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1. Introduction

In cosmology, dark matter is a form of substance that is not directly observable, yet its presence

is required for Einstein’s theory of general relativity to be consistent with the observable motions

of stars and galaxies. Certain economic models rely on an analogous form of “dark matter.” For

instance, to generate desirable predictions, many asset pricing models require subtle dynamics for

the fundamentals (the process of endowment or productivity, for example), which are difficult to

identify directly using the fundamental data alone. Instead, the evidence can only be indirectly

inferred from asset prices through the lens of model-implied restrictions. This phenomenon is

present, for instance, in some of the models of rare disasters, to which John Campbell refers as

the “dark matter for economists” in his 2008 Princeton Lecture in Finance (Campbell, 2018).

Intuitively, a model’s heavy reliance on such “dark matter” features raises at least two

concerns regarding its robustness. First, it is difficult to detect potential misspecification in

the dark matter elements of a model due to our inability to measure them or test against them

using direct evidence. As such, economic dark matter effectively raises a model’s degrees of

freedom. Second, as we estimate structural parameters from the data, the high effective degrees

of freedom are likely to cause the model to overfit the data in sample, and lead to poor expected

fit out of sample. We refer to these two problems as a lack of internal refutability and external

validity, respectively.

Our paper makes two contributions. We propose a quantitative measure of the economic

dark matter in structural models, which is relatively easy to compute even for models with

complex dynamics. Then, under a general semiparametric framework, we formally show that

models with larger dark matter measures tend to have lower in-sample refutability and less

reliable out-of-sample performance owing to their higher tendency to overfit the data.

We define our measure of economic dark matter using a general GMM framework (see Hansen,

1982), under which a structural model is summarized by a fixed set of unconditional moment

restrictions. We focus on a set of model parameters that can be identified by the full set of

moment restrictions, referred to as the full model, and by a subset of the moment restrictions

on the fundamentals, referred to as the baseline model. These parameters can be more precisely

estimated through the additional moment restrictions implied by the structural model. These

additional moment restrictions are often referred to as cross-equation restrictions. Our dark

matter measure quantifies the additional informativeness of cross-equation restrictions about

these model parameters. Specifically, it compares the asymptotic variances of two efficient

GMM estimators based on the baseline model and the full model, which imposes cross-equation

restrictions, and searches for the largest discrepancy between the two asymptotic variances

along all directions. For a model that relies heavily on dark matter, cross-equation restrictions

appear highly informative about the parameters of the fundamental dynamics relative to the
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fundamental data alone. It is important to note that, despite its close connection to asymptotic

variances of efficient GMM estimators, economic dark matter is a model property and not a

small-sample problem that can be ignored if one has sufficiently many observations.1

We formally connect our measure of economic dark matter to model fragility. Our notion of

model fragility is concerned with testing power and expected out-of-sample fit in the presence of

potential misspecification and local instability of the data-generating process (DGP). Intuitively,

a structural model that can fit the data well in sample because of its high effective degrees of

freedom, with some key model parameters insufficiently disciplined by direct evidence, is difficult

to refute in statistical tests.2 If a model is correctly specified, imposing highly informative

cross-equation restrictions can significantly improve the precision of model parameter estimates,

and thus the accuracy of the model’s fit in and out of sample. However, if cross-equation

restrictions are potentially misspecified, excessive reliance on the information derived from such

restrictions tends to degrade the out-of-sample fit of the model despite its apparently strong

in-sample performance.

We analyze the consequences of misspecification and local instability of the DGP by gener-

alizing the framework of Li and Müller (2009) to the semiparametric setting.3 We show that

models with large dark matter measures are difficult to reject even when they are misspecified –

thus, such models lack refutability. In fact, we prove that the power of the optimal specification

tests vanishes as the dark matter measure approaches infinity. Moreover, under the worst cases

of local instability of the DGP, models with larger dark matter measures have a higher expected

degree of overfitting, i.e., a larger gap between the expected in-sample and out-of-sample model

fit based on the Sargan-Hansen J statistic. This model property is not captured fully by the

traditional measures of overfitting that depend on the number of free model parameters (e.g.,

AIC, BIC, among many others). In contrast, our measure focuses on the sensitivity of the model

fit to perturbations in the parameters of the DGP.

In practice, sensitivity analysis is a popular method to examine model fragility. A model

is considered fragile if its key implications are excessively sensitive to small perturbations of

the DGP. However, to formalize this notion of model fragility, one needs to specify the relevant

magnitude of “small perturbations” and define what constitutes “excessive sensitivity.” To assess

the full scope of model fragility in multivariate settings, one must further consider perturbations

in the DGP that simultaneously affect multiple model parameters.

1Cheng, Dou, and Liao (2021) show that dark matter in asset pricing models is inherently connected but not
limited to weak identification of model parameters. Similarly, as explicitly stressed by Stock, Wright, and Yogo
(2002), weak identification as a model property is not a small-sample problem either.

2Kocherlakota (2007) similarly cautions about the “fallacy of fit” in structural economic models.
3We need a general semiparametric framework for three main reasons: (i) it provides a formal general

description of local perturbations in the space of DGPs; (ii) it allows us to justify the information-matrix
interpretation of our dark matter measure using semiparametric efficiency bounds; and (iii) it clarifies the relation
between a structural economic model and its representation through moment restrictions.
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Our dark matter measure can be applied to formalize the sensitivity analysis. It does so by

(i) benchmarking the local perturbation in the DGP against the uncertainty of model parameters

derived from the baseline model, and (ii) defining excessive sensitivity of the model to the local

perturbations in the DGP based on the sampling variability of the efficient GMM estimators of

the model parameters. Naturally, we require the baseline model to be a correct benchmark similar

to the setup of Eichenbaum, Hansen, and Singleton (1988) because we need the identification

provided by the baseline model to define reasonable perturbations in the DGP. In addition, for

the multivariate setting, our measure identifies the worst-case direction of the perturbations as

the direction in the model parameter space along which the cross-equation restrictions are most

sensitive to the perturbation.

As another application, our dark matter measure can help reveal when the rational expec-

tations assumption becomes tenuous in a model. A key assumption of rational expectations

econometrics is that the agents in an economic model know more about model parameters

than conveyed by the primitive data. As a large dark matter measure implies that the primary

source of information about model parameters is the cross-equation restrictions rather than the

primitive data, it may be increasingly difficult to argue that, as an approximation, economic

agents have learned about the parameters from rich histories of primitive data. Moreover,

information derived from cross-equation restrictions is a unreliable in the presence of potential

model misspecification or instability. Taken together, a large dark matter measure suggests that

the rational-expectations economist effectively circumvents the statistical challenges of validating

the model and estimating its parameters by postulating fragile beliefs onto the economic agents

inside the model.

As examples, we use our measure to evaluate the fragility of three prominent models from

the asset pricing literature. The first example is a rare-disaster model. In this model, parameters

describing the likelihood and magnitude of economic disasters are difficult to estimate from the

fundamental data unless asset pricing information is used. We derive the dark matter measure

in this example analytically, which helps convey the main intuition behind the measure. The

other examples are a time-varying disaster risk model and a long-run risk model. Each model

has at least nine key parameters. We use these examples to show that different calibrations of

the same model with similar quality of in-sample fit can differ vastly in terms of their refutability

and overfitting tendency.

We conduct Monte Carlo simulation experiments for all three examples and show that the

calibrated models with large dark matter measures lack refutability, tend to overfit the data in

sample, and have poor out-of-sample fit, consistent with our theoretical results. The simulation

studies also show that robust estimation methods, such as the recursive GMM estimation

procedure (e.g., Hansen, 2007b, 2012), are less susceptible to overfitting when a model contains

a large amount of dark matter. By definition, the recursive GMM procedure first estimates the
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baseline parameters only using the baseline moments, then estimates the nuisance parameters

using the asset pricing cross-equation restrictions with the baseline parameter values set equal

to their estimates from the baseline moments. Although the recursive GMM estimator has

worse in-sample fit compared to the efficient GMM estimator, it can deliver better out-of-sample

performance when the dark matter measure is excessively large.

Our numerical examples, drawn from three influential asset pricing models, illustrate the

properties of the dark matter measure, and its negative association with internal refutability of

a model and its external validity. There are several ways in which one could use the dark matter

measure to facilitate model construction and estimation. For example, different calibrations

within the same model class (i.e., the same parametric functional form) can have drastically

different levels of dark matter. Thus, our dark matter measure can be used to compare and

select robust calibrations within a general model class. As another application, the recursive

GMM procedure above offers a robust approach to parameter estimation in fragile models, as

identified by our dark matter measure. Our dark matter measure can be used to detect whether

a robust estimation procedure should be used at the cost of potential estimation efficiency.

Finally, even for the models that may be recognized as potentially prone to fragility, our measure

offers additional insight into which model components (and the associated model parameters)

are most responsible for the fragility. In particular, the time-varying disaster risk model shares

important features with both the constant disaster risk model and the long-run risk model. Our

measure helps reveal that, relative to disaster size or average disaster frequency, the persistence

and ultimately the long-run variance of conditional disaster probability is a more important

source of model fragility. Such diagnostic information helps guide model development decisions

and related data collection strategies to reduce fragility of the models that exhibit high levels of

dark matter.

Related Literature. The idea that a model’s fragility is connected to its degrees of freedom

(i.e., model complexity) dates back at least to Fisher (1922). Traditionally, degrees of freedom of

a model are measured by the number of parameters because the two coincide in Gaussian-linear

models (e.g., Ye, 1998; Efron, 2004). Numerous statistical model selection procedures are based

on this idea.4 However, the limitations of using the number of parameters to measure a model’s

degrees of freedom have been well documented. New methods have been developed in the

statistics literature to measure the sensitivity of model implications to parameter perturbations,

as is in our notion of model fragility.5 A common feature of these proposals is that they rely on

4Examples include the Akaike information criterion (AIC) (Akaike, 1973), the Bayesian information criterion
(BIC) (Schwarz, 1978), the risk inflation criterion (RIC) (Foster and George, 1994), and the covariance inflation
criterion (CIC) (Tibshirani and Knight, 1999).

5Extant statistics literature has covered several alternative approaches to measuring “implicit degrees of
freedom” or “generalized degrees of freedom” (e.g., Ye, 1998; Shen and Ye, 2002; Efron, 2004; Spiegelhalter, Best,
Carlin, and van der Linde, 2002; Ando, 2007; Gelman, Hwang, and Vehtari, 2013).
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the very model under evaluation to determine the degree of parameter perturbations; this is

potentially problematic when the model under evaluation is itself fragile and possibly severely

misspecified.

Our dark matter measure is different from the extant model fragility measures in three

aspects. First, we allow for general local perturbations of potentially misspecified DGPs using

a semiparametric framework, similar to Hansen and Sargent (2001), and not just for local

parameter perturbations for which the model’s functional form is correctly specified. Second,

the reasonable local perturbations of DGPs are generated by the baseline model, which serves as

a benchmark to assess the fragility of the structural model. Third, we connect our dark matter

measure to a model’s internal refutability and out-of-sample fit. Out-of-sample fit has been

discussed by Hansen and Heckman (1996) for calibration and estimation analysis, and more

recently, emphasized by Schorfheide and Wolpin (2012) and Athey and Imbens (2017, 2019) as

an important criterion for assessing economic models.

It is important to note that the dark matter measure alone doesn’t constitute a full-fledged

tool for model selection. The measure focuses on the informativeness of the cross-equation

restrictions about model parameters that are identified by both the baseline model and the

full model, which are in contrast to the “nuisance parameters” that are only involved in the

cross-equation restrictions. It is thus possible that, by adding more nuisance parameters to the

structural model (and making the model more complex), one reduces the informativeness of the

cross-equation restrictions and in turn lowers the dark matter measure. This shows that it is

not appropriate to compare the dark matter measures across models with different functional

forms. Instead, it should be used for comparing different calibrations within the same parametric

framework.

In the structural estimation literature, testing a model against “untargeted moments” is a

common yet ad hoc approach for judging a model’s external validity.6 Our dark matter measure

provides a complementary approach for assessing a model’s external validity, whose econometric

properties are rigorously justified. It compares a model’s out-of-sample and in-sample fit, but the

notion of “out-of-sample” is quite different from that in the approach of auntargeted moments.

Instead of requiring new moments for testing, our dark matter measure is concerned with the

expected out-of-sample fit for the same set of moments in new data, which can be evaluated

using the split sample approach with the estimation sample and holdout sample, a standard

method in financial and macroeconomic time-series analysis.

Another related literature focuses on the low refutability issue for linear asset pricing models.

6In the structural estimation literature, there is a long tradition to use one set of moments to estimate a model
and then use another set of untargeted moments to test the model’s out-of-sample fit. Recent examples that
emphasize untargeted moments include Li, Taylor, and Wang (2018) and Dou, Taylor, Wang, and Wang (2020).
Two challenges with this approach are: (i) all models will eventually be rejected after including sufficiently many
untargeted moments; (ii) there is no clear guidance on the proper choice of untargeted moments.
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Kan and Zhang (1999), Lewellen, Nagel, and Shanken (2010), and Gospodinov, Kan, and Robotti

(2017), among others, analyze why standard statistical tests may have little power to reject

misspecified pricing models. In the analysis of Lewellen, Nagel, and Shanken (2010), low power

stems from the low effective dimensionality of the set of test assets compared to the number of

risk factors in the stochastic discount factor (SDF). In Kan and Zhang (1999) and Gospodinov,

Kan, and Robotti (2017), low power is caused by the weak correlation between the risk factors

and the test assets.

Relative to this literature, we consider a broader set of nonlinear structural models and

uncover a new source of low refutability, which has to do with an imbalance in information

content between baseline moment restrictions and cross-equation restrictions imposed by the asset

pricing model. Our focus is on model specification, with a large dark matter measure indicating

that the power of the optimal specification test is low – in contrast to previous work, which has

been concerned with point estimates and tests of the asset pricing models. Furthermore, we

show that a large dark matter measure implies that the standard efficient inference procedure

tends to overfit the model in sample with a poor out-of-sample fit. Follow-up work on linear

asset pricing models (e.g., Kleibergen, 2009; Gospodinov, Kan, and Robotti, 2014; Kleibergen

and Zhan, 2019; Giglio and Xiu, 2021) has proposed statistical inference procedures robust to

identification failure and potential model misspecification. Development of new econometric

procedures to deal with the dark matter feature of nonlinear structural economic models is a

promising direction for future research (e.g., Cheng, Dou, and Liao, 2021).

2. A Motivating Example

In this section, we use a simple Gordon growth model to illustrate the main idea behind the

concept of economic dark matter and motivate our dark matter measure. As we will show, higher

value of the dark matter measure indicates diminishing ability to detect model misspecification.

2.1. Model Setup

Asset Pricing Model. Suppose the dividend Yt for a stock evolves as follows:

Yt
Yt−1

= 1 + θ + σY εY,t, where εY,t is i.i.d.,with E[εY,t] = 0, E[ε2
Y,t] = 1. (1)

The parameters θ ≥ 0 and σY > 0 are the mean and volatility of dividend’s net growth rates,

respectively. According to the Gordon growth model, the price of the stock is the discounted

value of expected future dividends. Assuming the risk-adjusted discount rate is r, then the stock
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price is

Pt =
∞∑
s=1

Et [Yt+s]

(1 + r)s
, (2)

which implies a constant price-dividend ratio:

Pt
Yt

= F (θ), with F (θ) ≡ 1 + θ

r − θ
, (3)

where θ ∈ Θ ≡ [0, r) to ensure the existence of the equilibrium.

The econometrician evaluates this model in a sample of size n under a GMM framework,7 in

which a set of pre-specified moment restrictions summarize the implications of the model. To

avoid stochastic singularity, we add i.i.d. shocks to the price-dividend ratio such that (3) only

holds on average,

Pt
Yt

= F (θ) + σP εP,t, where εP,t is i.i.d.,with E[εP,t] = 0, E[ε2
P,t] = 1. (4)

The parameter σP > 0 is the standard deviation of price-dividend ratios. The shocks εP,t

could be due to measurement errors or noise trading, and we assume that εP,t and εY,t are

mutually independent. For simplicity, we assume that the econometrician knows the values of

all the parameters except for the average dividend growth rate θ and focuses on the following

pre-specified moment restrictions:

E [m(yt−1,yt, θ)] = 0, with m(yt−1,yt, θ) ≡ Σ−1

[
Yt/Yt−1 − 1− θ
Pt/Yt − F (θ)

]
, (5)

where Σ ≡ diag{σY , σP} and yt ≡ (Yt, Pt)
T . We refer to the first element of m(yt−1,yt, θ),

denoted by m(1)(yt−1,yt, θ), as the baseline moment. The corresponding moment restriction

on dividend growth summarizes the baseline model. The full model then adds an additional

restriction on the average price-dividend ratio. We refer to this additional moment, denoted by

m(2)(yt−1,yt, θ), as the asset pricing moment.

