole entrepreneur does

not experience a credit freeze in G.

Next, we show if the entrepreneur has no credit freeze in G, then there exists some chain

subnetwork H ⊂ G where the entrepreneur does not experience a credit freeze. Consider the path

P guaranteed by Lemma 3 such that E[πj ] ≥ E[(zj)+] for some set of interest rates along this path.

Taking H = P , we note that these inequalities still hold in H for the same set of interest rates (neither

E[πj ] nor E[(zj)+] change), so by Lemma 3, there is no credit freeze in H.

Proof of Corollary 1

By Proposition 1, if the entrepreneur experiences a credit freeze in Ḡ, then it experiences a credit freeze

for every chain subnetwork. Since every chain subnetwork in G is present in Ḡ because G ⊂ Ḡ, there

is a credit freeze for every chain subnetwork of G, so once again by Proposition 1, there is a (systemic)

credit freeze in G.

Proof of Theorem 5

For (a), we show that if G has no credit freeze with r0, then it has no credit freeze in G′ with 1 ≤ r′0 ≤ r0.

Again, by Lemma 3 we have interest rates R0→1, R1→2, . . . , Rn→(n+1) in G such that E[πj ] ≥ E[(zj)+]

for all j ∈ {0, . . . , n + 1}. If we consider this same set of interest rates in G′, then it is clear that

E[π′j ] = E[πj ] ≥ E[(zj)+] = E[(zj)+] for all j ∈ {1, . . . , n}. Then:

0 = E[(z0)+] = E[(z0)+] ≤ E[π0] = E [(z0 + y1→0 − r0)+]

≤ E
[
(z0 + y1→0 − r′0)+

]
= E[π′0]

By Lemma 3, there is no credit freeze in G′ with r′0 ≤ r0. Of course, setting r0 = r∗ leads to a credit

freeze, so therefore there exists some r̄0 where r0 > r̄0 leads to credit freeze. Finally, to note that

r̄0 < r∗, by Lemma 2 bank 1 defaults and bank 2 survives with positive probability, so bank 2 must

make positive rents.

For (b), we show that if G has no credit freeze with r∗, then there is no credit freeze in G′ with r∗
′ ≥

r∗. We utilize Lemma 3 again; we have interest rates R0→1, R1→2, . . . , Rn→(n+1) in G such that E[πj ] ≥
E[(zj)+] for all j ∈ {0, . . . , n+ 1}. Because Rn→(n+1) ≤ r∗ in equilibrium, we know that Rn→(n+1) ≤ r∗

′
,

so the entrepreneur is still solvent with probability 1 and hasE[πn+1] = r∗
′−Rn→(n+1) ≥ 0 = E[(zn+1)+].

Therefore, it is easy to see E[π′j ] = E[πj ] ≥ E[(zj)+] = E[(zj)
′
+] for all j ∈ {0, . . . , n + 1}. By Lemma 3,

there is no credit freeze in G′ with r∗
′ ≥ r∗. For the same reason as (a), it is clear that r∗ > r0, as bank 2

must make positive rents from lending to bank 1.

For part (c), consider a chain of length nwith no credit freeze. We first show that the chain of length

n − 1 will also not experience a credit freeze. By Lemma 3, in the n-bank chain G, there exist interest

rates R0→1, R1→2, . . . , Rn→(n+1) such that E[πj ] ≥ E[(zj)+] for all j ∈ {0, . . . , n+ 1}. In the (n− 1)-bank

chain G′, let us consider the same set of interest rates R0→1, R1→2, . . . , R(n−1)→n (less the final offer,

which does not exist in the shorter chain). We first claim y′j→j−1 (under G′) FOSD yj→j−1 (under G)

for all j ∈ {1, . . . , n + 1} for these interest rates. It is sufficient to show probability of repayment in G′
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exceeds that in G. We prove this by induction. Since the entrepreneur repays with probability 1 when

R(n−1)→n ≤ r∗, the probability bank n− 1 repays to bank n− 2 is:

P[zn−1 +R(n−1)→n ≥ R(n−2)→(n−1)] ≥ P[zn−1 + yn→(n−1) ≥ R(n−2)→(n−1)]

Suppose that y′j→j−1 FOSD yj→j−1. Then:

P[zj−1 + y′j→j−1 ≥ R(j−2)→(j−1)] ≥ P[zj−1 + yj→j−1 ≥ R(j−2)→(j−1)]

so y′j−1→j−2 FOSD yj−1→j−2. Finally, we see that for all j ∈ {0, . . . , n}:

