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1 Introduction

In many economic environments, agents make choices under incomplete information and have

incentives to align their actions with both economic “fundamentals” and the actions of other

agents [Morris and Shin, 2002, Angeletos and Pavan, 2007]. These games of strategic interac-

tion form the underlying basis for many micro-founded macroeconomic environments; exam-

ples include firms’ nominal price-setting decisions in New Keynesian models [Woodford, 2003],

firms’ real quantity choices in business cycle models [Angeletos and La’O, 2010, 2013], as well as

investors’ asset positions in models of financial trade [Grossman and Stiglitz, 1976, 1980].

In these environments, agents’ beliefs over exogenous fundamentals and the endogenous

actions of others play a key role in determining equilibrium outcomes. But where do these

beliefs come from and how are they formed?

In this paper we investigate the endogenous acquisition of information within games of

strategic interaction. We ask two questions. First, what properties of the agents’ information

acquisition costs guarantee that an equilibrium of the game features or does not feature non-

fundamental volatility? Second, what properties of the agents’ information acquisition costs

guarantee that an equilibrium exists that is constrained efficient?

Our framework. We study a class of large games of strategic interaction. A continuum of ex-

ante identical agents take actions under incomplete information. Each agent has an incentive to

align her action with an exogenous, payoff-relevant state as well as with the endogenous mean

action.

Agents acquire information endogenously. In particular, we adopt the rational inattention

approach to costly information acquisition proposed by Sims [2003]. However, relative to the

standard rational inattention framework, we make three significant departures.

First, we do not assume information costs are proportional to mutual information—the

typical cost function introduced by Sims [2003] and used widely throughout the rational inat-

tention literature. We instead consider a more general class of cost functions: costs that are

“posterior-separable” in the terminology of Caplin, Dean, and Leahy [2021]. Posterior-separable

cost functions can be described as the expected divergence from the agents’ prior to posterior

beliefs. This class nests the standard mutual information cost function as a special case, but

also includes many other cost functions, including the log-likelihood ratio (LLR) cost functions

of Pomatto et al. [2020], the Tsallis entropy costs of Caplin, Dean, and Leahy [2021], and the

neighborhood-based cost functions of Hébert and Woodford [2021]. These alternative cost

functions have been proposed in part because they are better able to match observed behavior

in experiments (see, e.g., Dean and Neligh [2019]).

Second, we introduce exogenous noisy public signals. Noisy public signals are standard

components of exogenous information sets in beauty contest games [Morris and Shin, 2002,
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Angeletos and Pavan, 2007, Bergemann and Morris, 2013]. In these games, noisy public signals

play a major role in determining equilibrium outcomes. As a result, errors in these signals

orthogonal to fundamentals manifest as “non-fundamental” volatility in equilibrium.

Noisy public signals are less standard in rational inattention models, which generally assume

that agents pay attention only to payoff-relevant states. By allowing for the existence of noisy

public signals, we introduce a channel by which agents can choose to coordinate, as well as a

potential source of equilibrium “non-fundamental” volatility.

Third, we do not restrict agents to acquiring information only about exogenous states; agents

in our model can also learn by observing the endogenous mean action of other agents. This

modeling choice is motivated by the observation that agents often rely on information that

aggregates the actions of other agents (e.g. government statistics and prices) when making their

economic decisions. In this sense our work is similar in spirit to Denti [2020] and Angeletos and

Sastry [2021]. Both of these papers consider environments in which rationally inattentive agents

can acquire information about endogenous actions; for example, in Angeletos and Sastry [2021]

agents can learn from equilibrium prices in a Walrasian market.

Within this context, we answer the questions posed above. What properties of informa-

tion costs ensure that an equilibrium of the game does or does not exhibit non-fundamental

volatility? What properties of information costs guarantee that an equilibrium exists that is

constrained efficient? And finally, are these properties related? That is, is non-fundamental

volatility synonymous with inefficiency?

Partial Monotonicity and Partial Invariance. We find that whether or not a cost function leads

to non-fundamental volatility or inefficiency depends on two key properties: “partial mono-

tonicity” and “partial invariance.”

We introduce and define partial monotonicity and partial invariance as properties of the

divergences associated with posterior-separable cost functions. Loosely speaking, a divergence

can be thought of as a measure of the “distance” between the prior and posterior. Partial mono-

tonicity and partial invariance describe how this divergence responds to different transforma-

tions of the prior and posterior.

Suppose an agent is uncertain about a multi-dimensional aggregate state and receives a sig-

nal that moves her posterior beliefs “away from” her prior in some dimension of the aggregate

state. This signal is, in a sense, more informative than another signal that leaves posterior beliefs

close to the prior in that dimension. This idea leads to a notion of monotonicity: a divergence is

monotonic in some dimension if the divergence decreases as we make the posterior more like

the prior in that dimension. But note that a divergence could be monotonic in some dimensions

but not in others—our definition of “partial monotonicity” allows for this flexibility.

Take for example, a two-dimensional state space, s ∈ S and r ∈ R. We will say that a diver-

gence is monotone in R if the divergence decreases when we replace the posterior’s conditional
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distribution of r given s with the prior’s conditional distribution of r given s.

We define a separate concept, “partial invariance.” Take again a two-dimensional state space

s ∈ S and r ∈ R. We will say that a divergence is invariant in R if, for any prior and posterior

that share the same conditional distributions of r given s, only their marginal distributions on s

matter for the divergence.

The forms of partial monotonicity and partial invariance that we introduce are generaliza-

tions of the invariance concept described in the literature on information geometry [Chentsov,

1982, Amari and Nagaoka, 2007]. Invariance of the divergence in this sense holds if and only if

the agents’ behavior is characterized by the “invariance under compression” axiom of Caplin,

Dean, and Leahy [2021]. This form of invariance has been applied to particular economic ap-

plications by Hébert [2018] and Hébert and Woodford [2019].

The invariance and monotonicity properties described by these authors indicate whether a

divergence is invariant and monotone with respect to all possible dimensions of the state space.

In contrast, our generalization allows for invariance or monotonicity of a divergence with re-

spect to specific dimensions of the state space. This flexibility turns out to be important: we find

that the equilibrium properties of interest in our game—namely, non-fundamental volatility

and constrained efficiency—depend on the partial monotonicity and partial invariance proper-

ties with respect to specific dimensions of the state space.

Results. We find that partial monotonicity of the cost function in noisy public signals is suf-

ficient and (subject to some technical caveats) necessary to ensure the existence of an equi-

librium that features zero non-fundamental volatility. With such a cost function, it is always

cheaper for agents to condition their signals on the payoff-relevant states and aggregate actions

than to condition their actions on noisy public signals. But if conditioning on public signals only

increases information costs, then an equilibrium exists in which all agents ignore such signals.

This equilibrium features zero non-fundamental volatility.

On the other hand, when the cost function is non-monotonic in noisy public signals, agents

find it relatively “easier” or “cheaper” to condition their actions on the noisy public signals than

to pay attention to the payoff-relevant states directly. This information cost-saving incentive is

what induces agents to condition their actions on public signals, introducing correlated noise

across agents and, as a result, non-fundamental volatility in equilibrium.

We find that two conditions are sufficient and (again subject to some technical caveats) nec-

essary for constrained efficiency. First, payoff externalities, which arise from our assumption

that the actions of other agents enter each agents’ utility function, must be absent at the margin

in equilibrium. We characterize the class of utility functions exhibiting this property; we call

these “mean-critical” utility functions. This result extends prior results by Angeletos and Pavan

[2007] to our more general setting.

Second, information costs must exhibit partial invariance with respect to the endogenous
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mean action. We show that, given any mean-critical utility function, this form of partial in-

variance is a sufficient condition for constrained efficiency. Moreover, a local form of partial

invariance on the relevant part of the domain is necessary.

When cost functions are not invariant in the aggregate action, agents’ actions affect the ease

by which other agents acquire information. For example, suppose agents learn in part by paying

attention to the aggregate action, and more extreme aggregate actions are easier to observe than

less extreme actions. This is an externality—agents do not internalize how their own strategies

affect the information acquisition costs of others. The planner in this context would like to

encourage more extreme actions to in order to reduce information acquisition costs.

Our results clarify that separate properties of information costs determine whether or not

equilibria exhibit non-fundamental volatility and whether or not equilibria are efficient. By

precisely defining these properties—namely, partial monotonicity and partial invariance—we

characterize the relationship between information costs and the properties of equilibria.

Throughout the paper, we consider three example cost functions: mutual information (the

standard rational inattention cost function) and two forms of the neighborhood-based cost

functions proposed by Hébert and Woodford [2021]. The divergence associated with one of

the neighborhood-based cost functions we consider is non-monotone in the noisy public sig-

nals, and the divergence associated with the other is not invariant in the endogenous aggregate

action. As a result, we show that these cost functions can lead, respectively, to non-fundamental

volatility and constrained inefficiency. In contrast, the divergence associated with mutual infor-

mation (the Kullback-Leibler divergence) is monotone and invariant in all dimensions; conse-

quently, it precludes both non-fundamental volatility and inefficiency.

The bulk of our analysis assumes a finite set of exogenous states. We conclude our analysis

by presenting examples in the canonical linear-quadratic-Gaussian setting; these examples il-

lustrate the general lessons presented in the rest of this paper using first-order conditions in a

familiar environment. We extend some of our results to a continuous state space in the technical

appendix, Section B.

Related Literature. A large literature has studied the positive and normative implications of

large games of strategic interaction and incomplete information, and applied these insights to

questions in macro, finance, and industrial organization (see Angeletos and Lian [2016] for a

recent survey). Much of this literature assumes linear-quadratic payoffs, Gaussian priors, and

exogenously specified Gaussian signals about exogenous states.

Several authors (e.g. Hellwig and Veldkamp [2009], Myatt and Wallace [2012], Colombo,

Femminis, and Pavan [2014], Pavan [2016]) endogenize information acquisition in the linear-

quadratic setting, allowing agents to choose the precision with which they observe an exoge-

nously specified set of Gaussian signals about exogenous states. In these papers, the presence

or absence of non-fundamental volatility depends on the assumed correlation structure of the
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exogenously given signals (and, with precision choice across multiple signals, agents’ incentives

to coordinate).

Other authors (e.g. Mackowiak and Wiederholt [2009], Paciello and Wiederholt [2014], Afrouzi

[2020]) also endogenize information acquisition in this setting, but follow the rational inatten-

tion approach of Sims [2003]. These models do not assume a particular set of available signals;

instead, agents can choose any signal structure, subject to a cost described by mutual infor-

mation. With quadratic payoffs, Gaussian priors, and mutual information costs, the agent’s

optimal signal is a Gaussian signal about economic fundamentals. As a result, equilibria exhibit

zero non-fundamental volatility.

Our paper also follows the rational inattention approach, but generalizes away from the

mutual information cost function. As a result, we are able to accommodate non-fundamental

volatility, building a bridge between these two seemingly distinct approaches.

Our study of efficiency builds on the work of Angeletos and Pavan [2007] and Colombo,

Femminis, and Pavan [2014]. Angeletos and Pavan [2007] study the question of constrained

efficiency in the class of linear-quadratic games with exogenous information structures. We

extend their results to settings with general payoff functions, and obtain necessary and suffi-

cient conditions for constrained efficiency with endogenous information acquisition. However,

we shut down a key channel present in Angeletos and Pavan [2007] and Colombo, Femminis,

and Pavan [2014] by assuming that only the cross-sectional mean of actions, but not the cross-

sectional variance, enters payoffs.1 We emphasize instead a different externality: the externality

that arises if agents’ actions affect other agents’ information costs. The inefficiency we highlight

is closely related to the informational externality that arises when agents observe exogenous

signals about endogenous objects such as prices, as in Laffont [1985], Angeletos and Pavan

[2009], Amador and Weill [2010], Vives [2017], Angeletos, Iovino, and La’O [2020].

In this respect, our paper complements Angeletos and Sastry [2021]. Both papers take up the

question of efficiency with rationally inattentive agents in different settings. We focus on large

games with strategic interaction, while Angeletos and Sastry [2021] consider a Walrasian general

equilibrium environment with complete markets over states and signal realizations in which

rationally inattentive agents learn from prices. They find that invariance of the information

cost is sufficient to ensure that a planner cannot improve allocations by sending a message that

reduces information costs.2

1Colombo, Femminis, and Pavan [2014] study the efficiency of information acquisition within the Angeletos and
Pavan [2007] linear-quadratic-Gaussian setting. They show that the absence of payoff externalities involving the
mean action does not guarantee efficiency in the acquisition of information because the dispersion of actions enters
payoffs—an externality not internalized by agents. This alternative form of payoff externality is absent in our game,
and distinct from the externalities that arise in our game from the absence of invariance.

2The two papers also differ in a number of other respects. For example, we employ the constrained efficiency
concept in Angeletos and Pavan [2007] and Colombo, Femminis, and Pavan [2014] for abstract games in which the
planner may only control the action functions and information choices of the players. Angeletos and Sastry [2021]
consider instead a planner who can send messages to the agents, who can in turn learn about the content of the
message in addition to observing exogenous states directly. They ask a different question: whether in markets the
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Our focus on games with agents who can acquire information about the endogenous actions

of other agents builds on Denti [2020]. Relatedly, Ravid [2020] studies bargaining between a

seller and a buyer who is inattentive to both the exogenous state and the endogenous offer of

the seller. We adapt the approach of Denti [2020] to static games with a continuum of iden-

tical players. Relative to Denti [2020], the “largeness” feature of our class of games permits a

simpler definition of equilibrium, which is essentially Bayesian Nash equilibrium in a static,

simultaneous-move game. Our definition of equilibrium can also be thought of as the limit of

the dynamic process of strategic information acquisition Denti [2020] introduces. Our exercise

is similar in spirit to Morris and Yang [2019], in that we relate the properties of information costs

to the properties of equilibria in strategic settings.

2 The Game

We study a large game of strategic interaction with rational inattention.

2.1 Agents, Actions, and Payoffs

There is a continuum of agents with unit mass, indexed by i ∈ [0, 1]. Agent i chooses an action,

ai ∈ A ⊂ R. Let ā ∈ Ā ⊂ R denote the aggregate action, defined as

ā =

∫ 1

0
aidi.

We assume that A is a convex and compact subset of the real line. Consequently, the sets A

and Ā are identical; we use distinct notation only to help differentiate between individual and

aggregate actions. Nature draws a stochastic, payoff-relevant state, s from a finite set S ⊂ Rn.3

We refer to these states as the “fundamentals.”

Agents have a payoff function u : A× Ā× S → R; that is, an agent who takes action a ∈ A in

state s ∈ S when the aggregate action is ā ∈ Ā receives payoff u(a, ā, s). Individual agents—each

of whom is infinitesimal—do not take into account how their own action affects the aggregate

action. This is a defining feature of “large games.”

We first present our results in the context of a specific linear-quadratic beauty-contest game,

similar to the one studied in Morris and Shin [2002] and Angeletos and Pavan [2007], before

generalizing our results to broader classes of utility functions. We initially assume payoffs take

price function is an efficient conveyor of information in the sense of Hayek [1945].
3Using a finite set S simplifies our exposition. We discuss the continuous state case in the technical appendix,

Section B. Our approach of using a finite set of states to avoid technical complications follows, e.g., Kamenica and
Gentzkow [2011].
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the following linear-quadratic form:

u(a, ā, s) = −(1− β)(a− s)2 − β(a− ā)2, (1)

where β < 1 is a constant. The first component of (1) is a quadratic loss in the distance between

the agent’s action a and fundamental s; the second component is a quadratic loss in the distance

between the agent’s action a and the aggregate action ā. The scalar β governs the extent of

strategic complementarity (β > 0) or substitutability (β < 0) in this game; the assumption that

β < 1 ensures that a unique symmetric pure-strategy Nash equilibrium exists under complete

information given by ai = ā = s.

We assume the linear-quadratic payoff structure in (1) to focus our analysis on the con-

nection between properties of information acquisition costs and properties of equilibria. Our

findings, however, are not specific to the linear-quadratic beauty contest game; Section 7 shows

how our results generalize to a larger class of payoff environments.

2.2 Information Acquisition

Agents are rationally inattentive: they acquire information subject to a cost. We allow agents in

our framework to flexibly acquire information through multiple channels: by paying attention

to the exogenous fundamental state itself, by paying attention to exogenous public signals, and

by paying attention to the endogenous aggregate action, ā ∈ Ā.

States and Priors. In addition to the payoff-relevant states, s ∈ S, there exists a set of exoge-

nous noisy public signals, whose realizations r are drawn from a finite set R ⊂ Rn. Noisy public

signals create the potential for agents to coordinate their actions in a way that does not depend

on the payoff-relevant state.

For the purposes of interpretation, it is helpful to think of nature as drawing a set of shocks

e ∈ E that are orthogonal to the fundamentals s ∈ S, and then generating the public signal r

through some mapping E × S → R. The dependence of the public signal r ∈ R on the shocks

e ∈ E introduces a potential source of “non-fundamental” volatility in equilibrium. We treat the

set of possible public signal realizations R as exogenous, but allow it to be arbitrarily rich.

Let U0 ≡ ∆(S × R) denote the space of probability measures on S × R, endowed with the

weak* topology. Agents share a common, full-support prior probability measure µ0 ∈ U0.

In addition to the exogenous states s and r, agents can also pay attention to the endogenous

aggregate action ā. Let ᾱ : S × R → Ā be a function mapping exogenous states to an aggre-

gate action; this function will be determined in equilibrium by aggregating over the individual

agents’ strategies.4 Let Ā be the space of all such aggregate action functions, endowed with the

4Note that we assume ᾱ is a deterministic function of (s, r); we will subsequently define an equilibrium in a
manner consistent with this assumption.
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sup-norm topology.

Consider the space of probability measures ∆(S×R× Ā), endowed with the weak* topology.

Using the ᾱ function, we can define an agent’s prior µ ∈ ∆(S × R × Ā) on this space. Let φ :

U0 × Ā → ∆(S × R × Ā) denote a mapping from any pair (µ0, ᾱ) to its induced probability

measure, defined by, for all (s, r, ā) ∈ S ×R× Ā,

dφ{µ0, ᾱ}(s, r, ā) = dµ0(s, r)dδᾱ(s,r)(ā), (2)

where δᾱ(s,r) is the point mass at ᾱ(s, r). The agent’s prior is given by µ = φ{µ0, ᾱ}.
The mapping φ induces a measure on S × R × Ā by combining the exogenous prior µ0 over

S×R and the equilibrium conditional distribution of ā given (s, r). Because the aggregate action

is a deterministic function of s and r, the conditional distribution of ā given (s, r) is degenerate:

it is a point mass at ā = ᾱ(s, r).

This degeneracy arises from two features of our model: the largeness of the game, which

ensures that despite the randomness in each individual agent’s actions, the aggregate action

is a deterministic function of the exogenous states, and our choice to consider learning about

endogenous outcomes. These features arise in, for example, any model that features Walrasian

markets with price-taking and learning via prices (in this context, prices are a function of the

aggregate action).

Define the set of all measures in ∆(S ×R× Ā) that may be generated by some pair (µ′0, ᾱ) as

U = {µ ∈ ∆(S ×R× Ā) : ∃(µ′0, ᾱ) ∈ U0 × Ā s.t. µ = φ{µ′0, ᾱ}}.

In what follows, we use the subscript zero to denote objects defined on S × R as opposed to

S ×R× Ā (as with U0 and U).

Strategies. In rational inattention problems, we typically think of the agent as choosing a

signal structure and an action conditional on any signal realization. A signal structure is a

conditional distribution over signals: the probability of observing a particular signal realiza-

tion depends on the underlying state. Observing a particular signal realization leads the agent

to form posterior beliefs over the states and, based on that posterior, to choose an action (or

distribution over actions) optimally.

We forgo these intermediate steps and write the agent’s strategy directly as a joint measure

over actions and posteriors, π ∈ ∆(A× U).5 We require strategies to be “Bayes-consistent” with

the prior: the expectation of the posterior under measure π must equal to the prior, µ ∈ U .6

5This joint distribution over actions and posteriors can be thought of as summarizing the agent’s state-dependent
stochastic choice (Caplin and Dean [2015]).

6We discuss the relationship between signals, actions, and distributions over posteriors and actions in detail in
Appendix Section A, and see also e.g. Proposition 1 of Kamenica and Gentzkow [2011].
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Let µ′ ∈ supp(π) ⊆ U denote a posterior measure in the support of π. A strategy π ∈ ∆(A ×
U) is “Bayes-consistent” with the prior µ ∈ U if Eπ(a,µ′)[µ′] = µ,7 where Eπ(a,µ′)[·] denotes the

expectation under measure π, and if all µ′ ∈ supp(π) are absolutely continuous with respect to

µ, which we denote by µ′ � µ.8

Let Π(µ) ⊂ ∆(A × U) denote the set of joint measures over actions and posteriors that are

Bayes-consistent with the prior µ ∈ U , and endow it with the weak* topology. We will think of

Π(µ) as the set of feasible strategies.

Information Costs. While all strategies in Π(µ) are feasible, some strategies will be more costly

to the rationally inattentive agent than others.

We define the agent’s information acquisition costs directly over posteriors; following Caplin,

Dean, and Leahy [2021], we assume costs take the following “posterior-separable” form.

Definition 1. A posterior-separable cost function is a functionC : {(π, µ) ∈ ∆(A×U)×U : π ∈
Π(µ)} → R+ that can be written as

C(π, µ) = Eπ(a,µ′)[D(µ′||µ)], (3)

where D : {(µ′, µ) ∈ U × U : µ′ � µ} → R+ is a divergence, convex in its first argument.

That is, given a prior µ ∈ U , an agent who plays a Bayes-consistent strategy π ∈ Π(µ), incurs

information costs C(π, µ).

The cost function in (3) has an intuitive interpretation. A divergence is defined as a function

of two measures that is zero if and only if its arguments are equal, and is otherwise strictly

positive. It could be interpreted as a measure of how “close” or “far” two measures are from

one another, but note that it is not technically a distance (it need not be symmetric or satisfy the

triangle inequality).

In our context, the divergence is a function of the prior and a posterior. As agents gather

information, their posterior beliefs move away from their prior as measured by this divergence.

How this manifests in information costs is reflected (3). Note that the cost of a strategy that

gathers no information (all posteriors µ′ ∈ supp(π) are equal to the prior µ) is zero.

7Throughout the paper, we use the expectation Eπ(a,µ′)[f(a, µ′)] to denote
∫
supp(π)

f(a, µ′)dπ(a, µ′). Note here
that the equality defining Bayes-consistency should be understood in the weak* sense (see e.g. Aliprantis and Border
[2006] section 15.1), as in for example Jung et al. [2019] or the online appendix of Kamenica and Gentzkow [2011].

8Because we have assumed S and R are finite and that µ0 has full support, absolute continuity here requires only
that the posteriors µ′ be consistent with the aggregate action strategy ᾱ. Even away from the finite S and R case, the
requirement for absolute continuity is not very restrictive, as singular posterior measures relative to the prior must
by Bayes-consistency be zero measure events under π.
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2.3 The Agent’s Problem

Given the prior µ, the problem of the agent is to choose a strategy π ∈ Π(µ) that maximizes

her expected utility less information costs. The separability of expected utility and posterior-

separability of information costs together imply that the agent’s problem can be written as

max
π∈Π(µ)

Eπ(a,µ′)[V (a, µ′)−D(µ′||µ)],

where V (a, µ′) ≡ Eµ
′(s,r,ā)[u(a, ā, s)] denotes the agent’s expected utility from taking action a

under posterior measure µ′ ∈ U . Caplin, Dean, and Leahy [2021] call V (a, µ′)−D(µ′||µ) the net

utility function.

To ensure that the agent’s problem is well-behaved, we assume the divergence is continuous

and differentiable.

Assumption 1. D is jointly continuous on {(µ′, µ) ∈ U × U : µ′ � µ}. D(φ{µ′0, ᾱ}||φ{µ0, ᾱ}) is

Fréchet differentiable on (µ′0, ᾱ) ∈ int(U0 × Ā).9

2.4 Equilibrium Definition

We first discuss how the aggregate action function ᾱ ∈ Ā is determined, and then define an

equilibrium of this game.

Let ξ ≡ (π, ᾱ) denote a symmetric strategy profile, consisting of a strategy π ∈ ∆(A× U) and

an aggregate action function ᾱ ∈ Ā. In a symmetric equilibrium in which all agents play π, we

will require that the aggregate action function ᾱ be consistent with the mean action generated

by the strategy π. Specifically, we assume that, conditional on (s, r, ā), the realizations of actions

across agents are independent. That is, it is only the measures over actions, not the realizations,

that are identical across agents. Independence of realizations allows us to apply the law of large

numbers and require that the expected individual action be consistent with the mean action ā

in the population [Uhlig, 1996]. We impose this as follows.

Definition 2. A symmetric strategy profile ξ = (π, ᾱ) is mean-consistent if, for all (s, r) ∈ S ×R,

ᾱ(s, r) = Eπ(a,µ′)[a|s, r], (4)

where Eπ(a,µ′)[·|s, r] denotes the conditional expectation given (s, r) ∈ S ×R under π.

9Because S × R is finite, we could regard µ0 and ᾱ as vectors in R|S|×|R| and define differentiability in the usual
way. Equivalently, consistent with the topologies we have assumed, observe that int(U0×Ā) is a subset of ca(2S×R)×
Cb(S×R), where ca(2S×R) is the space of signed measures of bounded variation on the power set of S×R endowed
with the weak* topology and Cb(S × R) is the set of bounded continuous functions endowed with the sup-norm
topology. ca(2S×R) and Cb are Banach spaces (see, e.g., Aliprantis and Border [2006] chapter 10), and hence Fréchet
differentiability is well-defined.
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Because we have assumedS andR are finite, defining this conditional expectation is straight-

forward.10 Note that the conditional independence of actions does not rule out coordination

across agents. Agents can attempt to coordinate their actions with other agents by conditioning

on r or ā, or choose to act independently of other agents by conditioning only on s. We model

information acquisition in this way to capture the idea that agents can observe both public

signals (r) and the actions of other agents (ā) in addition to acquiring private signals.

We define a symmetric equilibrium in our game as a strategy profile in which the strategies

π are individually optimal, the prior µ is consistent with the aggregate action function ᾱ ∈ Ā,

and ᾱ is consistent with the mean action generated by π.

Definition 3. Given a common prior µ0 ∈ U0, a symmetric Bayesian Nash equilibrium (BNE)

of the game is a mean-consistent strategy profile ξ = (π, ᾱ) such that the strategy π ∈ Π(µ) is a

best response to the prior µ = φ{µ0, ᾱ},

π ∈ arg max
π∈Π(µ)

Eπ(a,µ′)[V (a, µ′)−D(µ′||µ)]. (5)

Our definition is a hybrid of a Bayesian Nash equilibrium and a Rational Expectations equi-

librium. It is a Bayesian Nash equilibrium in the sense that agents play best responses under

incomplete information. It is a Rational Expectations equilibrium [Grossman, 1976, Grossman

and Stiglitz, 1980, 1976] in the sense that agents can learn from endogenous aggregate actions

while simultaneously choosing their strategy. Therefore, beliefs must be consistent with en-

dogenous actions, while actions are best responses to endogenous beliefs. An equilibrium in

our game, as in any Rational Expectations equilibrium, is a fixed point of this mapping.11 Our

equilibrium concept builds on Denti [2020], who shows that our static equilibrium concept can

be justified as the steady-state limit of a dynamic game in which rationally inattentive agents

acquire information about the past actions of other agents.

2.5 Alternative Formulation

The agent’s problem and the definitions of mean consistency and equilibrium can be formu-

lated over the space of posteriors onS×R instead ofS×R×Ā. This equivalence is a consequence

of the fact that for any µ, µ′ ∈ U with µ′ � µ, there is a µ′0 ∈ U0 and ᾱ ∈ Āwith µ′ = φ{µ′0, ᾱ} and

µ = φ{µ0, ᾱ}. Let Π0(µ0) ⊂ ∆(A × U0) be the set of strategies satisfying Bayes-consistency with

respect to µ0, endowed with the weak* topology.

10With S and R finite, for any µ′ = φ{µ′0, ᾱ} with µ′ � µ, there is a unique density f0{µ′, µ} of µ′

with respect to µ that does not depend on ā. We can define the conditional expectation as Eπ(a,µ′)[a|s, r] =∫
supp(π)

af0{µ′, µ}(s, r)dπ(a, µ′).
11Our equilibrium concept can be thought of as a generalization of a Walrasian equilibrium, interpreting the ag-

gregate action as prices. As in Walrasian equilibrium, agents’ actions aggregate to determine prices, which in turn
determine agents’ optimal actions. As with Walrasian equilibrium, it is convenient to study an equilibrium without
explicitly specifying the process by which the economy arrives at that equilibrium.
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Definition 4. A strategy profile (π0, ᾱ) is mean-consistent if ᾱ(s, r) = Eπ0(a,µ′0)[a|s, r]. A strategy

profile (π0, ᾱ) is an equilibrium if it is mean-consistent and

π0 ∈ arg max
Π0(µ0)

Eπ0(a,µ′0)[V (a, φ{µ′0, ᾱ})−D(φ{µ′0, ᾱ}||φ{µ0, ᾱ})].