Underlying DGP and Model Misspecification. Our main objective in this example is

to analyze the extent to which misspecifications in the asset pricing model can be successfully

detected. For this purpose, we assume that the true DGP for the price-dividend ratio potentially

differs from the asset pricing model in (4) while the dynamics of the dividend growth in (1) is

7Although we set up this simple example in a small sample, we want to stress the fact that the economic dark
matter is a model property and not a small-sample problem.
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correctly specified. More precisely, we assume that there exists θ0 ∈ Θ such that[
Yt/Yt−1

Pt/Yt

]
=

1√
n

[
0

λ

]
+

[
1 + θ0

F (θ0)

]
+ Σ

[
εY,t

εP,t

]
. (6)

Under the true DGP, the asset pricing moment restriction in (5) is locally misspecified when

λ 6= 0. The correct restriction should be

E
[
m(2)(yt−1,yt, θ0)

]
=

λ

σP
√
n
. (7)

Misspecification λ/ (σP
√
n) shrinks with sample size n, and thus the difficulty in detecting the

misspecification is not disappearing asymptotically as n → ∞. This approach to modelling

misspecification, using local asymptotics, has been applied successfully to approximate the

finite-sample behavior of financial time series when testing and estimating linear asset pricing

models under an asymptotic framework (e.g., Campbell and Yogo, 2006; Adrian, Crump, and

Moench, 2015; Giglio and Xiu, 2021),8 and is a natural approach for us to study model fragility

because the dark matter problem cannot be ignored even with many observations.

2.2. Testing for Misspecification

The econometrician is interested in testing the validity of the restriction on the price-dividend

ratio (i.e., whether λ = 0 in (6)).

Consider the set of alternatives Aκ(Q0) ≡ {λ ∈ R : |λ| ≥ κσP}, where the constant κ > 0

characterizes the minimum level of misspecification. According to Eichenbaum, Hansen, and

Singleton (1988), the C test (or incremental J test) statistic is

Cn ≡ min
θ∈Θ

n |m̂n(θ)|2 −min
θ∈Θ

n
∣∣m̂(1)

n (θ)
∣∣2 , (8)

where m̂
(1)
n (θ) and m̂n(θ) are the sample means form(1)(yt−1,yt, θ) andm(yt−1,yt, θ), respectively.

The test statistic Cn will have large value when the model struggles to fit the additional moment

restrictions in the full model.9 Newey (1985a) shows that the C test is asymptotically optimal

among GMM specification tests.

One can show that the C test statistic has a noncentral chi-square asymptotic distribution

8This approach is standard in the statistics and econometrics (e.g., van der Vaart, 1998; Lehmann, 1999).

9In this example, the C test is equivalent to the J test (Hansen, 1982) because minθ∈Θ n
∣∣∣m̂(1)

n (θ)
∣∣∣2 = 0.
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with one degree of freedom:

wlim
n→∞

Cn =

[
Z +

λ

σP
√

1 + %(θ0)

]2

, (9)

where wlimn→∞ represents the weak convergence limit, Z is a standard normal variable, and

%(θ0) ≡ IF/IB − 1, with IB ≡ DT
11D11 and IF ≡ DTD. (10)

Here, D11 ≡ E
[
∂m(1)(yt−1,yt, θ0)/∂θ

]
and D ≡ E [∂m(yt−1,yt, θ0)/∂θ] are the respective Jaco-

bian matrices, evaluated at θ0, for the baseline and full moments restrictions.

According to Newey (1985a) and Chen and Santos (2018), the maximin asymptotic power of

the GMM specification tests of size α is bounded from above by

inf
λ∈Aκ(Q0)

lim
n→∞

P {Cn > c1−α} = inf
λ∈Aκ(Q0)

P


[
Z +

λ

σP
√

1 + %(θ0)

]2

> c1−α

 (11)

≤ P


[
Z +

κ√
1 + %(θ0)

]2

> c1−α

 , (12)

where c1−α is the 1 − α quantile of a chi-square distribution with 1 degree of freedom. The

right-hand side of (12) is an upper bound on the maximin asymptotic power of the GMM

specification tests, achieved by choosing λ = κσP .

Condition (12) shows that our ability to detect model misspecification crucially depends on the

value of %(θ0), which we refer to as the dark matter measure. As %(θ0) increases, the noncentrality

parameter κ2/[1+%(θ0)] approaches 0, and thus the upper bound P
{[
Z + κ/

√
1 + %(θ0)

]2

> c1−α

}
approaches α, meaning that the power of the specification test vanishes.

To get a sense of the magnitude of the effects, we calibrate the simple Gordon growth model

by setting θ0 = 0, r = 3%, σY = 4%, and σP = 5. Under this calibration, the value of the dark

matter measure is %(θ0) = 83.9, which signifies a very limited power to detect the misspecification

of the model for the price-dividend ratio. Even when the model-implied average price-dividend

ratio is severely misspecified with κ = 6,10 the power of the test is at most 0.089. Moreover,

using the formula in (12), the upper bound on the test power only starts to approach 1 when

the misspecification is as large as κ = 40. Intuitively, the baseline moment restrictions have

limited ability to refute the asset pricing cross-equation restrictions implied by the structural

model when the dark matter measure %(θ0) is large. This is because, by tuning the parameter

10Setting κ = 6 means that the worst-case misspecification is 6 standard deviations away from 0 according to
the population standard deviation of average price-dividend ratios n−1

∑n
t=1 Pt/Yt, which is σP /

√
n.
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value of θ inside the “acceptable region” imposed by the baseline model (i.e., within the 95%

confidence interval of θ inferred from the baseline moment restrictions), the econometrician can

fit the model-implied average price-dividend ratio over an immensely wide range, meaning that

the model-implied cross-equation restriction can hardly be rejected by the data. Formally, we

establish the relation between model refutability and its dark matter measure under a formal

and general econometric framework in Section 5.

2.3. Information Interpretation for the Dark Matter Measure

Even though we motivate and derive the dark matter measure in the examination of the test power

for model misspecification (i.e., model refutability), it has a natural and intuitive information

interpretation because the information matrices IB and IF in (10) gauge the informativeness

of the baseline and full moment restrictions, respectively, about the model parameter θ (e.g.,

Chamberlain, 1987, Theorem 2). The dark matter measure %(θ0) effectively captures the

incremental informativeness of the asset pricing moment restrictions relative to the baseline

moment restrictions. A large value for %(θ0) indicates a severe information imbalance between the

baseline moment restrictions and the asset pricing cross-equation restrictions. In our motivating

example, we can further trace the incremental informativeness of the asset pricing cross-equation

restriction according to the following expression:

%(θ0) ≡ IF/IB − 1 =

[
F ′(θ0)

σY
σP

]2

. (13)

Intuitively, %(θ0) increases when the asset pricing cross-equation restriction is more sensitive to

the parameter value θ and is more precisely measured. This incremental informativeness of the

asset pricing cross-equation restriction is essentially the focus of our dark matter measure.

Furthermore, because the inverse information matrices, denoted by I−1
B and I−1

F , capture the

asymptotic variances of the respective efficient GMM estimators based on the baseline and full

moment restrictions, the dark matter measure has a natural “relative-sample-size” interpretation

in an asymptotic sense. Specifically, %(θ0) gives the relative sample size required for the efficient

GMM estimator of the baseline model to match the asymptotic precision about the model

parameter θ provided by that of the full model. Because asymptotic variance scales inversely

with the sample size, the sample size required for the baseline model to match the asymptotic

precision of the full model is 83.9 (= %(θ0)) times larger as n→∞. Importantly, the measure

does not depend on sample size n, which highlights the fact that economic dark matter is not a

small-sample problem that can be ignored if one has many observations. Like weak identification,

the amount of economic dark matter is a model property rather than a small-sample problem

(e.g., Stock, Wright, and Yogo, 2002).
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We generalize the definition of the dark matter measure to the multivariate setting in Section

3. There, we compare the baseline and full model information matrices in all directions. The

direction in which the two information matrices differ the most is also the one in which the dark

matter measure is defined.

In addition to the low refutability issue for models with large dark matter measures, we

further justify the importance of information imbalances (i.e., the amount of dark matter) as a

primitive model property by showing that models with large dark matter measures tend to have

poor out-of-sample fit numerically in the quantitative examples of Section 4 and mathematically

in the formal econometric analysis of Section 5.

3. A Formal Definition: Dark Matter

In this section we set up a general econometric framework and formally define the dark matter

measure. The technical regularity assumptions for econometric results are stated and explained

in detail in the Appendix.

3.1. Econometric Setup

Let Y = Rdy , which denotes the dy-dimensional Euclidean space with Borel σ-field F. Let P

denote the collection of all probability measures on the measurable space (Y× Y,F ⊗ F) with

the product sample space Y× Y and the product σ-field F ⊗ F.

Markov Processes and Structural Models. We consider a subspace of P, denoted by

H, in which each probability measure is the bivariate marginal distribution Q for a time-

homogeneous Harris ergodic and stationary Markov process {yt : t = 0, 1, · · · } satisfying the

Doeblin condition.11 Following Bickel and Kwon (2001), we parameterize time-homogeneous

Markov processes by the bivariate marginal distributions Q of (yt−1,yt) for any t ≥ 1. We

denote the (n+ 1)-variate joint distribution of yn ≡ {y0, · · · ,yn} corresponding to Q by Pn.

Consider a stable structural model denoted by Q, which aims to capture certain pre-determined

statistical features of the observed data yn. The parameters of such a “stable” model, denoted

by θ, are constant over time (e.g., Li and Müller, 2009).12 We assume that a set of pre-specified

moment restrictions on the data summarize the model’s key implications and that the model’s

performance in a given data sample can be measured by the degree to which these pre-specified

11The set of Markov processes satisfying the Doeblin condition includes a broad class of time series commonly
used in finance and macroeconomics. First-order Markov models are widely adopted for approximating financial
and economic time series. Many prominent structural asset pricing models feature state dynamics as first-order
Markovian processes (e.g., Campbell and Cochrane, 1999; Bansal and Yaron, 2004; Gabaix, 2012; Wachter, 2013).

12Technically, the model parameters may vary with the sample size n in the econometric framework, though
they do not depend on the time index t ∈ {1, · · · , n}.
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moment restrictions are violated (i.e., the fit of moment restrictions). Notice that we are not

focusing on checking whether a particular model is rejected by the data or not; instead, as

emphasized in Section 2, we are focusing on evaluating model fragility, and our notion of model

fragility is based on the sensitivity of the pre-specified moment restrictions to local perturbations

of the underlying DGP.13 We follow the literature (e.g., Li and Müller, 2009; Chen and Santos,

2018) and use the GMM objective function to evaluate the structural models. As reflected in

the original applications of GMM in asset pricing (see Hansen and Singleton, 1982, 1983) and

recently emphasized by Hansen (2014), structural models are typically partially specified in

the sense that ultimately the model is statistically rejected once enough moments are added.

Instead, GMM has proven particularly valuable for analyzing structural models by focusing on

key moment restrictions without being overly influenced by all the unimportant details and

potential singularities of the remainder of the structural model.

We denote the moment function corresponding to the full structural model as m(·, θ) ∈ Rdm ,

defined on a compact parameter set Θ ∈ Rdθ with nonempty interior, and define the full

structural model Q as,

Q =
{

Q ∈ H : EQ [m(·, θ)] = 0 for some θ ∈ Θ
}
, (14)

which is a collection of probability measures in H under which the moment restrictions hold

for some parameter vector θ. The system of moment restrictions is over-identified; that is, the

number of model parameters is fewer than that of the moment restrictions (dθ < dm).14

We assume that the moment function m(·, θ) has a recursive structure:

m(yt−1,yt, θ) =

[
m(1)(yt−1,yt, θ

(1))

m(2)(yt−1,yt, θ
(1), θ(2))

]
, with θ =

[
θ(1)

θ(2)

]
. (15)

Here, θ(1) is a dθ,1-dimensional sub-vector of θ, with dθ,1 ≤ dθ, and m(1)(·, θ(1)) has dimension

dm,1 ≥ dθ,1. The baseline moments can be represented using a selection matrix:

m(1)(yt−1,yt, θ
(1)) = Γm,1m(yt−1,yt, θ), with Γm,1 ≡

[
I, 0dm,1×(dm−dm,1)

]
. (16)

The assumption of the recursive structure for moment functions enables us to examine the

fragility of a subset of moment restrictions, namely those in m(2)(·, θ). Such recursive structures

13Kocherlakota (2016) adopts a similar notion in studying the sensitivity of real macro models to the specification
of the Phillips curve.

14Although dynamic stochastic equilibrium models often feature conditional moment restrictions, for estimation
and testing, it is common to focus on a finite number of unconditional moment restrictions by using nonlinear
instrumental variables (e.g., Hansen and Singleton, 1982, 1983; Hansen, 1985; Nagel and Singleton, 2011). For
simplicity, we take these unconditional moments as the starting point in our analysis.
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are common in asset pricing. For example, the moments m(1)(·, θ(1)) could be derived from a

statistical model of the real quantities (such as consumption or output), while the additional

moments m(2)(·, θ) may apply to the joint dynamics of the real quantities and asset returns.

Because the first coordinate block of the moment function m(·, θ) only depends on θ(1), the

Jacobian matrix D(θ) is a block lower triangular matrix defined as follows:

D(θ) =

[
D11(θ) 0

D12(θ) D22(θ)

]
, where Dij(θ) ≡ EQ

[
∇θ(j)m

(i)(·, θ)
]

and i, j = 1, 2. (17)

Corresponding to the first coordinate block m(1)(·, θ(1)) of the moment function m(·, θ) in

(15), we define the baseline structural model Q(1) as:

Q(1) =
{
Q ∈ H : EQ

[
m(1)(·, θ(1))

]
= 0 for some θ(1) ∈ Θ(1)

}
, (18)

where Θ(1) is the baseline parameter set of θ(1). Thus, the baseline structural model Q(1) is a

collection of probability measures under which the first block of moment restrictions, hereafter

referred to as the baseline moment restrictions, hold for some parameter vector θ(1). This

definition is analogous to the definition of the full model, and clearly Q ⊂ Q(1). According to

(15), the subvector θ(2) can only be identified by the moment restrictions not contained in the

baseline model. We refer to θ(2) as the nuisance parameters.

Following the definition of the full structural model in (14), we define a mapping from the

probability measure of the bivariate marginal distribution Q ∈ Q to model parameters θ, denoted

by θ = ϑ(Q), such that

EQ [m(·, ϑ(Q))] = 0. (19)

Similarly, for the baseline structural model in (18), we define a mapping from the probability

measure of the bivariate marginal distribution Q ∈ Q(1) to model parameters θ, θ(1) = ϑ(1)(Q),

such that

EQ
[
m(1)(·, ϑ(1)(Q))

]
= 0. (20)

Calibrated Models. Consider a calibrated model parameter value θ0 ∈ int(Θ), the interior of

Θ. The calibrated full and baseline structural model are sets of probability measures satisfying

Q(θ0) ≡
{

Q ∈ H : EQ [m(·, θ0)] = 0
}
, and (21)

Q(1)(θ
(1)
0 ) ≡

{
Q ∈ H : EQ

[
m(1)(·, θ(1)

0 )
]

= 0
}
. (22)

By definition, Q(θ0) ⊂ Q. We assume that Q(θ0) is non-empty, and pick one distribution from

Q(θ0) and denote it by Q0, which is a distribution under which the moment restrictions of the
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full model hold under the calibrated parameters θ0. Note that Q0 remains unknown to the

econometrician, even though θ0 may be known.

J Statistics. Under distribution Q0, we denote the Jacobian matrices evaluated at the

calibrated model parameter value θ0 by D11 ≡ D11(θ0) and D ≡ D(θ0) for the baseline and full

model, respectively, and we denote the spectral density matrices (at zero frequency) for the

baseline and full model by

Ω11 ≡
∞∑

t=−∞

EQ0
[
m(1)(y0,y1, θ0)m(1)(yt−1,yt, θ0)T

]
, and (23)

Ω ≡
∞∑

t=−∞

EQ0
[
m(y0,y1, θ0)m(yt−1,yt, θ0)T

]
, respectively, (24)

where Ω11 is the upper-left block of Ω. We assume that both Ω and the Jacobian matrix D

are known. In general, computing the expectations requires knowledge of the distribution Q0.

When Q0 is unknown in practice, expectations can be replaced by their consistent estimators.15

Without loss of generality, we further assume that Ω = I, which is innocuous because we can

always rotate the system of moment restrictions without altering the structure of the model

(Hansen, 2007b). More details are provided in Online Appendix 5.2.