E[(zj)
′
+] = E[(zj)+] ≤ E[πj ] = E

[(
zj + y(j+1)→j −R(j−1)→j

)
+

]
− F · P

[
zj < R(j−1)→j − y(j+1)→j

]
≤ E

[(
zj + y′(j+1)→j −R(j−1)→j

)
+

]
− F · P

[
zj < R(j−1)→j − y′(j+1)→j

]
= E[π′j ]

Therefore, by Lemma 3, there is no credit freeze in G′, the (n−1)-bank chain. Finally, by Lemma 2 note

there exist p, q > 0 (independent of i) such that probability that any bank (i−1) on this chain defaults is

at least p > 0 and the probability bank idoes not default is at least q > 0 (by symmetry). The probability

that both of these events occur simultaneously is at least pq by independence. Therefore, risk premia

in the chain must satisfy Ri→(i+1) ≥ R(i−1)→i/(1 − pq) to make nonnegative profits. Therefore, for

large enough n̄, given the depositor is lending at least r0, it is clear the (minimum) interest rate needed

to charge the entrepreneur exceeds r∗, which implies by Lemma 3 there will be a credit freeze for all

n ≥ n̄.

Proof of Proposition 2

Suppose there is no systemic credit freeze in Q, so by Lemma 3 there exist R0→1, . . . , Rn→(n+1) such

that:

E[(zj)+] ≤ E
[(
zj + y(j+1)→j −R(j−1)→j

)
+

]
− F · P

[
zj < R(j−1)→j − y(j+1)→j

]
for all j. If Q′ FOSD Q, we prove that y′j+1→j FOSD yj+1→j . We do so by induction. Note the

entrepreneur always repays in equilibrium regardless of the risk profile. Bank j repays if and only

if zj ≥ R(j−1)→j − y(j+1)→j . It is straightforward to see z−j is a sufficient statistic for y(j+1)→j , and

y′(j+1)→j FOSD y(j+1)→j (by assumption) so we know that:

P
[
zj ≥ R(j−1)→j − y(j+1)→j

]
≤ P

[
z′j ≥ R(j−1)→j − y′(j+1)→j

]
(5)

which implies that y′j→(j−1) FOSD yj→(j−1) by rearranging. It is clear the inequality is strict if the

conditional distribution zj |z−j under Q′ is different than under Q for some z−j (i.e., if bank j

experiences an adverse shift). For all banks j without an adverse shift, we have:

E[(z′j)+] = E[(zj)+] ≤ E
[(
zj + y(j+1)→j −R(j−1)→j

)
+

]
− F · P

[
zj < R(j−1)→j − y(j+1)→j

]
≤ E

[(
z′j + y′(j+1)→j −R(j−1)→j

)
+

]
− F · P

[
z′j < R(j−1)→j − y′(j+1)→j

]
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For all banks j with an adverse shift, the inequality in (5) is strict, so we have for some ε > 0:

E[(z′j)+]− ε ≤ E[(zj)+] ≤ E
[(
zj + y(j+1)→j −R(j−1)→j

)
+

]
− F · P

[
zj < R(j−1)→j − y(j+1)→j

]
< E

[(
z′j + y′(j+1)→j −R(j−1)→j

)
+

]
− F · P

[
z′j < R(j−1)→j − y′(j+1)→j

]
− ε

for sufficiently large F . Killing the ε expressions on both sides of the inequality, we see by Lemma 3,

we see there is no credit freeze underQ′.

Proof of Proposition 3

First, consider the case of F = 0. Consider some risk profileQ that has more tail risks thanQ′. IfQ has

no credit freeze, then by Lemma 3, there exist {R0→1, . . . , Rn→(n+1)} such that for all j ∈ {0, . . . , n}:

E[(zj)+] ≤ E
[(
zj + y(j+1)→j −R(j−1)→j

)
+

]
Let us consider the same set of interest rates in the network withQ′. First, we show by induction that

the single-crossing property means y′(j+1)→j FOSD y(j+1)→j . Again, in equilibrium, the entrepreneur

always repays. Assuming y′(j+1)→j FOSD y(j+1)→j , then:

E[y′j→(j−1)] = R(j−1)→jP
[
z′j ≥ R(j−1)→j − y′(j+1)→j

]
= R(j−1)→j

(
P
[
z′j ≥ R(j−1)→j − y′(j+1)→j

∣∣∣z′j ≥ r∗]P[z′j ≥ r∗]

+ P
[
z′j ≥ R(j−1)→j − y′(j+1)→j

∣∣∣z′j < r∗
]
P[z′j < r∗]

)
= R(j−1)→j

(
P[z′j ≥ r∗] + P

[
z′j ≥ R(j−1)→j − y′(j+1)→j

∣∣∣z′j < r∗
]
P[z′j < r∗]

)
≥ R(j−1)→j

(
P[zj ≥ r∗] + P

[
zj ≥ R(j−1)→j − y′(j+1)→j

∣∣∣zj < r∗
]
P[zj < r∗]

)
≥ R(j−1)→j

(
P[zj ≥ r∗] + P

[
zj ≥ R(j−1)→j − y(j+1)→j

∣∣∣zj < r∗
]
P[zj < r∗]

)
= E[yj→(j−1)]

where the first inequality follows from single-crossing at λ ≥ r∗ and the second inequality follows from

the inductive hypothesis. Because yj→(j−1) is binary, this is sufficient for FOSD. We have the following

realized values for (zj + y(j+1)→j −R(j−1)→j)+ − (zj)+ for bank j:
Rj→(j+1) −R(j−1)→j , if zj ≥ 0; y(j+1)→j = Rj→(j+1)

Rj→(j+1) −R(j−1)→j + zj , if R(j−1)→j −Rj→(j+1) ≤ zj < 0; y(j+1)→j = Rj→(j+1)

−R(j−1)→j , if zj ≥ R(j−1)→j ; y(j+1)→j = 0
−zj , if 0 ≤ zj < R(j−1)→j ; y(j+1)→j = 0

Note z−j is a sufficient statistic for y(j+1)→j and y′(j+1)→j . We can break the above into three regions:

(i) zj ≥ R(j−1)→j , (ii) 0 ≤ zj ≤ R(j−1)→j , and (iii) R(j−1)→j − Rj→(j+1) ≤ zj < 0. In the first region, we
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have:

(Rj→(j+1) −R(j−1)→j)P
[
zj ≥ R(j−1)→j

∣∣∣y(j+1)→j = Rj→j+1

]
P
[
y(j+1)→j = Rj→j+1

]
−R(j−1)→jP

[
zj ≥ R(j−1)→j

∣∣∣y(j+1)→j = 0
]
P
[
y(j+1)→j = 0

]
=P
[
zj ≥ R(j−1)→j

] {
(Rj→(j+1) −R(j−1)→j)P

[
y(j+1)→j = Rj→j+1

]
−R(j−1)→jP

[
y(j+1)→j = 0

]}
≤P
[
z′j ≥ R(j−1)→j

] {
(Rj→(j+1) −R(j−1)→j)P

[
y(j+1)→j = Rj→j+1

]
−R(j−1)→jP

[
y(j+1)→j = 0

]}
≤P
[
z′j ≥ R(j−1)→j

] {
(Rj→(j+1) −R(j−1)→j)P

[
y′(j+1)→j = Rj→j+1

]
−R(j−1)→jP

[
y′(j+1)→j = 0

]}
where the equality is from independence, the first inequality is from single-crossing, and the second

inequality is from the previous intermediate result about repayment. For the second region, we have:

(Rj→(j+1) −R(j−1)→j)P
[
0 ≤ zj ≤ R(j−1)→j

∣∣∣y(j+1)→j = Rj→j+1

]
P
[
y(j+1)→j = Rj→j+1

]
−E

[
zj

∣∣∣0 ≤ zj ≤ R(j−1)→j ; y(j+1)→j = 0
]
P
[
0 ≤ zj ≤ R(j−1)→j

∣∣∣y(j+1)→j = 0
]
P
[
y(j+1)→j = 0

]
= P

[
0 ≤ zj ≤ R(j−1)→j

] {
(Rj→(j+1) −R(j−1)→j)P

[
y(j+1)→j = Rj→j+1

]
− E

[
zj

∣∣∣0 ≤ zj ≤ R(j−1)→j

]
P
[
y(j+1)→j = 0

] }
= P

[
0 ≤ z′j ≤ R(j−1)→j

] {
(Rj→(j+1) −R(j−1)→j)P

[
y(j+1)→j = Rj→j+1

]
− E

[
z′j

∣∣∣0 ≤ z′j ≤ R(j−1)→j

]
P
[
y(j+1)→j = 0

] }
≤ P

[
0 ≤ z′j ≤ R(j−1)→j

] {
(Rj→(j+1) −R(j−1)→j)P

[
y′(j+1)→j = Rj→j+1

]
− E

[
z′j

∣∣∣0 ≤ z′j ≤ R(j−1)→j

]
P
[
y′(j+1)→j = 0

]}
where the first equality follows from independence, the second equality follows from condition (i),

and the inequality follows from the intermediate result. Finally, in the third region:(
Rj→(j+1) −R(j−1)→j + E