Note that, given some (π0, ᾱ) ∈ Π0(µ0) × Ā, we can always construct the corresponding π ∈
Π(φ{µ0, ᾱ}) as the measure induced from π0 by the mapping (a, µ′0) 7→ (a, φ{µ′0, ᾱ}).12 Similarly,

given some π ∈ Π(φ{µ0, ᾱ}), we can construct the corresponding π0.13 In what follows, we will

move back and forth between these spaces as convenient.

2.6 Remarks on the Model

This concludes our description of the model. We have made a few modeling choices that depart

from the standard rational inattention paradigm; we discuss these choices below.

Posterior-Separable costs. The cost function assumed in much of the rational inattention lit-

erature, following Sims [2003], is mutual information. Relative to this benchmark, we consider

a more general class of cost functionals: those that are “posterior-separable” [Caplin, Dean, and

Leahy, 2021]. Considering a general class of cost functions is necessary to address the question

of the relationship between properties of the cost function and properties of equilibria.

Studying posterior-separable cost functions allows us to consider the properties of cost func-

tions in terms of properties of their associated divergences. That said, there are a number

of other reasons why posterior-separable cost functions are appealing. First, the posterior-

separable class nests a number of cost functions proposed in the literature on information

choice. Among these include mutual information [Sims, 2003], Tsallis entropy costs [Caplin,

Dean, and Leahy, 2021], the Log-Likelihood Ratio (LLR) cost function [Pomatto, Strack, and

Tamuz, 2020], and Fisher information and neighborhood-based cost functions [Hébert and

Woodford, 2021]. Second, while experimental/laboratory data have rejected mutual informa-

tion (see, e.g., [Dean and Neligh, 2019]), we are not aware of any results rejecting posterior-

separability. Third, posterior-separable cost functions are general in the following sense: Hébert

and Woodford [2019] show that all differentiable information cost functions can be locally ap-

proximated by a differentiable posterior-separable cost function. Fourth, posterior-separable

cost functions can be studied via Lagrangian methods [Caplin, Dean, and Leahy, 2021], which

facilitates certain proofs.

12Here and throughout the paper, we say a measure π is induced from a measure π0 by some mapping when π is
the push-forward measure of π0 under that mapping.

13The relevant mapping is (a, µ′) 7→ (a, γĀ{µ′}), where γĀ computes the marginal distribution on S × R and is
defined in Section 3 below.

12



That said, many of our results could phrased in terms of the cost functions C instead of the

divergences D, and thereby extended beyond the class of posterior-separable cost functions.

See Section 3.3 below.

Noisy Public Signals. We assume the existence of an arbitrarily rich set of exogenous public

signals, r ∈ R. While exogenous public signals are standard in games with incomplete but ex-

ogenous information (see, e.g. Morris and Shin [2002], Angeletos and Pavan [2007], Bergemann

and Morris [2013]), public signals are less standard in the rational inattention framework.

We do not see the existence of exogenous public signals as antithetical to the spirit of rational

inattention; rather, it allows us to build a bridge between these two literatures. As in games

with exogenous, incomplete information, the public signal in our framework can serve as a

coordinating device for agents. If agents choose actions that correlate with r, non-fundamental

volatility can arise in equilibrium (in the form of non-fundamental noise, e ∈ E).

However, the mere existence of public signals is not sufficient to generate non-fundamental

volatility. Rationally inattentive agents optimally choose what to pay attention to; as a result,

whether or not non-fundamental noise manifests in equilibrium will depend on whether or not

agents choose to correlate their actions with r ∈ R. This, as we will subsequently show, depends

on the nature of information costs.

Learning from the aggregate action. In many economic contexts, agents track not only ex-

ogenous fundamentals, but also endogenous outcomes. In Walrasian markets, consumers learn

from market-clearing prices.14 In financial markets, traders track asset prices and order books.

In economic recessions and expansions, firms and households monitor aggregate indicators

such as GDP, unemployment, and inflation.

In many of these contexts, observing endogenous statistics might in fact be a more efficient

way of acquiring information than doing one’s own research on economic fundamentals. This

motivates our third departure: we incorporate learning of this type by allowing agents to pay

attention to the endogenous aggregate action. In particular, we define the cost function in (3),

and its associated divergence, on priors and posteriors over S ×R× Ā.15

Circumvention of Signal Structures. In defining information costs directly over posteriors, we

have said nothing about what kind of signal structure generates these posteriors. In fact, in our

setting, there are multiple ways of arriving at the same posterior. We view the cost function C

as “reduced-form” in the sense that it represents the cost of reaching the given posteriors by the

least costly signals available.

14See e.g. the related analysis of rational inattention with a Walrasian market in Angeletos and Sastry [2021].
15Rational expectations are maintained by requiring that the prior over S ×R× Ā is consistent with the aggregate

action function (2) and that the aggregate action function is consistent with the mean (4).
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Suppose, by way of example, that in equilibrium the aggregate action depends only on s and

is linear: ᾱ(s, r) = ᾱss for some constant ᾱs. In this case, the agent could acquire information

about s and ā either by paying attention to s (“doing her own fundamental research”), by paying

attention to ā (“learning from the actions of others”), or some combination thereof. Rather than

model these signal structures, we let C summarize the result of the agent’s optimization over

how best to acquire its information, i.e. how best to reach a given set of posteriors. We then ask:

given the reduced-form cost function, what strategy π is desirable?

This reduced-form perspective furthermore explains why the divergence can in general de-

pend on the aggregate action function ᾱ. In the example above, it might be optimal for the agent

to acquire information by paying attention to the aggregate action ā, rather than doing her own

fundamental research. If this is the case, then changes to the aggregate action function ᾱ might

change the value of the divergence holding any posterior constant. For example, interpreting ā

as a price, we might expect that larger price movements are less costly to observe. See Section

8.4 for a concrete example and Appendix Section A for a more in depth analysis on this point.

3 Partial Monotonicity and Partial Invariance

The focus of our investigation is the relationship between properties of the information cost

function, in particular its associated divergence D, and properties of the equilibrium. In this

section we begin by providing three examples of the (reduced-form) divergence D. We then

introduce and define two properties of divergences that are instrumental for our later results;

we call these properties “monotonicity in R” and “invariance in Ā.”

3.1 Examples of Posterior-Separable Cost Functions

Mutual Information. Mutual information is posterior-separable: its associated divergence is

the Kullback-Leibler divergence. In our context, the Kullback-Leibler (KL) divergence from the

prior µ = φ{µ0, ᾱ} to the posterior µ′ = φ{µ′0, ᾱ} can be written, for µ′0 interior, as

DKL(µ′||µ) = Eµ
′(s,r,ā)

[
ln

(
dµ′(s, r, ā)

dµ(s, r, ā)

)]
=
∑
s∈S

∑
r∈R

µ′0(s, r) ln

(
µ′0(s, r)

µ0(s, r)

)
. (6)

We extend DKL to all µ, µ′ ∈ U with µ′ � µ by continuity. Observe that, because µ′ and µ are

degenerate, the Kullback-Leibler divergence does not depend on ᾱ.

Cost Functions with Perceptual Distance. Several recent papers (e.g. Hébert and Woodford

[2021], Pomatto et al. [2020], Walker-Jones [2019], Bloedel and Zhong [2020]) have described

information costs that, unlike mutual information, incorporate a notion of “perceptual dis-

tance.” We use as an example a particular kind of neighborhood-based cost function proposed
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in Hébert and Woodford [2021] that is related to the mutual information cost function described

above (and to the costs considered in Walker-Jones [2019]).

Let S = {s1, . . . , s|S|} ⊂ R with the si strictly increasing in i, and R = {r1, . . . , r|R|} ⊂ R
with rj strictly increasing in j. The neighborhood-based cost function we consider treats each

adjacent pair (si−1, si) and (rj−1, rj) as a “neighborhood,” and penalizes differences between the

posterior and prior within each neighborhood using the KL divergence. Define the conditional

KL divergences within these neighborhoods as

DKL,i,rj (µ
′
0||µ0) = Eµ

′
0(s,r)

[
ln

(
µ′0(s, rj)

µ0(s, rj)

µ0(si, r) + µ0(si−1, rj)

µ′0(si, rj) + µ′0(si−1, rj)

)∣∣∣∣ s ∈ {si−1, si}
]

and

DKL,j,si(µ
′
0||µ0) = Eµ

′
0(s,r)

[
ln

(
µ′0(si, r)

µ0(si, r)

µ0(si, rj) + µ0(si, rj−1)

µ′0(si, rj) + µ′0(s, rj−1)

)∣∣∣∣ r ∈ {rj−1, rj}
]

The general family is defined, for µ = φ{µ0, ᾱ} and µ′ = φ{µ′0, ᾱ}with µ′0 interior, as

DN (µ′||µ) =

|S|∑
i=2

|R|∑
j=1

µ′0(si, rj) + µ′0(si−1, rj)

dsij(ᾱ)
DKL,i,rj (µ

′
0||µ0)

+

|S|∑
i=1

|R|∑
j=2

µ′0(si, rj) + µ′0(si, rj−1)

drij(ᾱ)
DKL,j,si(µ

′
0||µ0),

where dsij(ᾱ) > 0 denotes the perceptual distance between states (si, rj) and (si−1, rj), and

likewise drij(ᾱ) denotes the perceptual distance between states (si, rj) and (si, rj−1). Again, we

extend DN to all µ, µ′ ∈ U with µ′ � µ by continuity.

The perceptual distance dsij(ᾱ) captures the idea that two states si and si−1 might be easier or

more difficult to distinguish in a way that is not captured by si− si−1. This is a useful distinction

as it allows one to separate the difference in payoffs between two states from the difficulty of

distinguishing between those two states.

It is also useful when DN is viewed as a reduced form divergence arising from a choice over

how best to acquire the information. Suppose as an example that the agent learns about s in

part by observing ā. To simplify, assume that |R| = 1 so that we may ignore the second part of

the DN cost function. In this case, we can define, for j = 1,

dsij(ᾱ) = (si − si−1)

[
1 +

(
ᾱ(si, rj)− ᾱ(si−1, rj)

si − si−1

)2
]
.

as the perceptual distance between two states. We denote this particular divergence as DSĀ,

to indicate that the agent can observe S and Ā but not R. The perceptual distance dsij(ᾱ) cap-
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tures the idea that if the aggregate action is very different across (si, r1) and (si−1, r1), that is, if

(ᾱ(si, r1) − ᾱ(si−1, r1))2 is large, then it is less costly for the agent to distinguish between states

(si, r1) and (si−1, r1). This seems appealing if the agent pays attention to the aggregate action

and extreme actions are easier to observe. In Appendix Section A we derive the continuous-state

version of DSĀ from a problem in which the agent optimally allocates her attention over s and

ā; see also the example constructed in Section 8.4.

We can also define versions of the neighborhood-based cost function for which the percep-

tual distances do not depend on the aggregate action function. We interpret these cost functions

as describing environments in which the agent either cannot or chooses not to learn from the

actions of other agents. As an example, let us return to the assumption that |R| > 1, and assume

perceptual distances drij(ᾱ) = rj − rj−1 and dsij(ᾱ) = si − si−1. We denote this particular diver-

gence as DSR. Like the KL divergence, DSR does not depend on ᾱ. However, as we will soon

show, DSR and DKL differ with respect to whether agents will attend to r.

Because S and R are finite, it is straightforward to show that the examples DKL, DSĀ, and

DSR satisfy our continuity and differentiability assumptions.

Lemma 1. The reduced form divergences DKL, DSĀ, and DSR satisfy Assumption 1.

Proof. See the appendix, E.2.

3.2 Monotonicity and Invariance in R and Ā

The goal of this section is to introduce two properties of divergences. These properties describe

how a divergence might respond to certain transformations of its inputs: the prior and posterior.

We begin by defining the particular transformations we have in mind.

First, let γR : ∆(S×R× Ā)→ ∆(S× Ā) be the function that generates the marginal distribu-

tion on (S × Ā) from a given measure µ ∈ ∆(S × R × Ā); we use the subscript R to indicate the

dimension being integrated out.16 Next, define an operator ηR : ∆(S×R× Ā)×∆(S×R× Ā)→
∆(S × R × Ā). This operator takes a pair of probability measures, µ1, µ2 ∈ ∆(S × R × Ā),

with γR{µ1} � γR{µ2}, and transforms them into a new probability measure ηR{µ1, µ2} ∈
∆(S ×R× Ā), defined by

dηR{µ1, µ2}
dµ2

=
dγR{µ1}
dγR{µ2}

. (7)

The operator ηR replaces the conditional distribution of r given (s, ā) from µ1 with that of µ2,

while preserving the marginal distribution on S × Ā of µ1.17 The measure ηR{µ1, µ2} is similar

to µ1 in that they share a common marginal distribution on S × Ā, but matches µ2 with respect

to the conditional distribution of r ∈ R. In this sense, it is closer to µ2 than µ1 was originally.

16Formally, define the transformation TR : S × R × Ā → S × Ā by TR(s, r, ā) = (s, ā), and define γR{µ̄} as the
push-forward measure induced from µ ∈ ∆(S ×R× Ā) by TR.

17Equivalently, this transformation replaces the marginal distribution on S × Ā of µ2 with that of µ1.
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Example. In this example we illustrate the mechanics of the γR and ηR operators. For simplic-

ity, we assume ᾱ(s, r) = ā0 is constant. We also assume the sets S and R consist of only two

states: S = {s1, s2} and R = {r1, r2}. Tables 1 and 2 provide examples of µ1, µ2 ∈ U .

ā = ā0 r1 r2

s1 0.45 0.15
s2 0.30 0.10

Table 1. µ1 ∈ U

ā = ā0 r1 r2

s1 0.10 0.10
s2 0.20 0.60

Table 2. µ2 ∈ U

ā = ā0

s1 3
s2 1/2

Table 3. dγR{µ1}
dγR{µ2}

ā = ā0 r1 r2

s1 0.30 0.30
s2 0.10 0.30

Table 4. ηR{µ1, µ2} ∈ U

First, we apply γR to both measures to obtain their marginal distributions onS×Ā. Summing

the rows of Tables 1 and 2 yields, respectively, (0.6, 0.4) and (0.2, 0.8). Consequently, dγR{µ1}/dγR{µ2},
displayed in Table 3, is equal to 3 if (s, ā) = (s1, ā0) and 1/2 if (s, ā) = (s2, ā0).

Multiplying the first row of Table 2 by 3 and the second row of Table 2 by 1/2 results in the

measure ηR{µ1, µ2} ∈ U displayed in Table 4. This measure is arguably “more like” µ2 than µ1

was originally in that they share a common conditional distribution of r given (s, ā).

Monotonicity in R. We now apply the transformation ηR defined in (7) to a posterior and prior

probability measure, µ′ and µ, and consider how this affects the divergence. We will call a

divergence D “monotone in R” if making the posterior more similar to the prior in the sense

described by ηR reduces the divergence from the prior to the posterior.

Definition 5. A divergence D is monotone in R given µ ∈ U if for all µ′ ∈ U with µ′ � µ,

D(µ′||µ) ≥ D(ηR{µ′, µ}||µ). (8)

A divergence is monotone in R if it is monotone in R given any µ ∈ U .

This property compares the divergence of the prior µ to the posterior µ′ before and after

replacing the conditional distribution on r given (s, ā) of µ′ with that of µ. If replacing the

conditional distribution on r given (s, ā) of the posterior with that of the prior reduces their

divergence, then we say that the divergence is monotone in R.

Invariance in R. We next define another concept, invariance in R.

17



Definition 6. A divergence D is invariant in R given µ ∈ U if for all µ′, µ′′ ∈ U with µ′ � µ and

γR{µ} � γR{µ′′},
D(ηR{µ′, µ}||µ) = D(ηR{µ′, µ′′}||ηR{µ, µ′′}). (9)

A divergence is invariant in R if it is invariant in R given any µ ∈ U .

The above property compares the divergence of the prior µ to the posterior µ′ after replacing

both of their conditional distributions on r given (s, ā) with those of a third distribution, µ′′.

Invariance in R requires that, for any given prior and posterior, (9) holds for all possible µ′′.

Invariance in R thereby captures the idea that if the prior and the posterior were to share a

common conditional distribution over r ∈ R, the particulars of this conditional distribution

would be immaterial for the divergence.

Invariance inR and monotonicity inR are different properties of divergences, and one prop-

erty does not imply the other. Monotonicity requires that replacing the posterior’s conditional

distributions of r ∈ R with that of the prior reduces their divergence. Invariance and mono-

tonicity together require the divergence to shrink to the same value for all possible conditional

distributions:

D(µ′||µ) ≥ D(ηR{µ′, µ}||µ) = D(ηR{µ′, µ′′}||ηR{µ, µ′′})

for all µ, µ′, µ′′ ∈ U with µ′ � µ and γR{µ} � γR{µ′′}.

Invariance in Ā. We have thus far defined monotonicity and invariance with respect to only

one dimension: r ∈ R. We can, however, define these concepts with respect to the other dimen-

sions as well. We next define invariance in Ā.

Let γĀ : ∆(S × R × Ā)→ ∆(S × R) be the function that generates the marginal distribution

on (S × R) from a given measure µ ∈ ∆(S × R × Ā). We define an operator ηĀ : ∆(S × R ×
Ā) ×∆(S × R × Ā) → ∆(S × R × Ā) that takes a pair of measures, µ1, µ2 ∈ ∆(S × R × Ā), with

γĀ{µ1} � γĀ{µ2}, and transforms them into a measure ηĀ{µ1, µ2} ∈ ∆(S ×R× Ā) defined by

dηĀ{µ1, µ2}
dµ2

=
dγĀ{µ1}
dγĀ{µ2}

. (10)

With this operator, we define our concept of invariance in Ā in a manner analogous to our

previous definition of invariance in R.

Definition 7. A divergence D is invariant in Ā given µ ∈ U , if for all µ′, µ′′ ∈ U with µ′ � µ and

γĀ{µ} � γĀ{µ′′},
D(ηĀ{µ′, µ}||µ) = D(ηĀ{µ′, µ′′}||ηĀ{µ, µ′′}). (11)

A divergence is invariant in Ā if it is invariant in Ā given any µ ∈ U .

Invariance in Ā captures the idea that if the prior and the posterior were to share a common
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conditional distribution over ā ∈ Ā, the exact values of this conditional distribution would be

immaterial for the divergence. In our context, the prior and the posterior in fact always share a

common conditional distribution over ā, determined by the ᾱ function. As a result invariance

in Ā determines whether or not information costs depend on the aggregate action function ᾱ.

We will show that monotonicity in R and invariance in Ā are key properties that will deter-

mine the properties of equilibria we study (non-fundamental volatility and efficiency).

3.3 Cost Functions, Monotonicity, and Invariance

We next describe how the key properties of R-monotonicity and Ā-invariance for the diver-

gences D determine related properties of the posterior-separable information costs C.

Lemma 2. The posterior-separable cost function C(π, µ) is associated with a divergence D that

is monotone in R given µ ∈ U if and only if, for all strategies π ∈ Π(µ), the strategies π′ ∈ Π(µ)

induced from π by (a, µ′) 7→ (a, ηR{µ′, µ}) satisfy

C(π′, µ) ≤ C(π, µ).

The posterior-separable cost function C(π, µ) is associated with a divergence D that is Ā-

invariant given µ ∈ U if and only if, for all µ′′ ∈ U with γĀ{µ} � γĀ{µ′′} and all strategies

π ∈ Π(µ), the strategies π′′ ∈ Π(ηĀ{µ, µ′′}) induced from π by (a, µ′) 7→ (a, ηĀ{µ′, µ′′}) satisfy

C(π′′, ηĀ{µ, µ′′}) = C(π, µ).

Proof. See the Appendix, Section E.3.

These properties of the cost function C can be viewed as definitions of R-monotonicity and

Ā-invariance in the context of cost functions as opposed to divergences. These results also

suggest how the definitions of R-monotonicity and Ā-invariance could be extended to all cost

functions including those that are not necessarily posterior-separable.18 Note that all of the

cost functions we consider are Blackwell-monotone (by the convexity of D); as some of our

examples below illustrate, Blackwell-monotonicity of the cost function does not by itself imply

a divergence monotone in R or invariant in Ā.

18Under suitable assumptions on continuity and differentiability, we believe almost all of our results, with the
exception of our necessity results for R-monotonicity (Proposition 6), could be readily extended to the general class
of cost functions under these definitions. The proof of Proposition 6 relies on explicitly constructing a utility function
that induces a particular strategy π, which is facilitated by posterior-separability.
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3.4 Examples

Mutual Information. The KL divergence is both monotone in R and invariant in Ā. Consider

any µ = φ{µ0, ᾱ} and µ′ = φ{µ′0, ᾱ}. Let g : S × Ā→ R+ be a density satisfying

g(s, ā) =
dγR{µ′}(s, ā)

dγR{µ}(s, ā)
.

The Kullback-Leibler divergence in this context can be written as

DKL(µ′||µ) =
∑
s∈S

∑
ā∈{ā′∈Ā:g(s,ā′)>0}

γR{µ′}(s, ā) ln(g(s, ā))

+
∑
s∈S

∑
ā∈{ā′∈Ā:g(s,ā′)>0}

∑
r∈{r′∈R:ᾱ(s,r′)=ā}

γR{µ′}(s, ā)
µ′(s, r, ā)

γR{µ′}(s, ā)
ln

(
µ′(s, r, ā)

µ(s, r, ā)g(s, ā)

)
.

Applying Jensen’s inequality in the R dimension yields

DKL(µ′||µ) ≥
∑
s∈S

∑
ā∈{ā′∈Ā:g(s,ā′)>0}

γR{µ′}(s, ā) ln(g(s, ā)) = D(ηR{µ′, µ}||µ),

which is the definition of monotonicity in R.

Invariance in Ā of mutual information follows immediately from the lack of dependence of

the KL divergence on the aggregate action strategy ᾱ.

Neighborhood Cost function with DSR. Consider the example neighborhood cost function

defined above with associated divergence DSR. This divergence, like the KL divergence, does

not depend on ᾱ; it is therefore invariant in Ā by construction.19 The divergence DSR differs

however from the KL divergence in the following way.

Lemma 3. Assume |S| > 1 and |R| > 1. The divergence DSR is not monotone in R.

Proof. See the appendix, E.4.

The intuition behind this result is as follows. Suppose that

µ′0(s, r) = µ0(s, r)g1(s) exp(ε(r − r̄(s))),

where g1 is a strictly increasing function of s and r̄(s) = ε−1 ln(Eµ0 [exp(εr)|s]), and suppose for

simplicity that ᾱ is constant across (s, r). We show in the proof that under these assumptions, if

19This point applies to the entire class of posterior-separable cost functions. We could always define such cost
functions on S × R, imposing invariance in Ā, or define them on the larger space and not impose invariance in
Ā. Only in certain special cases (such as mutual information) will we reach the same conclusion regardless of our
assumption; see the remark on general forms of invariance below.
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the prior µ0 satisfies an MLRP condition, so that higher values of s are relatively more likely as r

increases, then DSR will violate monotonicity for this class of posteriors.

To understand the intuition behind this result, let us take the perspective of an agent who

is choosing ε but has no particular concern for how her signal correlates with r. Intuitively,

because the agent in this case is attempting to differentiate high values of s from low values of s

(g1(s) strictly increasing), and because the expected value of r is increasing in the fundamental

(r̄(s) strictly increasing), paying some attention to the public signal is a feasible way of learning

about s. Starting from completely ignoring r, paying a little bit of attention to r has a first-

order benefit (because it reduces the cost of learning via s) but a second-order cost (because

the marginal cost of learning via r is locally zero near signals that ignore r). Consequently, it is

optimal for this agent to attend to r.

Neighborhood Cost function withDSĀ. Consider finally the example neighborhood cost func-

tion defined above with associated divergence DSĀ. Monotonicity in R is trivially satisfied: we

have assumed |R| = 1 when definingDSĀ. However, the perceptual distance between two states

depends on the aggregate action function ᾱ. This divergence, therefore, is not invariant in Ā.

Relation to the standard definition of invariance. The special nature of mutual information—

that it is both monotone in R and invariant in Ā—hints at the relationship between the forms

of partial monotonicity and invariance we have defined here and the stronger form of invari-

ance considered by other authors. The literature has focused on divergences that are simply

“invariant,” meaning that they are both monotone and invariant with respect to all possible

transformations of the state space.20 Invariant divergences have been described in the infor-

mation geometry literature by Chentsov [1982] and Amari and Nagaoka [2007] and employed in

economics by Hébert [2018] and Hébert and Woodford [2019]. Caplin, Dean, and Leahy [2021]

show that the standard invariance property of cost functions is equivalent to their invariance-

under-compression behavioral axiom.

Our generalization to partial monotonicity and partial invariance allows us to study diver-

gences that are invariant to some but not necessarily all partitions of the state space, as the

various versions of neighborhood-based costs described above demonstrate. However, when

the divergence is monotone and invariant in all dimensions, then it will be partially monotone

and invariant in all dimensions, as the example of mutual information demonstrates.

20Our definition of monotonicity is subtly different from what is usually meant by the monotonicity of the KL di-
vergence. The monotonicity property of the KL divergence used in the literature involves comparing KL divergences
defined on two different state spaces, whereas our definition of partial monotonicity involves only the operator η,
which preserves the state space. Our approach allows us to define partial monotonicity for divergences defined on
a single state space as opposed to families of divergences defined on all possible state spaces. Despite this differ-
ence, monotonicity in the sense used in the literature implies partial monotonicity in all dimensions. It also implies
invariance, whereas partial monotonicity does not imply partial invariance.
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4 Equilibrium Existence and Uniqueness

We proceed by establishing equilibrium existence.

Proposition 1. A symmetric BNE exists.

Proof. See the more general Proposition 5 below.

The proof of this result applies the theorem of the maximum and a fixed point theorem in

the usual fashion, relying on continuity of payoffs and of costs (Assumption 1).

We next consider equilibrium uniqueness. Recall that the payoff parameter β controls the

degree of strategic interaction due to payoffs in the linear-quadratic game: β > 0 indicates

strategic complementarity in actions, and β < 0 indicates strategic substitutability. Our restric-

tion that β < 1 guarantees a unique equilibrium under exogenous information.

With endogenous information acquisition, however, this restriction is not sufficient. The

following proposition provides two conditions that are sufficient (but by no means necessary)

to ensure uniqueness of the aggregate action function.

Proposition 2. If β < 0 and the divergence D is invariant in Ā, then there is a unique aggregate

action function ᾱ common to all symmetric BNE.

Proof. See the more general Proposition 10 below.

Relative to the restriction that β < 1, Proposition 2 calls for two additional conditions. One

is a stricter condition on payoffs: that actions be strategic substitutes (β < 0). The second is

a condition on costs: that D be invariant in Ā. Both conditions essentially rule out strategic

complementarity in payoffs and in costs.

Note that these conditions do not technically ensure a unique equilibrium: they guarantee

only the uniqueness of an equilibrium aggregate action function. Specifically, we have not ruled

out the possibility that multiple strategies π ∈ Π(φ{µ0, ᾱ}) are both best responses to and mean-

consistent with ᾱ. However, for our purposes, this weaker form of uniqueness will suffice.

Sources of Multiplicity. When D is not invariant in Ā, strategic complementarity in informa-

tion acquisition can arise, opening the door for multiple equilibria ᾱ. To see this, consider the

divergence DSA defined above with the perceptual distance

dsij(ᾱ) = (si − si−1)

[
1 +

(
ᾱ(si, rj)− ᾱ(si−1, rj)

si − si−1

)2
]
.

If agents acquire more information, the aggregate action becomes more sensitive to s, generat-

ing larger values for (ᾱ(si, rj) − ᾱ(si−1, rj))
2. This reduces the information costs for all agents,
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increasing their incentive to gather information. In this way agents can face strategic comple-

mentarity with respect to information acquisition.

Even in the absence of this form of strategic complementarity (when D is invariant in Ā),

strategic complementarity in payoffs combined endogenous information acquisition can still

lead to multiplicity (in the spirit of e.g. Hellwig and Veldkamp [2009] or Yang [2015]). This can

be true even when the strategic complementarity in payoffs is too weak to generate multiplicity

under exogenous information (0 ≤ β < 1). Intuitively, with strategic complementarity in pay-

offs, information is more valuable to an individual agent when other agents are acquiring infor-

mation and acting upon it. In our linear-quadratic-Gaussian setting, section 8.3, we construct

an example, following Myatt and Wallace [2012], using the KL divergence (which is invariant

in Ā) and β = 2
3 in which an equilibrium with no information gathering and an equilibrium

with information gathering both exist. Proposition 2 shows that weak strategic substitutability

in payoffs combined with invariance in Ā is sufficient to generate a form of uniqueness; this

example illustrates the difficulty of strengthening the result.

We next consider whether these equilibria will exhibit non-fundamental volatility.

5 Non-Fundamental Volatility

Under what conditions does an equilibrium vary with the public signal realization r ∈ R con-

ditional on the fundamental state s ∈ S? Put another way, under what conditions does the

realization of the noise e ∈ E affect equilibrium outcomes?

To answer this question, we define a notion of measurability. We say that an equilibrium is

s-measurable if the strategies and the aggregate action function do not vary with r ∈ R.

Definition 8. An aggregate action function ᾱ is s-measurable if, for all s ∈ S and r, r′ ∈ R,

ᾱ(s, r) = ᾱ(s, r′). A strategy π ∈ Π(µ) is s-measurable if, for all (a, µ′) ∈ supp(π), there exists a

function g : S × Ā → R+ such that g = dµ′

dµ . A symmetric BNE (π, ᾱ) is s-measurable if π and ᾱ

are both s-measurable.