For any given θ, we define

m
(1)
t (θ(1)) ≡ m(1)(yt−1,yt, θ

(1)) and mt(θ) ≡ m(yt−1,yt, θ),

and we define the J statistics for the baseline and full models as

J (1)(θ(1),yn) ≡ n
∣∣m̂(1)

n (θ(1))
∣∣2 and J(θ,yn) ≡ n |m̂n(θ)|2 , respectively,

where m̂
(1)
n (θ) and m̂n(θ) are the sample means for m

(1)
t (θ) and mt(θ), respectively.

3.2. Information Matrices

We now introduce information matrices for the structural models. In statistics and econometrics,

information regarding model parameters is often quantified by the efficiency bound on parameter

estimators. One example is the Fisher information matrix for a given parametric family of

likelihood functions, which is justified by the Cramér-Rao efficiency bound under the minimax

criterion. The same idea can be extended to semiparametric models (e.g., Bickel, Klaassen,

15For example, several consistent estimators are provided by Newey and West (1987), Andrews (1991), and
Andrews and Monahan (1992). These estimation methods usually require a two-step plug-in procedure introduced
by Hansen (1982) when θ0 is unknown.
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Ritov, and Wellner, 1993).

One of our theoretical contributions is to formalize the information interpretation of dark

matter. In the Online Appendix, we extend the semiparametric efficiency bounds for uncon-

ditional moment restrictions, established by Levit (1976), Nevelson (1977), and Chamberlain

(1987, Theorem 2), from i.i.d. DGPs to Markov processes with local instability.16 Particularly, in

Online Appendix 3, we show that the optimal GMM covariance matrix derived by Hansen (1982)

achieves the semiparametric minimax efficiency bound for unconditional moment restrictions

with Markov DGPs that are locally unstable.

The information matrices for θ(1) in the baseline model and for θ in the full model, evaluated

at θ
(1)
0 and θ0, respectively, are

IB = DT
11D11 and IQ = DTD =

[
DT

11D11 +DT
21D21 DT

21D22

DT
22D21 DT

22D22

]
, (25)

where D ≡ D(θ0) and Dij ≡ Dij(θ0) for i, j = 1, 2. From IQ we can also define the marginal

information matrix for θ(1) in the full model, evaluated at θ
(1)
0 , as

IF =
[
Γθ,1I

−1
Q

ΓTθ,1
]−1

, where Γθ,1 ≡
[
I, 0dθ,1×(dθ−dθ,1)

]
, (26)

which accounts for the uncertainty concerning the nuisance parameters θ(2) when gauging the

information about θ(1) provided by the moment restrictions. Based on the inversion rule of

partitioned matrices, the marginal information matrix IF can be rewritten as

IF = DT
11D11 +DT

21Λ2D21, with Λ2 ≡ I −D22(DT
22D22)−1DT

22. (27)

3.3. Dark Matter Measure

We construct the dark matter measure by quantifying the incremental informativeness of the

additional moment restrictions in the full model (but not in the baseline model) regarding

the model parameters θ(1). Because θ(1) appears in both the baseline moment restrictions and

the additional moment restrictions in the full model, the cross-equation restrictions provide

additional information about θ(1) beyond the baseline model. As the illustrative example in

Section 2.3 demonstrates, the incremental informativeness of the additional moment restrictions

16Hansen (1985) and Chamberlain (1987, Thereom 3) study semiparametric local minimax efficiency bounds
for conditional moment restrictions. Hansen (1985) derives the efficiency bounds from the perspective of
characterizing the optimal instrument in the estimation of generalized instrumental variables in a non-i.i.d.
context. Chamberlain (1987, Theorem 3) focuses on moment restrictions parameterized in terms of a finite-
dimensional vector in an i.i.d. context. Newey (1990, 1993) proposes an estimator that attains Chamberlain’s
bounds. Ai and Chen (2003) propose an estimation method and study its efficiency for conditional moment
restrictions, which contain finite dimensional unknown parameters and infinite dimensional unknown functions.
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naturally depends on the sensitivity of these moments to changes in model parameters. If a

small change in the parameter values can dramatically change the value of the moments (i.e.,

high sensitivity), then imposing the additional moment restrictions empirically will tend to

greatly restrict the parameter estimates; i.e., these moment restrictions will appear informative.

As we demonstrate formally in Sections 4 and 5, in the presence of misspecification concerns

about the asset pricing model, such information imposed by the additional moment restrictions

implied by the structural model can be very problematic.

We now introduce our dark matter measure.

Definition 1 (Dark Matter Measure). Let the incremental information matrix of the full model

relative to the baseline models be

Π ≡ I
1/2
F I−1

B I
1/2
F − I. (28)

The dark matter measure is defined as the largest eigenvalue of Π, denoted by

%(θ0) ≡ max
|v|=1

vTΠv. (29)

To better understand the dark matter measure, we rewrite it as

%(θ0) = max
|v|=1

vT I−1
B v

vT I−1
F v
− 1. (30)

As (30) shows, our measure effectively compares the asymptotic covariance matrices of the two

estimators of θ(1), one based on the baseline model and the other based on the full model. It is the

largest ratio of the two asymptotic variances of the efficient GMM estimator under the baseline

and full model for a linear combination of model parameters vT θ(1) over all possible directions

v ∈ Rdθ,1 . We focus on the one-dimensional worst-case fragility. There are straightforward

extensions to the cases in which v is a matrix.

While the amount of dark matter, like weak identification, is a model property rather than a

small-sample problem, the expression in (30) shows that the dark matter measure has a natural

“relative-sample-size” interpretation in an asymptotic sense. This equation gives the minimum

relative sample size required for the efficient GMM estimator of the baseline model to match the

asymptotic precision about the baseline parameter θ(1) provided by that of the full model in all

directions. Because asymptotic variance scales inversely with the sample size, the sample size

required for the baseline model to match the asymptotic precision of the full model is [1 + %(θ0)]

times the sample size n for the full model as n→∞. In sum, the dark matter measure, %(θ0),

should be interpreted in an asymptotic sense.

Our dark matter measure isolates the information provided by the full model above and

beyond the baseline model. For the same full model, alternative choices of the baseline model
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affect the magnitude of the dark matter measure. To this point, we have been silent on the

question of how the baseline model should be chosen in relation to the full model. In general,

there is no hard rule for this choice, beyond the technical requirement that the associated

baseline parameters θ(1) be identified by the baseline model. Desirable choices of the baseline

model depend on which aspects of the structural model are targeted by the fragility analysis.

3.4. Test Power and Overfitting Measure

Before presenting the examples in Section 4, we first introduce the definitions of local power of

specification tests and overfitting measure based on the econometric setup above.

Local Power of Specification Tests. A specification test for a structural model Q against

its baseline model Q(1) is a test of the null hypothesis that there exists some parameter for which

all moment restrictions hold (under the true DGP) against the alternative that there only exists

some parameter for which the baseline moment restrictions hold but none would satisfy all the

moment restrictions of the full model; that is,

H0 : Qn ∈ Q vs. HA : Qn ∈ Q(1) \ Q, (31)

where Qn is the bivariate marginal distribution of the true local DGP.

Let ϕ̌n be an arbitrary GMM test statistic that maps yn to [0, 1], as defined in Hansen (1982)

and Newey (1985a). We restrict our attention to GMM specification tests ϕ̌n that have local

asymptotic level α and possess an asymptotic local power function.17 More precisely, we consider

the local DGP Pn for yn with a bivariate marginal distribution Qn that converges to Q0 ∈ Q(θ0)

as n→∞, such that

EQn [mt(θ0)] = δ/
√
n+ o

(
1/
√
n
)
, (32)

where δ ∈ Rdm is the local bias in moment restrictions under Pn when evaluated at θ0. The test

ϕ̌n has a local asymptotic power function q(δ, ϕ̌) if

q(δ, ϕ̌) ≡ lim
n→∞

∫
ϕ̌ndPn, ∀ δ ∈ Rdm , (33)

where ϕ̌ ≡ {ϕ̌n}n≥1 is the sequence of test statistics and δ is the local bias in moment restrictions

associated with Pn in (32).
17As the sample size n approaches infinity, the distance between the null hypothesis and the DGP necessarily

diminishes according to n−1/2. If this distance were held fixed, then the power of all consistent tests would tend
to 1 as n increases to infinity. Local power analysis, the evaluation of the behavior of the power function of a
hypothesis test in a neighborhood of the null hypothesis invented by Neyman (1937), has become an important
and commonly utilized technique in econometrics (e.g., Newey, 1985b; Davidson and MacKinnon, 1987; Saikkonen,
1989; McManus, 1991; Campbell and Yogo, 2006).
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Out-of-Sample Fit and Robust Estimation. A common method adopted by economists

and statisticians for assessing the external validity of models is to hold out data from the model

estimation. The assessment of external validity serves two important purposes: it mitigates the

concern of in-sample overfitting,18 and it serves as a primary criterion when the goal is long-run

prediction (e.g., Valkanov, 2003; Müller and Watson, 2016). The literature has emphasized

that out-of-sample fit evaluation is useful to account for model uncertainty, model instability,

calibration uncertainty, and estimation uncertainty, in addition to the usual uncertainty of future

events (see Stock and Watson, 2008).

The holdout approach amounts to splitting the entire time series yn ≡ {y1, · · · ,yn} into

two non-overlapping subsamples yne ≡
{
y1, · · · ,ybπnc

}
and yno ≡

{
ybπnc+1, · · · ,yn

}
with π ∈

(0, 1/2].19 Here, bxc is the largest integer less than or equal to the real number x. The first

segment, yne , is used as the estimation sample, while the second segment, yno , is used as the

holdout sample (e.g., Schorfheide and Wolpin, 2012).20 This approach has been commonly

adopted in the literature not only in the context of statistical forecasting and model selection,

but also in the context of calibration selection (e.g., Hansen and Heckman, 1996, Pages 92–94).

Further, the holdout approach is a natural way to investigate the long-run forecast problems in

financial and macroeconomic time series because the salient definition of a long-run forecast is

that the prediction horizon is long relative to the sample length of the estimation sample (see

Müller and Watson, 2016, Section 5.2).

The idea is to quantify the overfitting tendency as a model property by focusing on the J

statistic as the loss function. Let Qn,t be the marginal bivariate distribution of (yt−1,yt). We

define θ
(1)
n,t ≡ ϑ(1)(Qn,t) for t = 1, · · · , n, and

θ(1)
e,n ≡

1

bπnc

bπnc∑
t=1

θ
(1)
n,t and θ(1)

o,n ≡
1

b(1− π)nc

n∑
t=bπnc+1

θ
(1)
n,t , (34)

where the mapping ϑ(1) is defined in (20).

More precisely, we consider the goodness-of-fit of the full set of moments under any given

baseline parameters θ(1):

L(θ(1); yns ) ≡ J(θ(1), ψs(θ
(1)),yns )− J(θ(1)

s,n , ψs(θ
(1)
s,n ),yns ), with s ∈ {e, o}, (35)

18For example, see Foster, Smith, and Whaley (1997); Lettau and Van Nieuwerburgh (2008); Welch and Goyal
(2008), as well as recent work by Athey and Imbens (2017, 2019); Kozak, Nagel, and Santosh (2019), among
others.

19We specify an upper bound for π to prevent the out-of-sample fit problem from becoming trivial. Without
loss of generality, we choose the upper bound for π to be 1/2.

20The non-overlapping equal-length estimation and holdout subsamples are standard exercises in cross-validation
for out-of-sample fit evaluation; in the statistics and machine learning literature, yne is also referred to as training
sample, and yno as testing sample (e.g., Hastie, Tibshirani, and Friedman, 2001, Chapter 7).
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where θ(1)
s,n is the average of those correct baseline parameter values that perfectly fit baseline

moment restrictions as defined in (34), and ψs(θ
(1)) is chosen to minimize the J statistic while

taking θ(1) as given:21

ψs(θ
(1)) ≡ argmin

θ(2)
J(θ(1), θ(2),yns ) for any fixed θ(1) with s ∈ {e, o}. (36)

In the definition of L(θ(1); yns ), we benchmark the goodness-of-fit measure against the J statistic

evaluated at the average of correct baseline parameter values θ(1)
s,n for s ∈ {e, o} to isolate

the effect of parameter deviation from the average of the correct baseline parameter values

from the effect on instability. The lower the goodness-of-fit measure L(θ(1); yns ), the better the

baseline parameter value θ(1) fits the moments in the sample yns with s ∈ {e, o}. Importantly,

by minimizing over all possible values of the nuisance parameters θ(2), the measure L(θ(1); yns )

captures the best possible fit of the parameter value θ(1) only.

We consider a GMM estimator of the baseline parameters θ(1), denoted by θ̌(1)
e,n , based on

the estimation sample yne and all moment restrictions. We then assess the out-of-sample fit of

θ̌(1)
e,n on the holdout sample by looking at the magnitude of the expected out-of-sample fitting

error

∫
L(θ̌(1)

e,n ,y
n
o )dP1/

√
n,g,b. The overfitting measure of the estimator θ̌(1)

e,n can be defined as the

extent to which the out-of-sample fitting error is larger than the in-sample fitting error:

O(θ̌(1)
e,n ,y

n) ≡ 1

2

[
L(θ̌(1)

e,n ,y
n
o )− L(θ̌(1)

e,n ,y
n
e )
]
. (37)

Recursive GMM Estimation Procedure. We focus on two particular estimation proce-

dures — the efficient and recursive GMM estimation procedure. The former is designed to

use the identification strength provided by the additional asset pricing moment restrictions

EQ0

[
m

(2)
t (θ)

]
= 0 as much as possible, while the latter does not use any identification assump-

tions imposed by the additional asset pricing moment restrictions EQ0

[
m

(2)
t (θ)

]
= 0. The

identification strength is a nontestable assumption postulated by the structural model. The

literature on recursive GMM estimation is substantial and dates back decades (e.g., Christiano

and Eichenbaum, 1992; Ogaki, 1993; Newey and McFadden, 1994; Hansen, 2007b, 2012). While

the original impetus of the recursive GMM estimation was primarily computational, we show that

the recursive GMM procedure is more robust against potential instability and misspecification

because it barely relies on the nontestable assumption of identification strength of the additional

moment restrictions m
(2)
t (θ); the robustness of the recursive GMM estimation procedure is

especially valuable when the dark matter measure is large.

21Mathematically, (35) and (36) follow the generic recursive GMM estimation procedure in Hansen (2007b)
and Hansen (2012).
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Characterized by selection matrices, the efficient GMM estimator and the recursive GMM

estimator based on the estimation sample yne , denoted by θ̂e,n and θ̃e,n respectively, have the

selection matrices A = D and A = diag{D11, A22} with the (constrained) efficient selection

matrix A22 ≡
[
D21(DT

11D11)−1DT
21 + I

]−1
D22 (see Hansen, 2007b).

Summary of the Main Theoretical Results. We now summarize informally our main

theoretical results on the relations between the dark matter measure, model refutability, and

overfitting tendency, which we develop fully in Section 5 below. We discuss these theoretical

findings further in the simulation studies of Section 4, where we apply our dark matter measure

to several prominent asset pricing models.

Our first main theoretical result (formally stated in Theorem 1 in Section 5) connects the dark

matter measure and the power of an optimal maximin specification test. Specifically, Theorem 1

shows that a structural model with a larger dark matter measure, as a model property, tends

to have a lower local asymptotic power of an optimal maximin specification test. Theorem

1 also shows that, as the dark matter measure approaches infinity, the specification test has

vanishing ability to detect misspecification. Our second result (formally stated in Theorem 2 in

Section 5) shows that, when the structural model has a larger dark matter measure, as a model

property, the efficient GMM estimator is expected to have a larger overfitting measure. Our

third theoretical result (see Theorem 3 in Section 5) shows that, regardless of the magnitude of

the dark matter measure, the overfitting of the recursive GMM estimator is constant, which is

equal to the dimension of the baseline parameter vector.

4. Quantitative Examples

We now use the dark matter measure to analyze three of the leading consumption-based asset

pricing models: a rare disaster model, a time-varying disaster risk model, and a long-run risk

model. The primary goal of these examples is to illustrate the computation of the dark matter

measure and show the connection among a model’s dark matter measure, in-sample refutability,

and out-of-sample performance. We formally establish the connections in Section 5 under a

general semiparametric framework.

4.1. Dark Matter of Rare Disaster Risk Models

Rare economic disasters are a natural source of “dark matter” in asset pricing models. It is

difficult to evaluate the likelihood and magnitude of rare disasters statistically. Yet, agents’

aversion to large rare disasters can have large ex-ante effects on asset prices. In this subsection,

we use our dark matter measure to analyze a disaster risk model similar to those of Rietz (1988)
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and Barro (2006).