[
zj

∣∣∣R(j−1)→j −Rj→(j+1) ≤ zj < 0
])

·P
[
R(j−1)→j −Rj→(j+1) ≤ zj < 0

]
P
[
y(j+1)→j = Rj→(j+1)

]
=
(
Rj→(j+1) −R(j−1)→j + E

[
z′j

∣∣∣R(j−1)→j −Rj→(j+1) ≤ z′j < 0
])

·P
[
R(j−1)→j −Rj→(j+1) ≤ z′j < 0

]
P
[
y(j+1)→j = Rj→(j+1)

]
≤
(
Rj→(j+1) −R(j−1)→j + E

[
z′j

∣∣∣R(j−1)→j −Rj→(j+1) ≤ z′j < 0
])

·P
[
R(j−1)→j −Rj→(j+1) ≤ z′j < 0

]
P
[
y′(j+1)→j = Rj→(j+1)

]
These together imply that E[π′j ] − E[(z′j)+] ≥ E[πj ] − E[(zj)+] ≥ 0, so by Lemma 3, there is no credit

freeze under Q′. To generalize to any F , simply note that because y′(j+1)→j FOSD y(j+1)→j , the default

probability of any bank j is less with risk profileQ′ (less tail risks), so there continues to be no systemic

freeze even when F > 0.

Proof of Proposition 4

Consider some risk profileQ that is a normal distribution with common mean µ > 0, variance σ > 0,

and correlation ρ for all banks. It is sufficient by continuity in the default cost F to take F = 0 and note
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the result will still hold for all small values ofF . Let us consider interest ratesRi→(i+1) = r0+(i+1)· r∗−r0n+1

for all i ∈ {0, . . . , n}. Then the payoff of bank i is given by:

E[πj ] = E[(zj + y(j+1)→j −R(j−1)→j)+]

= E
[
(zj +Rj→(j+1) −R(j−1)→j)+

∣∣∣y(j+1)→j = Rj→(j+1)

]
P
[
y(j+1)→j = Rj→(j+1)

]
+ E

[
(zj −R(j−1)→j)+

∣∣∣y(j+1)→j = 0
]
P
[
y(j+1)→j = 0

]
For every ε > 0, there exists ρ∗ < 1 such that with correlation ρ > ρ∗, P[minj zj > 0|z1 > 0] ≥ 1− ε and

P[maxj zj > 0|z1 > 0] ≥ 1 − ε. It is clear that when minj zj > 0, then y(j+1)→j = Rj→(j+1) and when

maxj zj < 0, then y(j+1)→j = 0 for all j ∈ {0, . . . , n}. Therefore, the above expression reduces to:

E[πj ] ≥ (1− ε)P[z1 > 0]

(
E[zj |zj > 0] +

r∗ − r0

n+ 1

)
whereas

E[(zj)+] ≥ E[zj |zj > 0]P[zj > 0] = E[zj |zj > 0]P[z1 > 0]

Taking ε close enough to zero (by taking ρ∗ close enough to 1), we obtain that E[πj ] ≥ E[(zj)+]. By

Lemma 3, there is no credit freeze withQwith ρ > ρ∗.

Proof of Proposition 5

For part (a), suppose lending path P gives us the borrowing network x∗ before the adverse shifts. By

assumption of (a),Q(zi) = Q′(zi) for all banks i along the path P , as all banks experiencing an adverse

shift experienced a credit freeze before the shift. We know the current lending path P satisfies the

conditions of Lemma 3 both before and after the adverse shift, in that E[πPj ]−F ·P[πPj < 0] is the same

before and after the adverse shifts for all banks j ∈ P , for any interest rates RP (as is E[(zj)+] for all

j ∈ P ). For any other path P ′, the same logic as in Proposition 2 shows that E[πP
′

j ]−F ·P[πP
′

j < 0] is no

greater than before the adverse shifts for all j ∈ P ′, and that E[πP
′

j ]− F · P[πP
′

j < 0]− E[(zj)+] does not

increase after the adverse shifts, given sufficiently large F . This establishes that x∗ is the same before

and after the adverse shifts; in particular, no bank on P loses access to credit after the adverse shift.