When the aggregate action varies with r ∈ R conditional on s ∈ S, it varies with the payoff-

irrelevant states ε ∈ E . It thereby exhibits non-fundamental volatility. When instead ᾱ is s-

measurable, the aggregate action exhibits zero non-fundamental volatility.

S-measurability of an equilibrium is a somewhat stronger statement in that it requires not

only that the aggregate action be s-measurable but also that equilibrium strategies π be s-measurable,

i.e. that they do not condition on r.21 In what follows, we will look for equilibria that are s-

measurable in this stronger sense.

21It is possible for an equilibrium to have an s-measurable ᾱ and yet for the strategy π to be non-s-measurable,
despite the requirement of mean-consistency. For example, the second and higher moments of the agent’s action
could vary in r conditional on s, while the mean conditional on s does not. These cases are in a certain sense non-
generic; see Section C of the online appendix.
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S-measurable equilibria. Lemma 2 above can be understood as stating that if the divergence

is monotone in R, then for any strategy, there is an s-measurable strategy that generates the

same posteriors on ∆(S × Ā) and is less costly. Because the agent does not care about r per

se, only how it affects ā, monotonicity in R implies that the set of optimal strategies always

includes an s-measurable strategy. Consequently, if other agents use strategies that generate an

s-measurable ᾱ, one of an individual agent’s best responses will involve a strategy that does not

depend on r in any way (either directly, because the strategy is s-measurable, or via ā, because ᾱ

is s-measurable). The same fixed-point logic we employed earlier to prove equilibrium existence

can be used to show that when D is monotone in R, an s-measurable equilibrium exists.

Proposition 3. If the divergence D is monotone in R, then an s-measurable symmetric BNE of

the game exists. If in addition D is invariant in Ā and β < 0, then all symmetric BNE feature an

s-measurable ᾱ.

Proof. See the more general Propositions 6 and 10 below.

The logic above shows that if D is monotone in R, an equilibrium with an s-measurable ᾱ

exists. Proposition 2 shows that if D is invariant in Ā and β < 0, there is a unique ᾱ function

across all equilibria. Consequently, if all of these conditions hold, all equilibria share the same

s-measurable ᾱ function. Thus, the standard mutual information cost function will always lead,

in settings with strategic substitutability, to equilibria with zero non-fundamental volatility.

Interpretation. In exogenous information environments, noisy public signals or, more gener-

ally, correlated errors in beliefs, are typical components of information structures [Bergemann

and Morris, 2013]. Agents rely on public signals as a source of information as well as a method of

coordinating their actions with other agents. Non-fundamental volatility arises in equilibrium

as a by-product of public signal noise.

In environments with endogenous information acquisition, however, what appears to be an

appealing property to impose on cost structures—monotonicity in R—leads to a stark result.

If agents have no particular reason to pay attention to r ∈ R, and paying attention to r only

increases their information costs, then an equilibrium exists in which all agents ignore r. This

equilibrium features zero non-fundamental volatility.22 If in addition D is invariant in Ā and

β < 0, then all equilibria exhibit zero non-fundamental volatility.

Necessity. In Section 7, we generalize Proposition 3 to a larger class of payoff functions. We

furthermore show that a version of monotonicity in R is a necessary condition to guarantee the

existence of s-measurable equilibria for all utility functions. That is, with cost functions such

22In a model with a large but finite number of agents, idiosyncratic errors across agents do not exactly wash out in
the aggregate. By focusing on the continuum limit, we implicitly assume that this kind of non-fundamental volatility
is negligible.
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as DSR, non-fundamental volatility can arise in equilibrium. We provide an example with non-

fundamental volatility in the linear-quadratic-Gaussian setting (Section 8.1).

The intuition for necessity is essentially the converse of the argument for sufficiency. If

the cost function is not monotone in R, then s-measurable strategies are not the least costly.

Therefore, the best response of an agent to an s-measurable aggregate action function ᾱ is a

strategy that conditions on r ∈ R. It follows that an s-measurable equilibrium cannot exist.

In this case, the exogenous states r ∈ R resemble the “noisy public signals” featured in the

exogenous information literature. When cost functions are non-monotone in R, agents find it

cheaper to condition actions on r (Lemma 2). This incentive is what introduces correlated noise

in agents’ actions and generates non-fundamental volatility in equilibrium.

Multiple equilibria. When there are multiple equilibria with different aggregate action func-

tions ᾱ, monotonicity in R guarantees one of these equilibrium has zero non-fundamental

volatility, but is not enough to rule out other equilibria that depend on r. To see why, consider as

an example the standard rational inattention cost functionDKL, modified so that the agents can

observe the noise e ∈ E without cost. Such a cost function is monotone inR, and yet can exhibit

multiple equilibria due to strategic complementarity (as discussed in Section 4). From these

equilibria, we can construct sunspot equilibria that use e ∈ E as a sunspot to select between the

various s-measurable equilibria. The resulting sunspot equilibria are not s-measurable, because

they depend on r conditional on s (via their dependence on e).23

6 Efficiency

We next consider efficiency. To do so, we adapt the constrained efficiency concept of Angeletos

and Pavan [2007] to environments with endogenous information acquisition.24 Constrained

efficiency is defined as the solution to a planner’s problem in which the planner dictates the

strategies of the agents with the objective of maximizing ex-ante utility, taking into account

the mean-consistency condition and information acquisition costs. We formulate the planner’s

problem using the “alternative formulation” of the agent’s problem (Definition 4).

Definition 9. Given a common prior µ0 ∈ U0, a strategy profile (π0, ᾱ) ∈ Π0(µ0) × Ā is con-

23This argument does not really depend on the agents being able to observe e freely. If e were costly to observe,
agents would make mistakes and the “sunspot” equilibrium would not be a randomization over s-measurable equi-
libria; nevertheless, a non-s-measurable equilibrium might exist.

24See also Radner [1962] and Vives [1988]. Angeletos and Pavan [2007] define constrained efficiency in an en-
vironment with exogenous, incomplete information; the planner in that setting dictates how agents should use
their information. In our setting with endogenous information acquisition, the planner dictates what information
to acquire as well as what action to take given that information.
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strained efficient if it solves

max
ᾱ∈Ā,π0∈Π0(µ0)

Eπ0(a,µ′0)[V (a, φ{µ′0, ᾱ})−D(φ{µ′0, ᾱ}||φ{µ0, ᾱ})]

subject to mean-consistency, ᾱ(s, r) = Eπ0(a,µ′0)[a|s, r], ∀(s, r) ∈ S ×R. A strategy profile (π, ᾱ) ∈
Π(φ{µ0, ᾱ}) × Ā is constrained efficient if it is induced from a constrained efficient (π0, ᾱ) by

(a, µ′0) 7→ (a, φ{µ′0, ᾱ}).

A constrained efficient strategy profile maximizes welfare subject to information acquisition

costs. The key distinction between the planner’s problem and an equilibrium is that the planner

takes into account the effects of individual agents’ actions on the aggregate action function ᾱ,

and internalizes its effects on welfare, whereas individual agents do not.

The aggregate action function ᾱ potentially affects welfare in two distinct ways. The first is

through payoffs, V (a, φ{µ′0, ᾱ}). The second is through information costs,D(φ{µ′0, ᾱ}||φ{µ0, ᾱ}).

We discuss both channels below.

Payoff Externalities. Observe by the definition of V that

Eπ0(a,µ′0)[V (a, φ{µ′0, ᾱ})] = Eµ0(s,r)[Eπ0(a,µ′0)[u(a, ᾱ(s, r), s)|s, r]].

A payoff externality appears to exist in our setting via the aggregate action function ᾱ, which

enters the utility function via the utility function’s dependence on the aggregate action ā. That

is, each agent, when choosing her own action, does not consider how her action affects the

aggregate action and hence the utility of other agents. Pollution is a classic example of this kind

of externality.

However, for the particular payoff function assumed in (1), if (π0, ᾱ) is a mean-consistent

strategy profile, then

∂

∂ā
Eπ0(a,µ′0)[u(a, ā, s)|s, r]|ā=ᾱ(s,r) = 2βEπ0(a,µ′0)[a− ᾱ(s, r)|s, r] = 0.

Thus, in equilibrium, small changes to the aggregate action function ᾱ have no direct effect on

the expected payoff of the agents, which is to say there is in fact no payoff externality in our

setting. Angeletos and Pavan [2007] develop this result in the context of exogenous signals, and

call this property “efficiency in the use of information.”

The key property of the utility function u that generates this result is that the mean action

ᾱ(s, r) = Eπ0(a,µ′0)[a|s, r] is a critical point of the function h(ā) ≡ Eπ0(a,µ′0)[u(a, ā, s)|s, r] under any

probability measure π0. In Section 7, we show how this “mean-critical” property can be defined

and extended to a general class of utility functions, and discuss its interpretation.
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Information Cost Externalities. Information costs can depend on ᾱ, as with for example the

cost function DSĀ. However, when D is invariant in Ā, as with our example cost functions DSR

and DKL, this channel is shut down. With no externalities in payoffs and no effect of ᾱ on

information costs, the first-order conditions of the planner and of each agent coincide. This

leads to the following result:

Proposition 4. If the divergence D is invariant in Ā, then a constrained efficient symmetric BNE

exists. If in addition β ≤ 0, all symmetric BNE are constrained efficient.

Proof. See the more general Propositions 7 and 10 below.

To prove the result, we show that a solution to the planner’s problem exists. Because the

first-order conditions of the planner and agents coincide, this solution is also a symmetric BNE.

The argument above in fact shows something stronger: if D is invariant in Ā, every equilib-

rium is a critical point of the planner’s problem. That is, in every equilibrium, the first-order

conditions of the planner’s problem are satisfied. This does not mean every equilibrium is con-

strained efficient– some equilibria might be minima or saddle points of the planner’s problem.

However, if the planner’s problem is concave, then every critical point is a maximum, and as

a result every equilibrium is efficient. A sufficient (but not necessary) condition for concavity in

our setting is β ≤ 0. By Proposition 2, when β < 0, the aggregate action function is the same in

all equilibria, and as a result all equilibria are equivalent from the planner’s perspective. When

β = 0, we have not ruled out equilibria with different aggregate action functions, but all such

equilibria must generate the same expected utility in the planner’s problem.

Necessity and Interpretation. In Section 7, we generalize Proposition 4 to a larger class of pay-

off functions. We furthermore show that a local form of invariance in Ā is a necessary condition

for the existence of a constrained efficient equilibrium.

When D is not invariant in Ā, as in our example DSĀ, information costs are affected by ᾱ,

at least for some parameter values. Such a channel is natural if we imagine that agents learn in

part by observing other agents’ actions, and that some actions are easier to observe than other

actions. When this is the case, agents do not internalize how their own strategies affect the

information acquisition costs of others and, as a result, an externality arises. The planner, who

takes this informational externality into account, can achieve a higher level welfare by dictating

a strategy that puts relatively more weight on easily observable actions, effectively lowering

information acquisition costs.25 We construct an example illustrating this point in the linear-

25A related phenomena occurs in games with incomplete, exogenous information, when there exists a signal about
an endogenous, equilibrium object such as a price; see, e.g. Laffont [1985], Angeletos and Pavan [2009], Amador and
Weill [2010], Vives [2017], Angeletos, Iovino, and La’O [2020]. When agents observe signals about endogenous objects,
an information-aggregation externality can arise: agents do not take into account how their own use of information
affects the information content of these signals. In these environments, the planner may wish for agents to use their
information in a way that differs from what is privately optimal, in order to improve the aggregation of information.
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quadratic-Gaussian setting (Section 8.2). In this example, more extreme actions are more easily

observed, and as a result the planner would prefer that each agent choose a more extreme action

given her beliefs than the agent would choose for herself.

This information cost externality, however, is ruled out if we assume that agents can only

pay attention to exogenous states, as with our example DSR cost function. This possibility is

also ruled out if agents can learn by observing endogenous actions, but learning via the actions

of others and arriving at the same information without observing the actions of other are equally

costly, as with DKL. Both of these scenarios implicitly assume a cost function that is invariant

in Ā and therefore rule out externalities in information acquisition.26

7 General Utility Functions

The linear-quadratic payoff function assumed in (1) exhibits three key properties that we have

relied on thus far. First, it is continuous. Second, it exhibits the aforementioned mean-critical

property that shuts down externalities in payoffs. Third, the degree of strategic substitutability

or complementarity is summarized by the parameter β.

In this section we show how our previous results can be generalized to a broader class of

continuous utility functions. We continue to assume that the action space A ⊂ R is convex and

compact, and hence that Ā = A.27 We begin by defining the class of continuous utility functions.

Definition 10. A utility function u : A× Ā×S → R is continuous if it is continuous onA× Ā for

all s ∈ S.

With continuous utility functions, we prove equilibrium existence.

Proposition 5. If the utility function is continuous, a symmetric BNE (Definition 3) exists.

Proof. See the online appendix, section E.5.

7.1 Non-Fundamental Volatility

We next provide a necessary and sufficient condition for the existence of an s-measurable equi-

librium for the class of continuous utility functions.

Proposition 6. A s-measurable symmetric BNE exists for all continuous utility functions if and

only if, for all s-measurable ᾱ ∈ Ā, the divergence D is monotone in R given µ = φ{µ0, ᾱ}.
26This has been shown in some specific contexts. See e.g. Online Appendix A of Angeletos and La’O [2020], the

analysis in Angeletos and Sastry [2021] of fundamental equilibria, or the analysis of Colombo, Femminis, and Pavan
[2014] when there is no effect of action dispersion on payoffs.

27In the technical appendix, Section B, which extends our existence, uniqueness, and sufficiency results to the
continuous state case, we also allow for a multi-dimensional action space A ⊂ RN . Assuming a one-dimensional
action space avoids certain technical complications in the proofs of Propositions 8 and 9.
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Proof. See the online appendix, section E.7.

Proposition 6 demonstrates that the R-monotonicity condition of Proposition 3 is stronger

than necessary. R-monotonicity need not hold given all priors; it is sufficient for the divergence

to be monotone in R given priors induced from the exogenous prior µ0 by an s-measurable ᾱ

function. If this property holds, the agent’s best response to any s-measurable ᾱ is s-measurable,

and by the same fixed point argument that proves existence, an s-measurable equilibrium exists.

When the cost function is not monotone inR on this set of priors, then for some s-measurable

ᾱ the agent’s best response is a non-s-measurable strategy π. Consequently, this ᾱ can never be

part of an s-measurable equilibrium. To prove Proposition 6, we construct a continuous utility

function such that, if an s-measurable equilibrium were to exist, it could exist only at this value

of ᾱ; consequently, for this utility function, no s-measurable equilibrium exists. It follows by

Proposition 5 that a non-s-measurable equilibrium exists in this case.

We conclude that monotonicity in R on s-measurable priors is necessary and sufficient to

ensure the existence of an s-measurable symmetric BNE for all continuous utility functions.

7.2 Efficiency

As discussed in Section 6, the linear-quadratic function assumed in (1) exhibits the “mean-

critical” property that shuts down payoff externalities. We next define this property on the larger

class of continuous utility functions as follows.

Definition 11. For a given π0 ∈ Π0, a utility function u : A × Ā × S → R is mean-critical

given π0 if it is differentiable on A × Ā for all s ∈ S and if Eπ0(a,µ′0)[a|s, r] is a critical point of

h(ā) = Eπ0(a,µ′0)[u(a, ā, s)|s, r]. A utility function is mean-critical if it is mean-critical given π0 for

all measures π0 ∈ ∆(A× U0).

We next generalize the existence result of Proposition 4 to this larger class of payoff functions.

Proposition 7. A constrained-efficient symmetric BNE exists if the utility function u is mean-

critical and the reduced form divergence D is invariant in Ā.

Proof. See the appendix, E.8.

Mean-criticality of payoffs and invariance in Ā of information costs are sufficient for the

existence of a constrained efficient equilibrium. Mean-criticality eliminates payoff externalities,

while invariance in Ā eliminates externalities in information costs. Consequently, the solution

to the planner’s problem is an equilibrium.

Weaker versions of these properties are also necessary. Intuitively, if the invariance and

mean-critical properties hold locally at every profile (π0, ᾱ) that is a solution to the planner’s

problem, then every such profile will also be an equilibrium. Violations of invariance or of
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the mean-critical property at profiles (π0, ᾱ) that are never solutions to the planner’s problem

are therefore irrelevant for the question of constrained efficiency. For example, profiles (π0, ᾱ)

violating mean-consistency play no role in determining whether or not equilibria are efficient.28

Let us first define a local version of invariance in Ā. Recall that we have assumed (in As-

sumption 1) that the divergence D is differentiable.

Definition 12. The function

C0(π0, µ0, ᾱ) = Eπ0(a,µ′0)[D(φ{µ′0, ᾱ}||φ{µ0, ᾱ})]

is locally invariant in Ā at (π0, ᾱ) if∇ᾱC0(π0, µ0, ᾱ) = 0, where∇ᾱ denotes the Frechét derivative

with respect to ᾱ.

Note that D is invariant in Ā if and only if C0 is locally invariant everywhere.

We next show that if a divergence guarantees constrained efficiency for all mean-critical

utility functions,C0 must be locally invariant at every interior solution to the planner’s problem.

We use the notation int(U0) to denote the interior of the simplex.

Proposition 8. If a constrained-efficient symmetric BNE exists for all mean-critical utility func-

tions, then C0 is locally invariant in Ā for all π0 ∈ Π0(µ0) and ᾱ ∈ Ā such that, for some

mean-critical utility function, (π0, ᾱ) is a constrained efficient strategy profile and supp(π0) ⊂
A× int(U0).

Proof. See the appendix, E.10.

If the gradient of the cost function with respect to ᾱ is not equal to zero on the relevant part

of the domain, then the planner and the agents’ incentives at the planner’s optimum will not

coincide. In this case, the solution to the planner’s problem will not be an equilibrium.

Consider the example cost function DSĀ. It is locally invariant in Ā only if no information

is acquired; otherwise, making actions more extreme reduces information costs. Consequently,

with DSĀ, any equilibrium with a mean-critical utility function that features information gath-

ering and an interior ᾱ is constrained inefficient.

Our next result proves necessity of mean-criticality given a divergence invariant in Ā.

Proposition 9. If a constrained-efficient symmetric BNE exists for all divergences D invariant in

Ā, then u is mean-critical given all π0 ∈ Π0(µ0) such that, for some divergence D invariant in Ā

and ᾱ ∈ Ā, (π0, ᾱ) is a constrained efficient strategy profile and supp(π0) ⊂ A× int(U0).

Proof. See the appendix, E.11.

28Another example: if D is monotone in R, non-s-measurable (π, ᾱ) might never solve the planner’s problem.
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If for all divergences invariant in Ā a constrained efficient equilibrium exists, then payoffs

must exhibit mean-criticality on the relevant part of the domain. However, if mean-criticality

fails on the relevant part of the domain, then the marginal social benefit of actions at the plan-

ner’s optimum will not coincide with the marginal private benefit. It follows that the solution to

the planner’s problem will not be an equilibrium.

7.3 The Mean-Critical Representation and Uniqueness

With the linear-quadratic payoff function of (1) we found that if actions are strategic substitutes

(β < 0) and the divergence is invariant in Ā, then there is a unique aggregate action function ᾱ

common to all symmetric BNE (Proposition 2). We also found that if β ≤ 0 and the divergence

is invariant in Ā, then all equilibria are constrained efficient (Proposition 4).

We extend these results to a class of sufficiently well-behaved mean-critical utility functions.

First, we build on results in Banerjee et al. [2005] to provide an explicit functional form for what

we call “regular” mean-critical utility functions.

Definition 13. A utility function u : A × Ā × S → R is regular if it is concave on A for all

(ā, s) ∈ Ā × S, continuously twice-differentiable on A × Ā for all s ∈ S, and either everywhere

concave or everywhere convex in Ā.

The linear-quadratic function in (1) is regular in this sense. Regularity allows for either

concavity or convexity with respect to ā ∈ Ā, but restricts utility functions to exhibiting either

concavity or convexity everywhere (as opposed to exhibiting concavity on some parts of the

domain and convexity on other parts).

Lemma 4. A regular utility function u is mean-critical if and only if there exists a function G :

Ā× S → R and a function g : A× S → R such that

u(a, ā, s) = g(a, s) +G(ā, s) + (a− ā)
∂

∂ā
G(ā, s). (12)

Proof. See the technical appendix, Lemma 6, for a multi-dimensional version of this lemma

(A ⊂ Rn), and the technical appendix, E.15, for a proof.

The “if” part of the proof is straightforward. The first-order partial derivative of the payoff

function in (12) with respect to ā is given by29

∂u(a, ā, s)

∂ā
=

∂

∂ā
G(ā, s)− ∂

∂ā
G(ā, s) + (a− ā)

∂2G(ā, s)

∂ā2
= (a− ā)

∂2G(ā, s)

∂ā2
.

29Note by regularity that G is twice-differentiable.
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Taking expectations demonstrates this utility function is mean-critical. The “only if” part builds

on the proofs in Banerjee et al. [2005]. The linear-quadratic utility function in (1) exhibits this

functional form, with G(ā; s) = βā2 and g(a; s) = −(1− β)(a− s)2 − βa2.30

In the context of an abstract game, there is no obvious reason why the utility function should

have this particular functional form. However, the functional form in (12) and the multi-dimensional

version described in the appendix have an interpretation in terms of production economies

with full risk-sharing. Consider the following example, which is similar to the “coconuts and

money” example of Angeletos and Sastry [2021]. Let good one be the numeraire and let a ∈ A
be agent’s consumption of good two. Define −G(ā, s) as the cost of producing ā units of good

two, and assume that the price of good two is equal to the marginal cost, p = − ∂
∂āG(ā, s). Each

agent receives utility g(a, s) from her consumption of good two and has linear utility in good

one. The agent’s consumption of good one is equal to her share of the profits from production,

p · ā + G(ā, s), less her spending on good two, p · a. As a result, the agent’s utility is given by

(12). This example illustrates the connection between an absence of payoff externalities at the

margin in games (characterized by the mean-critical property) and the classic welfare theorem

results, which show that the pecuniary externalities present in market settings do not lead to

inefficiency in the presence of full risk-sharing.31

With regular mean-critical utility functions, we can generalize our earlier results. Observe

that ∂
∂au(a, ā, s) is decreasing in ā if and only if ∂

∂āG(ā, s) is decreasing in ā, which is to say if G is

concave. That is,G concave generates weak strategic substitutability (as with β ≤ 0 earlier), and

G strictly concave generates strict strategic substitutability (as with β < 0 earlier).

Proposition 10. If the utility function is regular and mean-critical and the associatedG is strictly

concave in ā ∈ Ā, then for any divergence D invariant in Ā, there is a unique aggregate action

function ᾱ common to all symmetric BNE. If the utility function is regular and mean-critical and

the associated G function is weakly concave in ā ∈ Ā, then for any divergence D invariant in Ā,

all symmetric BNE are constrained efficient.

Proof. See the appendix, E.12.

The connection in our results between efficiency and uniqueness is likely a by-product of

our approach to the proofs as opposed a more general result. That is, utility functions that are

not mean-critical and exhibit strategic substitutability (appropriately defined) will likely lead to

unique ᾱ but constrained inefficient equilibria. We should also emphasize that strategic com-

plementarity will not always lead to multiplicity– if the convexity of theG is not “too strong,” the

30Equation (12) can be seen as a generalization of the Angeletos and Pavan [2007] conditions to non-linear-
quadratic games, and the multi-dimensional version in our appendix as a further generalization. That is, the mean-
critical property applies in games with exogenous information.

31In this example, full risk-sharing (agents equating their marginal values of wealth across all realizations of aggre-
gate and idiosyncratic shocks) is achieved by assuming quasi-linear preferences. In the main part of their analysis,
Angeletos and Sastry [2021] instead impose a complete markets assumption to achieve full risk-sharing.
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social planner’s problem will still be strictly concave in ᾱ and the equilibrium aggregate action

function will be unique. In our proof of Proposition 10, we describe a condition (involving g and

D) that is equivalent to strict concavity in ᾱ for the planner’s problem.

We demonstrated earlier that monotonicity in R on s-measurable priors is necessary to

ensure an s-measurable symmetric BNE exists for all continuous utility functions. This result

in fact holds on the class of mean-critical utility functions exhibiting strategic substitutability.

If a divergence is invariant in Ā and but not monotone in R on s-measurable priors, there

exists a utility function such that all equilibria are efficient, share a common ᾱ, and are not

s-measurable. Our example cost function DSR satisfies these conditions, demonstrating that

efficiency and non-fundamental volatility are driven by distinct properties of information costs.

Corollary 1. If D is invariant in Ā but not monotone in R given some µ = φ{µ0, ᾱ} with ᾱ

s-measurable, there exists a mean-critical utility function u such that equilibria exist and all

equilibria are constrained efficient, non-s-measurable, and share a common aggregate action

function ᾱ∗.

Proof. See the appendix, E.13.

8 The Linear-Quadratic Gaussian Setting

In this section we give examples illustrating our general results adapted to the linear-quadratic-

Gaussian (LQG) setting. Our goal is to provide examples that can understood using first order

conditions in a familiar setting, as opposed to providing a second set of formal results.

We use the linear-quadratic utility function of (1), but now assume that A, S, and R are the

real lines.32 We assume a Gaussian prior µ0 under which (s, r) ∼ N ((0, 0),Σ0), and focus on

linear equilibria in which ᾱ(s, r) = ᾱss+ ᾱrr for some constants (ᾱs, ᾱr) ∈ R2.

For information costs, we consider the continuous-state analogs of DKL, DSĀ, and DSR

introduced in Section 3, described below. With these particular cost functions, linear-quadratic

payoffs, Gaussian priors, and a linear aggregate action function, rationally inattentive agents op-

timally form Gaussian posteriors; see results in Sims [2003] and Hébert and Woodford [2021].33

By this we mean that the agent’s optimal strategy π0 ∈ Π0(µ0) will be “as if” the agent observes a

one-dimensional Gaussian signal ωi ∈ R, updates her beliefs, and then takes the optimal action

given those beliefs. The signal ωi can be represented as

ωi = (s, r) · λ0 + εi, with εi ∼ N (0, τ−1
0 ), (13)

32Assuming finiteS×R and compactA avoids technicalities when deriving our general results; restricting attention
to the Gaussian setting can be seen as an alternative means of maintaining tractability.

33An alternative approach, common in the literature (see, e.g., Colombo et al. [2014]), is to impose this Gaussian
signals assumption, define cost functions on Gaussian signals, and study the linear quadratic Gaussian problem.
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where λ0 ∈ R2 is a weighting vector on s vs. r and τ0 is the precision of this as-if signal. The

objects (λ0, τ0) are the choice variables of the agent.

Given the utility function in (1), the optimal action given any posterior µ′0 ∈ U0 is

a∗(µ′0) = Eµ
′
0(s,r)[(1− β)s+ β(ᾱss+ ᾱrr)] = Eµ

′
0(s,r)[(s, r) · ψ(ᾱs, ᾱr)],

where ψ(ᾱs, ᾱr) is a column vector given by:

ψ(ᾱ)′ ≡ (1− β + βᾱs, βᾱr). (14)

We can associate each ωi with a posterior µ′0(ωi) defined by Bayesian updating and an opti-

mal action a(ωi) = α(λ0, τ0, ᾱs, ᾱr)ω
i, where

α(λ0, τ0, ᾱs, ᾱr) =
τ0

1 + τ0λ′0Σ0λ0
ψ(ᾱs, ᾱr)

′Σ0λ0.

See the technical appendix, Section D, for a more detailed derivation. The agent’s optimal strat-

egy π0 ∈ Π0(µ0) is induced from the distribution of signals by ωi 7→ (a(ωi), µ′0(ωi)).

Mean-consistency in this context requires that (ᾱs, ᾱr)
′ = α(λ0, τ0, ᾱs, ᾱr)λ0, which is

(ᾱs, ᾱr)
′ =

τ0ψ(ᾱs, ᾱr)
′Σ0λ0

1 + τ0λ′0Σ0λ0
λ0. (15)

Example Cost Functions. We will consider the continuous-state analogs of the example diver-

gences DKL, DSĀ, and DSR introduced in Section 3. All three cost functions imply Gaussian

signals of the form assumed in (13) are optimal. As such, each cost function can be written in

reduced-form as a cost C(λ0, τ0,Σ0, ᾱs, ᾱr). See the technical appendix, Section D, for deriva-

tions of the costs below from results in Sims [2003] and Hébert and Woodford [2021].

Consider first the mutual information cost function with associated KL divergence DKL:

DKL(µ′||µ) = Eµ
′(s,r,ā)

[
ln

(
dµ′

dµ

)]
,

The cost function in this case can be written, for some constant θ > 0, as

CMI(λ0, τ0,Σ0, ᾱs, ᾱr) = θ ln(1 + τ0λ
′
0Σ0λ0).

Second, consider the divergenceDSR. By results in Hébert and Woodford [2021], the contin-

uous state limit of DSR is a version of the Fisher information, given by:

DFI−SR(µ′||µ) = Eµ
′(s,r,ā)

[(
∂

∂s
ln

(
dµ′

dµ

))2

+

(
∂

∂r
ln

(
dµ′

dµ

))2
]
.
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The cost function can be written, for some constant θ > 0, as

CFI−SR(λ0, τ0,Σ0, ᾱs, ᾱr) = θτ0λ
′
0λ0.