The model specifies the joint dynamics of log growth rate of aggregate consumption gt and

excess log return on the market portfolio rt. There is an observable state variable zt, which

follows an i.i.d. Bernoulli distribution and is equal to 1 with probability p. When zt = 1, the

economy is in a disaster regime, while the normal regime corresponds to zt = 0. In the normal

regime, the log consumption growth gt = ut, which is i.i.d. normal, ut ∼ N(µ, σ2). In the disaster

regime, gt = −vt, where vt follows a truncated exponential distribution with density

vt
i.i.d.∼ 1{vt > v}ξe−ξ(vt−v), with v > 0, ξ > 0. (38)

Here, the lower bound for disaster size is v and the average disaster size is v + 1/ξ.

The joint distribution of log consumption growth gt and excess log return rt changes with

the underlying state zt. In the normal regime (zt = 0), gt and rt are jointly normal, and

rt = η + ρ
τ

σ
(gt − µ) +

√
1− ρ2τε0,t, (39)

where ε0,t is i.i.d. standard normal. The parameter τ is the return volatility in the normal regime,

and ρ is the correlation between return and consumption growth in this regime. In the disaster

regime (zt = 1), it holds that gt = −vt, and

rt = `gt + ςε1,t, (40)

where ε1,t is i.i.d. standard normal. The shocks zt, vt, ε0,t, and ε1,t are mutually independent.

Next, we assume that the representative agent has a constant relative risk aversion utility

function ut(ct) = δtc1−γ
t /(1− γ), where γ ∈ (0,+∞) is the coefficient of relative risk aversion

and δ ∈ (0, 1) is the time preference parameter. The log equity premium, r(p, ξ) ≡ E[rt], is

available in closed form (see Online Appendix 6 for details) as follows:

r(p, ξ) = (1− p)η − p` (v + 1/ξ) , where (41)

η = γρστ − τ 2

2
+ eγµ−

γ2σ2

2 ∆(ξ)
p

1− p
, with ∆(ξ) = ξ

[
eγv

ξ − γ
− e

ς2

2
+(γ−`)v

ξ + `− γ

]
. (42)

The term η in (41) is the log equity premium in the normal regime (see equation (39)). The first

two terms of η in (42) describe the market risk premia due to Gaussian consumption shocks; the

third term is the disaster risk premium, which explodes as ξ approaches γ from above. In other

words, there is an upper bound on the average disaster size for the equity premium to remain

finite, which also limits how heavy the tail of the disaster size distribution can be.

The fact that the equity premium explodes as ξ approaches γ is an important feature of our
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version of the disaster risk model. No matter how rare the disasters are (i.e., no matter how

small p is), an arbitrarily large equity premium can be generated when the average disaster size

is sufficiently large (i.e., ξ is sufficiently small). Extremely rare but large disasters are difficult to

refute based on the observable data and standard statistical tests when model misspecification

is a concern; moreover, asset pricing models that rely heavily on such extremely rare but large

disasters tend to perform poorly out of sample when instability is a concern. Below, we illustrate

how our dark matter measure can detect and quantify in-sample refutability and out-of-sample

performance of these models.

To apply our framework to the disaster risk model, we first formulate the economic model

above as a structural model Q characterized by the (transformed) moments:

mt(θ) = Ω(θ)−1/2

 zt − p
gt − (1− zt)µ+ zt(v + 1/ξ)

rt − (1− zt)
[
η + ρτσ (gt − µ)

]
− zt`gt

 . (43)

The first two moments in mt(θ) are for the baseline model. The full model adds a third moment on

the equity premium, and Ω(θ) is the asymptotic covariance matrix of the untransformed moments.

To ensure analytical tractability and highlight the key idea, we focus on the parameters θ = (p, ξ)T

when constructing the dark matter measure, while treating the parameters (γ, µ, σ, v, τ, ρ, `, ς)

as auxiliary parameters fixed at known values, making them a part of the functional-form

specification. Thus, the uncertainty in (γ, µ, σ, v, τ, ρ, `, ς) is not accounted for in the dark matter

measure. The nuisance parameter vector θ(2) is empty in this example.

Based on the relation in (42), the dark matter measure is (see Online Appendix 6):

%(θ) = 1 +
p∆ (ξ)2 + p (1− p) ξ2∆̇ (ξ)2

(1− ρ2) τ 2 (1− p)2 e2γµ−γ2σ2

, (44)

where ∆̇(ξ) is the first derivative of ∆(ξ), and

∆̇(ξ) = − eγvγ

(ξ − γ)2 +
e(γ−`)v(γ − `)
(ξ − γ + `)2

eς
2/2. (45)

All else equal, when ξ approaches γ, both ∆(ξ) and ∆̇(ξ) approach infinity, suggesting that

disaster risk models featuring large but rare disasters (i.e., small ξ and small p) will have large

dark matter measures.

Quantitative Analysis. To take the model to the data, we use annual real per-capita

consumption growth (nondurables and services) from the National Income and Product Accounts

(NIPA) and returns on the CRSP value-weighted market portfolio from 1929 to 2011. We fix
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Figure 1: This figure shows the 95% and 99% confidence regions of (p, ξ) for the baseline model and the equity
premium isoquants implied by the asset pricing moment restriction (41) for γ = 3, 10, 24. p is disaster probability,

and ξ characterizes the inverse of average disaster size. The efficient GMM estimates are (p̂, ξ̂) = (0.012, 78.79),
indicated by the red dot inside the confidence region. Four additional points mark the intersections of the equity
premium isoquants for γ = 3 and 24 and the boundary of the 95% confidence region. Only p and ξ are treated as
unknown to the econometrician, and all other parameters are treated as auxiliary parameters with fixed known
values, as a part of the functional-form specification.

the following auxiliary parameters at the values of the corresponding moments of the empirical

distribution of consumption growth and excess stock returns: µ = 1.87%, σ = 1.95%, τ = 19.14%,

ς = 34.89% and ρ = 0.59. The lower bound for disaster size is set to v = 7%, and the leverage

factor in the disaster regime is ` = 3.

In Figure 1, we plot the 95% and 99% confidence regions for (p, ξ) based on the baseline

model. As expected, the confidence regions are large, as the baseline model provides very limited

information about p and ξ. We also plot the equity premium isoquants: for a given level of risk

aversion γ, each dashed line in Figure 1 shows the different combinations of p and ξ that match

the unconditional average equity premium of 5.09%. Even for low risk aversion (e.g., γ = 3),

there exist model calibrations that not only match the observed equity premium, but are also

consistent with the macro data in the sense that the model parameters (p, ξ) remain inside the

95% confidence region.22

While it is difficult to distinguish among a wide range of calibrations based on the fit with

the macro data, these calibrated models differ vastly based on the dark matter measure. For

illustration, we focus on the following four calibrations, which are the four points where the

22Julliard and Ghosh (2012) estimate the consumption Euler equation using the empirical likelihood method
and show that the model requires a high level of relative risk aversion to match the equity premium. Their
empirical likelihood criterion rules out any large disasters that have not occurred in the historical sample, hence
requiring the model to generate high equity premium using moderate disasters.
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Figure 2: This figure visualizes the dark matter measure through the 95% confidence regions for the asymptotic
distribution of the efficient GMM estimators for four “acceptable” calibrations. In panels A through D, the dark
matter measures are %(θ) = 1.78 · 104, 5.60 · 102, 74.03, and 1.49, respectively, which are obtained in the direction
marked by the vector vmax. Parameter p is disaster probability, and ξ characterizes the inverse of average disaster
size. Only p and ξ are treated as unknown to the econometrician; all other parameters are auxiliary parameters
with fixed known values as a part of the functional-form specification. Therefore, the dark matter measure is
defined only based on θ = (p, ξ)T .

equity premium isoquants for γ = 3 and 24 intersect the boundary of the 95% confidence region

in Figure 1. For γ = 3, the two points are (p = 3.96%, ξ = 4.65) and (p = 0.31%, ξ = 3.179).

For γ = 24, the two points are (p = 1.81%, ξ = 446.36) and (p = 0.07%, ξ = 28.43).

With just two parameters in θ = (p, ξ)T , we can visualize the dark matter measure by plotting

the asymptotic confidence regions for (p, ξ) in the baseline and full model, as determined by

the respective information matrices IB and IF. In each panel of Figure 2, the larger dashed-line

circle marks the 95% asymptotic confidence region for (p, ξ) under the baseline model, which

only uses the first two macro moments in (43). The smaller solid-line ellipse indicates the 95%

asymptotic confidence region for (p, ξ) under the full model, which adds the asset pricing moment.

Intuitively, the direction in Figure 2 along which the asset pricing restriction does not provide

additional information about the parameters θ = (p, ξ)T , is parallel to the tangent direction of

the equity premium isoquants in Figure 1, evaluated at the black dots. This is due to the fact
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that the asset pricing moment restriction does not add more information in the direction along

which the equity premium does not change.

Panels A and B of Figure 2 correspond to the calibrations with “extremely rare and large

disasters.” The dark matter measure %(θ) is 1.78 ·104 and 5.60 ·102 for γ = 3 and 24, respectively.

In panel C, the dark matter measure is %(θ) = 74.07. This means that under the baseline model

in the literature, we need to increase the amount of consumption data by a factor of 74.07 to

match or exceed the precision afforded by the equity premium constraint in the estimation of

any linear combination of p and ξ. Finally, in panel D, with relatively small but more frequent

disasters (annual probability of 1.81%, average disaster size of 7%) and high risk aversion

(γ = 24), the dark matter measure %(θ) decreases to 1.49.

Monte Carlo Experiments. We now use simulations to illustrate the connections among

the dark matter measure, the internal refutability, and the external validity of disaster risk

models under different calibrations. We assume that the true local DGP has a time-varying

relation between the expected log excess return and other dynamic parameters:

rn = r(p0, ξ0) +
ιtδr√
n
, with ιt =

{
1, when 1 ≤ t ≤ bπnc
−1, when bπnc < t ≤ n,

(46)

where the simple process ιt characterizes one structural break in the middle of the time-series

sample with π ∈ (0, 1/2]. The corresponding moment biases, evaluated at θ0, are

EQ0 [mt(θ0)] =
1√
n

[
0, 0, λ

(2)
t

]T
with λ

(2)
t ≡

ιtδr√
(1− p0)(1− ρ2)τ 2 + p0ς2

. (47)

Intuitively, λ
(2)
t captures local moment instability. Instability in the DGP, such as structural

breaks and nonstationarity, is a prevalent feature in the dynamics of macro quantities and asset

prices.23 Our specification of ιtδr in (46) follows the literature on local instability (e.g., Andrews,

1993; Sowell, 1996; Li and Müller, 2009).

Figure 3 shows three simulation experiments. Panel A displays the local power functions of

the standard C tests based on the moment restrictions in (43), which is defined as the probability

of rejecting the null hypothesis (i.e., the moment restrictions are correct) for a given δr. The

local power function is defined in Section 3.4. The solid and dotted curves reflect the test powers

when the DGP are characterized by calibrations A and C in Figure 2, respectively. In this

experiment, we vary the local misspecification δr in the risk premium moment restriction. The

DGP under calibration A features an excessively large amount of dark matter according to panel

A of Figure 2, and not surprisingly, it has little internal refutability (i.e. low test power). This

23See, for example, Pesaran and Timmermann (1995); Pastor and Stambaugh (2001); Lettau, Ludvigson, and
Wachter (2008); Lettau and Van Nieuwerburgh (2008).
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Figure 3: This figure shows Monte Carlo experiments for disaster risk models. In panel A, we simulate 1000
independent yearly time series with length n = 2200 to capture a pooled sample of 100 years for 22 countries,
similar to Wachter (2013). In panels B and C, we set δr = 0.4, and simulate 400 independent yearly time series
with length n = 100 (i.e., 100 years) and break point π = 1/2. Only the uncertainties about p and ξ are accounted
for, and all other parameters are auxiliary parameters as a part of the functional-form specification.

finding suggests that a larger dark matter measure signifies lower internal refutability of the

model, which we confirm below in Theorem 1.

Panel B of Figure 3 displays the histograms of log overfitting measures lnO(θ̂(1)
e,n ,y

n) of

efficient GMM estimators for two DGPs under calibrations A and C in Figure 2. The estimator

θ̂e,n is based on the estimation sample yne . In this experiment, we specify a structural break in

the risk premium in the middle of the time-series sample (π = 1/2) with δr = 0.4. Panel B

shows that the efficient GMM estimator is likely to overfit the data in the calibrated structural

model with a large dark matter measure. Thus, larger dark matter measure indicates higher

overfitting tendency of the efficient GMM estimator. We address this relation in Theorem 2.

Panel C of Figure 3 compares the expected out-of-sample fit of the recursive GMM estimator

θ̃e,n with that of the efficient GMM estimator θ̂e,n based on the estimation sample yne . We

describe the two types of estimators in Section 3.4. Consistent with the conventional intuition,

under the DGP C, the efficient GMM estimator yields a better expected out-of-sample fit than

the recursive GMM estimator. This is because the identification information is more reliable

and data-driven when the amount of dark matter is less excessively large. In contrast, the

recursive GMM estimator delivers a better expected out-of-sample fit under the DGP A, which

exhibits a much larger dark matter measure (we show in Theorem 3 below that this is a general

property of the recursive estimator in our context). This finding indicates that the concern
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about misspecification and instability may offset – and even reverse – the efficiency gain from

the additional moment restrictions. The result for the DGP A suggests that the econometrician

should prioritize robustness over efficiency when estimating models with an excessively large

dark matter measure %(θ).

4.2. Dark Matter of Time-Varying Disaster Risk Models

In the second example, we consider a time-varying disaster risk model similar to Gabaix (2012)

and Wachter (2013). By making the probability of disasters time-varying, the model can generate

time-varying risk premium. This additional flexibility can help explain much richer asset pricing

dynamics beyond the equity premium.24 We use this example to show how the dark matter can

change as we extend a model.

Similar to Wachter (2013), we assume that the representative agent has recursive preferences

with unit elasticity of intertemporal substitution (EIS), and maximizes her utility Vt as follows:

lnVt = (1− δ) lnCt + δ(1− γ)−1 lnEt
[
V 1−γ
t+1

]
, (48)

where Ct is consumption at time t, δ is the rate of time preference, and γ is the coefficient of

risk aversion for timeless gambles. The log growth rate of per capita consumption, ∆ct+1 ≡
ln(Ct+1/Ct), evolves as follows:

∆ct+1 = µ+ σcεc,t+1 − ζt+1, (49)

where the consumption shock εc,t+1 follows a standard normal distribution, and ζt+1 is a disaster

shock characterized by

ζt+1 = xt+1vt+1, (50)

with vt+1 following a truncated exponential distribution with lower bound v, the same as in (38):

vt+1 ∼ 1{vt+1 > v}ξe−ξ(vt+1−v), (51)

and xt+1 is a Bernoulli variable that is equal to 1 with probability pt = max(p, p̃t) and p̃t evolving

according to

p̃t+1 = (1− ρ)p+ ρp̃t + σp
√
ptεp,t+1. (52)

We impose a small positive lower bound p (= 1 bps) on the disaster probability pt in solutions

and simulations. The dividend Dt is modeled as levered consumption with log growth ∆dt+1 ≡
24The time-varying disaster risk has been used to explain the observed dynamics in macroeconomic quantities

(e.g., Gourio, 2012), prices of derivatives (e.g., Seo and Wachter, 2018, 2019), and international exchange rates
and capital flows (e.g., Gourio, Siemer, and Verdelhan, 2013; Dou and Verdelhan, 2017).
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lnDt+1 − lnDt following the evolution:

∆dt+1 = µ− 1

2
ϕ2σ2

c + φσcεc,t+1 − φζt+1 + ϕσcεd,t+1. (53)

Following Barro (2006) and Wachter (2013), we assume the government bill has one-period

maturity and can default when a disaster occurs; specifically, the return on the government bill

is

rb,t+1 =

{
yb,t, if xb,t+1 = 0 (i.e., no default);

yb,t − vt+1, if xb,t+1 = 1 (i.e., default),
(54)

where the Bernoulli variable xb,t+1 captures the possibility of a government bill default with

conditional probability q in the event of disaster.

The shock vectors (vt+1, εc,t+1, εp,t+1, εd,t+1)T are i.i.d. random vectors. The Bernoulli variable

xt+1 is independent with the contemporaneous jump probability shock εp,t+1 and its leads in

the time series, but xt+1 and the lags of εp,t+1 are dependent through the jump probability pt.