For (b), if the entrepreneur does not experience a credit freeze after the adverse shift, then by

Lemma 3, there exists a path in P isomorphic to the chain network with interest rates R such that

E[(zj)+] ≤ E[πj ] along this chain. Note that the chain network H ⊂ G thus does not experience

a credit freeze. By Proposition 2, when F is sufficiently large, there is no credit freeze in H before

the adverse shifts. By Proposition 1, this implies there is no systemic freeze in G after the adverse

shifts, and in particular Theorem 3 guarantees the entrepreneur still borrows $1. So lending does not

decrease before the adverse shifts.

Proof of Proposition 6

We prove this result by induction. Suppose there is just a single bank in j ∈ R. Let j∗ be a borrower

of the depositor who also lends (directly or indirectly) to j. The choice of j∗ is unique because G is a
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tree; to see this, if there were multiple j∗1 , j
∗
2 , consider two paths P1, P2 that both have bank j on it, and

by taking the first (topologically from the depositor) bank k ∈ P1 ∩ P2, we see that k has at least two

(potential) lenders, which is a contradiction. Consider all banks B∗ borrowing from the depositor. Let

dj denote the (random) binary variable of whether bank j defaults. For all k ∈ B we have that:

E[π0] =

max{R0→k}k∈B∗ E
[∑
{k∈B∗:R0→k 6=∅}(R0→k(1− dk({R0→`}`∈B∗))− r0)x0→k

]
subject to E

[∑
{k∈B∗:R′0→k 6=∅}(R

′
0→k(1− dk({R′0→`}`∈B∗))− r0)x′0→k

]
≤ 0 ∀R′0→k ≤ R0→k for all k

Note that because G is a tree, dk({R0→`}`∈B∗) = dk(R0→k). By linearity of expectation, we have:

E[π0] =

{
max{R0→k}k∈B∗

∑
{k∈B∗:R0→k 6=∅}(R0→k(1− E[dk(R0→k)])− r0)x0→k

subject to
∑
{k∈B∗:R′0→k 6=∅}(R

′
0→k(1− E[dk(R

′
0→k)])− r0)x′0→k ≤ 0 ∀ R′0→k ≤ R0→k for all k

This is a separable problem because removing the depositor would disconnect the graph, and so the

interest rates charged to one bank have no bearing on the payoffs of the other banks linked to the

depositor. So, in particular:

E[π0] =

{∑
{k∈B∗:R0→k 6=∅}maxR0→k(R0→k(1− E[dk(R0→k)])− r0)x0→k

subject to (R′0→k(1− E[dk(R
′
0→k)])− r0)x′0→k ≤ 0 ∀ R′0→k ≤ R0→k for all k

Since no adverse shifts occurred for any banks in the subtrees of k 6= j∗, we know that E[dk(R0→k)] is

the same before and after the adverse shift at bank j (for all R0→k). Because all of the above problems

are separable over k, it is clear the financial network (R∗,x∗) in all subtrees except possibly the one

at bank j∗ remains the same. In particular, any of these banks experience a credit freeze if and only

if they did so before the adverse shift. Iteratively adding any banks j toR who experience an adverse

shift, and repeating the above argument gives the desired result.

Proof of Proposition 7

By Lemma 2, consider some set of contracts R0→1, . . . , Rn→n+1 such that E[πk] ≥ E[(zk)+] for all banks

k before the addition of the risk-bearing bank. Note that because zj ≥ r∗, then zj + y(i+1)→j −
Ri→j ≥ 0, so bank j never defaults, even if (i + 1) does not repay j. Consider the set of contracts

R′0→1, . . . , R
′
(i−1)→i, R

′
i→j , R

′
j→(i+1), . . . , R

′
n→(n+1) with R′k→k+1 = Rk→k+1 for all k 6= i and R′i→j =

R(i−1)→i, R
′
j→(i+1) = Ri→(i+1). As in Proposition 2, when F is large it is sufficient to check default

probabilities under these contracts are lower with risk-bearing bank i, then Lemma 2 guarantees there

will no systemic freeze.