Third, consider the divergence DSĀ. By results in Hébert and Woodford [2021], the continu-

ous state limit of DSĀ is a version of the Fisher information, given by:

DFI−SĀ(µ′||µ) = Eµ
′(s,r,ā)

[
1

1 + ᾱ2
s

(
∂

∂s
ln

(
dµ′

dµ

))2
]
.

The cost function can be written, for some constant θ > 0, as

CFI−SĀ(λ0, τ0,Σ0, ᾱs, ᾱr) =
θ

1 + ᾱ2
s

τ0λ
′
0λ0.

Both CFI−SR and CFI−SĀ are linear in τ0; linearity in precision is commonly assumed in the

LQG literature, see, e.g, Myatt and Wallace [2012] or Van Nieuwerburgh and Veldkamp [2010].

Note that with CFI−SĀ, the cost of any non-zero pair (λ0, τ0) is decreasing in |ᾱs|.
We should caution that the signal ωi ∈ R should not be interpreted as describing the actual

signal received by the agent. In our setting, the agent might learn about s and r either by paying

attention to those objects directly or by paying attention to ā; in either case, it is “as if” the

agent receives a Gaussian signal of the form in (13). The cost functions C should be understood

in a reduced form sense: they represent the cost of reaching the posteriors via the least costly

method available. We discuss this issue in more detail and provide an example below.

Equilibrium. The agent’s expected payoff given the posterior µ′0 can be written as

Eµ
′
0(s,r)[u(a∗(µ′0), ᾱ(s, r), s)] = −V µ′0(s,r)[(s, r) · ψ(ᾱs, ᾱr)]− β(1− β)Eµ

′
0(s,r)[(s− ᾱss− ᾱrr)2]

where V [·] denotes the variance. For the Gaussian strategies described above, this posterior

variance is the identical across realizations of ω; a little algebra shows that the agent’s ex-ante

expected payoff is

Eπ0(a,µ′0)[u(a, ā, s)] =
τ0

1 + τ0λ′0Σ0λ0
(ψ(ᾱs, ᾱr)

′Σ0λ0)2 + f(ᾱs, ᾱr),

where f(ᾱ) ≡ −ψ(ᾱs, ᾱr)
′Σ0ψ(ᾱs, ᾱr) − β(1 − β)Eµ0 [(s − ᾱss − ᾱrr)2] are payoff terms that are

independent of the agent’s individual strategy (λ0, τ0). See the technical appendix, Section D,

for details. A profile (λ∗0, τ
∗
0 , ᾱ

∗
s, ᾱ
∗
r) is a linear symmetric BNE if mean consistency (15) holds and

(λ∗0, τ
∗
0 ) ∈ arg max

λ0∈R2,τ0≥0

τ0

1 + τ0λ′0Σ0λ0
(ψ(ᾱ∗s, ᾱ

∗
r)
′Σ0λ0)2 − C(λ0, τ0,Σ0, ᾱ

∗
s, ᾱ
∗
r).

35



8.1 Non-Fundamental Volatility

We begin by considering the question of non-fundamental volatility. To simplify our analysis,

we assume s ∼ N (0, σ2
s) and that r is a noisy public signal about s, given by r = s + e, where

e ∼ N (0, σ2
e) is independent of s and σ2

e > 0. With this specification, Σ0 =

[
σ2
s σ2

s

σ2
s σ2

s + σ2
e

]
.

Note that (λ0, τ0) and (mλ0,m
−2τ0) for somem > 0 are signals that convey identical informa-

tion (one is just a scaled version of the other). For the purposes of this section, it is convenient

to adopt the normalization λ′0Σ0λ0 = 1. Consider the Lagrangian version of the agent’s problem

with the mutual information cost function CMI with this constraint,

max
τ0≥0,λ0∈R2

min
ν∈R

τ0

1 + τ0
(ψ(ᾱs, ᾱr)

′Σ0λ0)2 − θ ln(1 + τ0)− ν(λ′0Σ0λ0 − 1)

where ν is the Lagrange multiplier on λ′0Σ0λ0 = 1. The first-order condition with respect to λ0 is

τ∗0
1 + τ∗0

(ψ(ᾱs, ᾱr)
′Σ0λ

∗
0)ψ(ᾱs, ᾱr)

′ = ν∗λ∗0,

where τ∗0 is the optimal signal precision. Consequently, the agent’s optimal weights satisfy λ∗0 ∝
ψ(ᾱs, ᾱr). That is, with mutual information, the agent optimally chooses aλ∗0 that is proportional

to the optimal action weights ψ(ᾱs, ᾱr).

Suppose the aggregate action function is s-measurable: ᾱr = 0. In this case, ψ(ᾱs, 0)′ =

(1 − β + βᾱs, 0). It follows that the agent’s best response is s-measurable: (λ∗0)′ = (σ−1
s , 0). By

the usual fixed-point arguments (detailed in the technical appendix, Section D), there exists a

linear equilibrium featuring zero non-fundamental volatility: ᾱ∗r = 0.34

Consider now the agent’s problem with cost function CFI−SR:

max
τ0≥0,λ0∈R2

min
ν∈R

τ0

1 + τ0
(ψ(ᾱs, ᾱr)

′Σ0λ0)2 − θτ0λ
′
0λ0 − ν(λ′0Σ0λ0 − 1).

The first order condition with respect to λ0 can be written as

τ∗0
1 + τ∗0

(ψ(ᾱs, ᾱr)
′Σ0λ

∗
0)ψ(ᾱs, ᾱr)

′ = θτ∗0 Σ−1
0 λ∗0 + ν∗λ0.

If ᾱr = 0 and τ∗0 > 0, then the optimal strategy is not s-measurable: (λ∗0)′ 6= (σ−1
s , 0).35 As long as

an agent gathers some information (τ∗0 > 0), the agent will place some weight on r.

Consequently, with the Fisher information cost function CFI−SR, in any equilibrium with

34In fact, it’s relatively straightforward to show that all linear equilibria are s-measurable. However, linearity is
key to the result– without linearity, best responses are not Gaussian, and linearity rules out the kind of equilibria
discussed at the end of Section 5 (in regards to the interaction of multiplicity and non-fundamental volatility).

35To see this, observe that the matrix Σ0 is not diagonal (because r is correlated with s). Hébert and Woodford
[2021] show that agents choose a λ0 that maximally covaries with ψ(ᾱs, ᾱr) under the resulting posterior; when r is a
public signal about s, this will always involve putting some weight on r.

36



non-zero information acquisition, τ∗0 > 0, there exists non-fundamental volatility: ᾱr 6= 0. We

show in the technical appendix Section D that a linear equilibrium exists, and moreover if θ is

sufficiently small, all linear equilibria feature non-fundamental volatility.

What explains these differences? The cost function CMI is associated with a divergence that

is monotone in R, and CFI−SR is not.36 In our general setting, monotonicity in R is sufficient

for the existence of an s-measurable equilibrium; our result with CMI is an analog in the LQG

setting. In our general setting, monotonicity in R is also in a sense necessary. With the cost

functionCFI−SR, monotonicity inR is violated if any information is acquired, and consequently

the equilibrium fails to be s-measurable in this case.

8.2 Constrained Efficiency

We next consider constrained efficiency. To simplify the analysis, we abstract from the r di-

mension by assuming that the variance of r is zero under the prior µ0, setting Σ0 =

[
σ2
s 0

0 0

]
.

We thereby need only consider the s dimension. We focus on linear aggregate action functions

ᾱ(s) = ᾱss and adopt the normalization λ′0 = (1, 0). We maintain these assumptions throughout

the remainder of this sub-section and the next two sub-sections.

Consider the planner’s problem (restricted to linear aggregate actions ᾱ and strategies of the

form described above) with the mutual information cost function,

max
τ0≥0,ᾱs

(1− β + βᾱs)
2σ2
s

(
1− 1

1 + τ0σ2
s

)
+ f(ᾱ)− θ ln(1 + τ0σ

2
s),

where f(ᾱ) = −(1− β + βᾱs)
2σ2
s − β(1− β)(1− ᾱs)2σ2

s , subject to mean-consistency:

ᾱs = (1− β + βᾱs)

(
1− 1

1 + τ0σ2
s

)
. (16)

Let us for a moment ignore the mean-consistency constraint. The first-order condition of

the planner’s objective with respect to ᾱs is

2βσ2
s(1− β + βᾱs)

(
1− 1

1 + τ0σ2
s

)
= 2β(1− β + βᾱs)σ

2
s

− 2β(1− β)(1− ᾱs)σ2
s ,

which simplifies to (16). That is, the mean-consistency constraint holds with equality at the

planner’s unrestricted optimum. It follows that the solution to the planner’s problem is also an

equilibrium (as the FOCs of the unrestricted planner and agent with respect to τ0 are identical).

This seemingly remarkable coincidence is, of course, a consequence of the mean-critical nature

36We don’t prove this formally for the Gaussian setting; it follows from the same arguments used in Section 3.
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of the payoff function and the invariance of mutual information with respect to Ā.

Consider now the problem with the cost function CFI−SĀ = θ(1 + ᾱ2
s)
−1τ0. To simplify the

argument, we set β = 0; mean-consistency is ᾱ∗s = 1− (1 + τ∗0σ
2
s)
−1. The agent’s problem is

max
τ0≥0

σ2
s

(
1− 1

1 + τ0σ2
s

)
− θ

1 + ᾱ2
s

τ0.

This problem is concave in τ0; the agent’s first-order condition with respect to τ0 is given by:

(σ2
s)

2

(1 + τ∗0σ
2
s)

2
≤ θ

1 + (ᾱ∗s)
2
,

with equality if τ∗0 > 0. By mean-consistency, if ᾱ∗s > 0,

(σ2
s)

2(1− ᾱ∗s)2(1 + (ᾱ∗s)
2) = θ. (17)

Consider now the planner’s problem in this context,

ᾱ∗∗s = arg max
ᾱs∈[0,1)

σ2
s ᾱs −

θ

1 + ᾱ2
s

1

σ2
s

(
1

1− ᾱs
− 1

)
,

where we have substituted the mean-consistency constraint into the planner’s objective. The

planner’s first-order condition is given by

(σ2
s)

2(1 + ᾱ∗∗s )2(1 + (ᾱ∗∗s )2) ≤ θ(1− 2ᾱ∗∗s
1 + (ᾱ∗∗s )2

),

with equality if ᾱ∗∗s > 0. This condition coincides with the equilibrium condition (17) only if no

information is gathered, in which case ᾱ∗∗s = ᾱ∗s = 0. This occurs when θ is sufficiently high:

θ ≥ (σ2
s)

2.37 When instead θ < (σ2
s)

2, all equilibria are inefficient: ᾱ∗∗s > ᾱ∗s.

In this example, the cost functionCFI−SĀ is non-invariant in Ā; in fact, the cost of any preci-

sion τ0 > 0 is a decreasing function of ᾱs, the sensitivity of the aggregate action to the underlying

state s. This implies that more extreme aggregate actions are easier or “cheaper” for agents to

observe than less extreme aggregate actions—an effect not internalized by individual agents. A

benevolent planner, in an effort to reduce information costs for all agents, would dictate more

information acquisition for each agent, resulting in a more sensitive aggregate action function.

8.3 Multiplicity

With endogenous information acquisition, the assumption that β < 1 is not sufficient to ensure

uniqueness. In this section we show how multiplicity can arise when β ∈ (0, 1), even when the
37This point is not specific to the LQG setting. When the solution to the planner’s problem involves no informa-

tion gathering, the aggregate action ᾱ cannot affect information costs. Consequently, the solution to the planner’s
problem is always an equilibrium in this case provided that the utility function is mean-critical at the relevant point.
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cost function is invariant in Ā. The example we construct is closely related to certain results in

Myatt and Wallace [2012]. With mutual information (which is invariant in Ā), the agent solves

max
τ0≥0

(1− β + βᾱs)
2σ2
s

(
1− 1

1 + τ0σ2
s

)
+ θ ln(

1

1 + τ0σ2
s

).

Note that this problem is strictly concave in (1 + τ0σ
2
s)
−1 and hence the first-order condition is

sufficient. The agent’s first-order condition with respect to τ0 can be written as

(1− β + βᾱs)
2σ2
s = θ(1 + τ∗0σ

2
s). (18)

An equilibrium (τ∗0 , ᾱ
∗
s) jointly satisfies (18) and mean-consistency (16). To demonstrate that

multiple equilibrium can exist, we construct two equilibria in this setting.

Set θ = (1 − β)2σ2
s . It is immediate that ᾱ∗s = 0, τ∗0 = 0 satisfies (18) and (16); in this

equilibrium no information is acquired.

A second solution can exist, provided β is sufficiently large. For example, let β = 2/3. In this

case, ᾱ∗s = 1
2 , τ
∗
0 = 3(σ2

s)
−1 is the other solution to these equations; in this equilibrium agents

gather a non-zero amount of information. More generally, whenever β ∈ (1/2, 1), there are two

solutions to (16) and (18), one in which ᾱ∗s = 0 and another in which ᾱ∗s > 0.38

Consider the equilibrium in which all agents gather zero information. If the marginal cost of

information at τ0 = 0 is sufficiently high, then it is individually-optimal for an agent to gather

zero information.39 However, if other agents gather information and act upon it, this increases

the individual agent’s incentive to gather information. If this form of strategic complementarity

is sufficiently strong, an equilibrium in which agents gather information can also exist.

When the two equilibria co-exist, the equilibrium with information gathering Pareto-dominates

the equilibrium with zero information gathering; see the technical appendix, Section D, for de-

tails. This example therefore illustrates the reasoning behind the qualifiers of Proposition 4. The

linear-quadratic utility function is mean-critical and mutual information is invariant in Ā. As a

result, the solution to the planner’s problem is an equilibrium: the equilibrium with information

gathering. When β ∈ (0, 1), it is possible that another Pareto-dominated equilibrium exists;

weak strategic substitutability (β ≤ 0) rules out this possibility.

38The first order condition and mean-consistency condition combine into a quadratic equation in ᾱs with no
constant, and hence there are at most two solutions, one of which is always ᾱ∗S = 0. When β ∈ (1/2, 1),
(ᾱ∗S = β−1(2β − 1), τ∗0 σ

2
s = β2(1 − β)−2 − 1) is also a solution. See the technical appendix, Section D, for details. A

second equilibrium exists if β > 1
2

, but in general the relevant threshold will depend on the cost function.
39Our results might seem to contradict certain results in Colombo, Femminis, and Pavan [2014]. However,

Colombo, Femminis, and Pavan [2014] impose the assumption that the marginal cost of increasing precision at zero
is zero. This assumption is not satisfied by our example cost functions (which are based on cost functions commonly
used in the rational inattention literature), and as a result an equilibrium in which no information is acquired exists.
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8.4 The Allocation of Attention

We conclude our discussion of the LQG framework by considering the agent’s allocation of at-

tention. We have cautioned against the literal interpretation of ωi as the agent’s signal and λ0 as

the agent’s allocation of attention. This is because agents can reach the same posterior beliefs

in multiple ways: by paying attention to s or r directly, or by paying attention to ā. In appendix

section A, we discuss this in more detail in the context of our general model. Here, we provide a

simple illustration in the LQG context.

We define a version of the Fisher information cost function by

DFI(µ
′||µ) = Eµ

′(s,r,ā)

[(
∂

∂s
ln

(
dµ′

dµ

))2

+

(
∂

∂ā
ln

(
dµ′

dµ

))2
]
.

Let us require that the agent receive a signal of the form ω̄i = (s, ā)·λ+ ε̄i, with ε̄i ∼ N(0, τ−1), for

some λ ∈ R2 and τ ≥ 0; we will interpret λ as describing the allocation of the agent’s attention

across s and ā. The resulting cost function can be written as

CFI(λ, τ) = θτλ′λ.

In a linear equilibrium (ᾱ(s, r) = ᾱss), the signal ω̄ is equivalent, from an informational

perspective, to receiving the signal ω = ((1, ᾱs) · λ)s + ε̄i. Consequently, any two vectors λ1, λ2

such that (1, ᾱs) · λ1 = (1, ᾱs) · λ2 will generate the same posteriors. The agent will therefore

prefer whichever signal is less costly.

Adopting the normalization (1, ᾱs) · λ = 1, we can define a reduced-form cost function by

C(τ0, ᾱ) = min
λ∈R2

max
ν∈R

CFI(λ, τ0) + ν(1− (1, ᾱs) · λ).

This cost function reflects the cost of optimally acquiring a signal about s via whichever means

(s, ā, or a combination thereof) is least costly. The associated first-order condition is 2θτ0(λ∗)′ =

ν∗(1, ᾱs), and therefore, to satisfy the constraint, ν∗(1 + ᾱ2
s) = 2θτ0. It follows that

C(τ0, ᾱ) = θ
τ0

1 + ᾱ2
s

= CFI−SĀ((1, 0)′, τ0,Σ0, ᾱs, 0).

Thus the cost function CFI−SĀ can be understood as the reduced-form representation of CFI .

It depends on ᾱ, even though the “true” cost function, CFI , does not. This dependence is due

to the fact that under the “true” cost function, the least costly method of reaching a given set of

posteriors on s is to pay some attention to ā, and the degree to which it is optimal to attend to ā

depends on the volatility of ā relative to s. This example serves as an illustration of why (λ0, τ0)

(and in our general framework, π0 and π) should be understood as describing the posteriors of

the agent but not the agent’s allocation of attention.
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9 Conclusion

In this paper we have studied the relationship between information cost functions and proper-

ties of equilibria in large games with strategic interaction and rationally inattentive agents. We

have demonstrated that there is a close connection between certain properties of information

cost functions—monotonicity in R and invariance in Ā—and whether or not an equilibrium is

efficient and/or exhibits non-fundamental volatility.

Efficiency holds when information cost functions are invariant in endogenous actions and

in the absence of payoff externalities. We characterize the class of utility functions that rule

out payoff externalities; we call these mean-critical utility functions. Our result generalizes the

characterization of Angeletos and Pavan [2007] to non-linear-quadratic games with endogenous

information acquisition. Equilibrium non-fundamental volatility exists when information costs

are non-monotone in payoff-irrelevant dimensions of the exogenous state space.

Our results indicate that the choice of an information cost function is an important determi-

nant of equilibria properties. The standard rational inattention cost function, mutual informa-

tion, leads to both efficiency and zero non-fundamental volatility. In contrast, alternative cost

functions such as the neighborhood-based cost functions proposed by Hébert and Woodford

[2021] can lead to non-fundamental volatility and inefficiency.
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Appendix

A The Allocation of Attention

In this appendix, we describe the problem of an agent who can acquire signals subject to a

posterior-separable cost. We show that the problem of the agent described in the main text can

be understood as a reduced form for this more general problem. We discuss the key example

of DSĀ at the end of this section, and argue that it can be motivated as a discrete approxima-

tion of the reduced form of a problem in which the agents allocate their attention between the

fundamentals s ∈ S and the actions of other agents, ā ∈ Ā.

In what follows, we assume S and R are compact but not necessarily finite subsets of Rn,

while continuing to assume µ0 has full support on S ×R.

Signals Let Ω denote a space of possible signal realizations, which we assume is rich (we state

a sufficient assumption below). An admissible signal structure consists of a signal alphabet

ν̄ ∈ ∆(Ω) and a function ν : Ω× S ×R× Ā→ R+ satisfying, for each (s, r, ā) ∈ S ×R× Ā,∫
Ω
ν(ω|s, r, ā)dν̄(ω) = 1.

and such that, for each ω ∈ Ω, ν(ω|·) ∈ L1(µ), meaning that∫
S×R×Ā

ν(ω|s, r, ā)dµ(s, r, ā) <∞.

Note that the signal can condition on ā in addition to s and r; we interpret this as describing

a situation in which the agent pays attention to the actions of other agents. That is, unlike the

distributions over posteriors π ∈ Π(µ) and π0 ∈ Π0(µ0) considered in the main text, we will think

of the signal structure (ν̄, ν) ∈ V as describing the allocation of the agent’s attention.

Let µ ∈ U be the agent’s prior on S ×R × Ā. From this prior, each signal structure induces a

density of signal realizations with respect to ν̄, f̄{ν, µ̄} : Ω→ R+, defined by

f̄{ν, µ}(ω) =

∫
S×R×Ā

ν(ω|s, r, ā)dµ(s, r, ā),

and a set of posterior probability densities fω{ν, µ} ∈ L1(µ) defined by, for all ω such that

f̄{ν, µ}(ω) > 0,

fω{ν, µ}(s, r, ā) =
ν(ω|s, r, ā)

f̄{ν, µ}(ω)
.

Note that these functions are the posterior densities with respect to the measure µ ∈ U . We

adopt the convention that fω{ν, µ}(s, r, ā) = 1 for all ω such that f̄{ν, µ}(ω) = 0. Define the set
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of admissible densities with respect to the prior µ as

F(µ) = {f ∈ L1(µ) : 1 =

∫
S×R×Ā

f(s, r, ā)dµ(s, r, ā)}.

Observe by construction that fω{ν, µ} ∈ F(µ) for all µ ∈ U , ω ∈ Ω, and (ν̄, ν) ∈ V . Note also that

each density f ∈ F(µ) induces a measure µ̂{f, µ} ∈ U by dµ̂{f, µ}(s, r, ā) = f(s, r, ā)dµ(s, r, ā).

We next define the class of cost functions on signals.

Definition 14. A cost function defined on signals is a cost function C̄ : V × U → [0,∞].

Given such a cost function, we can define the agent’s problem:

sup
(ν̄,ν)∈V,σ:Ω→∆(A)

Eµ(s,r,ā)

[∫
supp(ν̄)

Eσ(a;ω)[u(a, ā, s)]ν(ω|s, r, ā)dν̄(ω)

]
− C̄(ν̄, ν, µ),

where σ : Ω → ∆(A) describes the agent’s mixed strategy over actions conditional on receiving

the signal realization ω ∈ Ω.

Posteriors Take as given a prior µ ∈ U and signal structure (ν̄, ν) ∈ V . Together, these induce

a measure on signal realizations f̄{ν, µ}(ν̄) ∈ ∆(Ω). This measure, combined with the action

strategy σ : Ω→ ∆(A), defines via the product measure a measure on A× Ω. From this product

measure, the mapping (a, ω) 7→ (a, û{fω{ν, µ}, µ}) induces a strategy π̂{ν̄, ν, µ} ⊂ ∆(A × U(µ)).

By construction, this strategy satisfies Bayes-consistency: for all (s, r, ā) ∈ S ×R× Ā,∫
supp(π)

dµ′(s, r, ā)dπ̂{ν̄, ν, µ}(a, µ′) =

∫
supp(ν̄)

fω{ν, µ}(s, r, ā)f̄{ν, µ}(ω)dν̄(ω)dµ(s, r, ā)

=

∫
supp(ν̄)

ν(ω|s, r, ā)dν̄(ω)dµ(s, r, ā) = dµ(s, r, ā).

Let Π(µ) be the set of Bayes-consistent strategies with full support on posteriors absolutely

continuous with respect to the prior µ.

Moreover, we can write the agent’s expected payoff (not including information costs) under

(ν̄, ν) as

Eµ(s,r,ā)[

∫
supp(ν̄)

Eσ(a;ω)[u(a, ā, s)]ν(ω|s, r, ā)dν̄(ω)] = Eπ̂{ν̄,ν,µ}(a,µ
′)[V (a, µ′)]

where V (a, µ′) = Eµ
′(s,r,ā)[u(a, ā, s)] as in the main text. Note here that if π̂{ν̄, ν, µ} = π in the

weak* topology, then Eπ̂{ν̄,ν,µ}(a,µ
′)[V (a, µ′)] = Eπ(a,µ′)[V (a, µ′)]. That is, the expected payoff

is the same for all signal structures (ν̄, ν) ∈ V that result in the same reduced-form strategy

π ∈ Π(µ).

It follows that the agent can divide her problem into two parts: choosing some feasible

strategy π ∈ Π(µ), and choosing the signal structure (ν̄, ν) ∈ V to induce that strategy while
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minimizing information costs. The following lemma shows that all π ∈ Π(µ) are feasible under

the assumption that Ω is rich (we assume Ω = A× U0, which is sufficient).

Lemma 5. Assume Ω = A × U0. For any prior µ ∈ U and any π ∈ Π(µ), there exists a signal

structure (ν̄, ν) ∈ V such that π = π̂{ν̄, ν, µ} and ν(ω|s, r, ā) = ν(ω|s, r, ā′) for all ω ∈ Ω, s ∈ S,

r ∈ R, and ā, ā′ ∈ Ā.

Proof. See the technical appendix, G.9.

As a consequence, the agent’s problem can be written as

max
π∈Π(µ)

Eπ(a,µ′)[V (a, µ′)]− C(π, µ),

where

C(π, µ) = inf
(ν̄,ν)∈V:π̂{ν̄,ν,µ}=π

C̄(ν̄, ν, µ).

This is the problem considered in the main text (ifC(π, µ) is posterior-separable). The reduced-

form cost function C(π, µ) is the result of a cost-minimization problem over signals.

Given the aggregate action strategy ᾱ ∈ Ā, there is a one-to-one relationship between π ∈
Π(µ) and π0 ∈ Π0(µ). Define Φ(π0, ᾱ) as the strategy induced from π0 by (a, µ′0) 7→ (a, φ{µ′0, ᾱ}),

and observe that π = Φ(π0). Similarly, the strategy π0 is induced from π by (a, µ′) 7→ (a, γĀ{µ′}).

We can therefore write the agent’s problem and reduced form cost function in the alternative

formulation,

max
π0∈Π(µ0)

Eπ0(a,µ′)[V (a, φ{µ′0, ᾱ})]− C0(π0, µ0, ᾱ),

where C0(π0, µ0, ᾱ) = C(Φ{π0, ᾱ}, φ{µ0, ᾱ}).

Posterior Separability In the main text, we focus on the case in which C(π, µ) is posterior-

separable. In the examples below, we construct reduced form posterior-separable cost func-

tions C(π, µ) from posterior-separable cost functions C̄(ν̄, ν, µ) of the form

C(ν̄, ν, µ) =

∫
supp(ν̄)

D̄(fω{ν, µ}||µ)f̄{ν, µ̄}(ω)dν̄(ω), (19)

where D̄ : {(f, µ) ∈ F × U : f ∈ F(µ)} → [0,∞] is a sort of divergence defined on densities. We

assume that if f(s, r, ā) = 1 everywhere, then D̄(f ||µ) = 0.

We will define the kind of divergence studied in the main text by

D(µ′||µ) = inf
f∈F{µ}:µ̂{f,µ}=µ′

D̄(f ||µ).

Note that this definition automatically ensures convexity and that D(µ||µ) = 0.

Our strategy when constructing our example cost functionsC(π, µ) is to minimize D̄ at each

posterior in the support of some Bayes-consistent π, and then verify that the resulting densities
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can be generated by some signal structure. Such densities are always optimal if feasible. For the

KL divergence example, we verify the assumption in this section. For our other examples, we

will verify this property in the context of our discussion of the continuous state case (technical

appendix Section B).

In this exercise, it is convenient to consider densities in F0, the set of continuous functions

S ×R→ R+, instead of in F . To this end, let us define the operation φ̄ : F0 × Ā → U by

dφ̄{f0, ᾱ}(s, r, ā) = f0(s, r)dµ0(s, r)dδᾱ(s,r)(ā), (20)

which is the analog of (2) for densities. For f0 ∈ F0(µ0) (the set of densities with
∫
S×R f0(s, r)µ0(s, r) =

1) and ᾱ ∈ Ā, we can define a reduced-form divergence on densities,

DF (f0||µ0; ᾱ) = D(φ̄{f0, ᾱ}||φ{µ0, ᾱ}).

Note that this definition requires that for any f0, f
′
0 ∈ F0(µ0), if φ̄{f0, ᾱ} = φ̄{f ′0, ᾱ}, thenDF (f0||µ0; ᾱ) =

DF (f ′0||µ0; ᾱ). We will verify this property in each of our examples.

Examples We next provide examples of how reduced form divergences like the examplesDKL,

DSĀ, andDSR considered in the main text can arise from cost functions defined on signal struc-

tures.

The KL Divergence Mutual information is a posterior-separable cost function defined on sig-

nal structures (i.e. it satisfies (19)). The corresponding divergence, the KL divergence, can be

defined on densities as

D̄KL(f ||µ) =

∫
S×R×Ā

f(s, r, ā) ln(f(s, r, ā))dµ(s, r, ā).

By definition, µ = φ{µ0, ᾱ} for some ᾱ ∈ Ā, and consequently

D̄KL(f ||µ) =

∫
S×R

f(s, r, ᾱ(s, r)) ln(f(s, r, ᾱ(s, r)))dµ0(s, r).

It follows immediately that all f ′ ∈ F{µ} satisfying µ̂{f ′, µ} = µ′ for some µ′ = φ{µ′0, ᾱ} will

generate the same value of D̄KL(f ||µ) (since they are all identical µ-a.e.), and hence

DFKL(f0||µ0; ᾱ) =

∫
S×R

f0(s, r) ln(f0(s, r))dµ0(s, r)

and

DKL(φ{µ′0, ᾱ}||φ{µ0, ᾱ}) = DFKL(f0||µ0; ᾱ)

for any f0 such that f0 = dµ′0
dµ0

. In the finite state case,DKL is the example cost function described

in the text.
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Because all signal structures (ν̄, ν) generate the same cost, by Lemma 5 there exists a signal

structure that induces any π ∈ Π(µ) and satisfies

C̄(ν̄, ν, µ) = Eπ[DKL(µ′||µ)].