The default of government bills would never occur (i.e., xb,t+1 = 0) in the normal state (i.e.,

xt+1 = 0), while the default would occur (i.e., xb,t+1 = 1) with conditional probability q in the

disaster state (i.e., conditioning on xt+1 = 1).

We denote by zm,t the log price-dividend ratio of the market portfolio. Using the log-

linearization approximation, we search for equilibrium characterized by

zm,t = Am,0 + Am,1pt, (55)

where the expressions for constants Am,0 and Am,1, as functions of model parameters, are

presented in Online Appendix 7. Let rm,t+1 and rf,t be the log market return and log risk-free

rate, respectively. The equilibrium excess log return of market portfolio and government bill are

rm,t+1 − rf,t = µem,t + φσεc,t+1 + βpσp
√
ptεp,t+1 − φζt+1 + ϕσcεd,t+1, (56)

rb,t+1 − rf,t = µeb,t − xb,t+1ζt+1, (57)

where µem,t and µeb,t are characterized by

µem,t = φγσ2
c + βpλpσ

2
ppt + ∆ξ,γ(φ)pt −

1

2

[(
β2
c + ϕ2

)
σ2
c + β2

pσ
2
ppt
]
, (58)

µeb,t = q∆ξ,γ(1)pt, (59)

with ∆ξ,γ(φ) ≡ Ξ(γ)− Ξ(γ − φ)− φ(v + 1/ξ) for any φ and Ξ(x) ≡ exv
ξ

ξ − x − 1 for any x. The

expressions for λp and βp as functions of the model parameters, as well as the derivations of (56)

and (57), are presented in Online Appendix 7.
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Table 1: Parameters of time-varying disaster risk models

Panel A: Two sets of calibrations

Benchmark model (M1) Alternative model (M2)

Preferences δ γ δ γ
0.97 3 0.97 3

Consumption µ σc ξ v µ σc ξ v
0.0252 0.02 5.2 0.1 0.0252 0.02 5.2 0.1

Dividend φ ϕ q φ ϕ q
2.6 6.8 0.4 2.6 6.8 0.4

Disaster p ρ σp p ρ σp
0.0394 0.936 0.067 0.0394 0.85 0.10

Panel B: Model and data moments of time-varying disaster risk model

Data Benchmark model (M1) Alternative model (M2)
Moment estimate 5% Median 95% 5% Median 95%

E [rm − rb] 7.06 1.88 6.89 15.59 2.35 6.26 10.46
σ (rm) 17.72 14.77 18.23 23.69 14.29 17.47 20.98
E [rb] 1.34 −0.80 3.04 4.52 0.45 2.81 4.12
σ (rb) 2.66 0.78 1.73 3.79 1.19 2.08 3.87
AC1(p− d) 0.90 0.68 0.89 0.95 0.57 0.79 0.92
β1 (rm − rb, p− d) −0.13 −0.49 −0.22 −0.09 −0.62 −0.30 −0.06

We focus on the parameters θ = (µ, σ2
c , p, ρ, σ

2
p, ξ, φ, ϕ, q, γ)T with dθ = 10 when constructing

the dark matter measure, while treating the parameters δ and v as auxiliary parameters as a part

of the functional-form specification. The baseline parameters are θ(1) = (µ, σ2
c , p, ρ, σ

2
p, ξ, φ, ϕ, q)

T

with dθ,1 = 9, while the nuisance parameters include θ(2) = γ. The observed variables yt include

{∆ct, xt, xb,t, vt,∆dt} for the baseline model and {zm,t, rm,t, rb,t} for the asset pricing component.

To compute the dark matter measure for the time-varying disaster risk model, we first

formulate the economic model above as a structural model Q based on the baseline moments that

capture the key dynamic features of (49) – (54) and the asset pricing moments that capture the

dynamic features of (55) – (58), including the equity premium, return volatility, and predictability

of excess returns using price-dividend ratios. The moments are detailed in Online Appendix 7.

Quantitative Analysis. The parameter values of the benchmark model M1 are taken from

Wachter (2013) and are summarized in panel A of Table 1. In model M2, we reduce the disaster

probability pt’s persistence ρ and increase its conditional volatility σp. To take the model to the

data, we use annual real per-capita consumption growth (nondurables and services) from NIPA

and returns on the CRSP value-weighted market portfolio. The sample moments are based on
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annual data from 1947 to 2010, and the model-implied moments use 60-year simulated annual

data. For close comparison, we use a sample period of postwar data similar to that of Wachter

(2013), and similarly, the moments of the model are calculated conditional on no disasters having

occurred. For both models, the simulated first and second moments match the set of key asset

pricing moments in the data reasonably well (see panel B of Table 1). Table 2 compares the

dark matter measures of M1 and M2, two different calibrations of the time-varying disaster risk

model. The two panels of Table 2 further illustrate the fact that different treatments of the

nuisance parameters can affect the dark matter measure.

First, panel A of Table 2 contains fragility measures computed under the specification that

treats γ as a nuisance parameter whose uncertainty needs to be taken into account. The row

M1 of panel A in Table 2 reports the dark matter measure for model M1 when the unknown

nuisance parameter is θ(2) = γ. The dark matter measure, %(θ) = 1.49 · 103, is large. This

implies that to match the precision of the efficient GMM estimator for the full structural model

in all directions, the efficient GMM estimator based on the baseline model would approximately

require a time-series sample that is 1.49 · 103 times as long.

A high value of %(θ) suggests that the asset pricing implications of the structural model

are highly sensitive to plausible perturbations of parameter values in θ. We compute the dark

matter measure for each individual parameter in the vector θ(1). All of the univariate measures

are much lower than the worst-case 1-dimensional dark matter measure, %(θ), with a larger dark

matter measure for σ2
p (the variance of time-varying disaster probability shocks) and ρ (the

persistence of time-varying disaster probability) than for the other individual parameters. This

shows that it is not sufficient to consider perturbations of parameters one at a time to quantify

model fragility; Müller (2012) highlighted a similar insight on sensitivity analysis.

In comparison, in panel B of Table 2, we show dark matter measures when the preference

parameters are fixed at certain values as a part of the functional-form specification. For instance,

one may specifically design a model to capture the moments of asset returns with a low value of

risk aversion. In that case, the choice of the preference parameters is effectively subsumed by the

specification of the functional form of the model, and treating them as auxiliary parameters is in

line with the logic of the model construction. The dark matter measures in panel B are higher

than those in panel A. In particular, the worst-case 1-dimensional dark matter %(θ) increases

dramatically from 1.4 · 103 to 4.46 · 105.

Monte Carlo Experiments. We use simulations to illustrate the connections among the

dark matter measure, internal refutability, and external validity of time-varying disaster risk

models. In this simulation experiment, we assume that all the parameters except ρ are treated as

auxiliary parameters, whose uncertainty is not accounted for and whose values are subsumed into

the functional form of the moment function (i.e. model specifications). From the dark matter
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Table 2: Dark matter measures for the time-varying disaster risk models

Model %(θ)
θ(1)

µ σ2
c p ρ σ2

p ξ φ ϕ q

Panel A: Accounting for uncertainty on nuisance parameters: θ(2) = γ

M1 1.49 · 103 1.99 1.98 1.48 261.9 164.9 2.10 2.04 1.97 1.01
M2 80.99 2.35 2.33 1.98 1.31 1.26 2.88 2.43 2.33 1.29

Panel B: Not accounting for uncertainty on nuisance parameters: θ(2) is empty

M1 4.46 · 105 3.79 3.83 3.20 271.0 166.7 7.53 2.74 3.82 1.05
M2 4.69 · 103 5.65 5.49 2.59 7.13 5.28 7.04 6.93 5.45 1.37

Note: The direction corresponding to the worst-case 1-dimensional dark matter measure %(θ) for benchmark model
M1 is given by v∗max = [0.20,−0.97,−0.15, 0.01,−0.05, 0.00,−0.00,−0.00, 0.01] in panel A when accounting for the
uncertainty of nuisance parameter θ(2) = γ. In panel B, we treat γ as an auxiliary parameter like v and δ as a part
of the functional-form specification, whose uncertainty is not accounted for when quantifying the dark matter.

evaluation in Table 2, we learn that the assumed identification of ρ based on the potentially

misspecified asset pricing moment restrictions is a major source of model fragility for time-

varying disaster risk models. Focusing on ρ simplifies our simulation illustration and increases

the transparency by allowing us to consider a few key (transformed) moment restrictions (i.e., a

small yet essential subset of the moments used in Table 2):

mt(θ) = Ω(θ)−1/2

[
xt−2 [xt − ρxt−1 − (1− ρ)p]

ret − χ3(θ)zm,t − χ4(θ)zm,t−1 − χ5(θ)

]
and θ = ρ, (60)

where ret ≡ rm,t− rb,t + (φ− xb,t)ζt is the excess log return conditional on no disaster. Here, Ω(θ)

is the asymptotic covariance matrix of the untransformed moments, and it is a diagonal matrix

whose elements are computed in Online Appendix 5.1. In (60), the first moment is the baseline

moment, and the second the asset pricing moment. Clearly, the nuisance parameter vector θ(2)

is empty in this simulation example.

We assume that the true local DGP features a time-varying relation between the expected

excess log return relative to the defaultable government bill:

ret,n = ret +
ιtδr√
n
, with ιt =

{
1, when 1 ≤ t ≤ bπnc
−1, when bπnc < t ≤ n,

(61)

where the time series ιt captures the structural breaks and the theoretical excess log return

conditional on no disasters, ret ≡ rm,t − rb,t + (φ− xb,t)ζt, with rm,t and rb,t evolving according

to the model-implied relation in (56) and (57). The corresponding moment misspecification,
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Figure 4: This figure shows Monte Carlo experiments for time-varying disaster risk models. In this simulation
experiment where all the parameters except ρ are treated as auxiliary parameters, the dark matter measure
is %(θ) = 1.5 · 105 and %(θ) = 4.3 · 102 for the model M1 and M2, respectively. In panel A, we simulate 1000
independent yearly time series with length n = 2200 to capture a pooled sample of 100 years for 22 countries
similar to Wachter (2013). In panels B and C, we set δr = 0.05 and simulate 400 independent yearly time series
with length n = 100 (i.e., 100 years) and break point π = 1/2. Only the uncertainty about ρ is accounted for; all
other parameters are treated as auxiliary parameters as a part of the functional-form specification.

evaluated at θ0, are

EQ0 [mt(θ0)] =
1√
n

[
0, λ

(2)
t

]T
with λ

(2)
t ≡

ιtδr

σc
√
φ2 + ϕ2

. (62)

Figure 4 shows three different simulation experiments. The main takeaway is similar to

that of the simulation experiments displayed in Figure 3 for rare disaster risk models. Panel A

shows that the calibrated time-varying disaster risk model with a larger dark matter measure

(benchmark model M1) has lower internal refutability (i.e., lower test power). Panel B shows

that the calibrated model with a larger dark matter measure (the benchmark model M1) is likely

to have more severe overfitting concerns for the efficient GMM estimator (than the alternative

model M2). Panel C suggests that the econometrician should back off from efficiency to gain

more robustness for the estimation results when the model contains a large amount of dark

matter; specifically, the out-of-sample fit of the recursive GMM estimator may be superior to

that of the efficient GMM estimator when the model has a large amount of dark matter.

Our analyses of the (time-varying) disaster-risk model here and in Section 4.1 relate to studies

that have highlighted challenges in testing such models. One implication of the low probability

of disasters is the so-called “peso problem” (see Lewis, 2008, for an overview): if observations of
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disasters in a particular sample under-represent their population distribution, standard inference

procedures may lead to distorted conclusions. Thus, the peso problem is a particular case of

the weak identification problem (Stock and Wright, 2000). Our analysis highlights that in these

applications subject to the peso problem, it is important to guard against model fragility. On

this front, Zin (2002) shows that certain specifications of higher-order moments of the endowment

growth distribution may help the model fit the asset pricing moments while being difficult to

reject in the endowment data. Our analysis of model fragility encapsulates such considerations

in a general quantitative measure.

4.3. Dark Matter of Long-Run Risk Models

In the third example, we consider a long-run risk model similar to Bansal and Yaron (2004) and

Bansal, Kiku, and Yaron (2012). In the model, the representative agent has recursive preferences

and maximizes her lifetime utility:

Vt =

[
(1− δ)C1−1/ψ

t + δ
(
Et
[
V 1−γ
t+1

]) 1−1/ψ
1−γ

] 1
1−1/ψ

, (63)

where Ct is consumption at time t, δ is the rate of time preference, γ is the coefficient of risk

aversion for timeless gambles, and ψ is the elasticity of intertemporal substitution when there is

perfect certainty. Log growth rate of consumption ∆ct, expected consumption growth xt, and

conditional volatility of consumption growth σt evolve as follows:

∆ct+1 = µc + xt + σtεc,t+1, (64a)

xt+1 = ρxt + ϕxσtεx,t+1, (64b)

σ̃2
t+1 = σ2 + ν(σ̃2

t − σ2) + σwεσ,t+1, (64c)

σ2
t+1 = max

(
σ2, σ̃2

t+1

)
, (64d)

where the shocks εc,t, εx,t, and εσ,t are i.i.d. standard normal variables and mutually independent.

The volatility process (64c) potentially allows for negative values of σ̃2
t . Following the literature,

we impose a small positive lower bound σ (= 1 bps) on variance σt in solutions and simulations.

Negative values of conditional variance can also be avoided by changing the specification. For

example, the process of σ2
t can be specified as a discrete-time version of the square root process.25

25To ensure that our analysis applies as closely as possible to the model widely used in the literature, we
deliberately choose to follow Bansal, Kiku, and Yaron (2012, 2016). Particularly, following these papers, we
also solve the model using a log-linearization approximation. Thus, the approximate price-dividend ratio is not
affected by the presence of the lower bound on the conditional variance process. As Bansal, Kiku, and Yaron
(2016) show, the resulting approximation error, when compared to the global numerical solution, is negligible.
When computing the dark matter measure, we impose the lower bound on conditional variance σ2

t to reflect the
specification of the conditional variance process.
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Next, log dividend growth ∆dt follows

∆dt+1 = µd + φdxt + ϕd,cσtεc,t+1 + ϕd,dσtεd,t+1, (65)

where εd,t is i.i.d. standard normal N(0, 1) and independent of the other shocks in (64a) – (64c).

The equilibrium excess log return follows

ret+1 = µer,t + βcσtεc,t+1 + βxσtεx,t+1 + βσσwεσ,t+1 + ϕd,dσtεd,t+1, (66)

where the conditional average log excess return is

µer,t ≈ λcβcσ
2
t + λxβxϕxσ

2
t + λσβσσ

2
w −

1

2
σ2
rm,t, (67)

and the conditional volatility of log excess returns σrm,t satisfies

σ2
rm,t ≈ β2

cσ
2
t + β2

xσ
2
t + β2

σσ
2
w + ϕ2

d,dσ
2
t . (68)

The expressions for λc, λx, λσ, βc, βx, and βσ, as functions of the model parameters, are presented

in Online Appendix 8.

The model contains stochastic singularities. For instance, the excess log market return ret+1 is

a deterministic function of ∆ct+1,∆dt+1, xt+1, xt, σ
2
t+1, and σ2

t . The log price-dividend ratio zm,t

is a deterministic function of xt and σ2
t . To avoid the problems posed by stochastic singularities,

we add noise shocks ϕrσtεr,t+1 to stock returns, with εr,t being i.i.d. standard normal variables

and mutually independent of other variables. This is a standard approach in the dynamic

stochastic general equilibrium (DSGE) literature for dealing with stochastic singularity. The

stochastic singularity is one of the main reasons why we adopt the moment-based method, rather

than the likelihood-based method, to evaluate and characterize the structural models.