We prove y′(k+1)→k FOSD y′(k+1)→k for all k 6= i, that y′j→i FOSD y(i+1)→i, and that E[(zj)+] ≤ E[πj ]. It

is clear that y(k+1)→k = y′(k+1)→k for all k ∈ {1, . . . , i − 1}. Since y′j→i = R′i→j almost surely, it FOSD all

other y, including y(i+1)→i. We prove for k ∈ {i+ 1, . . . , 0} by induction. We see that:

E[y(k+1)→k] = Rk→(k+1)P[zk+1 + y(k+2)→(k+1) −Rk→(k+1) ≥ 0]

≤ Rk→(k+1)P[zk+1 + y′(k+2)→(k+1) −Rk→(k+1) ≥ 0]

= E[y′(k+1)→k]
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where the inequality follows from the inductive step. Lastly, we know thatE[(zi+y(i+1)→i−R(i−1)→i)+]−
F · P[zi + y(i+1)→i −R(i−1)→i < 0] ≥ 0. This implies that for large enough F , we have:

E[πj ] = E[zj + y(i+1)→j −R′i→j ] ≥ E[zj + y(i+1)→j −R(i−1)→i] ≥ E[zj ]

Thus, E[πj ] ≥ E[(zj)+] for bank j, and we have showed there is no systemic freeze.

Proof of Proposition 8

Part (a) of the result follows by the exact same reasoning as Theorem 3 for why in the original economy,

the network cannot contain directed cycles. For part (b), note that the contracts offered with quantity-

restrictions are a superset of those offered without them. Therefore, extending Lemma 3, if there exists

a path P and interest rates RP along this path such that the conditions of Lemma 3 hold, then for

the same path there exist a set of interest rates and quantity-restrictions given by (RP , |E| + 1) such

that the same conditions (i.e., willingness to lend) hold as well, as none of quantity restrictions bind.

Thus, there cannot be systemic freezes with quantity restrictions if there is not a systemic freeze in the

original economy.

Proof of Proposition 9

It is enough to prove that if there exists a budgetB that restores lending, then givingB to the depositor

restores lending. Without loss of generality, suppose G is a chain. If B restores lending, then by

Lemma 3 there exists
∑n

i=0 εi ≤ B and (R0→1, . . . , Rn→(n+1)) such that E[(zi + εi)+] ≤ E[(zi + εi +

y(i+1)→i − R(i−1)→i)+] for all i ∈ {1, . . . , n + 1}, with E[ε0 + y1→0 − r0] ≥ 0. Instead, consider giving B

entirely to the depositor. Similarly, consider interest rates R′i→(i+1) = Ri→(i+1) −
∑n−i−1

k=0 εn−k for all

i ∈ {0, . . . , n− 1}. Then:

E[(zi)+] ≤ E[(zi + εi)+] ≤ E[(zi + εi + y(i+1)→i −R(i−1)→i)+]

= E[(zi + y′(i+1)→i −R
′
(i−1)→i)+]

for all i ∈ {1, . . . , n}, where the equality follows from the fact that (y′(i+1)→i − R
′
(i−1)→i) − (y(i+1)→i −

R(i−1)→i) = εi (and by simple induction, i.e., P[y(i+1)→i = 0] = P[y′(i+1)→i = 0]). Finally, note that for

the depositor:

0 ≤ E[ε0 + y1→0 − r0] ≤ E[B + y′1→0 − r0]

which then implies by Lemma 3 there is no systemic freeze.

Proof of Proposition 10

By Definition 8, we know if bank j is hit with an adverse shift and the freeze is simple, there exists a

(direct or indirect) lender j∗ of j such that all banks with frozen credit are a (direct or indirect) borrower

of bank j∗. Consider the distribution z′j − zj , where z′j is the (random) liquidity shock at bank j after

the adverse shift and zj is the liquidity shock before the distribution shift. Then setting εj = z′j − zj
(which requires budget B∗ = εj) reverses the effects of the shock and restores full lending.
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ConsiderB∗ to be the smallest budget needed to restore full lending in a targeted policy of the form

from (a). Let j∗ be the only bank the depositor lends to with (direct or indirect) borrowers whose credit

is frozen. Finally, let x∗ > 0 be the amount lent to all other banks connected to the depositor, other

than j∗. We claim that B∗∗ ≥ B∗ + x∗ > B∗ is the minimum budget required to restore lending in the