Fisher Information: DSR Hébert and Woodford [2021] define a family of posterior-separable

cost functions using Fisher information. When considering these cost functions, we will assume

S and R are convex subsets of RN and that µ0 has full support on S × R. The general version

of the divergence associated with the Fisher information cost can be defined for any µ ∈ U and

any strictly positive and weakly differentiable density f as

D̄FI(f ||µ) =

∫
S×R×Ā

||∇ ln [f(s, r, ā)] ||2f(s, r, ā)dµ(s, r, ā), (21)

where∇ denotes the gradient with respect to (s, r, ā) and || · || is the Euclidean norm. We define

D̄FI(f ||µ) by continuity for any f that is not strictly positive and weakly differentiable.

We can generate a restricted version of this cost function by assigning infinite cost to learning

about the actions of others. Define

D̄FI−SR(f ||µ) =

{
∞ ∃(s, r, ā, ā′) ∈ S ×R× Ā× Ā s.t. f(s, r, ā) 6= f(s, r, ā′)
D̄FI(f ||µ) otherwise.

This cost function rules out learning about the actions of others. It induces the reduced form

divergence

DFFI−SR(f0||µ0; ᾱ) =

∫
S×R
||∇ ln [f0(s, r)] ||2f0(s, r)dµ0(s, r)

for any weakly differentiable f0(s, r). Observe that, for any f0, f
′
0 that are equal µ0-a.e., if h0 is

a weak derivative of f0, it is also a weak derivative of f ′0. Consequently, for any µ′0 such that a

weakly differentiable Radon-Nikodym derivative with respect to µ0 exists,

DFI−SR(φ{µ′0, ᾱ}||φ{µ0, ᾱ}) = DFFI−SR(f0||µ0; ᾱ)

for any f0 = dµ′0
dµ0

. We define the divergence by continuity if no weakly differentiable Radon-

Nikodym derivative exists. We verify in the technical appendix, Section B that there is a signal

structure that achieves

C̄(ν̄, ν, µ) = Eπ[DFI−SR(µ′||µ)]

for all admissible π (see that section for a definition of admissible strategies).

Hébert and Woodford [2021] show that the cost function DSR described in the text is a dis-

cretized version of this cost function, in the sense that there is a sequence of problems with

a growing number of states such that DSR converges to DFI−SR as the number of states go to

infinity.
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Fisher Information: DSĀ Lastly, let us next consider the case in which R = {r} is a singleton,

and define

D̄FI−SĀ(f ||µ) =

∫
S×R×Ā

[(
∂ ln(f(s, r, a)

∂s

)2

+

(
∂ ln(f(s, r, ā)

∂ā

)2
]
f(s, r, ā)dµ(s, r, ā).

Consider the problem of choosing f to minimize costs and satisfy f(s, r, ᾱ(s, r)) = f0(s) for

some weakly differentiable f0 : S → (0,∞). This problem can be thought of as choosing the

allocation of attention. We assume in what follows that ᾱ is differentiable with respect to s.40

Because f and f0 are both weakly differentiable, we must have, µ0-a.e.,

f0,s(s) = fs(s, r, ᾱ(s, r)) + fā(s, r, ᾱ(s, r))ᾱs(s, r).

Consequently,[(
∂ ln(f(s, r, a)

∂s

)2

+

(
∂ ln(f(s, r, ā)

∂ā

)2
]
f(s, r, ā)2 = f0,s(s, r)

2 + fa(s, r, ᾱ(s, r))2(1 + ᾱs(s, r)
2)

− 2fa(s, r, ᾱ(s, r))ᾱs(s, r)f0,s(s, r).

These equations reflect the fact that the agent has a choice about how to gather information.

If the agent would like her signal/posterior to be sensitive to s, she can either attend to those

variables directly (choosing |fa| to be small), or learn about them via the actions of other agents

(choosing |fa| to be large). The optimal fa satisfies

fa(s, r, ᾱ(s, r)) =
ᾱs(s, r)

1 + ᾱs(s, r)2
f0,s(s), (22)

which is to say the agent will attend to ā to the extent that it is informative about s. The resulting

reduced form divergence can be written, for any µ0, µ
′
0 ∈ U0, differentiable ᾱ ∈ A, and some

weakly differentiable f0 satisfying f0(s)dµ0(s, r) = dµ′0(s, r) for all (s, r) ∈ S ×R, as

DFFI−SĀ(f0||µ0; ᾱ) =

∫
S×R

1

1 + ᾱs(s, r)2

(
∂ ln(f0(s))

∂s

)2

f0(s)dµ0(s, r),

Again, all weakly differentiable f0 satisfying the required condition will generate the same re-

duced form divergence, and hence for any µ′0 such that a weakly differentiable Radon-Nikodym

derivative with respect to µ0 exists,

DFI−SĀ(φ{µ′0, ᾱ}||φ{µ0, ᾱ}) = DFFI−SĀ(f0||µ0; ᾱ).

We again define the divergence by continuity if no Radon-Nikodym derivative exists. We verify

40Because this cost function makes non-differentiable densities infinitely costly, mean-consistency implies this
property must hold in equilibrium.
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in the technical appendix, Section B that there is a signal structure that achieves

C̄(ν̄, ν, µ) = Eπ[DFI−SĀ(µ′||µ)]

for all admissible π (see that section for a definition of admissible strategies).

As withDSR, the arguments in Hébert and Woodford [2021] show that the cost functionDSĀ

described in the text is a discretized version of this cost function.

The reduced form cost function DFI−SĀ and its discrete counterpart DSĀ depend on ᾱ be-

cause ᾱ influences the optimal allocation of the agent’s attention. This is the key point of this

example: the agent’s cost of acquiring information (in the reduced form representation) will

depend on ᾱ if the agent is acquiring that information in part by learning about the actions of

the other agents and if some actions are more easily observed than others.
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Technical Appendix

B Results for Continuous States

In this section we describe how some of our results can be extended the case of an continuous

state space, in which S and R are compact, convex subsets of Rn. In particular, we will extend

our existence and uniqueness results (Propositions 5 and 10), our sufficient condition for zero

non-fundamental volatility (the “if” part of Proposition 6), and our sufficient condition for ef-

ficiency (Proposition 7) to the continuous state case. Our necessity proofs (the “only if” part of

Proposition 6, and Propositions 8 and 9) all in various ways rely on the construction of counter-

examples. These constructions are simplified by the assumption of finiteness for S × R; we

speculate that similar constructions are possible in the infinite state case.

We will also consider a larger action space, A ⊂ Rn, while continuing to assume A is convex

and compact (and hence that Ā = A). We do this in part because extending our existence,

uniqueness, and sufficiency results to multi-dimensional action spaces is relatively straightfor-

ward, and in part because we are motivated by the interpretation of Ā as affecting agents’ utility

via prices.

The key challenge in extending our existence, uniqueness, and sufficiency results to the in-

finite state case arises from the need to consider divergences that assign infinite cost to certain

posteriors. For example, consider the KL divergence. In the finite state case, the full-support

assumption on µ0 ∈ U0 was sufficient to ensure that all posteriors have finite cost. In the infinite

state case, there are sequences of posteriors absolutely continuous with respect to prior such

that the KL divergence approaches infinity. As a consequence, the expected value of the diver-

gence under arbitrary strategies is no longer continuous. Put another way, the set of posteriors

with finite cost is not compact. To resolve this issue, we will restrict the set of strategies available

to the agent to ensure compactness.

The second challenge concerns the mean-consistency condition. To avoid the difficulties

associated with conditional expectations in infinite-dimensional settings, we define strategies

as measures on posterior densities, as opposed to measures on measures. Specifically, let F0 be

the set of continuous functions S ×R→ R satisfying, for all f0 ∈ F0,∫
S×R

f(s, r)dµ0(s, r) = 1,

and let F+
0 ⊂ F0 be the set of admissible densities. We describe our assumptions concerning

F+
0 below.

The strategy space for the agent is Π̄0 ⊂ ∆(A × F+
0 ), the set of measures satisfying Bayes-
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consistency: for all π̄ ∈ Π̄0 and all (s, r) ∈ S ×R,

1 =

∫
supp(π̄0)

f0(s, r)dπ̄0(a, f0).

The agents problem is to solve

π̄∗0 ∈ arg max
π̄0∈Π̄0

Eπ̄0(a,f0)[U(a, φ̄{f0, ᾱ})−D(φ̄{f0, ᾱ}||φ{µ0, ᾱ})]

which is a version of the alternative formulation of the agent’s problem (Definition (4)) for den-

sities. Mean-consistency requires

ᾱ(s, r) =

∫
supp(π̄0)

af0(s, r)dπ̄0(a, f0).

Recall here that ᾱ(s, r) is a vector in Rn for each (s, r) ∈ S × R. This relatively simple definition

of mean-consistency is one of the chief benefits of considering densities instead of measures.

Let Ā+ ⊆ Ā be the set of aggregate action functions that can be generated by some π̄0 ∈ Π̄0.

A symmetric BNE is a mean-consistent strategy profile (π̄0, ᾱ) such that π̄0 is a best reply to

ᾱ. Similarly, a strategy profile (π̄∗0, ᾱ
∗) is constrained efficient if it solves

(π̄∗0, ᾱ
∗) ∈ arg max

π̄0∈Π̄0,ᾱ∈Ā
Eπ̄0(a,f0)[V (a, φ̄{f0, ᾱ})−D(φ̄{f0, ᾱ}||φ{µ0, ᾱ})]

subject to mean-consistency.

A strategy profile (π̄0, ᾱ) is s-measurable if, for all s ∈ S and r, r′ ∈ R, ᾱ(s, r) = ᾱ(s, r′), and

if (a, f0) ∈ supp(π̄0), there exists a function g : S × Ā → R+ such that g(s, ā)dφ{µ0, ᾱ}(s, r, ā) =

dφ̄{f0, ᾱ}(s, r, ā) for all (s, r, ā) ∈ S ×R× Ā.

We will assume in what follows that D is sufficiently continuous (the analog of Assumption

1 in the main text). Define U+ as the range of φ̄, which is the relevant domain of the problem:

U+ = {µ ∈ U : ∃(f0, ᾱ) ∈ F+
0 × Ā

+ s.t. φ̄{f0, ᾱ} = µ}.

Note that for the existence and sufficiency results, it is not necessary to assume differentiability.

Note also that, by definition, for any ᾱ ∈ Ā, f0 ∈ F+
0 ,

D(φ̄{f0, ᾱ}||φ{µ0, ᾱ}) = DF (f0||µ0; ᾱ).

Assumption 2. For the continuous state case, we impose the follow assumptions.

1. The reduced form divergence DF (f0||µ0; ᾱ) is jointly continuous on F+
0 ×A+.

2. The sets of admissible densities F+
0 and aggregate action strategies Ā+ are convex, non-

empty, and compact in the sup-norm topology. The set F+
0 contains the function that is

equal to one everywhere.
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3. For any f0 ∈ F+
0 and s-measurable ᾱ ∈ Ā, there exists an f ′0 ∈ F

+
0 such that φ̄{f ′0, ᾱ} =

ηR{φ̄{f0, ᾱ}, φ{µ0, ᾱ}}.

The second assumption ensures the agent’s strategy space is compact, while the third guar-

antees that for any non-s-measurable strategy, we can construct an s-measurable version using

admissible strategies. These two properties were guaranteed by the assumption of a finite state

space, but can apply to continuous state spaces as well.

Observe also that the operations ηR and ηĀ are well-defined in the continuous state case,

and consequently the definitions of monotonicity inR and invariance in Ā apply without mod-

ification to the infinite state case.

Lastly, we adapt our definition mean-critical preferences to the relevant strategy space. A

utility function u : A × Ā × S → R is mean-critical if it is differentiable on A × Ā for all

s ∈ S and if, for all strategies π̄0 ∈ ∆(A × F+
0 ), Eπ̄0(a,f0)[a|s, r] is a critical point of h(ā) =

Eπ̄0(a,f0)[u(a, ā, s)|s, r]. We adapt our characterization of mean-critical preferences (Lemma 4)

to the infinite-dimensional setting with a multi-dimensional action space A as follows.

Lemma 6. A regular utility function u is mean-critical if and only if there exists a function G :

Ā× S → R and a function g : A× S → R such that

u(a, ā, s) = g(a; s) +G(ā; s) + (a− ā) · ∇G(ā; s), (23)

where∇G(ā; s) denotes the gradient of G with respect to its first argument.

Proof. See the appendix, E.15.

The following proposition generalizes our existence, sufficiency, and uniqueness results to

the infinite-dimensional setting.

Proposition 11. In the continuous state setting, assuming u : A × Ā × S → R is a continuous

function,

1. A symmetric BNE exists,

2. If the divergence D is monotone in R, an s-measurable symmetric BNE exists,

3. If u is mean-critical and the divergenceD is invariant in Ā, a constrained efficient symmetric

BNE exists.

4. If the divergence D is invariant in Ā and u is mean-critical with an associated G function

that is concave, then all symmetric BNE are constrained efficient. If in addition G is strictly

concave, then in any pair of symmetric BNEs (π̄0,1, ᾱ1) and (π̄0,2, ᾱ2), ᾱ1 = ᾱ2.

Proof. See the technical appendix, section F.
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B.1 Examples

The KL Divergence To satisfy compactness in the sup-norm topology, restricting attention to

Lipschitz-continuous functions is sufficient. For the KL divergence, define F+
0 as the set of

K-Lipschitz-continuous functions for some K > 0, and observe that Ā+ inherits Lipschitz-

continuity from F+
0 . The second part of Assumption 2 is therefore satisfied by construction.

Moreover, the operation f ′0(s) = Eµ0(s,r)[f0(s, r)|r] preserves Lipschitz-continuity, and hence

the third part of the assumption is satisfied.

Let us now suppose there exists a sequence (f0,n, ᾱn) ∈ F+
0 × Ā+ that converges to some

(f0, ᾱ) ∈ F+
0 × Ā+ in the sup-norm topology. By assumption, the functions in F+

0 are uniformly

bounded, and therefore by the dominated convergence theorem DFKL is continuous,∫
S×R

f0,n(s, r) ln(f0,n(s, r))dµ0(s, r)→
∫
S×R

f0(s, r) ln(f0(s, r))dµ0(s, r).

We conjecture, but do not prove, that choosing K sufficiently large enough is equivalent, in

terms of the resulting equilibria, to allowing K = ∞. That is, for K sufficiently large, we expect

that the constraint on Lipschitz-continuity is not in fact binding. We base this conjecture on the

logit-type optimal policies generated by the KL divergence (see, e.g., Matêjka et al. [2015]).

The Fisher Information Divergences For these cost functions, let F+
0 be the set of differen-

tiable functions with a K-Lipschitz-continuous derivative that satisfy min(s,r)∈S×R f0(s, r) ≥ ε

for some ε > 0 and K > 0. Such functions have a bounded derivative, and therefore Lipschitz-

continuous. Note again that Ā+ inherits Lipschitz-continuity from F+
0 . The second part of As-

sumption 2 is therefore satisfied by construction. Again, the operation f ′0(s) = Eµ0(s,r)[f0(s, r)|r]
preserves these properties, and hence the third part of the assumption is satisfied.

Let us now suppose there exists a sequence (f0,n, ᾱn) ∈ F+
0 × Ā+ that converges to some

(f0, ᾱ) ∈ F+
0 × Ā+ in the sup-norm topology. The quantity

||∇ ln [f0(s, r)] ||2f0(s, r)

is bounded above by ε−1K2, and consequently by the dominated convergence theoremDFFI−SR(f0,n||µ0; ᾱn)

converges to DFFI−SR(f0||µ0; ᾱ). Consequently, DFFI−SR satisfies the required continuity prop-

erty.

Likewise, the quantity
1

1 + ᾱs(s, r)2
(
∂ ln(f0(s))

∂s
)2f0(s)

is bounded above by ε−1K2, and again by the dominated convergence theoremDF
FI−SĀ(f0,n||µ0; ᾱn)

converges to DF
FI−SĀ(f0||µ0; ᾱ).

We conjecture, based on results in Hébert and Woodford [2021], who show that with Fisher
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information optimal policies are twice-differentiable and bounded away from zero in certain

examples, that for sufficiently large K and small ε these constraints do not bind.

We conclude with the following proposition, which shows that for both of these cost func-

tions, the optimal posteriors are achievable given a sufficiently rich space of signal realizations.

Note that in this lemma we assume a Lipschitz-continuous ᾱ ∈ Ā; given our definition of F+
0 ,

all mean-consistent ᾱ are Lipschitz-continuous.

Lemma 7. Assume Ω = A × F+
0 . For any π̄0 ∈ Π̄0(µ0) and Lipschitz-continuous ᾱ ∈ Ā, let

π ∈ Π(µ0) be the measure induced from π̄0 by (a, f0) 7→ (a, φ̄{f0, ᾱ}). If C̄ is the Fisher information

restricted to S ×R, there exists a (ν̄, ν) ∈ V such that

C̄(ν̄, ν, µ) = Eπ(a,µ′)[DFI−SR(µ′||µ)] = Eπ̄0(a,f0)[DFI−SR(φ̄{f0, ᾱ}||φ{µ0, ᾱ})].

If C̄ is the Fisher information and if R = {r} is a singleton, there exists a (ν̄, ν) ∈ V such that

C̄(ν̄, ν, µ) = Eπ(a,µ′)[DFI−SĀ(µ′||µ)] = Eπ̄0(a,f0)[DFI−SĀ(φ̄{f0, ᾱ}||φ{µ0, ᾱ})].

Proof. See the technical appendix, G.10.

C Non-S-Measurability and Generic Non-Fundamental Volatility

Let us suppose that, given some continuous utility function u and divergence D satisfying our

assumptions on information costs, there exists an equilibrium (π, ᾱ) in which ᾱ is s-measurable

but π is not s-measurable (Definition 8).

If with probability one under π there exists a function g : S × Ā → R+ such that g ∈ dµ′

dµ (s-

measurability is violated on a zero-measure set), then an s-measurable equilibrium also exists,

as s-measurability is violated only in a trivial sense. Let us therefore consider the case in which

s-measurability is violated on a positive-measure set.

Let us now define a sequence of functions fε : A → A with the following properties: fε(a)

is strictly increasing and differentiable in each dimension of A ⊂ RL, strictly convex in a for

all ε > 0, and satisfies limε→0+ fε(a) = a for all a ∈ A. Observe that each of these functions

is invertible. Given such a sequence of functions, define π̃ε as the measure induced from π by

(a, µ′) 7→ (fε(a), µ′), and define the utility functions uε as satisfying

uε(a
′, āε(s, r), s) = u(f−1

ε (a′), ᾱ(s, r), s) ∀s ∈ S, r ∈ R,

where āε(s, r) = Eπ̃ε [a|s, r] = Eπ[fε(a)|s, r]. By construction, (ᾱε, π̃ε) is an equilibrium of the

game with the uε utility functions.

By assumption, π is not s-measurable, and therefore the higher moments of the distribution
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of a given some s depend on r under π.41 We can therefore find a sequence of functions such

that āε(s, r) 6= āε(s, r
′) for all ε > 0 and r 6= r′.

We conclude that the case in which the equilibrium is not s-measurable but the economy

nevertheless exhibits zero non-fundamental volatility is non-generic, in the sense that local

perturbations to the utility function will generate non-fundamental volatility in this case.

D Details for the LQG Model

D.1 Derivation of the Objective Function

By assumption, given the posterior µ′0 the agent takes the action

a∗(µ′0) = Eµ
′
0(s,r)[(s, r) · ψ(ᾱs, ᾱr)].

The agent receives a signal ω ∼ N((s, r) · λ0, τ
−1
0 ). By the standard Bayesian updating formula,

her posterior precision matrix is

Λ = (Σ−1
0 + τ0λ0λ

′
0).

Her posterior mean concerning (s, r) · λ0 is (τ0 + (λ′0Σ0λ0)−1)−1τ0ω, and her posterior mean

concerning any z such that z′Σ0λ0 = 0 is unchanged (and hence zero). Consequently, her

posterior mean concerning (s, r) is

E[(s, r)|ω] =
Σ0λ0

λ′0Σ0λ0

τ0λ
′
0Σ0λ0

1 + τ0λ′0Σ0λ0
ω.

By the Sherman-Morrison lemma,

Λ−1 = Σ0 −
τ0Σ0λ0λ

′
0Σ0

1 + τ0λ′0Σ0λ0
. (24)

which yields

µ′0(ω) = N(ω
Σ0λ0

λ′0Σ0λ0

τ0λ
′
0Σ0λ0

1 + τ0λ′0Σ0λ0
,Σ0 −

τ0Σ0λ0λ
′
0Σ0

1 + τ0λ′0Σ0λ0
)

and therefore

α(λ0, τ0, ᾱs, ᾱr) =
ψ(ᾱs, ᾱr)

′Σ0λ0

λ′0Σ0λ0

τ0λ
′
0Σ0λ0

1 + τ0λ′0Σ0λ0
.

41Because A is bounded, a moment-generating function must exist under each conditional distribution. If all
moments do not depend on r, then the conditional distribution does not depend on r. If this holds for all (s, r),
then π is s-measurable on a measure one set.
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The linear-quadratic utility function in (12) can be written as

u(a, ā, s) = −(a− βs− (1− β)ā)2

+ β2s− βs2 + (1− β)2ā2 − (1− β)ā2

+ 2β(1− β)sā,

which yields

Eµ
′
0(s,r)[u(a∗(µ′0), ~α · (s, r), s)] = −V µ′0(s,r)[(s, r) · ψ(ᾱs, ᾱr)]− Eµ

′
0(s,r)[β(1− β)(s− ᾱss− ᾱrr)2]

where V [·] denotes the variance. We have by (24)

V µ′0(s,r)[(s, r) · ψ(ᾱs, ᾱr)] = ψ(ᾱs, ᾱr)
′Σ0ψ(ᾱs, ᾱr)−

τ0(ψ(ᾱs, ᾱr)
′Σ0λ0)2

1 + τ0λ′0Σ0λ0

The equation

Eπ0(a,µ′0)[Eµ
′
0(s,r)[u(a, ā, s)]] =

τ0(ψ(ᾱs, ᾱr)
′Σ0λ0)2

1 + τ0λ′0Σ0λ0

− ψ(ᾱs, ᾱr)
′Σ0ψ(ᾱs, ᾱr)− β(1− β)Eµ0(s,r)[(s− ᾱss− ᾱrr)2]

follows. Note that this derivation assumes Σ0 is invertible. However, the resulting expression for

expected utility is continuous in the limit as Σ0 →
[
σ2
s 0

0 0

]
and could be derived in analogous

fashion for that case.

D.2 Derivations of the Cost Function Examples

Mutual Information The mutual information between the signal ω and state (s, r) can be de-

rived using textbook methods (Cover and Thomas [2012]).

In our context, because the signal ω is one-dimensional, the mutual information is simply

the mutual information between ω and (s, r) · λ0. As a shortcut, let us start from section 3.1 of

Sims [2010], in our notation. We have

CMI(λ0, τ0,Σ0, ᾱs, ᾱr) = −θ ln(1− ρ(λ0, τ0,Σ0)2),

where ρ(λ0, τ0,Σ0) is the correlation between ω and (s, r) · λ0,

ρ(λ0, τ0,Σ0) =
λ′0Σ0λ0√

τ−1
0 + λ′0Σ0λ0

√
λ′0Σ0λ0

,
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which yields

CMI(λ0, τ0,Σ0, ᾱs, ᾱr) = −θ ln(1− λ′0Σ0λ0

τ−1
0 + λ′0Σ0λ0

),

or

CMI(λ0, τ0,Σ0, ᾱs, ᾱr) = θ ln(1 + τ0λ
′
0Σ0λ0).

Note again that this formula remains valid even if Σ0 is degenerate.

Fisher Information By corollary 3 of Hébert and Woodford [2021], the Fisher information cost

function in the linear-quadratic-Gaussian case is, in our context,

CFI−SR(λ0, τ0,Σ0, ᾱs, ᾱr) = θ(tr[Λ]− tr[Σ−1
0 ]),

where Λ is the posterior precision matrix, which is

CFI−SR(λ0, τ0,Σ0, ᾱs, ᾱr) = θτ0tr[λ0λ
′
0] = θτ0λ

′
0λ0.

Similarly,

CFI−SĀ(λ0, τ0,Σ0, ᾱs, ᾱr) =
θ

1 + ᾱ2
s

τ0λ
′
0λ0.

Again, these formulas remain valid even in the degenerate limit.

D.3 Formal Statement of Equilibrium Existence Results

Below we state formally our results on the existence of equilibria in the LQG setting.

Proposition 12. (i) With the mutual information costCMI , there exists a linear equilibrium with

zero non-fundamental volatility: ᾱr = 0. (ii) With the Fisher information cost CFI−SR, there

exists a linear equilibrium. Any such equilibrium either features non-fundamental volatility,

ᾱr 6= 0, or features no information acquisition, τ∗0 = 0.

Proof. See the technical appendix, E.14.

D.4 Welfare in Equilibria with and without Information Acquisition

Assume θ = (1− β)2σ2
s . Let us recall the first-order condition and mean-consistency condition:

(1− β + βᾱs)
2 = (1− β)2(1 + τ0σ

2
s),

ᾱs = (1− β + βᾱs)(1−
1

1 + τ0σ2
s

).

We must have τ0σ
2
s ≥ 0, and if this quantity is strictly positive, sgn(ᾱs) = sgn(1 − β + βᾱs). We

can rewrite the mean-consistency condition as

(1 + τ0σ
2
s)(1− β)(1− ᾱs) = (1− β + βᾱs).
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It follows that β ∈ (0, 1) requires ᾱs ≥ 0 in equilibrium.

We can substitute out 1 + τ0σ
2
s to find

(1− β + βᾱs)
2

(1− β)
(1− ᾱs) = (1− β + βᾱs)

and therefore

(1− β + βᾱs)(1− ᾱs) = 1− β,

which is

(2β − 1)ᾱs − βᾱ2
s = 0.

Therefore either ᾱs = 0 and τ0 = 0 or

ᾱs =
2β − 1

β
,

with the latter being possible and non-zero only when β ∈ (1
2 , 1). In this case,

1 + τ0σ
2
s =

β2

(1− β)2
.

Let us compare these two equilibria. The general version of the expected payoff inclusive of

information costs is

Eπ0(a,µ′0)[Eµ
′
0(s,r)[u(a, ā, s)]]− CMI(λ0, τ0,Σ0, ᾱs, ᾱr)

=
τ0ψ(ᾱs, ᾱr)

′Σ0λ0

1 + τ0λ′0Σ0λ0
(ψ(ᾱs, ᾱr)

′Σ0λ0)

−ψ(ᾱs, ᾱr)
′Σ0ψ(ᾱs, ᾱr)− β(1− β)Eµ0(s,r)[(s− ᾱss− ᾱrr)2]

−θ ln(1 + τ0λ
′
0Σ0λ0).

With θ = (1− β)2σ2
s , λ0 = (1, 0), and ψ(ᾱs, ᾱr) = (1− β + ᾱs, 0)′, define

J(τ0, ᾱs) = Eπ0(a,µ′0)[Eµ
′
0(s,r)[u(a, ā, s)]]− CMI(λ0, τ0,Σ0, ᾱs, ᾱr)

as

J(τ0, ᾱs) = (1− β + βᾱs)
2 τ0(σ2

s)
2

1 + τ0σ2
s

− (1− β + βᾱs)
2σ2
s − β(1− β)(1− ᾱs)2σ2

s

− (1− β)2σ2
s ln(1 + τ0σ

2
s).

When ᾱS = τ0 = 0,

J(0, 0) = −(1− β)σ2
s .
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In the other equilibrium,

J(
2β − 1

β
, σ−2

s (
β2

(1− β)2
− 1)) = β2σ2

s

β2 − (1− β)2

β2

− β2σ2
s −

(1− β)

β
(1− β)2σ2

s

− (1− β)2σ2
s ln(

β2

(1− β)2
).

which simplifies to

J(
2β − 1

β
, σ−2

s (
β2

(1− β)2
− 1)) = −(1− β)2σ2

s(β
−1 + ln(

β2

(1− β)2
)).

Defining x = 1−β
β ,

1− β = 1− 1

1 + x
=

x

1 + x
,

f(x) =
J(2β−1

β , σ−2
s ( β2

(1−β)2 − 1))− J(0, 0)

β(1− β)σ2
s

= 1− x2 + 2x ln(x).

For x ∈ (0, 1], which corresponds to β ∈ [1
2 , 1), f(1) = 0 and

f ′(x) = 2(1− x+ ln(x)) ≤ 0.

Consequently,

J(
2β − 1

β
, σ−2

s (
β2

(1− β)2
− 1)) ≥ J(0, 0).

E Proofs

E.1 Additional Technical Lemmas

Lemma 8. The set Π0(µ0) is non-empty, compact, and convex.

Proof. See technical appendix, G.1.

Lemma 9. The function φ : U0 × Ā → U is continuous.

Proof. See technical appendix, G.2.