We focus on the parameters θ = (µc, ρ, ϕx, σ
2, ν, σw, µd, φd, ϕd,c, ϕd,d, γ, ψ)T with dθ = 12

when constructing the dark matter measure, while treating the parameters δ and σ as auxiliary

parameters which are part of the functional-form specification. The baseline parameters are

θ(1) = (µc, ρ, ϕx, σ
2, ν, σw, µd, φd, ϕd,c, ϕd,d)

T with dθ,1 = 10. We explicitly account for uncertainty

about preference parameters γ and ψ by including them in the nuisance parameter vector

θ(2) = (γ, ψ)T . The observed variables yt include {∆ct, xt, σ2
t ,∆dt} for the baseline model and

{zm,t, ret} for the asset pricing component. In our computation of the dark matter measure,

we consider a system of moment restrictions based on the joint dynamics of time series yt =

(∆ct, xt, σ
2
t ,∆dt, zm,t, r

e
t )
T . The moments are detailed in Online Appendix 8.
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Table 3: Parameters of long-run risk models

Panel A: Two sets of calibrations

Benchmark model (M1) Alternative model (M2)

Preferences δ γ ψ δ γ ψ
0.9989 10 1.5 0.9989 27 1.5

Consumption µc ρ ϕx µc ρ ϕx
0.0015 0.975 0.038 0.0015 0.975 0.038

Dividend µd φd ϕd,c ϕd,d µd φd ϕd,c ϕd,d
0.0015 2.5 2.6 5.96 0.0015 2.5 2.6 5.96

Volatility σ ν σw ϕr σ ν σw ϕr
0.0072 0.999 2.8e− 6 3.0 0.0072 0.98 2.8e− 6 3.0

Panel B: Model and data moments of long-run risk model

Data Benchmark model (M1) Alternative model (M2)
Moment estimate 5% Median 95% 5% Median 95%

E [rf ] 0.57 −0.20 0.77 1.45 0.47 0.96 1.46
E [rm − rf ] 7.09 2.33 5.88 10.58 3.65 6.78 10.05
σ (rm) 20.28 12.10 20.99 29.11 15.01 17.55 20.33
AC1(p− d) 0.87 0.39 0.68 0.89 0.29 0.63 0.83
β1 (rm − rf , p− d) −0.09 −0.39 −0.11 0.09 −0.19 −0.06 0.04

Quantitative Analysis. The parameter values of benchmark model M1 follow Bansal, Kiku,

and Yaron (2012) and are summarized in panel A of Table 3. As Bansal, Kiku, and Yaron

(2012, page 194) show, the simulated first and second moments, based on the parametrization of

benchmark model M1, match the set of key asset pricing moments in the data reasonably well.

The same is true for alternative model M2, whose parameter values are also reported in panel A

of Table 3. The performance of both models on matching asset pricing moments is reported in

panel B of Table 3. Table 4 compares the dark matter measures of M1 and M2, two different

calibrations of the long-run risk model. Echoing Table 1 for time-varying disaster risk models,

the two panels of Table 4 show that different treatments of the nuisance parameters can affect

the dark matter measure.

The simulated moments and sample moments are listed in panel B of Table 3. The sample

moments are based on annual data from 1930 to 2008, and the simulated moments are 80-

year annual data aggregated from monthly simulated data. Panel A of Table 4 contains dark

matter measures computed when treating preference parameters as nuisance parameters whose

uncertainty is taken into account in the construction of dark matter measures. The row M1 of

panel A reports dark matter measures for benchmark model M1 when the nuisance parameters

are θ(2) = (γ, ψ)T . The dark matter measure, %(θ) = 196.3, is large, implying that to match the
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Table 4: Dark matter measures for the time-varying disaster risk models

Model %(θ)
θ(1)

µc ρ ϕx σ2 ν σw µd φd ϕd,c ϕd,d

Panel A: Accounting for uncertainty on nuisance parameters: θ(2) = (γ, ψ)T

M1 196.3 1.0 1.1 1.0 48.9 97.8 1.0 1.0 3.4 1.0 1.0
M2 21.1 1.0 1.1 1.0 1.0 3.4 1.0 1.4 4.2 1.0 1.0

Panel B: Not accounting for uncertainty on nuisance parameters: θ(2) is empty

M1 3.57·105 1.0 2.1 1.1 115.6 117.5 1.3 1.1 7.1 1.0 1.0
M2 287.7 1.0 2.5 1.0 1.0 6.3 1.0 1.9 31.3 1.0 1.0

Note: The direction corresponding to the worst-case 1-dimensional dark matter measure %(θ) for benchmark model
M1 is given by v∗max = [0.000, 0.000,−0.000, 0.020,−0.001, 0.999,−0.001, 0.000,−0.000, 0.000] in panel A when
accounting for the uncertainty of nuisance parameter θ(2) = (γ, ψ)T . In panel B, we treat γ and ψ as auxiliary
parameters like σ and δ as a part of the functional-form specification, whose uncertainty is not accounted for when
calculating the dark matter measure.

precision of the estimator for the full model in all directions, the estimator based on the baseline

model would approximately require a time-series sample that is 196.3 times as long.

In Table 4, we compute the dark matter measure for each individual parameter in the vector

θ(1). All of the univariate measures are much lower than the worst-case 1-dimensional fragility

measure, %(θ), with larger fragility measures for σ2 (the long-run variance of consumption

growth) and ν (the persistence of conditional variance of consumption growth) than for the other

individual parameters. Similar to an important message from Table 2 for time-varying disaster

risk models, we also learn here that it is not sufficient to consider perturbations of parameters

one at a time to quantify model fragility based on the long-run risk examples. By contrast, panel

B of Table 4 shows dark matter measures when the preference parameters are fixed at certain

values as a part of the functional-form specification. The dark matter measures in panel B are

larger than those in panel A. Specifically, the worst-case 1-dimensional dark matter measure,

%(θ), increases dramatically from 196.3 to 3.57 · 105.

In our model, we have assumed that the conditional mean and volatility of consumption

growth, xt and σt, respectively, are observable. An interesting question is whether the model

becomes more or less fragile when agents observe xt and σt but the econometrician does not

(e.g., Schorfheide, Song, and Yaron, 2018). When the agents themselves need to learn about the

latent states and potentially deal with model uncertainty (e.g., Collin-Dufresne, Johannes, and

Lochstoer, 2016; Hansen and Sargent, 2010), the cross-equation restrictions implied by asset

prices differ from the case of fully observable state variables. It is therefore difficult to establish

the precise effect of limited observability on model fragility without further analysis, which is
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beyond the scope of this paper. Numerically, the assumption that xt and σ2
t are observable

means that we do not need to filter out xt or σ2
t when computing the model fragility measure.

Furthermore, because we are examining the fragility of a specific calibration of the model, we

can compute the fragility measure under the set of calibrated parameter values instead of having

to first filter out the values of xt and σ2
t from the data and then estimate the corresponding

parameter values as in Constantinides and Ghosh (2011), Bansal, Kiku, and Yaron (2016), and

Schorfheide, Song, and Yaron (2018).

Monte Carlo Experiments. We use simulations to illustrate the connections among the

dark matter measure, internal refutability, and external validity of long-run risk models. In this

experiment, we assume that all the parameters except ν are treated as auxiliary parameters, fixed

at known constant values and thus subsumed into the functional form of the model specifications.

From Table 4, we learn that the assumed identification of ν is a major source of model fragility for

long-run risk models. Focusing on ν simplifies the demonstration and increases the transparency

by allowing us to focus on a few key (transformed) moment restrictions (i.e., a small yet essential

subset of the moment restrictions used in constructing Table 4):

mt(θ) = Ω(θ)−1/2

[
(σ̃2

t − σ2)εσ,t+1

ret+1 − µer,t − βcσtεc,t+1 − βxσtεx,t+1 − βσσwεσ,t+1

]
and θ = ν, (69)

where variables εc,t+1, εx,t+1, and εσ,t+1 are the residuals in (64a) – (64d), depending on observed

data and unknown parameters in θ, and µer,t is defined in (67) and also dependent on observed

data and unknown parameters in θ. Here, Ω(θ) is the asymptotic covariance matrix of the

untransformed moments, and it is a diagonal matrix Ω(θ) = diag{σ2
w/(1− ν2), ϕ2

d,dσ
2}. In (69),

the first matrix element is the baseline moment, and the second is the asset pricing moment.

Clearly, the nuisance parameter vector θ(2) is empty in this simulation example.

We assume that the true local DGP features a time-varying relation between the expected

log excess return and the dynamic parameters:

ret,n = ret +
ιtδr√
n
, with ιt =

{
1, when 1 ≤ t ≤ bπnc
−1, when bπnc < t ≤ n,

(70)

where the time series ιt captures the structural breaks. The corresponding moment misspecifica-

tions, evaluated at θ0, are

EQ0 [mt(θ0)] =
1√
n

[
0, λ

(2)
t

]T
with λ

(2)
t ≡

ιtδr
ϕd,dσ

. (71)

Figure 5 shows three different simulation experiments, which reinforce the messages from
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Figure 5: Monte Carlo experiments for long-run risk models. In this simulation experiment where all the
parameters except ν are treated as auxiliary parameters, the dark matter measure is %(θ) = 1.03 · 105 and
%(θ) = 22.34 for the model M1 and M2, respectively. In panel A, we simulate 1000 independent monthly time
series with length n = 1200 (i.e., 100 years). In panels B and C, we simulate 400 independent monthly time series
with length n = 1200 (i.e., 100 years) and break point π = 1/2. We set δr = 0.02 for panels B and C. In the
simulation experiment, we assume that all the parameters except ν are treated as auxiliary parameters, fixed at
known constant values and subsumed into the functional form of the moment function (i.e., model specifications).

Figures 3 and 4 for rare-disaster risk and time-varying disaster risk models, respectively. Panel

A shows that the DGP for the long-run risk model M1 features an excessively large amount of

dark matter according to Table 4, and thus it has low internal refutability. Panel B displays

the histograms of log overfitting measures lnO(θ̂(1)
e,n ,y

n) of the efficient GMM estimators for the

two calibrated models M1 and M2 in Table 4, showing that the calibrated structural model

with too much dark matter (benchmark model M1) is likely to have more severe overfitting

concerns for the efficient GMM estimator. Panel C compares the expected out-of-sample fit

between recursive GMM estimators θ̃e,n and efficient GMM estimators θ̂e,n, suggesting that the

econometrician should back off from efficiency to gain more robustness when estimating a model

that exhibits a high level of dark matter.

5. Why Is Dark Matter a Concern

We first formally develop the set of results illustrated by the simple example above. We

consider the setting of weakly dependent time series data, which are prevalent in financial and

macroeconomic studies, and allow for local perturbations (e.g., Hansen and Sargent, 2001) and

instability (e.g., Li and Müller, 2009) of DGPs in a semiparametric framework. We then formally

establish the connection between the dark matter measure, model refutability, and out-of-sample
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fit. Using the semiparametric framework in Section 5.1, we show that a model with excessive

dark matter lacks internal refutability and external validity. Specifically, we show that our dark

matter measure is inversely linked to the power of the C test (i.e. internal refutability) and the

out-of-sample fit (i.e. external validity) in Sections 5.2 and 5.3, respectively.

5.1. Misspecification and Instability

Here, we develop the econometric foundation needed for our analysis of economic dark matter.

We set up a formal and general semiparametric framework to capture local misspecification

and local instability. While misspecification and instability ultimately manifest themselves as

perturbations in the moment restrictions imposed by the structural economic model, we start

with a more fundamental concept — local misspecification of the structural model and local

instability of the DGP — and derive the local moment misspecifications that follow. To model

local misspecification, we adopt a statistical method similar to that of Hansen and Sargent

(2001). The econometricians treat the reference probability measure Q0 as an approximation of

the measure corresponding to the true DGP, and they assume that the true process lies within a

collection of local alternative DGPs that are statistically difficult to distinguish from Q0 (i.e.,

a neighborhood of Q0 in the space of probability measures). To model local instability, we

generalize the local instability framework of Li and Müller (2009) to the semiparametric setting.

We first specify the true local DGP below, and we then introduce the concept of model

misspecification and local instability.

Local DGPs. Our analysis is local in nature. We focus on a calibrated model with model

parameter θ0 as defined in (21), whose corresponding bivariate marginal distribution is Q0. Next,

we define the collection of local perturbations of Q0, denoted by N(Q0), as follows.

Definition 2. The collection N(Q0) is a collection of subsets of L2(Q0), the space of square-

integrable random variables on the probability space (Y× Y,F ⊗ F,Q0). The collection N(Q0)

consists of 1-dimensional parametric families of bivariate distributions Qs,f indexed by s ∈ (−ε, ε)
for some ε > 0 and f ∈ L2(Q0), such that the path Qs,f ∈ H passes through the probability

measure Q0 ∈ H at s = 0, and Qs,f satisfies the smoothness condition (Hellinger-differentiability

condition):26

dQs,f

dQ0

= 1 + sf + s∆(s), (72)

where ∆(s) converges to 0 in L2(Q0) as s→ 0. Here, we refer to the scalar measurable function

f ∈ L2(Q0) as the score of the parametric model s 7→ Qs,f .

26The smoothness condition (72) is equivalent to the Hellinger-differentiability, shown in Appendix 5.3. It is a
common regularity condition adopted for (semi)parametric inference (e.g., van der Vaart, 1988).
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The following proposition summarizes the properties of the score f defined above. The proof

of Proposition 1 can be found in Online Appendix 4.2.

Proposition 1 (Properties of Scores). If f ∈ L2(Q0) satisfies (72), then it follows that (i)

EQ0 [f ] = EQ0 [∆(s)] = 0 for all s, and (ii) EQ0 [f(y,y′)|y] = EQ0 [f(y′,y)|y].

Now, we specify the true local DGP by appealing to the concept in Definition 2. We denote

the joint distribution of yn corresponding to the bivariate marginal distribution Q0 by P0,n.

Deviating from P0,n, the true local DGP for yn has joint distribution P∗n with a sequence of

bivariate marginal distributions for each consecutive pair (yt−1,yt), Q∗n ≡ Q1/
√
n,f∗n,t

, which is

characterized by

dQ1/
√
n,f∗n,t

dQ0

= 1 +
f ∗n,t√
n

+ ∆n, where (73)

f ∗n,t ≡

[
1

b∗(t/n)

]T
g∗(yt−1,yt) and

√
n∆n → 0 in L2(Q0). (74)

Vector g∗ has two elements: g∗ = [g∗1, g
∗
2]T with g∗1, g

∗
2 ∈ L2(Q0). Thus, score function f ∗n,t can be

rewritten as

f ∗n,t = g∗1(yt−1,yt) + g∗2(yt−1,yt)b
∗(t/n), (75)

where g∗1(yt−1,yt) represents time-invariant perturbation and g∗2(yt−1,yt)b
∗(t/n) represents time-

varying perturbation. The unknown function b∗(·) is a deterministic function on [0, 1] that

generates local instability.27 When n is large, 1 + f ∗n,t/
√
n is approximately the Radon-Nikodym

density of Q1/
√
n,f∗n,t

with respect to Q0.

Before imposing additional regularity conditions on the true score f ∗n,t, we define a set of

square-integrable variables corresponding to Q0.

Definition 3 (Set of Scores). For Q0 ∈ Q, define

L2
0(Q0) ≡

{
ς ∈ L2(Q0) : EQ0 [ς(y,y′)] = 0 and EQ0 [ς(y,y′)|y] = EQ0 [ς(y′,y)|y]

}
. (76)

Then, the properties of scores in Proposition 1 can be simply restated as f ∈ L2
0(Q0). The

true local DGP in (73), characterized by f ∗n,t, satisfies the following conditions:

(i) g∗ ∈ G(Q0), which is defined as

G(Q0) ≡
{
g = [g1, g2]T : EQ0 [g2(y,y′)|y] = 0 and g1, g2 ∈ L2

0(Q0)
}

;

27Similar to, for example, Andrews (1993), Sowell (1996), and Li and Müller (2009), we assume instability to
be non-stochastic. The assumption is for technical simplicity. We can extend to stochastic instability following
the arguments in Li and Müller (2009).
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(ii) b∗ ∈ B, which is defined as

B ≡

b :
|b(u)| ≤ 1 for all u ∈ [0, 1] and

∫ 1

0

b(u)du = 0, whose path has a

finite number of discontinuities and one-sided limits everywhere.

 .

The first part of condition (i) implies that EQ0
[
f ∗n,t(y,y

′)|y
]

= EQ0 [g∗1(y,y′)|y] is invariant

over time, which further ensures that the univariate marginal distribution of the true joint

distribution P∗n is invariant over time (see Proposition 1 in Online Appendix 2.1). The second

part of condition (i) that g∗1, g
∗
2 ∈ L2

0(Q0) is not restrictive, because guaranteed by Proposition 1.

Misspecification of Structural Models. To characterize the misspecification of the struc-

tural model with respect to the DGP Qs,f , we only need to characterize the relation between

the moment function m(·, θ0) and the score f . Following the literature (e.g., Chen and Santos,

2018, and references therein), we consider the so-called tangent set for scores based on a given

system of moments. For given moments m(·, θ), the tangent set of the structural model Q at Q0,

denoted by T(Q0), consists of all scores f ∈ L2
0(Q0) such that the paths of locally perturbed

distributions corresponding to f satisfy Qs,f ∈ Q defined in (14), and such that ϑ(Qs,f ), defined

in (19) as a function of s, is differentiable with respect to s at s = 0. The tangent set T(Q0) is

mathematically defined as follows:

T(Q0) ≡

{
f ∈ L2

0(Q0) :
∃ a path Qs,f such that Qs,f ∈ Q ∩N(Q0) for all s ∈ (−ε, ε)
for some ε > 0 and ϑ(Qs,f ) is differentiable at s = 0

}
.