untargeted policy (if it is possible). Because the freeze is simple, the depositor still uses funds x∗ from

the central bank to lend to banks other than j∗ (i.e., the depositor does not change its lending decisions

after the intervention). Thus, for any B < B∗ + x∗, the depositor would set R′0→j∗x
′
0→j∗ < max{0, B −

x∗}+R0→j∗x0→j∗ , where ′ denotes quantities after the rescue policy. By assumption,
∑

k∈B∗(j∗) εk ≥ B∗

is a necessary condition to restore full lending to j∗’s (direct or indirect) borrowers, where B∗(j∗) is the

set of (direct or indirect) borrowers of j∗. By the same reasoning as in Proposition 9, there exists no set

of interest rates RB∗(j∗) in B∗(j∗) that mimic such a policy given that εj∗ = max{0, B − x∗} < B∗. Thus,

no untargeted policy that restores full lending with budget B∗ exists.

C Appendix: Prevalence Theory

This section is dedicated to explaining the relevant details of Ott and Yorke (2005) needed for our

work. This is of importance when we discuss generic risk profiles Q, because the usual definition

of “genericity” does not extend well to infinite-dimensional spaces (such as probability distribution

functions). The rich theory of Ott and Yorke (2005) allows us to handle a wide range of risk profiles

(both discrete and continuous) throughout this paper.

We begin with the following discussion from Ott and Yorke (2005) on the desirable properties of

geniricity. If X is a topological vector space, a sound theory of genericity for topological vector spaces

should satisfy the following genericity axioms.

(i) A generic subset of X is dense in X.

(ii) If L ⊃ G and G is generic, then L is generic.

(iii) A countable intersection of generic sets is generic.

(iv) Every translate of a generic set is generic.

(v) A subset G of Rn is generic if and only if G is a set of full Lebesgue measure in Rn.

In standard measure-theoretic terms, a subset G ⊂ Rn is said to be generic if Rn\G has zero Lebesgue

measure. This has problems in infinite-dimensional spaces: every separable Banach space with a

translation-invariant Boreal measure (which is not identically zero) must assign infinite measure to

all open sets. The example provided is the following: take the open ball B(x, ε). We can construct

infinitely many disjoint open balls of radius ε/4 containing withB(x, ε). Each of the balls has the same

measure, and if the measure of B(x, ε) is finite, these balls of radius ε/4 must have zero measure. But

then the entire space can be covered by (ε/4)-radius balls, so the space must have measure 0 (which

fails to satisfy Axiom 5).

Definition 10 (Definition 3.1 in Ott and Yorke (2005)). Let X be a completely metrizable topological

vector space. A Borel setE ⊂ X is said to be prevalent if there exists a Borel measure µ onX such that:
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(a) 0 < µ(C) <∞ for some compact subset C of X, and

(b) the setE + x has full µ-measure (that is, the complement ofE + x has measure zero) for all x ∈ X.

More generally, a subset F ⊂ X is prevalent if F contains a prevalent Borel set; we say that almost

every element of X lies in F or that F is generic.

Proposition 11 (Proposition 3.3 in Ott and Yorke (2005)). The theory of prevalence satisfies Axioms 1-5.

Therefore, when we refer to a property holding for a generic risk profile Q, we mean the set of Q
where this property holds is prevalent in the space of probability distribution functions. We present

some useful facts which are useful and leveraged throughout the paper:

Proposition 12. The following are true:

(a) For any constant c, for almost all discrete probability distributionsQ, EQ[zj ] 6= c.

(b) For any constant c, for almost all continuous (and differentiable) probability distributions Q,

EQ[zj ] 6= c (consequence of Example 3.6).

(c) For almost all continuous (or countably discrete) probability distributions, Q is unbounded above

and below (consequence of Example 3.9).

(d) For almost all continuous probability distributions Q and continuous (and sufficiently

differentiable) functions f , EQ[f(α)] has a unique global maximum in α.

For each of these, the trick is to find a finite-dimensional subspace P ⊂ X which is known as probe

for a setF ⊂ X. This holds whenever there exists a Borel setE ⊂ F such thatE+x has full λP -measure

for all x ∈ X. This is a sufficient condition for a set F to be prevalent. Many genericity conditions in

infinite-dimensional spaces (such as those probability distributions) can be proven using prevalence.

See the paper Ott and Yorke (2005) for examples.
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