Lemma 10. The expected net utility function J0 : Π0(µ0) × Ā → R defined by J0(π0, ᾱ) =

Eπ0(a,µ′0)[V (a, φ{µ′0, ᾱ})−D(φ{µ′0, ᾱ}||φ{µ0, ᾱ})] is continuous, and concave in π.

Proof. See technical appendix, G.3.

Lemma 11. The functionM : Π0(µ0)→ Ā defined byM{π0}(s, r) = Eπ0(a,µ′0)[a|s, r] for all (s, r) ∈
S ×R is continuous.

10



Proof. See technical appendix, G.4.

Lemma 12. (The Maximum Theorem) Let Π∗0 : Ā ⇒ Π0(µ0) be the best reply correspondence in

the agent’s problem,

Π∗0(ᾱ) = {π0 ∈ arg max
π′0∈Π0(µ0)

J(π′0, ᾱ)},

where J is defined as in Lemma 10. Π∗0 is non-empty, compact-valued, convex-valued, and upper

hemi-continuous.

Proof. By Lemma 8, the correspondence Γ : Ā ⇒ ∆(A × U) defined by Γ(ᾱ) = Π0(µ0) satisfies

the conditions of the theorem of the maximum (continuity with non-empty compact values).

In this context, continuity is trivial as Γ(ᾱ) does not actually depend on ᾱ. Therefore Π∗0 is non-

empty, compact-valued, and upper hemi-continuous by Aliprantis and Border [2006] 17.31 (the

maximum theorem) and Lemma 10. Π∗0 is convex-valued by the linearity of J in π0 and the

convexity of Π0(µ0) (Lemma 8).

E.2 Proof of Lemma 1

Differentiability on the interior follows immediately from the fact that all three functions are

differentiable in µ′0(s, r) and ᾱ(s, r) for each (s, r) ∈ S ×R.

All three functions are defined on the boundary of the simplex by continuity, and therefore

by construction are continuous provided they are finite. Finiteness follows from the assumption

of full-support for µ0, the compactness of S×R, and the boundedness of µ′0(s, r), which together

demonstrate the boundedness of both the conditional and unconditional KL divergences.

E.3 Proof of Lemma 2

R-Monotonicity By the definition of R-monotonicity (Definition 5), it is immediate that ifD is

R-monotone,

Eπ
′(a,µ′)[D(µ′||µ)] ≤ Eπ(a,µ′)[D(µ′||µ)].

It is therefore sufficient to prove that if this condition holds for all π ∈ Π(µ), then D is R-

monotone given µ.

Proof by contradiction: suppose there exists some µ′ � µ such that

D(µ′||µ) < D(ηR{µ′||µ}||µ).

If this inequality holds, by the definition of U it must hold for some µ′0, µ0 such that µ′0 � µ0 and,

for some ᾱ ∈ Ā, µ′ = φ{µ′0, ᾱ} and µ = φ{µ0, ᾱ}.
Let us consider a two-point distribution for πε ∈ Π(µ), placing probability ε > 0 on (a′, µ′)

and probability 1 − ε on (a′′, µ′′ = µ−εµ′
1−ε ) for some arbitrary a′, a′′ ∈ A. By the finiteness of

11



S ×R and µ′0 � µ0, µ′′ is non-negative for sufficiently small ε. By construction, this distribution

satisfies Bayes’ consistency. We have

Eπε(a,µ
′)[D(µ′||µ)] = εD(µ′||µ) + (1− ε)D(

µ− εµ′

1− ε
||µ)

and defining π′ε as the measure induced from πε by (a, µ′) 7→ (a, ηR{µ′, µ}),

Eπ
′
ε(a,µ

′)[D(µ′||µ)] = εD(ηR{µ′||µ}||µ) + (1− ε)D(ηR{
µ− εµ′

1− ε
, µ}||µ)

= εD(ηR{µ′||µ}||µ) + (1− ε)D(
µ− εηR{µ′, µ}

1− ε
||µ),

where the last follows from the linearity of ηR in its first argument (see (7)). By assumption,

D(φ{µ′0, ᾱ}||φ{µ0, ᾱ}) is Fréchet-differentiable in µ′0, and by definition D is minimized when

µ′ = µ, implying that the derivative is zero at this point. We have

lim
ε→0+

(1− ε)
ε

D(
µ− εµ′

1− ε
||µ) =

D(µ+ ε
1−ε(µ

′ − µ)||µ)−D(µ||µ)
ε

1−ε
= 0,

and likewise limε→0+
1−ε
ε D(µ−εηR{µ

′,µ}
1−ε ||µ) = 0. Therefore,

lim
ε→0+

ε−1(Eπε(a,µ
′)[D(µ′||µ)]− Eπ′ε(a,µ′)[D(µ′||µ)]) =

D(µ′||µ)−D(ηR{µ′||µ}||µ) < 0,

contradicting Eπ
′
ε(a,µ

′)[D(µ′||µ)] ≤ Eπε(a,µ′)[D(µ′||µ)] for all ε ≥ 0.

Ā-Invariance Next, consider invariance in Ā. By the definition of invariance in Ā, it is imme-

diate that if D is invariant in Ā,

Eπ
′(a,µ′)[D(µ′||ηĀ{µ, µ′′})] = Eπ(a,µ′)[D(µ′||µ)].

It is therefore sufficient to prove that if this condition holds for all µ′′ ∈ U with γĀ{µ} � γĀ{µ′′}
and π ∈ Π(µ) (where π′ is defined as in the statement of the lemma), then D is invariant in Ā

given µ.

Proof by contradiction: suppose the D is not invariant but such a condition holds.

Observe by definition that for µ′ = φ{µ′0, ᾱ} and µ′′ = φ{µ0, ᾱ
′}, ηĀ{µ′, µ′′} = φ{µ′0, ᾱ′}.

Consequently, if

D(µ′||µ) 6= D(ηĀ{µ′, µ′′}||ηĀ{µ, µ′′})

for some µ, µ′, µ′′ ∈ U with µ′ � µ and γĀ{µ} � γĀ{µ′′}, then there exists some ᾱ, ᾱ′ ∈ Ā and

µ′0 ∈ U0 such that

D(φ{µ′0, ᾱ}||φ{µ0, ᾱ}) 6= D(φ{µ′0, ᾱ′}||φ{µ0, ᾱ
′}).

12



Let us consider a two-point distribution for πε ∈ Π(φ{µ0, ᾱ}), placing probability ε > 0 on

(a′, φ{µ′0, ᾱ}) and probability 1− ε on (a′′, µ′′ = φ{µ0−εµ′0
1−ε , ᾱ}) for some arbitrary a′, a′′ ∈ A. By the

finiteness of S ×R and µ′0 � µ0, µ′′ is non-negative for sufficiently small ε. By construction, this

distribution satisfies Bayes’ consistency. We have

Eπε(a,µ
′)[D(µ′||φ{µ0, ᾱ})] = εD(φ{µ′0, ᾱ}||φ{µ0, ᾱ}) + (1− ε)D(φ{µ0 − εµ′0

1− ε
, ᾱ}||φ{µ0, ᾱ})

and defining π′ε as the measure induced from πε by (a, µ′) 7→ (a, ηĀ{µ′, µ′′}),

Eπ
′
ε(a,µ

′)[D(µ′||φ{µ0, ᾱ
′})] = εD(φ{µ′0, ᾱ′}||φ{µ0, ᾱ

′}) + (1− ε)D(φ{µ0 − εµ′0
1− ε

, ᾱ′}||φ{µ0, ᾱ
′})

= εD(φ{µ′0, ᾱ′}||φ{µ0, ᾱ
′}) + (1− ε)D(

φ{µ0, ᾱ
′} − εφ{µ′0, ᾱ′}
1− ε

||φ{µ0, ᾱ
′}),

where the last follows from the linearity ofφ in its first argument. By assumption,D(φ{µ′0, ᾱ}||φ{µ0, ᾱ})
is Fréchet-differentiable in µ′0, and by definition D is minimized when µ′ = µ, implying that the

derivative is zero at this point. We have

lim
ε→0+

(1− ε)
ε

D(
µ− εµ′

1− ε
||µ) =

D(µ+ ε
1−ε(µ

′ − µ)||µ)−D(µ||µ)
ε

1−ε
= 0.

Therefore,

lim
ε→0+

ε−1(Eπε(a,µ
′)[D(µ′||φ{µ0, ᾱ})]− Eπ

′
ε(a,µ

′)[D(µ′||φ{µ0, ᾱ
′})]) =

D(φ{µ′0, ᾱ}||φ{µ0, ᾱ})−D(φ{µ′0, ᾱ}||φ{µ0, ᾱ
′}) 6= 0,

contradicting Eπ
′
ε(a,µ

′)[D(µ′||φ{µ0, ᾱ
′})] = Eπε(a,µ

′)[D(µ′||φ{µ0, ᾱ})] for all ε ≥ 0.

E.4 Proof of Lemma 3

We prove non-monotonicity via a counter-example.

Assume an MLRP property: µ0(si,rj)
µ0(si−1,rj)

is strictly increasing in rj . Consider the example struc-

ture described in the text:

µ′0(s, r; ε) = µ0(s, r)g1(s) exp(ε(r − r̄(s))),

where g1 is some strictly increasing function of s and r̄(s; ε) = ε−1 ln(Eµ0 [exp(εr)|s]). We also

assume ᾱ(s, r) = ā0 for some ā0 ∈ Ā and all (s, r) ∈ S ×R. Consequently, for µ′(ε) = φ{µ′0(ε), ᾱ}
and µ = φ{µ0, ᾱ},

dµ′(s, r, ā; ε) = dµ(s, r, ā)g1(s) exp(ε(r − r̄(s; ε))).

By construction,

dγR{µ′(ε)}(s, ā) = g1(s)dγR{µ}(s, ā).

13



Therefore,

dηR{µ′(ε), µ} = g1(s)dµ(s, r, ā)

= dφ{µ′′0, ᾱ},

where µ′′0(s, r) = g1(s)µ0(s, r). We can write this as ηR{µ′(ε), µ} = µ′(0).

Now consider the conditional KL divergences given this µ′0. We have

(µ′0(s, rj ; ε) + µ′0(s, rj−1; ε))DKL,j,s(µ
′
0||µ0) =∑

r∈{rj ,rj−1}

µ′0(s, r; ε)[ln(exp(εr)))− ln(
µ0(s, rj) exp(εrj) + µ0(s, rj−1) exp(εrj−1))

µ0(s, rj) + µ0(s, rj−1)
)].

Taking the derivative with respect to ε and evaluating at ε = 0,

∂

∂ε
(µ′0(s, rj ; ε) + µ′0(s, rj−1; ε))DKL,j,s(µ

′
0(ε)||µ0)|ε=0 =

g1(s)
∑

r∈{rj ,rj−1}

µ0(s, r)

µ0(s, rj) + µ0(s, rj−1)
[r − µ0(s, rj)

µ0(s, rj) + µ0(s, rj−1)
rj −

µ0(s, rj−1)

µ0(s, rj) + µ0(s, rj−1)
rj−1] = 0.

We also have

(µ′0(si, rj ; ε) + µ′0(si−1, r; ε))DKL,i,r(µ
′
0||µ0) =∑

s∈{si,si−1}

µ0(s, r)g1(s)
exp(εr)

Eµ0 [exp(εr′)|s])
{ln(

g(s)

Eµ0 [exp(εr′)|s])
)

− ln(
µ0(si, r)

g1(si)
Eµ0 [exp(εr′)|si]) + µ0(si−1, r)

g1(si−1)
Eµ0 [exp(εr′)|si−1])

µ0(si, r) + µ0(si−1, r)
)}.

Taking the derivative with respect to ε and evaluating at ε = 0,

∂

∂ε
(µ′0(si, rj ; ε) + µ′0(si−1, r; ε))DKL,i,r(µ

′
0||µ0)|ε=0 =∑

s∈{si,si−1}

µ0(s, r)g1(s)(r − Eµ0 [r′|s])(ln(g1(s))− ln(
µ0(si, r)g1(si) + µ0(si−1, r)g1(si−1)

µ0(si, r) + µ0(si−1, r)
))+

∑
s∈{si,si−1}

µ0(s, r)g1(s)(−Eµ0 [r′|s] +
µ0(si, r)g1(si)E

µ0 [r′|si] + µ0(si, r)g1(si−1)Eµ0 [r′|si−1]

µ0(si, r)g1(si) + µ0(si−1, r)g1(si−1)
).

The second line simplifies to zero.
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It follows that

∂

∂ε
DSR(µ′(ε)||µ)|ε=0 =

|S|∑
i=2

|R|∑
j=1

∑
s∈{si,si−1}

µ0(s, r)(rj−Eµ0 [r′|s]) g1(s)

si − si−1
[ln(g1(s))−ln(

µ0(si, rj)g1(si) + µ0(si−1, rj)g1(si−1)

µ0(si, rj) + µ0(si−1, rj)
)].

By the MLRP property,
µ0(si, rj)

µ0(si−1, rj)

is strictly increasing in rj , and consequently by g1(si) > g1(si−1),

g1(s)

si − si−1
[ln(g1(s))− ln(

µ0(si, rj)g1(si) + µ0(si−1, rj)g1(si−1)

µ0(si, rj) + µ0(si−1, rj)
)]

is strictly decreasing in rj . It follows by the covariance rule that

∂

∂ε
DSR(µ′(ε)||µ)|ε=0 <

ε

|S|∑
i=2

∑
s∈{si,si−1}

µ0(s)Eµ0 [r−Eµ0 [r′|s]|s]Eµ0 [
g1(s)

si − si−1
(ln(g1(s))−ln(

µ0(si, r)g1(si) + µ0(si−1, r)g1(si−1)

µ0(si, r) + µ0(si−1, r)
))|s]

which yields
∂

∂ε
DSR(µ′(ε)||µ)|ε=0 < 0,

implying that for sufficiently small ε > 0,

DSR(µ′(ε)||µ) < DSR(µ′(0)||µ) = DSR(ηR(µ′(ε), µ)||µ).

E.5 Proof of Proposition 5

We prove existence in the standard way: by using the theorem of the maximum to establish the

upper hemi-continuity of best reply correspondences, and then use a fixed point theorem. This

proof refers several of the additional lemmas found in Technical Appendix Section E.1.

The agent’s problem is

π∗0 ∈ arg max
π0∈Π0(µ0)

J0(π0, ᾱ),

where J0(π0, ᾱ) is defined as

J0(π0, ᾱ) = Eπ0(a,µ′0)[V (a, φ{µ′0, ᾱ})−D(φ{µ′0, ᾱ}||φ{µ0, ᾱ})],

as in Lemma 10. We can invoke the theorem of the maximum, Lemma 12, to show that the

best-reply correspondence Π∗0 : Ā ⇒ Π0(µ0) is non-empty, compact-valued, convex-valued,
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and upper hemi-continuous.

By Lemma 11, the function M : Π0(µ0) → Ā that defines the mean-consistency condition

(ᾱ = M{π0}) is continuous.

It follows by Aliprantis and Border [2006] 17.23 that the composition of M and Π∗0, M ◦ Π∗0 :

Π0(µ0) ⇒ Π0(µ0), is a non-empty, upper hemi-continuous, and compact- and convex-valued.

By the infinite-dimensional version of the Kakutani fixed point theorem (Aliprantis and Border

[2006] 17.55),M ◦Π∗0 has a fixed point, π∗0 . By construction, for ᾱ∗ = M{π∗0}, π∗0 is a best response

to ᾱ∗ and (π∗0, ᾱ
∗) satisfies mean-consistency, and thus (π∗0, ᾱ

∗) is a symmetric BNE under the

alternative formulation (Definition 4).

Define π∗ as the measure induced from π∗0 by (a, µ′0) → (a, φ{µ′0, ᾱ∗}). It follows that (π∗, ᾱ∗)

is a symmetric BNE under Definition 3.

E.6 Additional Lemmas

Lemma 13. Let ᾱ ∈ Ā be an s-measurable aggregate action function whose image is a non-

singleton subset of the relative interior of Ā, and let µ′′ ∈ U be a measure satisfying µ′′ � φ{µ0, ᾱ}
and µ′′ = ηR{µ′′, φ{µ0, ᾱ}}. Then there exists a ρ ∈ (0, 1), ε̄ > 0, and a0, a1 ∈ A such that, for all

ε ∈ [0, ε̄), there exists an s-measurable πε,ρ ∈ Π(φ{µ0, ᾱ}) with finite support such that (ᾱ, πε,ρ)

satisfies mean-consistency, πε,ρ(a1, φ{µ′′0, ᾱ}) = ερ, and πε,ρ(a0, φ{µ0, ᾱ}) = ε(1− ρ). Moreover, for

each a ∈ A, (a, µ′) ∈ supp(πε,ρ) for at most one µ′ ∈ U .

Proof. See the technical appendix, G.5.

Lemma 14. Suppose the divergence D is not monotone in R on the set of s-measurable priors.

Then there exists an s-measurable, mean-consistent (π ∈ Π(φ{µ0, ᾱ}), ᾱ ∈ Ā) such that π has

finite support, for each a ∈ A, (a, µ′) ∈ supp(π) for at most one µ′ ∈ U , and a π̂ ∈ Π(φ{µ0, ᾱ}) such

that π is induced from π̂ by (a, µ′) 7→ (a, ηR{µ′, µ}) exists with

C(π̂, φ{µ0, ᾱ}) < C(π, φ{µ0, ᾱ}).

Proof. See technical appendix, G.6.

Lemma 15. Let D be a divergence monotone in R, and let (π̄, ᾱ) be any s-measurable, mean-

consistent strategy profile such that π has finite support and, for each a ∈ A, (a, µ′) ∈ supp(π) for

at most one µ′ ∈ U . There exists, for any χ > 0 and r0 ∈ R, a mean-critical utility function

u(a, ā, s) = g(a; s)− χ

2
|ā− ᾱ(s, r0)|2 − χ(a− ā) · (ā− ᾱ(s, r0))

such that (π, ᾱ) is a symmetric BNE.

Proof. See the technical appendix, G.7.
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E.7 Proof of Proposition 6

This proof refers several of the additional lemmas found in Technical Appendix Section E.1.

Sufficiency. First, we prove the “if” part of the proposition. This essentially reproduces our

existence proof (Proposition 5) on the space of s-measurable aggregate action functions and

strategies.

It is convenient to define a strategy π0 ∈ Π0(µ0) as s-measurable if, for all (a, µ′0) ∈ supp(π0),

there exists a function gµ′0 : S → R such that dµ′0(s,r)
dµ0(s,r) = gµ′0(s) for all s ∈ S and r ∈ R. For s-

measurable aggregate action functions ᾱ, this definition is equivalent to the requirement that

the strategy π ∈ Π(φ{µ0, ᾱ}) induced from π0 by (a, µ′0) 7→ (a, φ{µ′0, ᾱ}) be s-measurable.

Define ΠS
0 (µ0) ⊆ Π0(µ0) as the set of s-measurable strategies.

Lemma 16. The set ΠS
0 (µ0) is non-empty, compact, and convex.

Proof. See technical appendix, G.1.

Using this result and the continuity of the expected utility function J0(π0, ᾱ) defined in Lemma

10, we can invoke the theorem of the maximum. Define ĀS ⊂ Ā as the set of s-measurable

aggregate action functions. Let Π∗ : ĀS ⇒ ΠS(µ0) be the best reply correspondence in the

agent’s problem restricted to s-measurable strategies,

Π∗S(ᾱ) = {π ∈ arg max
π′∈ΠS0 (µ0)

J(π′0, ᾱ)}.

By the maximum theorem (see Aliprantis and Border [2006] 17.31), the linearity of J in π0, and

the convexity of ΠS
0 (µ0), Π∗S is non-empty, compact-valued, convex-valued, and is upper hemi-

continuous. By Lemma 11, the function M : Π0(µ0) → Ā defined by M{π0}(s, r) = Eπ0 [a|s, r]
for all (s, r) ∈ S ×R is continuous. Moreover, if π0 ∈ ΠS

0 (µ0), then for all s ∈ S and r, r′ ∈ R,

Eπ0(a,µ′0)[a|s, r] =

∫
supp(π0)

agµ′0(s)dπ0(a, µ′0)

= Eπ0(a,µ′0)[a|s, r′]

and consequently the s-measurability of π0 guarantees the s-measurability of M(π0).

It follows by Aliprantis and Border [2006] 17.23 that the composition of M and Π∗S , M ◦ Π∗S :

ΠS
0 (µ0) ⇒ ΠS

0 (µ0), is a non-empty, upper hemi-continuous, and compact- and convex-valued.

By the infinite-dimensional version of the Kakutani fixed point theorem (Aliprantis and Border

[2006] 17.55),M ◦Π∗ has a fixed point, π∗0 . By construction, for ᾱ∗ = M{π∗0}, π∗0 is a best response

to ᾱ∗ on the set of s-measurable strategies, (π∗0, ᾱ
∗) is mean-consistent, and both ᾱ∗ and π∗0 are

s-measurable. Define π∗ as the measure induced from π∗0 by (a, µ′0) → (a, φ{µ′0, ᾱ∗}) and ob-

serve by construction that π∗ ∈ Π(φ{µ0, ᾱ
∗}) is a best response to ᾱ∗ on the set of s-measurable

strategies.
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By the s-measurability of ᾱ∗, for all µ′ ∈ U with µ′ � φ{µ0, ᾱ
∗},

V (a, µ′) = V (a, ηR{µ′, µ}).

Consequently, for any π ∈ Π(φ{µ0, ᾱ
∗}), the s-measurable π̂ ∈ Π(φ{µ0, ᾱ

∗}) induced from π by

(a, µ′) 7→ (a, ηR{µ′, φ{µ0, ᾱ
∗}}) satisfies

Eπ̂(a,µ′)[V (a, µ′)] = Eπ(a,µ′)[V (a, µ′)],

and by monotonicity inR for the priorφ{µ0, ᾱ
∗},Eπ̂(a,µ′)[D(µ′||φ{µ0, ᾱ})] ≤ Eπ(a,µ′)[D(µ′||φ{µ0, ᾱ})].

It follows that every non-s-measurable π is weakly dominated by an s-measurable one, and con-

sequently π∗ is a best response without the restriction to s-measurable strategies, and therefore

(π∗, ᾱ∗) is a symmetric BNE.

Necessity. Next, we prove the “only if” part of the proposition. Letµ = φ{µ0, ᾱ}, and supposeD

is not monotone inR on for all s-measurable ᾱ. Then by Lemma 14, there exists an s-measurable

ᾱ and strategies π and π̂ as described in the lemma, with

C(π̂, µ) < C(π, µ).

Note that π is s-measurable, and π̂ is not (π is induced from π̂ by (a, µ′) 7→ (a, ηR{µ′, µ}) and

π̂ 6= π).

First, let us observe by continuity (Assumption 1) that if this inequality holds, it holds for

some for some ᾱ ∈ Āwhose image is contained in the relative interior of Ā. Let us define, for all

µ′ ∈ U with µ′ � µ,

DR(µ′||µ) = D(ηR{µ′, µ}||µ)

and observe by definition thatDR is an R-monotone divergence, and that by the s-measurability

of π,

Eπ(a,µ′)[D(µ′||µ)] = Eπ(a,µ′)[DR(µ′||µ)].

By Lemma 15, for the divergence DR, there exists for any χ > 0 a utility function u of the sort

described in that lemma, with

u(a, ā, s) = g(a; s)− χ

2
|ā− ᾱ(s, r0)|2 − χ(a− ā) · (ā− ᾱ(s, r0)).

By the s-measurability of ᾱ, for all µ′ ∈ U with µ′ � µ,

V (a, µ′) = V (a, ηR{µ′, µ}),

and consequently

Eπ̂(a,µ′)[V (a, µ′)] = Eπ(a,µ′)[V (a, µ′)].
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ByC(π̂, µ) < C(π, µ), (π, ᾱ) cannot be an equilibrium with the divergenceD. Moreover, because

π is a best response under DR to ᾱ, any other s-measurable π′ ∈ Π(µ) must satisfy

Eπ
′(a,µ′)[V (a, µ′)−D(µ′||µ)] = Eπ

′(a,µ′)[V (a, µ′)−DR(µ′||µ)]

≤ Eπ(a,µ′)[V (a, µ′)−DR(µ′||µ)].

Consequently,

Eπ
′(a,µ′)[V (a, µ′)−D(µ′||µ)] < Eπ̂(a,µ′)[V (a, µ′)−D(µ′||µ)],

and therefore no s-measurable π′ ∈ Π(µ) is a best reply to ᾱ, and consequently no s-measurable

equilibrium involving ᾱ exists.

Suppose there exists some other s-measurable equilibrium (π̃, α̃). We claim that, for suffi-

ciently large values of χ, any equilibrium must lie in the neighborhood of ᾱ. To see this, suppose

that for some ε > 0 and s ∈ S,

|α̃(s, r0)− ᾱ(s, r0)| > ε.

Note that we can rewrite the utility function as

u(a, α̃(s, r0), s) = g(a; s) +
χ

2
|α̃(s, r0)− ᾱ(s, r0)|2 − χ(a− ᾱ(s, r0)) · (α̃(s, r0)− ᾱ(s, r0)).

Thus, by mean-consistency,

Eπ̃(a,µ′)[u(a, α̃(s, r0), s)|s, r] < Eπ̃(a,µ′)[g(a; s)|s, r]− χ

2
ε2.

If we consider instead the policy π+ ∈ Π(φ{µ0, α̃}) induced from π by (a, µ′)→ (a, ηĀ{µ′, φ{µ0, α̃}}),

we have by construction Eπ
+(a,µ′)[a|s, r] = Eπ(a,µ′)[a|s, r] = ᾱ(s, r) and therefore

Eπ
+(a,µ′)[u(a, α̃(s, r0), s)|s, r] = Eπ(a,µ′)[g(a; s)|s, r] +

χ

2
|α̃(s, r0)− ᾱ(s, r0)|2

> Eπ(a,µ′)[g(a; s)|s, r] +
χ

2
ε2.

For sufficiently large χ, it follows that π+ achieves a higher expected utility than π̃ in response to

α̃ (as C(π+, φ{µ0, α̃}) is by Assumption 1 finite), and consequently (π̃, α̃) cannot be an equilib-

rium.

Now consider a sequence χn with limn→∞ χn = ∞, and suppose that along this sequence

of utility functions there exists an s-measurable equilibrium (π0,n, ᾱn) ∈ Π0(µ0) × Ā. (Note

that if no such sequence exists, the proof is complete). By the argument above, limn→∞ ᾱn =

ᾱ. By the theorem of the maximum (Lemma 12), the optimal policy correspondence for the

agents is upper hemi-continuous, and consequently limn→∞ π0,n must be a mean-consistent,

s-measurable best response to ᾱ. But we have already shown that no such policy exists, and

consequently for sufficient large χ no s-measurable equilibrium exists.
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E.8 Proof of Proposition 7

This proof refers several of the additional lemmas found in Technical Appendix Section E.1.

The planner’s problem can be rewritten as maxπ0∈Π0(µ0) J0(π0,M{π0}), where J0 is defined

as in Lemma 10 and M{π0} denotes the aggregate action function implied by π0, as defined in

Lemma 11. The agent’s problem is maxπ0∈Π0(µ0) J0(π0, ᾱ), taking ᾱ ∈ Ā as given.

The set Π0(µ0) is convex and compact in the weak* topology, M{π0} is continuous, and

J(π0, ᾱ) is continuous (see Lemmas 8, 11, and 10). Consequently, a maximizer of the planner’s

problem exists.

Let (ᾱ+, π+
0 ) be a maximum of the planner’s problem. The function J0(π0,M{π0}) is direc-

tionally differentiable in π0 at π+
0 :

lim
ε→0+

1

ε
(J0((1−ε)π+

0 +επ′0,M{(1−ε)π+
0 +επ′0})−J0(π+

0 ,M{π
+
0 })) = J0(π′0,M{π+

0 })−J0(π+
0 ,M{π

+
0 })

for all π′ ∈ Π0(µ0). This result follows from the observation that

Eπ0(a,µ′0)[V (a, φ{µ′0, ᾱ})]

is directionally differentiable in ᾱ (which follows from the mean-critical property, and note this

derivative is zero) and the linearity of conditional expectations,

lim
ε→0+

1

ε
(M{(1− ε)π+

0 + επ′0} −M{π+
0 }) = M(π′0)−M(π+

0 ),

along with invariance in Ā (which ensures that the expected divergence is differentiable with

respect to ᾱ, with a derivative of zero).

Because π+
0 is maximal, we must have J0(π′0,M{π

+
0 })−J0(π+

0 ,M{π
+
0 }) ≤ 0 for all π′0 ∈ Π0(µ0).

Therefore, by ᾱ+ = M{π+
0 }, π+ is a mean-consistent best response in the agent’s problem to ᾱ+,

and thus (ᾱ+, π+) is a symmetric BNE.

E.9 Additional Lemma

Lemma 17. Let (π∗0, ᾱ
∗) ∈ Π0(µ0) × Ā be any mean-consistent strategy profile. Suppose that

for some (s0, r0) ∈ S × R, there exists a π∗0-positive-measure set Ω0 ⊂ supp(π∗0) such that for all

(a, µ′0) ∈ Ω0, a > ᾱ∗(s0, r0). Then there exists a δ > 0 and a family of strategies {π0,ε ∈ Π0(µ0)}|ε|<δ
such that each π0,ε is induced from π∗0 by a function mε : A×U0 → A×U0 that is differentiable in

ε and that satisfy, for some x > 0,

Eπ0,ε [a|s, r] = ᾱ∗(s, r) + εx1{(s, r) = (s0, r0)}.