We can further characterize the tangent set T(Q0) as follows:

T(Q0) =
{
f ∈ L2

0(Q0) : λ(f) ∈ lin(D)
}
, with λ(f) ≡ EQ0 [m(·, θ0)f ] , (77)

where λ(f) is a linear operator on L2
0(Q0) and linear space lin(D) is spanned by the columns

of the Jacobian matrix D defined in (17) and (25). This characterization is standard in the

literature (e.g., Severini and Tripathi, 2013; Chen and Santos, 2018) and can be proved using an

implicit function theorem.28 Intuitively, the inner product of moment and score functions λ(f)

is the local bias of moment restrictions evaluated at θ0:

EQs,f [m(·, θ0)] = sλ(f) + o(s), as s→ 0, (78)

and thus, when λ(f) ∈ lin(D), there exists a local perturbation from θ0 to make the moment

28One direct implication of (77) is that if dθ < dm, then T(Q0) 6= L2
0(Q0), and thus the distribution Q0 is

locally overidentified by Q (see Chen and Santos, 2018); further, if dm = dθ, then T(Q0) = L2
0(Q0), and thus Q0

is locally just identified by Q.
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condition satisfied. The general relation in (78) summarizes how the stable local misspecification

of structural models is translated into the stable local moment misspecification.

Moreover, the characterization (77) implies that T(Q0) is a linear space. Taken together,

whenever f ∗n,t ∈ L2
0(Q0) \ T(Q0), the structural model Q is locally misspecified with respect to

the true local DGP characterized by Q∗n ≡ Q1/
√
n,f∗n,t

, which is defined in (73).

Similar to (77), the tangent set of the baseline structural model Q(1) at Q0 is characterized by

T(1)(Q0) ≡
{
f ∈ L2

0 : λ(1)(f) ∈ lin(D11)
}
, with λ(1)(f) ≡ EQ0

[
m(1)(·, θ(1)

0 )f
]
, (79)

where operator λ(1)(f) is a linear operator on L2
0(Q0), linear space lin(D11) is spanned by the

column vectors of D11, and moment vector m(1)(·, θ(1)
0 ) contains the first dm,1 elements of m(·, θ0).

Instability of DGPs. To formalize the analysis on out-of-sample fit (i.e. external validity),

we need to consider DGPs that allow for structural breaks in a non-stationary manner. Evidence

abounds on structural changes and nonstationarity in asset pricing (for example, see the references

in footnote 23). Econometric theory has largely focused on testing whether or not the model

is stable.29 However, little research has explored the implications of instability. One exception

is Li and Müller (2009) who show that the standard GMM inference (Hansen, 1982), despite

ignoring the partial instability of a subset of model parameters, remains asymptotically valid for

the subset of stable parameters. We show that, in the presence of possible instability, a model

tends to have a poor out-of-sample fit if its dark matter measure is excessively large.

We consider the set M(Q0) consisting of all probability measures, each of which is a joint dis-

tribution for a Markov process yn with local instability around the Markov process characterized

by Q0. We formalize the definition of M(Q0) as follows.

Definition 4. The collection M(Q0) contains all joint distributions P1/
√
n,g,b, for local Markov

DGPs, characterized by a sequence of bivariate marginal distributions Qs,fn,t ∈ N(Q0) with

t = 1, 2, · · · , n and index s ∈ (−ε, ε) for some ε > 0 such that

fn,t =

[
1

b(t/n)

]T
g(yt−1,yt) with g ∈ G(Q0) and b ∈ B. (80)

The unique corresponding model parameter value is also time-varying:

θn,t ≡ ϑ(Q1/
√
n,fn,t), for any fn,t ∈ T(Q0) with 1 ≤ t ≤ n and sufficiently large n. (81)

Definition 4 says that all the local DGPs in M(Q0) are characterized by the pair (g, b) ∈
29For example, see Nyblom (1989), Andrews (1993), and more recent contributions by Hansen (2000), Andrews

(2003), and Elliott and Müller (2006).
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G(Q0)×B and sample size n. The DGP is a time-homogeneous Markov process if b(u) ≡ 0 or

g2(y,y′) ≡ 0. Assumption 4 ensures the uniqueness of (81).

Next, we show how instability of the DGP is translated into the local moment misspecifications.

Under the local DGP P1/
√
n,g,b characterized by a sequence of bivariate marginal distributions

Q1/
√
n,fn,t for t = 1, · · · , n, the moment restrictions evaluated at θ0 are locally biased. We

summarize the result in Proposition 2 with the proof in Online Appendix 4.2.

Proposition 2 (Local Biases of Moment Restrictions). Suppose Assumptions 1 – 5 hold. Under

bivariate marginal distribution Q1/
√
n,fn,t ∈ M(Q0) for the consecutive pair, (yt−1,yt), where

fn,t = g1(yt−1,yt) + g2(yt−1,yt)b(t/n) and (g, b) ∈ G(Q0)×B, the moment restrictions evaluated

at θ0 are locally biased:

E
Q1/
√
n,fn,t [mt(θ0)] = [λ(g1) + λ(g2)b(t/n)] /

√
n+ o

(
1/
√
n
)
, (82)

where linear operator λ(·) is defined in (77).

Baseline Models. The baseline model provides a benchmark in the test power and out-of-

sample fit analyses, characterizing the correct baseline parameter values θ
(1)
n,t and disciplining the

asset pricing cross-equation restrictions. Throughout our analysis, we assume that the baseline

model is correctly specified; that is, g∗ ∈ GB(Q0), where

GB(Q0) ≡
{
g ∈ G(Q0) : λ(1)(g1) = 0, and λ(1)(g2) ∈ lin(D11)

}
. (83)

We can always shift θ0 locally to make sure λ(1)(g1) = 0 and λ(1)(g2) ∈ lin(D11) if λ(1)(g1), λ(1)(g2) ∈
lin(D11). Thus, without loss of generality, we can just focus on GB(Q0).

The following corollary shows that the correct baseline parameters are time-invariant when

the baseline model is correctly specified. The proof can be found in Online Appendix 4.3.

Corollary 1 (Correct Baseline Parameters). Suppose Assumptions 1 – 6 hold. Then, the correct

baseline parameters θ
(1)
n,t ≡ ϑ(1)(Q1/

√
n,fn,t) exist for fn,t = g1(yt−1,yt) + g2(yt−1,yt)b(t/n) with

1 ≤ t ≤ n, and they can be approximated by

θ
(1)
n,t − θ

(1)
0 = −(DT

11D11)−1DT
11λ

(1)(fn,t)/
√
n+ o

(
1/
√
n
)
. (84)

Here, linear operator λ(1)(·) is defined in (79).
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5.2. Dark Matter and Lack of Refutability

The local asymptotic power function in (33) can be rewritten as follows under the general

semi-parametric framework:

q(g, ϕ̌) ≡ lim
n→∞

∫
ϕ̌ndP1/

√
n,g,0, ∀ g ∈ G(Q0) such that g1 ∈ T(1)(Q0), (85)

where ϕ̌ ≡ {ϕ̌n}n≥1 is the sequence of test statistics and q(·, ϕ̌) is a mapping from G(Q0) to [0, 1].

The test ϕ̌n has a local asymptotic level α if q(g, ϕ̌) ≤ α for any g1 ∈ T(Q0). A specification

test ϕ̌ = {ϕ̌n}n≥1 with a local asymptotic power function q(·, ϕ̌) is said to be locally unbiased if

q(g, ϕ̌) ≤ α for all g such that g1 ∈ T(Q0), and q(g, ϕ̌) ≥ α for all g such that g1 ∈ L2
0(Q0)\T(Q0).

We denote the set of locally unbiased GMM specification tests with level α as Φα(Q0).

The guaranteed local asymptotic power of tests, over all feasible local DGPs, can be character-

ized by the power of maximin tests (e.g., Lehmann and Romano, 1996, Chapter 8). Studies have

demonstrated that the C test or incremental J test (e.g., Eichenbaum, Hansen, and Singleton,

1988) has the asymptotic optimality property in the maximin sense (e.g., Newey, 1985a; Chen

and Santos, 2018).30 Based on this observation, we establish Theorem 1 below, which formally

connects the maximin optimal power of tests to the dark matter measure. We present the proof

in Online Appendix 4.1.

Before introducing the theorem, we define the set of alternatives for the maximin local power

of GMM specification tests.

Definition 5 (Set of DGPs for Worst-Case Power). The set of alternatives for the maximin

local power of GMM specification tests is defined as follows:

Aκ(Q0) ≡
{
g ∈ GB(Q0) : |λ(2)(g1)| ≥ κ and λ(2)(g1) ⊥ lin(D21, D22)

}
, (86)

where λ(2)(g1) ≡ EQ0
[
m(2)(·, θ0)g1

]
includes the bottom dm − dm,1 elements of λ(g1) defined in

(77), and lin(D21, D22) is the linear space spanned by the column vectors of [D21, D22].

Because of g ∈ GB(Q0) and λ(2)(g1) ⊥ lin(D21, D22), it must hold that λ(g1) 6∈ lin(D), and

thus, the full model Q is misspecified with respect to the local DGP with joint distribution

P1/
√
n,g,0 if g ∈ Aκ(Q0). The constant κ > 0 characterizes the minimum level of misspecification

of the full model Q with respect to the local DGPs in Aκ(Q0).

Theorem 1 (Model Refutability). Suppose Assumptions 1 – 6 hold. The local asymptotic power

30Alternative asymptotically equivalent approaches can be found in the literature (e.g., Newey, 1985a; Chen
and Santos, 2018).
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of maximin tests is bounded above by

sup
ϕ̌∈Φα(Q0)

inf
g∈Aκ(Q0)

q(g, ϕ̌) ≤M dm,2−dθ,2
2

(√
κ2

1 + %(θ0)
,
√
c1−α

)
, (87)

where c1−α is the 1− α quantile of a chi-square distribution with degrees of freedom dm,2 − dθ,2,

and Mγ(x1, x2) is the generalized Marcum Q-function. By definition of c1−α, it holds that

M dm,2−dθ,2
2

(0,
√
c1−α) = α. (88)

Therefore, the local asymptotic power of maximin tests vanishes as the dark matter measure

rises:

sup
ϕ̌∈Φα(Q0)

inf
g∈Aκ(Q0)

q(g, ϕ̌) → α, as %(θ0)→∞. (89)

The generalized Marcum Q-function Mγ(x1, x2) strictly increases in γ and x1, and it strictly

decreases in x2 (e.g., Sun, Baricz, and Zhou, 2010, Theorem 1). An intuitive interpretation

of (87) is that there exists an alternative characterized by the score g ∈ Aκ(Q0) such that

the power of the optimal locally unbiased GMM specification test with level α cannot exceed

M dm,2−dθ,2
2

(√
κ2

1+%(θ0)
,
√
c1−α

)
, which is almost α when %(θ0) is extremely large. The coefficient

κ captures the extent to which the alternatives are distant from the null, and thus, the upper

bound for the test power (the right-hand side of (87)) naturally increases with κ.

Practitioners can use the dark matter measure, %(θ), to detect whether a model is fragile.

Although the relative-sample-size interpretation of the dark matter measure is intuitive, the

quantity M dm,2−dθ,2
2

(√
κ2

1+%(θ0)
,
√
c1−α

)
derived in Theorem 1 provides a statistically meaningful

metric because it characterizes an upper bound for the test power given a misspecification level κ.

We refer to M dm,2−dθ,2
2

(√
κ2

1+%(θ0)
,
√
c1−α

)
as a “dark-matter bound” for refutability of a model.

It can be viewed as an analogy to the well-known Anderson-Rubin (AR) test statistic, which is

useful for detecting whether linear instrumental variables (IVs) are weak (e.g., Andrews and

Stock, 2007).

5.3. Dark Matter and Poor Out-of-Sample Fit

The constant misspecification over time does not affect the out-of-sample fit of estimated models

based on in-sample data. We focus on how model instability affects the out-of-sample fit of an

estimated time-series model.
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The asymptotic expected overfitting measure of the sequence of estimators θ̌(1)
e,n is31

ω(g, b, θ̌(1)
e ) ≡ lim

l→∞
lim
n→∞

∫
O(θ̌(1)

e,n ,y
n)1{|O(θ̌

(1)
e,n ,yn)|≤l}dP1/

√
n,g,b, (90)

where θ̌(1)
e ≡

{
θ̌(1)
e,n

}
n≥1

is a sequence of GMM estimators, and the overfitting measure O(θ̌(1)
e,n ,y

n)

is defined in (37). The asymptotic expected overfitting measure ω(g, b, θ̌(1)
e ) quantifies the extent

to which the structural model over-fits the data when the true local DGP is P1/
√
n,g,b. Similar in

spirit to information criteria in model selection such as AIC and BIC, models whose expected

degrees of overfitting are sizable should be penalized.

Overfitting of the Efficient GMM Estimator θ̂e,n. Recall that λ(g2) captures the mag-

nitude of instability. Before introducing the theorem on model overfitting tendency (Theorem 2),

we define the uncertainty set of possible magnitudes of instability for discussing the worst-case

overfitting tendency.

Definition 6 (A Set of Alternative DGPs for Worst-Case Overfitting). The set of possible

magnitudes of instability for computing the worst-case overfitting tendency is defined as follows:

Uκ(Q0) ≡ {g ∈ GB(Q0) : λ(g1) ∈ lin(D), and |λ(g2)| ≤ κ}, (91)

where λ(g2) ≡ EQ0 [m(·, θ0)g2] is defined in (77). This sets focuses on the scores such that

λ(g1) ∈ lin(D) to turn off the possibility of constant misspecifications.

The constant κ > 0 characterizes the maximum level of instability of the DGPs P1/
√
n,g,b. A

larger κ allows for a higher degree of instability in the fragility analysis.

Theorem 2 (Overfitting Tendency). Suppose Assumptions 1 – 6 hold. The overfitting of the

efficient GMM estimator θ̂e,n based on the estimation sample yne is defined as the worst-case

asymptotic expected overfitting measure. It is characterized by the dark matter measure:

sup
g∈Uκ(Q0),b∈B

ω(g, b, θ̂(1)
e ) = dθ,1 + c(π)%(θ0)κ2, (92)

where c(π) ≡ π
(

1 +
√

π
1− π

)
with 0 < π ≤ 1/2. Therefore, the asymptotic expected overfitting

of the efficient GMM estimator sequence θ̂e ≡
{
θ̂e,n

}
n≥1

can be arbitrarily large, being linearly

related to the dark matter measure.

31The method of first calculating the truncated statistic, then letting the ceiling l increase to infinity, is
commonly adopted in the literature for technical simplification (e.g. Bickel, 1981; Le Cam and Yang, 2000;
Kitamura, Otsu, and Evdokimov, 2013).
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The overfitting of the efficient GMM estimator has two sources. The first term dθ,1 captures

the traditional overfitting due to the sampling uncertainty in the estimation sample (see Theorem

3), while the second term c(π)%(θ0)κ
2 captures the overfitting due to instability. The latter

component is the focus of our paper and directly depends on the dark matter measure, which

vanishes if there is no local instability (i.e., κ = 0).

Overfitting of the Recursive GMM Estimator θ̃e,n.

Theorem 3 (Robust Estimation). Suppose Assumptions 1 – 6 hold. The overfitting of the

recursive GMM estimator θ̃e,n based on the estimation sample yne is defined as the worst-case

asymptotic expected overfitting measure, which only depends on the number of baseline parameters:

sup
g∈Uκ(Q0),b∈B

ω(g, b, θ̃(1)
e ) = dθ,1, (93)

where Uκ(Q0) ≡ {g ∈ GB(Q0) : |λ(g2)| ≤ κ}. Therefore, the overfitting of the recursive GMM

estimator sequence θ̃e ≡
{
θ̃e,n

}
n≥1

is determined by model parameter dimensionality, not affected

by the dark matter of the model.

The results above echo the traditional information criteria such as AIC and BIC, where

the number of parameters captures the overfitting tendency due to sampling uncertainty. The

recursive GMM estimator is not affected by the nontestable identification assumptions imposed

by EQ0

[
m

(2)
t (θ)

]
= 0; thus, its overfitting is not affected by instability. Importantly, Theorem 3

suggests that the recursive GMM estimator provides a robust estimator for models with large

dark matter measures (i.e., large %(θ0)), and thus, is subject to severe (local) instability concerns

(i.e., large Uκ(Q0)).

Instability of the efficient GMM estimator. Intuitively, the formal results about out-of-sample

fit can be appreciated through the sensitivity of efficient GMM estimators to local instability.