Proof. See the technical appendix, G.8.
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E.10 Proof of Proposition 8

This proof refers several of the additional lemmas found in Technical Appendix Section E.1, and

uses the perturbation lemma above (Lemma 17).

The planner’s problem can be rewritten as maxπ0∈Π0(µ0) J0(π0,M{π0}), where J0 is defined

as in Lemma 10 and M{π0} denotes the aggregate action function implied by π0, as defined in

Lemma 11. The agent’s problem is maxπ0∈Π0(µ0) J0(π0, ᾱ), taking ᾱ ∈ Ā as given.

Suppose there exists a mean-critical utility function u such that (π∗0, ᾱ
∗) is a constrained

efficient strategy profile and an equilibrium, and for which

∇ᾱC0(π∗0, µ0, ᾱ
∗) 6= 0, (25)

Let us apply Lemma 17 defined above, and suppose that for some (s0, r0) satisfying

∇ᾱC0(π∗0, µ0, ᾱ
∗)(s, r) 6= 0,

there exists a π∗0-positive-measure set Ω0 ⊂ supp(π∗0) such that for all (a, µ′0) ∈ Ω0, a > ᾱ∗(s0, r0).

By the differentiability ofD and of the utility function, J0(π0,ε, ᾱ) is differentiable with respect

to ε (by Lemma 17, mε(a, µ
′
0) is differentiable with respect to ε). Consequently, by optimality in

the agent’s problem (which must hold in equilibrium),

∂

∂ε
J0(π0,ε, ᾱ)|ε=0 = 0.

Now consider ∂
∂εJ(π0,ε,M(π0,ε))|ε=0. By the differentiability of D, this must equal

∂

∂ε
J0(π0,ε,M{π0,ε})|ε=0 = (

∂

∂ε
M{π0,ε}|ε=0) · ∇ᾱC0(π∗0, µ0, ᾱ

∗)

and by construction this is non-zero, contradicting optimality in the planner’s problem.

It must therefore be the case that, for (s0, r0) ∈ S×Rwith∇ᾱC0(π∗0, µ0, ᾱ
∗)(s0, r0) 6= 0, no set

Ω0 as described in Lemma 17 exists. But in this case, mean-consistency requires that the action

a = ᾱ(s0, r0) occur with probability one under π∗0 conditional on (s0, r0).

If this action occurs with probability one unconditionally under π∗0 , then by the definition of

a divergence we must have C0(π∗0, µ0, ᾱ) = 0 for all ᾱ, contradicting (25). Instead suppose some

actions a ∈ A \ {ᾱ(s0, r0)} occur with positive probability. In this case, the posteriors associated

with such actions must place zero probability on (s0, r0), contradicting the assumption that the

posteriors lie in the interior of the simplex.

We therefore conclude that in all constrained-efficient symmetric BNE satisfying the interi-

ority assumptions,∇ᾱC0(π∗0, µ0, ᾱ
∗) = ~0.
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E.11 Proof of Proposition 9

This proof refers several of the additional lemmas found in Technical Appendix Section E.1, and

uses the perturbation lemma above (Lemma 17).

The planner’s problem can be rewritten as maxπ0∈Π0(µ0) J0(π0,M{π0}), where J0 is defined

as in Lemma 10 and M{π0} denotes the aggregate action function implied by π0, as defined in

Lemma 11. The agent’s problem is maxπ0∈Π0(µ0) J0(π0, ᾱ), taking ᾱ ∈ Ā as given.

Suppose the proposition is false; that is, suppose there exists a differentiable divergence D,

invariant in Ā, such that (π∗0, ᾱ
∗) is a constrained efficient symmetric BNE with supp(π0) ⊂ A ×

int(U0) and, for some (s0, r0) ∈ S ×R,

∂

∂ā
Eπ

∗
0 (a,µ′0)[u(a, ā, s)|s0, r0]|ā=ᾱ(s0,r0) 6= 0.

Let us apply Lemma 17, and suppose that there exists a π∗0-positive-measure set Ω0 ⊂ supp(π∗0)

such that for all (a, µ′0) ∈ Ω0, a > ᾱ∗(s0, r0) = Eπ
∗
0 (a,µ′0)[a|s0, r0].

By the differentiability ofD and of the utility function, J0(π0,ε, ᾱ) is differentiable with respect

to ε (by Lemma 17, mε(a, µ
′
0) is differentiable with respect to ε). Consequently, by optimality in

the agent’s problem (which must hold in equilibrium),

∂

∂ε
J0(π0,ε, ᾱ)|ε=0 = 0.

Now consider ∂
∂εJ(π0,ε,M{π0,ε})|ε=0. By the invariance of D in Ā, this must equal

∂

∂ε
J(π0,ε,M{π0,ε})|ε=0 = Eµ0 [(

∂

∂ε
M{π0,ε}(s, r)|ε=0) · ∂

∂ā
Eπ

∗
0 (a,µ′0)[u(a, ā, s)|s, r]|ā=ᾱ(s,r)]

= µ0(s0, r0)x
∂

∂ā
Eπ

∗
0 (a,µ′0)[u(a, ā, s)|s0, r0]|ā=ᾱ(s0,r0),

where x > 0 is the constant defined in Lemma 17. By construction this is non-zero, contradict-

ing optimality in the planner’s problem.

It must therefore be the case that, for (s0, r0) ∈ S×Rwith ∂
∂āE

π∗0 [u(a, ā, s)|s0, r0]|ā=ᾱ(s0,r0) 6= 0,

no set Ω0 as described in Lemma 17 exists. But in this case, mean-consistency requires that the

action a = ᾱ(s0, r0) occur with probability one under π∗0 conditional on (s0, r0).

If this action occurs with probability one unconditionally under π∗0 , then we must have

∂

∂ā
Eµ0(s,r,ā)[u(ᾱ(s0, r0), ā, s)]|ā=ᾱ(s0,r0) 6= 0,

but this contradicts optimality in the planner’s problem given optimality in the agent’s problem,

as above.

Instead suppose some actions a ∈ A\{ᾱ(s0, r0)} occur with positive probability. In this case,

the posteriors associated with such actions must place zero probability on (s0, r0), contradicting

the assumption that the posteriors lie in the interior of the simplex.
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We therefore conclude that in all constrained-efficient symmetric BNE satisfying the interi-

ority assumptions, ∂
∂āE

π∗0 (a,µ′0)[u(a, ā, s)|s0, r0]|ā=ᾱ(s0,r0) = 0.

E.12 Proof of Proposition 10

By the assumption of invariance,

D(φ{µ′0, ᾱ}||φ{µ0, ᾱ}) = D(φ{µ′0, ᾱ′}||φ{µ0, ᾱ
′})

for any arbitrary ᾱ′ ∈ Ā.

The planner’s problem can be rewritten as maxπ0∈Π0(µ0) J0(π0,M(π0)), where

J(ᾱ, π0) = Eπ0(a,µ′0)[Eµ
′
0 [u(a, ᾱ(s, r), s)]−D(φ{µ′0, ᾱ′}||φ{µ0, ᾱ

′})]

and M(π0) denotes the aggregate action function implied by π0 (as in Lemma 11). Similarly, the

agent’s problem is maxπ0∈Π0(µ0) J0(π0, ᾱ), taking ᾱ ∈ Ā as given.

The set Π0(µ0) is convex and compact,M(π0) is continuous, and J0(π0, ᾱ) is continuous (see

Lemmas 8, 10, and 11). Consequently, a maximizer of the planner’s problem exists.

Plugging in the functional form of a mean-critical utility function (Lemma 4), for any mean-

consistent (π0, ᾱ),

J0(π0, ᾱ) = Eπ0(a,µ′0)[g(a; s)−D(φ{µ′0, ᾱ′}||φ{µ0, ᾱ
′})] + Eµ0(s,r)[G(ᾱ(s, r); s)].

IfG is concave, J is concave over mean-consistent pairs: if (π0,1, ᾱ1) and (π0,2, ᾱ2) are mean-

consistent pairs, then for λ ∈ (0, 1), (λπ0,1 + (1− λ)π0,2, λᾱ1 + (1− λ)ᾱ2) ∈ Π0(µ0)× Ā is mean-

consistent and delivers weakly higher utility. If G is strictly concave, utility is strictly higher

whenever ᾱ1 6= ᾱ2.

We next show that, with a divergence D invariant in Ā and a mean-critical utility function,

every symmetric BNE is a critical point of the planner’s problem. Let (π∗0, ᾱ
∗) be a symmetric

BNE. By the definition of the agent’s problem, π∗0 is a critical value (a maximum) of J0(·, ᾱ∗) :

Π0(µ0)→ R. By the definition of mean-consistency and the mean-critical property of the utility

function, for all ᾱ′′ ∈ Ā,

lim
ε→0+

1

ε
J0(π∗0, ᾱ

∗ + ε(ᾱ′′ − ᾱ∗)) = 0

It follows that (π∗0, ᾱ
∗) is a critical value of J0(π0, ᾱ), and hence that (π∗0, ᾱ

∗) is a critical value of

the planner’s problem.

If the planner’s problem is concave, which occurs when G is concave, all critical points are

maxima, and hence all symmetric BNE are constrained-efficient. If G is strictly concave, two

constrained efficient equilibria with different aggregate action functions cannot exist, as other-

wise a convex combination would generate strictly higher utility, contradicting the assumption

of constrained efficiency.
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Define

f(ᾱ) = sup
π0∈Π0(µ0):M(π0)=ᾱ

Eπ0(a,µ′0)[g(a; s)−D(φ{µ′0, ᾱ′}||φ{µ0, ᾱ
′})],

and observe that f(ᾱ) is concave by the convexity of {π0 ∈ Π0(µ0) : M(π0) = ᾱ} and the linearity

of the objective. If f(ᾱ) + Eµ0(s,r)[G(ᾱ(s, r); s)] is strictly concave, then

J∗0 (ᾱ) = sup
π0∈Π0(µ0):M(π0)=ᾱ

Eπ0(a,µ′0)[g(a; s)−D(φ{µ′0, ᾱ′}||φ{µ0, ᾱ
′})] + Eµ0(s,r)[G(ᾱ(s, r); s)]

is strictly concave, and the solution to the planner’s problem involves a unique ᾱ.

E.13 Proof of Corollary 1

Take an s-measurable ᾱ such that D is not monotone in R given µ = φ{µ0, ᾱ} as given. The

utility function constructed in the necessity part of proof of Proposition 6 is, for some r0 ∈ R

and χ > 0,

u(a, ā, s) = g(a; s)− χ

2
|ā− ᾱ(s, r0)|2 − χ(a− ā) · (ā− ᾱ(s, r0)).

Defining G(ā; s) = −χ
2 |ā− ᾱ(s, r0)|2 yields

u(a, ā, s) = g(a; s) +G(ā; s) + (a− ā) · ∂
∂ā
G(ā, s),

and hence by Lemma 4 u is mean-critical. By Proposition 5, an equilibrium exists, and by the

proof of Proposition 6, no s-measurable equilibrium exists.

By the strict concavity of G and Proposition E.12, all equilibria share a common aggregate

action function and are constrained efficient.

E.14 Proof of Proposition 12

To ease notation we define ~α = (ᾱs, ᾱr). A strategy profile (λ0, τ0, ~α) is an equilibrium if (λ0, τ0)

is a best response and mean-consistency is satisfied. Recall that in this section we use the

normalization λ′0Σ0λ = 1. Under this normalization,

α(λ0, τ0, ~α) = (ψ(~α)′Σ0λ0)
τ0

1 + τ0
.

Mean-consistency is

~α = α(λ0, τ0, ~α)λ0.

We also have

ψ(~α) = (1− β)e1 + βα(λ0, τ0, ~α)λ0,

where e′1 = (1, 0).
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Mutual Information As argued in the text, with ~α s-measurable, ~α = (ᾱS , 0), λ′0 = (σ−1
s , 0) is

the best response. In this case we have

ψ(~α)Σ0λ0 = (1− β + βᾱs)σs

and mean-consistency requires

ᾱs = (1− β + βᾱs)
τ0

1 + τ0
.

Optimality in this case requires

τ∗0 ∈ arg max
τ0

(1− β + βᾱs)
2σ2
s(1−

1

1 + τ0
) + θ ln(

1

1 + τ0
),

The first-order condition for τ∗0 is

(1− β + βᾱs)
2σ2
s ≤ θ(1 + τ∗0 ),

with equality if τ∗0 > 0. If θ ≥ (1− β)2σ2
s , an equilibrium with (ᾱs = 0, τ0 = 0) exists.

Suppose θ < (1− β)2σ2
s . Define the function g : R2 → R2 by

g(τ0, ᾱS) =

[
θ−1(1− β + βᾱs)

2σ2
s − 1

(1− β + βᾱs)
τ0

1+τ0

]
.

LetK ⊂ R2 be the interval [0, θ−1σ2
s ]×[0, 1], a convex, compact set. Observe that for any (τ0, ᾱs) ∈

K, g(τ0, ᾱs) ∈ K. The function g is continuous, and consequently by Brouwer’s fixed point

theorem, a fixed point (τ∗0 , ᾱ
∗
s) exists. By construction, (λ∗0 = (σ−1

s , 0)′, ~α∗ = (ᾱ∗s, 0), τ∗0 ) is an

s-measurable equilibrium.

Fisher Information For the Fisher information, we build on results in Hébert and Woodford

[2021]. Those authors adopt the normalization |λ0| = θ−
1

2 (note that a factor of two is omitted

due to a difference in the definition of θ). Let us call λ̂0, τ̂0 the optimal policies under the Hébert

and Woodford [2021] normalization. Those authors show that if θ < |Σ0ψ(~α)|2, agents will

respond by gathering information, and otherwise agents will not gather information.

Consequently, if θ ≥ ((1 − β)σ2
s)

2, an equilibrium with no information gathering exists.

Suppose in what follows that θ < ((1 − β)σ2
s)

2. In this case, Hébert and Woodford [2021] show

that

λ̂0 = (θΣ−1
0 + τ̂0I)−1ψ(~α),

θ = |(Σ−1
0 + θ−1τ̂0I)−1ψ(~α)|2.
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Observe that

ψ(~α)′Σ0λ̂0 = θλ̂′0λ̂0 + τ̂0λ̂
′
0Σ0λ̂0 > 0,

which leads to the result in Hébert and Woodford [2021] that

E[(s, r) · ψ(~α)|ω] = τ̂0ω.

Mean-consistency therefore requires

ψ(~α) = (1− β)e1 + βτ̂0λ̂0.

Combing these equations,

(1− β)τ̂0λ̂0 = (1− β)e1 − θΣ−1
0 λ̂0,

or

λ̂0 = θ−1(1− β)Σ0(e1 − τ̂0λ̂0). (26)

Using the normalization λ̂′0λ̂0 = θ−1 we can write

τ̂0 = (1− β)τ̂0λ̂
′
0Σ0(e1 − τ̂0λ̂0).

Define

v = e1 − τ̂0λ̂0,

and we have

v = (I + θ−1τ̂0(1− β)Σ0)−1e1

and

τ̂0 = (1− β)τ̂0λ̂
′
0Σ0v.

Observe that |v| ≤ 1 for all τ̂0 ≥ 0.

Define the function g : R3 → R3 by

g(v, τ̂0) =

[
(I + θ−1τ̂0(1− β)Σ0)−1e1

(1− β)τ̂0λ̂
′
0Σ0v

]
.

Observe by assumption that θ
1

2 < (1 − β)σ2
s < ||Σ0||, where ||Σ0|| denotes the matrix operator

norm.

Consequently, if τ̂0 ≤ 1, then

τ̂0λ̂
′
0Σ0v < |λ̂0| · ||Σ0|| < 1.

It follows that the function g maps the unit sphere to the unit sphere, and by Brouwer’s fixed

point theorem a fixed point exists.
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Let (v∗, τ̂∗0 ) be the fixed point. By θ
1

2 < (1 − β)σ2
s , we must have τ̂∗0 > 0. We can recover

λ̂∗0 = (τ̂∗0 )−1(e1 − v∗) and

(~α∗)′ = τ̂∗0 λ̂
∗
0.

Defining x = (λ̂∗0Σ0λ̂
∗
0)−

1

2 , we can define λ∗0 = xλ̂0 and τ∗0 = x−2τ̂∗0 . Thus constructed, (τ∗0 , λ
∗
0, ~α
∗)

is an equilibrium.

Observe, by the argument in the text or (26) that λ̂′0 6= (θ−
1

2 , 0) due to the off-diagonal ele-

ments of Σ0. Consequently, the equilibrium cannot be s-measurable.

E.15 Proof of Lemma 6

The “if” part is essentially immediate:

∇āu(a, ā, s) = (a− ā) ·H(ā; s),

where H(·) is the Hessian of G. The mean-critical property follows by taking expectations.

We next prove the “only if” part of the lemma. Consider a point-mass ρ with full support on

some (a, s, r) ∈ A× S ×R. By the definition of a mean-critical utility function, we must have

∇āu(a, ā, s)|ā=a = 0.

In case of concavity in ā, it follows that

a ∈ arg max
ā∈Ā

u(a, ā, s).

Define the function

f(a, ā, s) = u(a, a, s)− u(a, ā, s).

It follows immediately that

a ∈ arg min
ā∈Ā

f(a, ā, s),

and f(a, a, s) = 0 by construction.

In the case of convexity in ā,

a ∈ arg min
ā∈Ā

u(a, ā, s),

and

f(a, ā, s) = u(a, ā, s)− u(a, a, s)

is a non-negative function with f(a, a, s) = 0.

Consequently, on the domain A × A × S, f(a, ā, s) is a weakly positive, and is continuously

twice-differentiable by the assumption of regularity.

Now consider a measure ρ consisting of two point masses, ρ = αδ(a1,s1,r1) + (1 − α)δ(a2,s1,r1).

Let κ ∈ ∆(A) be the conditional density given (s1, r1), κ = αδa1
+(1−α)δa2

. By mean-consistency,
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∫
A
adκ(a) ∈ arg min

ā∈A

∫
A
f(a, ā; s)dκ(a).

By theorem 4 of Banerjee et al. [2005] (which is proven using only two-point measures; see

also the discussion in that paper on restrictions to subspaces of RN ), it follows that

f(a, ā; s) = F (a; s)− F (ā; s)− (a− ā) · ∇F (ā; s)

for some function F : A× S → R convex in A for all s ∈ S. In the concave in ā case, defining

g(a; s) = u(a, a, s) + F (a; s)

and G(ā; s) = F (ā; s) yields

u(a, ā, s) = u(a, a, s)− f(a, ā; s)

= g(a; s) +G(ā; s) + (a− ā) · ∇G(ā; s).

In the convex in ā case, defining g(a; s) = u(a, a, s)−G(a; s) and G(ā; s) = −F (ā; s) yields

u(a, ā, s) = u(a, a, s) + f(a, ā; s)

= g(a; s) +G(ā; s)− (a− ā) · ∇G(ā; s).

F Proof for the Continuous State Case

This section provides proofs for the claims in Proposition 11. The proofs are essentially nota-

tional adaptions of the proofs of Propositions 5, 6, 7, and 10 in the main text.

F.1 Proof of Existence and Sufficiency of Monotonicity in R

Endow F0 with the sup-norm topology and U0 with the weak* topology. Endow Π̄0 with the

weak* topology and Ā+ with the sup-norm topology.

Lemma 18. The function φF : F0 → U0 defined by dφF {f0}(s, r) = f0(s, r)dµ0(s, r) is continuous.

Proof. If f0,n → f0 in the sup-norm topology, then for all continuous g : S ×R→ R,∫
S×R

g(s, r)f0,n(s, r)dµ0(s, r)→
∫
S×R

g(s, r)f0(s, r)dµ0(s, r)

by Aliprantis and Border [2006] 15.7 and the continuity of the product of continuous functions.

It is convenient to define a strategy π̄0 ∈ Π̄0 as s-measurable if, for all (a, f0) ∈ supp(π̄0),

f0(s, r) = f0(s, r′) for all s ∈ S and r, r′ ∈ R. For s-measurable aggregate action functions ᾱ, this
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definition is equivalent to the requirement that the strategy π ∈ Π(φ{µ0, ᾱ}) induced from π0 by

(a, µ′0) 7→ (a, φ{φF {f0}, ᾱ}) be s-measurable.

Define Π̄S
0 ⊆ Π̄0 as the set of s-measurable strategies.

Lemma 19. The spaces F0 and U0 are metrizable in the sup-norm and weak* topologies, respec-

tively. The sets Π̄0 and Π̄S
0 are non-empty, compact, and convex.

Proof. See the technical appendix, G.11

Define the objective function

J̄(π̄0, ᾱ) = Eπ̄0(a,f0)[V (a, φ{φF {f0}, ᾱ})−DF (f0||µ0; ᾱ)]. (27)

The following lemma shows that this function is continuous.

Lemma 20. The function J̄(π̄0, ᾱ) is continuous.

Proof. Observe that A × F0 and A × U0 are metrizable. By the continuity of φF , the function

V (a, φ{φF {f0}, ᾱ}) = Eφ{φF {f0},ᾱ}(s,r,ā)[u(a, ā, s)] is continuous on A × F0 by the continuity of u

and the definition of the weak* topology (see Aliprantis and Border [2006] 15.7). By assumption,

DF (f0||µ0; ᾱ) is continuous. It follows almost immediately by Aliprantis and Border [2006] 15.7

that J̄ is continuous (see the proof of Lemma 10 for details).

We next invoke the theorem of the maximum. Let Π̄∗ : Ā ⇒ Π̄0 be the best reply correspon-

dence in the agent’s problem,

Π̄∗(ᾱ) = {π̄0 ∈ arg max
π̄′0∈Π̄0

J̄(π̄′0, ᾱ)}.

Define ĀS ⊂ Ā as the set of s-measurable aggregate action functions, and let Π̄∗S : ĀS ⇒ Π̄S
0 be

the best reply correspondence in the agent’s problem restricted to s-measurable strategies,

Π̄∗S(ᾱ) = {π̄0 ∈ arg max
π̄′0∈Π̄S0

J̄(π̄′0, ᾱ)}

Lemma 21. The correspondences Π̄∗ and Π̄∗S are non-empty, compact-valued, convex-valued,

and upper hemi-continuous.

Proof. See Aliprantis and Border [2006] 17.31 (the maximum theorem). Convexity follows from

the linearity of J in π0 and the convexity of Π̄0 and Π̄S
0 .

Lemma 22. The function M : Π̄0 → Ā+ defined by M{π̄0}(s, r) =
∫
supp(π̄0) af0(s, r)dπ̄0(a, f0) for

all (s, r) ∈ S ×R is continuous. If π̄0 ∈ Π̄S
0 , then M{π̄0} ∈ ĀS .

Proof. See the technical appendix, G.12.
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It follows that the composition of M and Π̄∗, M ◦ Π̄∗ : Π̄0 ⇒ Π̄0, is a non-empty, upper

hemi-continuous, and compact- and convex-valued. By the infinite-dimensional version of the

Kakutani fixed point theorem (Aliprantis and Border [2006] 17.55), M ◦ Π̄∗ has a fixed point,

π̄∗0 . By construction, for ᾱ∗ = M{π∗0}, π̄∗0 is a best response to ᾱ∗, and (π̄∗0, ᾱ
∗) satisfies mean-

consistency. It follows that (π̄∗0, ᾱ
∗) is a symmetric BNE, and hence that a symmetric BNE exists.

It also follows that the composition of M and Π̄∗S , M ◦ Π̄∗S : ΠS
0 ⇒ ΠS

0 , is a non-empty, upper

hemi-continuous, and compact- and convex-valued. By the infinite-dimensional version of the

Kakutani fixed point theorem (Aliprantis and Border [2006] 17.55), M ◦ Π̄∗S has a fixed point,

π̄S0 . By construction, for ᾱS = M{π̄S0 }, π̄S0 is a best response to ᾱS on the set of s-measurable

strategies, (π̄S0 , ᾱ
S) is mean-consistent, and both ᾱS and πS0 are s-measurable.

Let us now assume monotonicity in R. By the s-measurability of ᾱS , for all µ′ ∈ U with

µ′ � φ{µ0, ᾱ
S},

û(a, µ′) = û(a, ηR{µ′, µ}).

Consequently, for any π ∈ Π(φ{µ0, ᾱ
S}), the s-measurable π̂ ∈ Π(φ{µ0, ᾱ

∗}) induced from π by

(a, µ′) 7→ (a, ηR{µ′, φ{µ0, ᾱ
S}}) satisfies

Eπ̂(a,µ′)[û(a, µ′)] = Eπ(a,µ′)[û(a, µ′)],

and by monotonicity in R for the prior φ{µ0, ᾱ
S}, Eπ̂[D(µ′||φ{µ0, ᾱ

S})] ≤ Eπ[D(µ′||φ{µ0, ᾱ
S})].

It follows that every non-s-measurable π is weakly dominated by an s-measurable one.

By assumption, for any π̄0 ∈ Π̄0 that induces some π ∈ Π(φ{µ0, ᾱ
S}) via the mapping

(a, f0) 7→ (a, φ̄{f0, ᾱ
S}), there exists an s-measurable π̄′0 ∈ Π̄0 that induces π′ ∈ Π(φ{µ, ᾱS})

via this mapping, where π′ is induced from π by the mapping (a, µ′) 7→ (a, ηR{µ′, φ{µ0, ᾱ
S}). We

must have J̄(π̄0, ᾱ) ≤ J̄(π̄′0, ᾱ), and therefore π̄S0 must be a best response without restricting to

s-measurable strategies. It follows that (π̄S0 , ᾱ
S) is a symmetric BNE.

F.2 Proof of Sufficiency of Invariance in Ā

The planner’s problem can be rewritten as maxπ̄0∈Π̄0(µ0) J̄(M{π̄0}, π̄0), where J̄ is defined in (27)

above andM(π̄0) is defined as in Lemma 22. The agent’s problem is maxπ̄0∈Π̄0(µ0) J̄(ᾱ, π̄0), taking

ᾱ ∈ Ā+ as given.

The set Π̄0 is convex and compact in the weak* topology, M{π̄0} is continuous, and J̄(ᾱ, π̄0)

is continuous (see Lemmas 19, 20, and 22 in the proof of above). Consequently, a maximizer of

the planner’s problem exists.

Let (ᾱ+, π̄+
0 ) be a maximum of the planner’s problem with ᾱ+ = M{π̄+

0 }. The function

J̄(M{π̄0}, π̄0) is directionally differentiable in π̄0 at π̄+
0 :

lim
ε→0+

1

ε
(J̄(M{(1−ε)π̄+

0 +επ̄′0}, (1−ε)π̄+
0 +επ̄′0)− J̄(M{π̄+

0 }, π̄
+
0 )) = J̄(M{π̄+

0 }, π̄
′
0)− J̄(M{π̄+

0 }, π
+
0 )
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for all π̄′0 ∈ Π̄0. This result follows from the observation that

Eπ̄0(a,f0)[V (a, φ{φF {f0}, ᾱ})]

is directionally differentiable in ᾱ (which follows from the mean-critical property, and note this

derivative is zero) and the linearity of conditional expectations,

lim
ε→0+

1

ε
(M{(1− ε)π̄+

0 + επ̄′0} −M{π̄+
0 }) = M{π̄′0} −M{π̄+

0 },

along with invariance in Ā (which ensures that the expected divergence is differentiable with

respect to ᾱ, with a derivative of zero).

Because π̄+
0 is maximal, we must have J̄(M{π̄+

0 }, π̄′0)− J̄(M{π̄+
0 }, π

+
0 ) ≤ 0 for all π̄′0 ∈ Π̄0(µ0).

Therefore, by ᾱ+ = M{π̄+
0 }, π̄

+
0 is a best response in the agent’s problem to ᾱ+, and thus (ᾱ+, π+

0 )

is a symmetric BNE.

F.3 Proof of Uniqueness

By the assumption of invariance,

D(φ̄{f0, ᾱ}||φ{µ0, ᾱ}) = D(φ̄{f0, ᾱ
′}||φ{µ0, ᾱ

′})

for any arbitrary ᾱ′ ∈ Ā+.

The planner’s problem can be rewritten as maxπ̄0∈Π̄0(µ0) J̄(π̄0,M{π̄0}), where J̄ is defined in

(27) above and M{π̄0} is defined as in Lemma 22. The agent’s problem is maxπ̄0∈Π̄0(µ0) J̄(π̄0, ᾱ),

taking ᾱ ∈ Ā as given.

The set Π̄0 is convex and compact in the weak* topology, M{π̄0} is continuous, and J̄(π̄0, ᾱ)

is continuous (see Lemmas 19, 20, and 22 in the proof of above). Consequently, a maximizer of

the planner’s problem exists.

Plugging in the functional form of a mean-critical utility function (Lemma 4), for any mean-

consistent (π̄0, ᾱ),

J̄(π̄0, ᾱ) = Eπ̄0(a,f0)[g(a; s)−D(φ̄{f0, ᾱ
′}||φ{µ0, ᾱ

′})] + Eµ0 [G(ᾱ(s, r); s)].