We consider a local perturbation of the model from Q0 in the direction of g ∈ GB(Q0) with

instability b ∈ B. According to Proposition 4 in Online Appendix 2.2,

wlim
n→∞

 1√
πn

∑
t≤πnmt(θ0)

1√
(1− π)n

∑
t>πnmt(θ0)

 =

[
me

mo

]
, with E

[
me

mo

]
=

[
νe(g, b, π)

νo(g, b, π)

]
, (94)
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where (me,mo) are independent normal variables with the identity covariance matrix and the

means as follows:

νe(g, b, π) ≡ λ(gT )√
π

 π∫ π

0

b(u)du

 and νo(g, b, π) ≡ λ(gT )√
1− π

 1− π∫ 1

π

b(u)du

 . (95)

Further, Proposition 7 in Online Appendix 2.2 shows that the in- and out-of-sample estimators

satisfy

wlim
n→∞

[ √
πn(θ̂(1)

e,n − θ(1)
e,n )√

(1− π)n(θ̂(1)
o,n − θ(1)

o,n )

]
=

[
θ̂

(1)
e

θ̂
(1)
o

]
, with E

[
θ̂

(1)
e

θ̂
(1)
o

]
= −(LF − LB)

[
νe(g, b, π)

νo(g, b, π)

]
,

(96)

where LB ≡ I−1
B DT

11Γm,1, LF ≡ Γθ,1I
−1
Q
DT , and (θ̂

(1)
e , θ̂

(1)
o ) are independent normals with covariance

matrix I−1
F . Therefore, the amount of estimator instability (normalized by covariance matrix

I−1
F ) as a function of moment instability is

I
1/2
F E

[
θ̂(1)
e,n − θ̂(1)

o,n

]
= βE [mo −me] , (97)

where β = −I
1/2
F (LF − LB). The largest sensitivity can be captured by the spectral norm of the

sensitivity matrix β; that is, ||β||S =
√
%(θ0). Thus, a large dark matter measure implies high

sensitivity in the form of instability of the efficient GMM estimator out of sample versus in

sample.

This result resembles that of Andrews, Gentzkow, and Shapiro (2017), but there are two key

differences. When there is no nuisance parameter (i.e., θ(1) = θ), LF is the same as the sensitivity

matrix presented by Andrews, Gentzkow, and Shapiro (2017). Relative to their measure, we

add a baseline model as a benchmark (replacing LF by LF−LB), and we normalize the expected

change in the efficient GMM estimator by its asymptotic covariance matrix in the full model

(multiplying E[θ̂(1)
e,n − θ̂(1)

o,n ] by I
1/2
F ).

6. Discussion: How to Deal with Dark Matter

We discuss what to do with models that rely excessively on dark matter. When the moment

restrictions that summarize a structural model have a large dark matter measure, the concern

of misspecification and instability can offset the efficiency gain in estimation from imposing

cross-equation restrictions. In such cases, a robust estimation procedure is particularly important.

One candidate robust estimation method is the recursive GMM estimation (e.g., Hansen, 2007b,

2012), described in Section 3.4. Although the recursive GMM estimator has worse in-sample fit
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than does the efficient GMM estimator, it can deliver better out-of-sample fit when the dark

matter measure is excessively large. While the original impetus of the recursive GMM estimation

was primarily computational, we advocate it as a robust estimation procedure against model

fragility. A hybrid estimator combining the efficient and recursive GMM estimators, by deviating

from the optimal weighting matrix toward the weighting matrix associated with the recursive

GMM estimator, is a potential way to construct estimators that optimally balance robustness

and efficiency. Thus, our dark matter measure can be used when trading off robustness against

statistical efficiency. We leave the systematic econometric investigation on optimal robust

estimation in the presence of large dark matter measures for future research.

Because of their lack of refutability under a conventional econometric framework, a robust

and powerful specification test is important when evaluating asset pricing models with excessively

large dark matter measures. In a companion paper, Cheng, Dou, and Liao (2021) extend the

econometric setting of this paper to a unified weak identification framework and provide a

specification test robust to severe information imbalances. The proposed robust specification

test is built on the C statistic of Eichenbaum, Hansen, and Singleton (1988) and the recent

developments in conditional inference using a sufficient statistic, which can be interpreted as

a quantity capturing information in the fundamental data decoupled from that of the asset

pricing moment restrictions. Such decoupling is crucial for preserving limited information in the

fundamental data and efficiently using it to evaluate the asset pricing moment restrictions.

Furthermore, our dark matter measure captures model complexity and thus can be used for

calibration comparisons. As shown in Section 4, different calibrations of the same model (with

the same functional form and moments) can have distinct dark matter measures, and those with

smaller dark matter measures are preferable due to a lower overfitting tendency (i.e., better

out-of-sample fit).

Even with the same economic specification and parameter values, two models can still differ

from each other in the pre-specified moment restrictions that modelers focus on, and one can

use our dark matter measure to exclude fragile moment restrictions. For example, the method

of stepwise forward moment selection adds additional moment restrictions to the baseline one

by one and features “pretesting” combined with a sequential search strategy. This method is

analogous to a stepwise forward strategy for variable selection in regressions. In each step, we

first pick out the set of additional moments that cannot be rejected by the robust specification

test of Cheng, Dou, and Liao (2021), then search for the moment that leads to the smallest dark

matter measure. We leave the formal investigation on how to use the dark matter measure for

optimal moment selection for future research.

The dark matter measure highlights the parameter combinations in which model fragility is

embedded. Such worst-case parameter combinations (or directions in the parameter space), as

multivariate sensitivity diagnostics, suggest avenues for improving the robustness of a model

50



by bring in additional data that better identify the problematic parameter combinations under

the baseline model. For example, Barro and Ursúa (2012) and Nakamura, Steinsson, Barro,

and Ursúa (2013) use international data to better estimate the distribution of consumption

disasters. Without having collected the comprehensive international macroeconomic data and

direct evidence on disasters, rare-disaster risk models (e.g., Rietz, 1988) must draw information

about the distribution of disasters from asset prices.

Moreover, from a modeler’s perspectives, one approach for improving model robustness is to

enrich the baseline model specification by endogenizing the key dynamics of the fundamental

variables and connecting the key baseline parameters to a broader set of fundamental data. For

example, Gârleanu, Panageas, and Yu (2012) and Kung and Schmid (2015) explicitly model

production and innovation to endogenize the consumption dynamics, with a particular focus on

low-frequency fluctuations, helping bring in data on the dynamics of research and development

(R&D) investment to strengthen statistical identification of the persistence parameter of the

aggregate consumption process. Dou, Ji, Tian, and Wang (2021) further connect the endogenous

persistent consumption growth with the dynamics of capital misallocation. Another approach is

to modify the belief formation mechanism so that the baseline model parameters including those

which govern the evolution of agents’ (potentially heterogeneous) beliefs are better identified by

the baseline moment restrictions and do not rely excessively on the restrictions implied by the

asset pricing moments (e.g., Barberis, Shleifer, and Vishny, 1998; Hansen and Sargent, 2010;

Chen, Joslin, and Tran, 2012; Greenwood and Shleifer, 2014; Nagel and Xu, 2019). Specifically,

the expectations of the agents inside the model can be better disciplined and identified by

micro-evidence from institution and household portfolio choice and survey expectations data in

those models, which may help reduce the amount of dark matter of the model. As pointed out

by Brunnermeier et al. (2021), by understanding investors’ asset demand curves and fund flows,

we can probably make the connection between asset prices and quantities more measurable and

tangible, thus hopefully connect the key baseline parameters to a broader set of fundamental

data and reduce the “dark matter” in asset pricing models (e.g., Koijen and Yogo, 2019; Dou,

Kogan, and Wu, 2020).

Lastly, our measure of model fragility helps identify situations in which it could be particularly

relevant to incorporate parameter uncertainty and agents’ robustness considerations within an

economic model. In the literature on structural estimation, including rational-expectations

econometrics, economic assumptions (i.e., cross-equation restrictions) have been used extensively

to increase efficiency of estimation of structural parameters.32 If a model is fragile, its cross-

equation restrictions may imply excessively tight confidence regions for the parameters, with low

coverage probability under reasonable parameter perturbations. An important potential source of

32Classic examples include Saracoglu and Sargent (1978), Hansen and Sargent (1980), and Campbell and
Shiller (1988).
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fragility in this context is that the structural model relies heavily on the agents possessing accurate

knowledge of hard-to-estimate parameters. Hansen (2007a) offers an extensive discussion of the

informational burden that rational expectations models place on the agents inside the model,

which is one of the key motivations for research on Bayesian learning, model ambiguity, and

robustness (e.g., Gilboa and Schmeidler, 1989; Hansen and Sargent, 2001; Epstein and Schneider,

2003; Klibanoff, Marinacci, and Mukerji, 2005). This literature explicitly incorporates robustness

considerations into agents’ decision problems, recognizing that the traditional assumption that

agents possess precise knowledge of the relevant probability distributions may not be justifiable,

and may serve as a source of economic dark matter. Therefore, our dark matter measure helps

detect situations in which parameter uncertainty and agents’ robustness considerations can

substantially alter the model’s implications.

7. Conclusion

In this paper, we propose a new tractable measure of model fragility based on quantifying the

informativeness of the cross-equation restrictions that a structural model imposes on the model

parameters — the dark matter measure. We show that our information imbalance measure

captures a useful model property intrinsically connected to the model’s tendency to over-fit the

data in sample. Our dark matter measure should be used as a calibration selection criterion for

structural economic models. When faced with a set of candidate calibrations consistent with

available data, selecting the less fragile calibrated model can be an appealing criterion from the

point of view of model refutability and out-of-sample performance.

The proposed dark matter measure is easy to implement. The worst-case direction provides

guidance on which features of the model are most vulnerable to in-sample overfitting, suggesting

which types of additional data or economic mechanisms would be needed to improve model

refutability and alleviate out-of-sample fit concerns.

Robust inference and testing econometric procedures need to be seriously considered when

the alert of excessively large dark matter is fired on a specific asset pricing model. Inspired by

the idea of recursive GMM estimators, we show that robust point estimation procedures become

very essential to ensuring low overfitting tendency (achieving reliable out-of-sample fit) in the

presence of excessively large dark matter measures. Moreover, we show that robust specification

testing procedures become vital to conducting a reliable model evaluation when the model under

scrutiny features severe information imbalances (e.g., Cheng, Dou, and Liao, 2021).

Our methodology has a broad range of potential applications. In addition to the examples

involving asset pricing, our measure can be used to assess the robustness of structural models in

other areas of economics, such as industrial organization and corporate finance.
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Appendix: Technical and Regularity Assumptions

We first discuss the relevant regularity conditions, including smoothness, rank, and identification.

Assumption 1 (GMM Regularity Conditions). We assume that the moment function m(·, θ), defined
on a compact set Θ, satisfies the following regularity conditions:

(i) there exists θ0 ∈ int(Θ) such that Q(θ0) is non-empty;

(ii) the moment restrictions are over-identified: dθ < dm;

(iii) EQ0 [m
(1)
t (θ(1))] = 0 and EQ0 [mt(θ)] = 0 only when θ(1) = θ

(1)
0 and θ = θ0;

(iv) mt(θ) is continuously differentiable in θ, and D has full column rank.

The compactness of Θ and the assumption θ0 ∈ int(Θ) are the standard regularity conditions to
ensure the uniform law of large numbers (ULLN) and the first-order-condition characterization of GMM
estimators, respectively. Condition (i) means that the moment restrictions are satisfied under θ0 and
Q0, though Q0 may not be the true DGP. Condition (ii) is the standard over-identification condition in
GMM (see Hansen, 1982). Condition (iii) is also a standard identification assumption to ensure that
the sequence of GMM estimators has a unique limit (see Hansen, 1982). Condition (iv) is the rank
condition for moment restrictions, and is the sufficient condition for local identification enabling us to
consistently estimate θ0.

Assumption 2 (Markov Processes). {yt : t = 0, 1, · · · } is a time-homogeneous Harris ergodic and
stationary Markov process satisfying the Doeblin condition.

A Markov process is Harris ergodic if it is aperiodic, irreducible, and positive Harris recurrent
(e.g. Jones, 2004; Meyn and Tweedie, 2009). Harris ergodicity guarantees the existence of a unique
invariant probability measure (e.g., Meyn and Tweedie, 2009). Given Harris ergodicity, stationarity
only requires that the initial distribution of y0 is the unique invariant probability measure. The Doeblin
condition implies that the φ-mixing coefficients φ(n) decay to zero exponentially fast (e.g. Bradley, 2005,
Section 3.2 and Theorem 3.4), which is useful for establishing the uniform law of large numbers (ULLN)
(White and Domowitz, 1984) and the central limit theorem (CLT) (e.g., Jones, 2004, Theorem 9).

In Assumption 3, we impose additional assumptions about the heteroskedasticity of the locally
unstable DGP under consideration, thereby extending the statistical setting of Andrews (1993), Sowell
(1996) and Li and Müller (2009) to the semiparametric setting.

Assumption 3 (Tail Properties of Local Instability). As n→∞, it holds that under Q0

(i) n−1 max1≤t≤n |g(yt−1,yt)|2 = op(1);

(ii) EQ0
[
|g(yt−1,yt)|2+ν

]
<∞, for some ν > 0.

Condition (i) of Assumption 3 is needed for establishing the results on the law of large numbers
(LLN) of Lemma 4 of Li and Müller (2009), which we use throughout our proofs. Condition (ii) of
Assumption 3 implies n−1

∑n
t=1 EQ0

t−1

[
|g(yt−1,yt)|2+ν

]
= Op(1) and n−1

∑n
t=1 |g(yt−1,yt)|2+ν = Op(1).

Condition (ii) is needed for establishing the local asymptotic normality (LAN) for time-inhomogeneous
Markov processes (see Proposition 3 in Online Appendix 2.1) and thus ensuring that the locally unstable
DGP is contiguous to the stable DGP (see Corollary 1 in Online Appendix 2.1). Condition (ii) is
also a commonly adopted assumption (e.g., Li and Müller, 2009, Lemma 1). A direct implication of
Assumption 3 is the LLN and CLT of partial summations of score functions.
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Assumption 4 (Global Identification Condition). There exists ε > 0 such that ϑ(Qs,f ) is unique if it
exists, for all Qs,f ∈ N(Q0) with the Hellinger distance H2(Qs,f ,Q0) < ε.

The following are regularity conditions on moments.

Assumption 5 (Tail Properties of Moments). We assume that the moment function m(·, θ), defined
on a compact set Θ, satisfies the following conditions:

(i) EQ0
[
|mt(θ0)|2+ν

]
<∞ for some ν > 0, and EQ0

[
supθ∈Θ ||∇θmt(θ)||2S

]
<∞,

(ii) n−1/2 max1≤t≤n |mt(θ0)| = op(1),

(iii)
∞∑
t=1

√
EQ0 [|γt|2] <∞, with γt ≡ EQ0 [mt(θ0)|F1]− EQ0 [mt(θ0)|F0],

where || · ||S is the spectral norm of matrices, and the information set Ft is the sigma-field generated by
{yt−j}∞j=0.

Conditions (i) and (ii) of Assumption 5 are needed to establish the functional central limit theorem
(invariance principle) of McLeish (1975) and Phillips and Durlauf (1986). Condition (i) imposes
restrictions on the amount of heteroskedasticity allowed in the observed moment series and their
gradients, which also ensures the uniform square integrability of the moment function. This condition
is commonly adopted in the literature (e.g., Newey, 1985a; Andrews, 1993; Sowell, 1996; Li and Müller,
2009, for similar regularity conditions). Condition (iii) states that the incremental information about
the current moments between two consecutive information sets eventually becomes negligible as the
information sets recede in history from the current observation. This condition ensures the martingale
difference approximation for the temporal-dependent moment function as in Hansen (1985), which
plays a key role in analyzing the semiparametric efficiency bound based on unconditional moment
restrictions (see Proposition 5 in Online Appendix 2.2 and Theorem 1 in Online Appendix 3).

Assumption 6 (Correct Baseline Structural Model). We assume that the true local DGP with a joint
distribution P1/

√
n,g∗,b∗ is such that g∗ ∈ GB(Q0), where

GB(Q0) ≡
{
g ∈ G(Q0) : λ(1)(g1) = 0 and λ(1)(g2) ∈ lin(D11)

}
. (98)

Linear operator λ(1)(·) is defined in (79).

Assumption 6 ensures that the baseline structural model is correctly specified because λ(1)(fn,t) =

λ(1)(g2)b(t/n) ∈ lin(D11) for every t ∈ {1, · · · , n}. We can replace (98) with a seemingly weaker

assumption λ(1)(g∗1), λ(1)(g∗2) ∈ lin(D11). However, this does not add generality because we can always

replace θ0 with a sequence of new reference points (reparametrization) to ensure that (98) is satisfied.
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