If G is concave, J is concave over mean-consistent pairs: if (π̄0,1, ᾱ1) and (π̄0,2, ᾱ2) are mean-

consistent pairs, then for λ ∈ (0, 1), (λπ̄0,1 + (1− λ)π̄0,2, λᾱ1 + (1− λ)ᾱ2) ∈ Π̄0(µ0)× Ā is mean-

consistent and delivers weakly higher utility. If G is strictly concave, utility is strictly higher

whenever ᾱ1 6= ᾱ2 on a µ0-positive-measure set.

We next show that, with a divergence D invariant in Ā and a mean-critical utility function,

every symmetric BNE is a critical point of the planner’s problem. Let (π̄∗0, ᾱ
∗) be a symmetric

BNE. By the definition of the agent’s problem, π̄∗0 is a critical value (a maximum) of J̄(·, ᾱ∗) :

Π̄0(µ0)→ R. By the definition of mean-consistency and the mean-critical property of the utility
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function, for all ᾱ′′ ∈ Ā+,

lim
ε→0+

1

ε
J̄(π̄∗0, ᾱ

∗ + ε(ᾱ′′ − ᾱ∗)) = 0

It follows that (π̄∗0, ᾱ
∗) is a critical value of J̄(π0, ᾱ), and hence that (π̄∗0, ᾱ

∗) is a critical value of

the planner’s problem.

If the planner’s problem is concave, which occurs when G is concave, all critical points

are maxima, and hence all symmetric BNE are constrained-efficient. If G is strictly concave,

two constrained efficient equilibria with different aggregate action functions on a µ0-positive-

measure set cannot exist, as otherwise a convex combination would generate strictly higher

utility, contradicting the assumption of constrained efficiency.

Lastly, observe that ᾱ1 and ᾱ2 are continuous functions (by the Arzela-Ascoli theorem and

the compactness of Ā+). Consequently, if they are equal µ0-almost-everywhere, they are in fact

equal everywhere in the support of µ0 (which, by assumption, is everywhere).

G Additional Proofs

G.1 Proof of Lemma 8

Note: all parenthetical numbers in the proof refer to numbered results in Aliprantis and Border

[2006].

S andR are assumed to be compact, separable, and metrizable; consequently, S×R is com-

pact, separable, and metrizable (2.61). It follows that U0 = ∆(S ×R) is compact, separable, and

metrizable (15.11, 15.12), and that A× U0 is compact, separable, and metrizable in the product

topology.

Consequently, ∆(A × U0) is a compact, separable, metrizable space in its weak* topology

(15.11, 15.12). By the compactness of ∆(A × U0), Π0(µ0) is relatively compact in ∆(A × U0)

(15.21).

Moreover, f(a, µ′0) = µ′0 is a bounded continuous function onA×U0, which is a compact set,

and consequently for any sequence {πn ∈ Π0(µ0)} that converges in the weak* topology to some

π0 ∈ ∆(A × U0), we must have µ0 =
∫
supp(πn) u

′
0dπn(a, µ′0) →

∫
supp(π0) µ

′
0dπ0(a, µ′0), and therefore

π ∈ Π0(µ0) (15.3). Thus, Π0(µ0) is closed (2.40), and hence is compact.

Π0(µ0) is non-empty: by definition, the point mass on (a, µ0) for any a ∈ A is an element of

Π0(µ0).

It is also convex: for any π1, π2 ∈ Π0(µ0),
∫
supp(π1) u

′
0dπ1(a, µ′0) = µ0 and

∫
supp(π2) u

′
0dπ2(a, µ′0) =

µ0, and consequently by the convexity of ∆(A×U0), π = απ1 + (1−α)π2 is an element of Π0(µ0)

for any α ∈ (0, 1).
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G.2 Proof of Lemma 9

Let g : S ×R× Ā→ R be a continuous and bounded function. Then for any (ᾱn, µ0,n) ∈ Ā × U0,∫
S×R×Ā

g(s, r, ā)dφ{µ0,n, ᾱn}(s, r, ā) =

∫
S×R

g(s, r, ᾱn(s, r))dµ0,n(s, r).

Suppose (ᾱn, µ0,n)→ (ᾱ, µ′0). By definition, for any δ there exists an n0 such that for all n ≥ n0,

sup
(s,r)∈S×R

|ᾱ(s, r)− ᾱn(s, r)| < δ.

By the definition of continuity, for any ε > 0, there exists a δ > 0 such that for all (s, r) ∈ S × R
and all ā, ā′ ∈ Ā with |ā− ā′| < δ,

|g(s, r, ā)− g(s, r, ā′)| < ε.

Consequently, for any ε > 0, there exists an n0 such that

sup
(s,r)∈S×R

|g(s, r, ᾱ(s, r))− g(s, r, ᾱn(s, r))| < ε,

which is to say g(s, r, ᾱn(s, r))→ g(s, r, ᾱ(s, r)) in the sup norm topology.

It follows by Aliprantis and Border [2006] 15.7 that∫
S×R

g(s, r, ᾱn(s, r))dµ0,n(s, r)→
∫
S×R

g(s, r, ᾱ(s, r))dµ′0(s, r),

and hence that∫
S×R×Ā

g(s, r, ā)dφ{µ0,n, ᾱn}(s, r, ā)→
∫
S×R×Ā

g(s, r, ā)dφ{µ′0, ᾱ}(s, r, ā).

G.3 Proof of Lemma 10

Concavity is immediate by linearity.

The function

V (a, µ′) = Eµ
′(s,r,ā)[u(a, ā, s)]

is continuous on A × U by the continuity of u and the definition of the weak* topology (see

Aliprantis and Border [2006] 15.7). The function D(µ′||µ) is continuous on {(µ′, µ) ∈ U × U :

µ′ � µ} by assumption.

By Lemma 9, and continuity of the composition of continuous functions, it follows that

h(a, µ′0, ᾱ) = V (a, φ{µ′0, ᾱ})−D(φ{µ′0, ᾱ}||φ{µ0, ᾱ})

is continuous on X = {(a, µ′0, ᾱ) ∈ A× U0 × Ā}.
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Suppose (ᾱn, π0,n)→ (ᾱ, π0). By definition, for any δ there exists ann0 such that for alln ≥ n0,

sup
(s,r)∈S×R

|ᾱ(s, r)− ᾱn(s, r)| < δ,

which is to say |ᾱn − ᾱ| < δ in the sup norm. By the definition of continuity, for any ε > 0, there

exists a δ > 0 such that for all (a, µ′0) ∈ A× U0, if |ᾱn − ᾱ| in the sup norm, then

|h(a, µ′0, ᾱn)− h(a, µ′0, ᾱ)| < ε.

Consequently, h(·, ᾱn(s, r))→ h(·, ᾱ(s, r)) in the sup norm topology.

It follows by Aliprantis and Border [2006] 15.7 that

Eπ0,n(a,µ′0)[h(a, µ′0, ᾱn)]→ Eπ0(a,µ′0)[h(a, µ′0, ᾱ)]

and hence that J(·) is continuous.

G.4 Proof of Lemma 11

Define the function gs,r : A× U0 → R by

gs,r{a, µ′0} = a
µ′0(s, r)

µ0(s, r)
.

By the finiteness ofS×R, µ′0,n → µ′0 implies point-wise convergence. Consequently, if (an, µ
′
0,n)→

(a, µ′0), then gs,r(an, µ
′
0,n) → gs,r(a, µ

′
0) for all (s, r) ∈ S × R. Thus, gs,r is a continuous and

bounded function for all (s, r) ∈ S ×R.

It follows immediately from the definition of the weak* topology (see, e.g., Aliprantis and

Border [2006] 15.3) that if π0,n → π0, then M{π0,n}(s, r) → M{π0}(s, r) for all (s, r) ∈ S × R,

which is to say that M{π0,n} converges point-wise to M{π0}. By the finiteness of S × R, point-

wise convergence implies uniform convergence and hence M{π0} is continuous.

G.5 Proof of Lemma 13

By µ′′ � φ{µ0, ᾱ}, there exists a µ′′0 ∈ U0 such that µ′′ = φ{µ′′0, ᾱ}. Define µ = φ{µ0, ᾱ}.
Define the action

a0 = Eµ0(s,r)[ᾱ(s, r)].

Define, for some λ > 1, Āλ = {a ∈ RL : ∃(s, r) ∈ S ×R s.t. a = λᾱ(s, r) + (1− λ)a0}. Because

the image of ᾱ lies in the relative interior of Ā, by the finiteness of S ×R, for some λ sufficiently

close to one, Āλ ⊂ Ā. Because the image of ᾱ is not a singleton, a0 is not in Āλ. Define a1 ∈ A as

an arbitrary element of the relative interior of Āλ not equal to a0.
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Define f0 = dµ′′0
dµ0

and observe that, by the fact that ᾱ is s-measurable and µ′′ = ηR{µ′, µ}, f0

does not depend on r. Now define a shifted ᾱ function,

α̃(s, r) = ᾱ(s, r) +
ερf0(s)

1− ερf0(s)− ε(1− ρ)
(ᾱ(s, r)− a1) +

ε(1− ρ)

1− ερf0(s)− ε(1− ρ)
(ᾱ(s, r)− a0)

=
ᾱ(s, r)− a1ερf0(s)a1 − ε(1− ρ)a0

1− ερf0(s)− ε(1− ρ)

for some ε ≥ 0 and ρ ∈ (0, 1). By the interiority of the image of ᾱ, for sufficiently small ε (ε ≤ ε̄),

α̃(s, r) remains in Āλ. By the fact that ᾱ is s-measurable, α̃(s, r) is s-measurable.

By construction, every value in the image of α̃ is a convex combination of elements of Āλ.

Consequently, for each s ∈ S, there is a probability measure νs ∈ ∆(Āλ) satisfying

Eνs(a)[a] = α̃(s, r)

for all r ∈ R (by the s-measurability of ᾱ).

Now define νs,ε,ρ ∈ ∆(Āλ ∪ {a0, a1}) by

νs,ε,ρ(a) = (1− ερf0(s)− ε(1− ρ))νs(a)

+ ερf0(s)δa1
(a) + ε(1− ρ)δa0

(a),

where δa1
(a) and δa0

(a) are the point masses on a0 and a1.

By construction, for all r ∈ R,

Eνs,ε,ρ(a)[a] = (1− ερf0(s)− ε(1− ρ))Eνs(a)[a]

+ ερf0(s)a1 + ε(1− ρ)a0

= ᾱ(s, r).

Define A∗ε,ρ = {a ∈ Āλ ∪ {a0, a1} : ∃s ∈ S s.t. νs,ε,ρ(a) > 0}. Define, for each a ∈ A∗, the posterior

measure µ0,a ∈ U0 by
dµ0,a(s, r)

dµ0(s, r)
=

νs,ε,ρ(a)

Eµ0(s′,r′)[νs′,ε,ρ(a)]
,

observing that this is well-defined by the finiteness of S × R. Observe, by construction, that

µ0,a1
= µ′′0 and µ0,a0

= µ0. These posterior measures define a π0 ∈ Π0(µ0) that is a finite sum of

point masses,

dπ0(a, µ′0) =
∑
a′∈A∗

Eµ0(s,r)[νs,ε,ρ(a
′)]δ(a′,µ0,a′ )(a, µ

′
0).

This induces a πε,ρ ∈ Π(µ) by (a, µ′0) 7→ (a, φ{µ′0, ᾱ}). By construction, πε(a1, µ
′′) = Eµ0(s,r)[νs,ε,ρ(a1)] =

ρ and πε(a0, µ) = Eµ0(s,r)[νs,ε,ρ(a0)] = (1− ρ), and for each a ∈ A∗, (a, µ′) ∈ supp(πε,ρ) for at most

one µ′.
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G.6 Proof of Lemma 14

If D is not R-monotone on the set of s-measurable priors, there exists an s-measurable ᾱ ∈ Ā,

and µ′ ∈ U with µ′ � φ{µ0, ᾱ} such that

D(µ′||φĀ{µ0, ᾱ}) < D(ηR{µ′, φ{µ0, ᾱ}}||φ{µ0, ᾱ}).

Define µ = φ{µ0, ᾱ}.
Observe that if this inequality holds, it holds by continuity (Assumption 1) for some ᾱ func-

tion whose image is strictly in the relative interior of Ā and that is not a constant function.

Define µ′′ = ηR{µ′, µ}, and recall by the definition of ηR that µ′′ � µ and hence µ′′ = φ{µ′′0, ᾱ}
for some µ′′0 ∈ U0 with µ′′0 � µ0. We must have µ′′0 6= µ0, as otherwise µ′′ = µ and D(µ′′||µ) = 0.

Apply Lemma 13, which defines a πε,ρ that is mean-consistent with ᾱ. Let π0 ∈ Π0(µ0) be the

measure induced from πε,ρ by (a, µ′′′) 7→ (a, γĀ{µ′′′}).

Let us now define a family π0,τ ∈ Π0(µ0) induced from π0 by the mapping

(a, µ′0) 7→


(a, µ′0) a /∈ {a0, a1} ∪ µ′0 /∈ {µ′′0, µ0},
(a, µ′′0 + τ(γĀ{µ′} − µ′′0)) (a, µ′0) = (a1, µ

′′
0),

(a, µ0 − ρ
1−ρτ(γĀ{µ′} − µ′′0)) (a, µ′0) = (a0, µ0)

for some τ ≥ 0. This induces a πτ ∈ Π(µ) by (a, µ′0) 7→ (a, φ{µ′0, ᾱ}), and this satisfies Bayes-

consistency by π0(a1, µ
′′
0) = ερ and π0(a0, µ0) = ε(1− ρ).

By the differentiability of the divergence (Assumption 1) and the fact that the divergence is

minimized when µ′ = µ,

∂

∂τ
C(πτ , µ)|τ=0+ = ερ

∂

∂τ
D(φ{µ′′0 + τ(γĀ{µ′} − µ′′0), ᾱ}|µ))|τ=0.

By the convexity of the divergence,

∂

∂τ
D(φ{µ′′0 + τ(γĀ{µ′} − µ′′0), ᾱ}|µ))|τ=0 +D(µ′′||µ) ≤ D(µ′||µ),

and therefore by D(µ′||µ) < D(µ′′||µ),

∂

∂τ
C(πτ , µ)|τ=0+ < 0.

It follows that for τ sufficiently small, C(πτ , µ) < C(π, µ). By construction,

ηR{φ{µ′′0 + τ(γĀ{µ′} − µ′′0), ᾱ}, µ} = ηR{µ′′ + τ(µ′ − µ′′), µ},

= (1− τ)ηR{µ′′, µ}+ τηR{µ′, µ}

= µ′′
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and likewise

ηR{φ{µ0 −
ρ

1− ρ
τ(γĀ{µ′} − µ′′0), ᾱ}, µ} = µ.

Therefore, π is induced from πτ by (a, µ′)→ (a, ηR{µ′, µ}), proving the claim for π̂ = πτ .

G.7 Proof of Lemma 15

Define µ = φ{µ0, ᾱ}. Define the function DS : ∆(S)→ [0,∞] by

DS(µs;µ) = D(µ{µs;µ}||µ)

where

dµ(µs;µ) =
dµs

dγRĀ{µ}
dµ

and γRĀ : Ū → ∆(S) computes the marginal distribution on S.

The function DS(·;µ) is convex on ∆(S), by the convexity of D. Let M(S) be the space of

signed measures of bounded variation on S. The space of probability measures ∆(S) is a convex

subset of this space. By convexity and finiteness (which is implied by Assumption 1), there exists

a sub-gradient, meaning for any µs ∈ ∆(S) and all µ′s ∈ ∆(S), there exists a function h : S → R
such that

DS(µ′s;µ) ≥ DS(µs;µ) + Eµ
′
s(s)[h(s;µs)]− Eµs(s)[h(s;µs)].

We use the notation h(s;µs) to indicate that each µs ∈ ∆(S) generates a different sub-gradient

function. Observe that it is without loss of generality to suppose that Eµs(s)[h(s;µs)] = 0, as

ĥ(s;µs) = h(s;µs)− Eµs(s)[h(s;µs)] also satisfies the conditions of the sub-gradient.

By R-monotonicity and the s-measurability of ᾱ, for all µ′ ∈ U with µ′ � µ,

D(µ′||µ) ≥ DS(µs;µ) + Eµ
′
s(s)[h(s;µs)].

Define A∗ ⊂ A as the set of actions with (a, µ′a) ∈ supp(π) for some µ′a ∈ U , and let µa be the

unique corresponding measure.

Define, for all a ∈ A∗, s ∈ S, and an arbitrary r0 ∈ R,

ũ(a, ᾱ(s, r0), s) = D(µa||µ) + h(s; γRĀ{µa}).

We extend the utility function ũ to other values of ā using, for all a ∈ A∗,

ũ(a, ā, s) = ũ(a, ᾱ(s, r0), s)− χ(a− ᾱ(s, r0))T · (ā− ᾱ(s, r0)) +
χ

2
|ā− ᾱ(s, r0)|2.

We extend this utility function to other actions a ∈ A \A∗ by defining

ũ(a, ā, s) = min
a′∈A∗

ũ(a′, ā, s)− |a′ − a|2.
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By construction, all actions not in A∗ are dominated by some action in A∗. Consequently,

with this utility function, any optimal policy will have support only on A∗.

The utility function ũ is not differentiable at certain points. However, we can define a molli-

fied version of it,

uδ(a, ā, s) =

∫
A
ωδ(a

′′ − a)ũ(a′′, ā, s)da′′,

where ωδ(z) is a smooth symmetric kernel with full support on z < δ. Setting δ sufficiently small

(less than mina,a′∈A∗ |a− a′|) ensures that, for some constant cδ that depends on the kernel,

uδ(a, ᾱ(s, r0), s) = ũ(a, ᾱ(s, r0), s)− cδ

for all a ∈ A∗, and that uδ is continuously differentiable, while preserving the property that

actions not in A∗ are dominated.

Defining u(a, ā, s) = uδ(a, ᾱ(s, r0), s) + cδ results in the utility function

u(a, ā, s) = g(a; s)− χ

2
|ā− ᾱ(s, r0)|2 − χ(a− ā)T · (ā− ᾱ(s, r0)),

where g(a; s) = uδ(a, ᾱ(s, r0), s) + cδ.

Let us first show that (π, ᾱ) is an equilibrium. Consider the relaxed agent’s problem,

max
π0∈∆(A×U0)

Eπ0(a,µ′0)[Eµ
′
0(s,r)[u(a, ᾱ(s, r0), s)]−D(φ{µ′0, ᾱ}||µ)],

which is the agent’s problem without the Bayes-consistency constraint. It is immediate a nec-

essary and sufficient condition for optimality is that, for any (a, µ′0) ∈ supp(π∗0),

Eµ
′
0(s,r)[u(a, ᾱ(s, r0), s)]−D(φ{µ′0, ᾱ}||µ) ≥ Eµ′′0 (s,r)[u(a′, ᾱ(s, r0), s)]−D(φ{µ′′0, ᾱ}||µ)

for all (a′, µ′′0) ∈ A× U0.

Because the actions in A \ A∗ are dominated by actions in A∗, no such action is optimal in

this problem. Choosing a′ = a for some a ∈ a∗ and µ′0 = γĀ{µa} yields,

0 ≥ D(µa||µ)−D(µ′||µ) + Eµ
′(s,r,ā)[h(s; γRĀ{µa})],

which holds by the definition of the sub-gradient. By construction, for all a ∈ a∗,

Eµa(s,r,ā)[u(a, ā, s)]−D(µa||µ)] = 0,

and consequently π is a maximizer of the actual agent’s problem. It follows that (π, ᾱ) is an

equilibrium.
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G.8 Proof of Lemma 17

Let us think of ω = (a, µ′0) ∈ supp(π∗0) as a signal realization. Define the conditional measure

dν(ω|s, r) =
µ′0(s, r;ω)

µ0(s, r)
dπ∗0(ω)

where µ′0(s, r; (a, µ′′0)) = µ′′0(s, r). By a > ᾱ(s0, r0) for all (a, µ′0) ∈ Ω0 and mean-consistency,

ν(Ω0|s0, r0) =

∫
Ω0

dν(ω|s0, r0) ∈ (0, 1).

Now define a new family of conditional measures parametrized by ε ∈ R,

dνε(ω|s, r) =


dν(ω|s, r) (s, r) 6= (s0, r0),
(1− ε+ ε

ν(Ω0|s,r))dν(ω|s, r) (s, r) = (s0, r0), ω ∈ Ω0,

(1− ε)dν(ω|s, r) otherwise.

Observe that νε is a valid conditional probability measure for all ε ∈ [− ν(Ω0|s0,r0)
1−ν(Ω0|s0,r0) , 1]; define

δ = min{ ν(Ω0|s0,r0)
1−ν(Ω0|s0,r0) , 1}. Define the unconditional signal measure

dπε(ω) =

{
dπ∗0(ω)(1− εµ′0(s0, r0;ω)) ω 6= Ω0

dπ∗0(ω)(1 + ( ε
ν(Ω0|s0,r0) − ε)µ

′
0(s0, r0;ω)) ω = Ω0

and define the associated posteriors measures by

µ′0,ε(s, r;ω)

µ0(s, r)
=



µ′0(s,r;ω)
1+( ε

ν(Ω0|s0,r0)
−ε)µ′0(s0,r0;ω) (s, r) 6= (s0, r0), ω ∈ Ω0

(1−ε+ ε

ν(Ω0|s0,r0)
)µ′0(s,r;ω)

1+( ε

ν(Ω0|s0,r0)
−ε)µ′0(s0,r0;ω) (s, r) = (s0, r0), ω ∈ Ω0

µ′0(s,r;ω)
1−εµ′0(s0,r0;ω) (s, r) 6= (s0, r0), ω ∈ supp(π∗0) \ Ω0

(1−ε)µ′0(s,r;ω)
1−εµ′0(s0,r0;ω) (s, r) = (s0, r0), ω ∈ supp(π∗0) \ Ω0

Let π0,ε be the measure induced by ω 7→ (a, µ′0,ε(ω)), which by construction is differentiable in ε.

By construction,

Eπ0,ε(a,µ′0)[a|s, r] =

{
ᾱ∗(s, r) (s, r) 6= (s0, r0)

(1− ε)ᾱ∗(s, r) + ε

∫
Ω0
a(ω)dν(ω|s0,r0)

ν(Ω0|s0,r0) otherwise,

and by the definition of Ω0,

x =

∫
Ω0
a(ω)dν(ω|s0, r0)

ν(Ω0|s0, r0)
> 0.

G.9 Proof of Lemma 5

Define π0 ∈ Π0(µ0) as the measure induced from π by (a, µ′) 7→ (a, γĀ(µ′)). By Bayes-consistency,

Eπ0(a,µ′)[µ′0] = µ0.
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By assumption, Ω is equal to A × U0. Let ν̄ be the probability measure on Ω induced from π by

the homeomorphism h : A × U0 → Ω. By the Radon-Nikodym theorem, there exists a set of

functions gω : S ×R→ R+ for all ω ∈ supp(ν̄) such that∫
Ω
gω(s, r)dν̄(ω) = 1, µ0-a.e.

Define

ḡ(s, r) = 1−
∫

Ω
gω(s, r)dν̄(ω)

and

fω(s, r) =

{
1 ḡ(s, r) 6= 0
gω(s, r) ḡ(s, r) = 0.

We have fω(s, r) = gω(s, r) µ0-a.e, and therefore dµ′0(s, r) = fω(s, r)dµ0(s, r). Moreover, by con-

struction, ∫
Ω
fω(s, r)dν̄(ω) = 1.

Define

ν(ω|s, r, ā) = fω(s, r)

for all ω ∈ supp(ν̄), and as zero otherwise. We have, for all ω ∈ supp(ν̄),

f̄{ν, µ}(ω) =

∫
S×R

fω(s, r)dµ0(s, r) = 1

and

fω{ν, µ}(s, r, ā) = fω(s, r),

and therefore π̂{ν̄, ν, µ} = π.

G.10 Proof of Lemma 7

Consider first DFI−SR. Note that with DFI−SR, any signal structure that does not depend on ā

is optimal.

By Bayes-consistency,

1 =

∫
supp(π̄0)

f0(s, r)dπ̄0(a, f0).

By assumption, Ω is homeomorphic (in fact equal to) A× F+
0 . Let ν̄ be the probability measure

on Ω induced from π by the homeomorphism h : A×F+
0 → Ω. Define fh(a,f0) = f0 and define

ν(ω|s, r, ā) = fω(s, r)
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for all ω ∈ supp(ν̄), and as zero otherwise. We have, for all ω ∈ supp(ν̄),

f̄{ν, µ}(ω) =

∫
S×R

fω(s, r)dµ0(s, r) = 1

and

fω{ν, µ}(s, r, ā) = fω(s, r),

and therefore π̂{ν̄, ν, µ} = π.

Now consider DFI−SĀ. Construct (ν̄, ν) as above. Now define

g(s) =
ᾱs(s, r)

1 + ᾱs(s, r)2

∂

∂s′
ν(ω|s′, r, ᾱ(s, r))|s′=1.

Observe by the uniform Lipschitz-continuity of the derivative of f0 ∈ F+
0 and compactness of

S ×R× Ā that g(s) is bounded. Define

ν1(ω|s, r, ā) = min(max(ā− ᾱ(s, r),−δ), δ) ∗ g(s)

+ ν(ω|s, r, ᾱ(s, r)).

For sufficiently small δ, by the boundedness of g(s), this is non-negative and the optimality

condition (22).

We can verify that ∫
supp(ν̄)

ν1(ω|s, r, ā)dν̄(ω) = 1

by observing that
ᾱs(s, r)

1 + ᾱs(s, r)2

∫
supp(ν̄)

∂

∂s′
ν(ω|s′, r, ā)|s′=sdν̄(ω) = 0

everywhere.

G.11 Proof of Lemma 19

Note: numbers refer to results in Aliprantis and Border [2006].

S × R is compact, metrizable, and separable, and R is separable and metrizable; by 3.96

and 3.99 F0 is metrizable and separable, and by 15.11 and 15.12 U0 is compact, metrizable, and

separable.

By assumption, F+
0 ⊂ F0 is compact. Consequently, ∆(A × F+

0 ) is a compact, separable,

metrizable space in its weak* topology (15.11, 15.12). By the compactness of ∆(A × F+
0 ), Π̄0 is

relatively compact in ∆(A×F+
0 ) (15.21).

Moreover, g(a, f0) = f0 is a bounded continuous function onA×F+
0 , which is a compact set,

and consequently for any sequence {π̄n ∈ Π̄0} that converges in the weak* topology to some

π̄0 ∈ ∆(A × F+
0 ), we must have 1 =

∫
supp(π̄n) f0dπ̄n(a, f0) →

∫
supp(π̄0) f0dπ̄0(a, f0), and therefore
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π̄0 ∈ Π̄0 (15.3). Thus, Π̄0 is closed (2.40), and hence is compact.

Π̄0 is non-empty: by assumption, the point mass on (a, ι) for any a ∈ A, where ι is a function

equal to one everywhere, is an element of Π̄0.

It is also convex: for any π̄1, π̄2 ∈ Π̄0,
∫
supp(π̄1) f0dπ1(a, f0) = 1 and

∫
supp(π̄2) f0dπ̄2(a, f0) = 1,

and consequently by the convexity of ∆(A × F+
0 ), π = απ1 + (1 − α)π2 is an element of Π̄0 for

any α ∈ (0, 1).

Define F+
0,S ⊂ F

+
0 as the subset of functions satisfying f0(s, r) = f0(s, r′) for all s ∈ S and

r, r′ ∈ R. We have Π̄S
0 ⊂ ∆(A × F+

0,S), and by essentially identical arguments, Π̄S
0 is non-empty,

convex, and compact.

G.12 Proof of Lemma 22

Define the function gs,r : A×F+
0 → R by

gs,r{a, f0} = af0(s, r).

Recall that A is endowed with the Euclidean topology, F+
0 with the sup-norm topology, and

A×F+
0 with the product topology. Observe that

|anf0,n(s, r)− af0(s, r)| ≤ |an − a| sup
(s′,r′)∈S×R

|f0,n(s′, r′)|

+ |a| sup
(s′,r′)∈S×R

|f0,n(s′, r′)− f0(s′, r′)|

and consequently, by the compactness of F+
0 and A, if (an, f0,n) → (a, f0), then gs,r(an, f0,n) →

gs,r(a, f0) for all (s, r) ∈ S × R. Consequently, gs,r is a continuous and bounded function for all

(s, r) ∈ S ×R.

It follows immediately from the definition of the weak* topology (see, e.g., Aliprantis and

Border [2006] 15.3) that if π̄0,n → π̄0, then M{π̄0,n}(s, r) → M{π̄0}(s, r) for all (s, r) ∈ S × R,

which is to say that M{π̄0,n} converges point-wise to M{π̄0}. By assumption, the image of

M{π̄0}, Ā+, is compact. Consequently, by the Arzela-Ascoli theorem, the sequence M{π̄0,n}
has a convergent sub-sequence in the sup-norm topology, and hence must converge uniformly

to M{π̄0}. It follows that M{π̄0} is continuous.

Observe that if π̄0 is s-measurable, then for all (a, f0) ∈ supp(π̄0), f0(s, r) = f0(s, r′) for all

s ∈ S and r, r′ ∈ R. It follows immediately that M{π̄0}(s, r) = M{π̄0}(s, r′) for all s ∈ S and

(r, r′) ∈ R.
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