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1 Introduction

Imagine returning to a childhood home after many years. As you ride along, familiar

scenery drifts into view. Your thoughts, formerly so occupied with the latest work

deadlines and obligations, or pressing matters of health and family, drift back to the

last time you saw these sights. Pretty soon this drift is an unstoppable force, taking

you by surprise. You simply cannot stop thinking about your childhood, and about the

last time you saw these sights. You are surprised by the strength of the memories that

have come back. Where have they been all this time? It is as if there were a different

person hiding inside you.

What does this have to do with economics? The standard economic model of

decision-making seems to leave little role for this phenomenon. A typical modeling

device is to consider states of the world and probabilities assigned to each of them; the

agent then maximizes an expectation of a utility function Savage (1954). The prob-

abilities come from data, perhaps, and the utility function from an unknown source,

but in any case the process seems far removed from the description above.

The subject of this paper is the role of encoding and retrieval of information in

decision-making. Linking the encoding and the retrieval event is the idea of context.

In the above example of a trip back to a childhood home, context is drawn from the

physical environment, and drives memory retrieval, in an effect known in the psychol-

ogy literature by the evocative term, “jump-back-in-time.” In important prior work,

Bordalo et al. (2020b) use a model of context to explain the formation of norms that

drive decisions. Theirs is the first paper in economics to make an explicit link between

the important idea of contextually-driven retrieval and economic decisions.

In the model of Bordalo et al. (2020b), context is static and is inherited directly

from the environment. Consider, for example, the decision to purchase a coat from a

catalogue. The price of the coat is in the catalogue, but what is the quality, namely

the utility it will bring to the agent? If it is cold outside, the agent will bring to mind

other instances of coat-wearing when it is cold, and, as in the empirical literature, is
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more likely to order a sweater (Conlin et al., 2007). Bordalo et al. (2020b) consider

many such examples, and link the idea to such notions as the tendency to notice price

changes that may explain the affect of monetary policy on the real economy.

Bordalo et al. (2020b) introduce contextual retrieval into economic modeling, and

show how it cannot be ignored in models of decision making. And yet, perhaps, there

is more to the story. Consider, for example, the “jump-back-in-time” effect, which is

not only well-known to most of us, but is well-studied and comes with its own distinct

neural signature (Howard et al., 2012). The jump-back-in-time does not fit easily into

a static framework. For a ”jump” requires a before and an after, and therefore a

stochastic process. Moreover, what happens is more than ”remember better” – it is an

entire set of memories that simply might not have occurred to one before. It is dynamic,

and yet somehow beyond the reach of rational expectations as usually defined. Key

to this notion is a persistent mental state that reacts to the outside world, and yet

stands outside it – a context “layer” (or code, or representation) that differs from the

features representing the direct experience.1 This persistent mental state is simple and

convincing. Most people ”know” such a state exists. It is a piece missing from static

context models.

Examining empirical findings in financial economics, one is immediately confronted

with evidence that could hardly be explained without a model of contextually driven

recall. For example, Cuculiza et al. (2020) show that analyst earnings forecasts become

more negative upon anniversaries of terrorist attacks (as well as following the attacks

themselves). Ramadorai et al. (2020) show that investors who were randomized into an

IPO in which they received shares in companies that subsequently performed well not

only purchase similar stocks, but trade more in general. Bassi et al. (2013) show that

sunshine and good weather promote risk-taking behavior. The literature has identified

both a January effect (Keim, 1983) and a Monday effect (Keim and Stambaugh, 1984),

1In contrast, the model of Bordalo et al. (2020b), is based in psychological studies such as Godden
and Baddeley (1975) where a static context context is embedded in the environment. In this type of
model the feature layer of the environment and the context layer are the same.
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January and Monday both having an important role in context reinstatement. And,

despite there being no apparent news, the Monday following Black Monday, October

27th, 1987 featured a one-day negative return of -8% and sharply elevated implied

volatility.

Are these one-off findings, or do they represent the tip of a context-driven iceberg?

Two papers making the explicit connection are Cohn et al. (2015) and Guiso et al.

(2018). The former examines risk-taking by professional investors. When cued with

a stock market decline, these investors are less likely to choose a risky gamble. Guiso

et al. (2018) show that following the financial crisis, investors were also less likely to

take a gamble. To draw a direct connection to risk aversion, they showed that when

college students were shown scenes from a horror movie, they were also less likely to

take a gamble. These studies show that a recent “experience” – even a simulated one

– affects decision-making, raising the question of how many decisions that we make,

including the ones that drive asset prices, are driven by experience.

Below the tip of the iceberg is the vast and growing field evidence of the important

role of experience in shaping life decisions. Malmendier and Nagel (2011) showed that

early life experience affected stock market participation; besides rigorously showing

a role for experience effects in the important decision about whether to participate

in the stock market, Malmendier and Nagel (2011) provide suggestive evidence for

their experience-driven variable explaining fluctuations in asset valuation over the last

half-century; a finding that Nagel and Xu (2018) make more precise. The literature

has shows similar effects in domains ranging from everyday spending decisions to the

setting of interest rate policy (Malmendier and Nagel, 2011, 2016; Malmendier et al.,

2017; Malmendier and Shen, 2018). These models are very different from the above in

that there is no cue; yet in the background is very much a role for memory.

While not obvious, there is a strong connection between these early-life experience-

based accounts and contextually-driven retrieval. There are two parts to the memory:

one is encoding, the other retrieval. Key to these descriptions is that early experience

matters more than it “should,” given the vast array of data were are confronted with.
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What memory models allow us to understand is that previous experience – often early

in life – shapes how we interpret the data. In some cases, this effect is so extreme

that we cannot ignore it, as in post-traumatic stress disorder (Rubin and Berntsen,

2009). In the context-based model in this paper, early experience matters because it

is encoded, and, when it is recalled, it is encoded again. Agents’ thoughts become the

very data on which they rely for future decision-making.

In this paper, we propose a memory-based model of decision-making under uncer-

tainty. A wealth of data support the idea of a human memory system that maintains a

record of associations between experiential features of the environment, and underlying

contextual states (Kahana, 2012). This record of associations, together with inference

about the current contextual state, constitutes a belief system that could potentially

affect any kind of choice under uncertainty. This belief system responds to the cur-

rent environment through retrieved context. The mechanism of retrieved context is

how memory “knows” what information is most relevant to bring forward to our at-

tention at any given time, and for this reason offers the potential for an account of

optimality of memory (Azeredo da Silveira and Woodford, 2019). At the same time,

any new experience, and the context itself, is then stored again in the memory sys-

tem (Howard and Kahana, 2002). We apply this model to three illustrative examples:

early-life decision-making, asset pricing around the financial crisis, and specifically the

experiment of Guiso et al. (2018).

Whereas many applications of psychological principles to economic decision making

have focused on cognitive biases such as loss aversion and narrow framing (see Barberis

(2013)), or on limited attention (see Gabaix (2019)) the literature on human learning

and memory offers a different perspective. Three major laws govern the human memory

system: similarity, contiguity, and recency. Similarity refers to the priority accorded

to information that is similar to the presently active features, contiguity refers to the

priority given to features that share a history of co-occurrence with the presently active

features, and recency refers to priority given to recently experienced features. All three

“laws” exhibit universality across agents, feature types, and memory tasks and thus
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provide a strong basis for a theory of economic decision-making.

While few economic models explicitly incorporate these laws, there are exceptions.

Mullainathan (2002) proposes a model in which agents tend to remember those past

events which resemble current events, and in that way incorporates associative memory.

Perhaps most relevant to the present model is the fact that Mullainathan directly

incorporates the fact that memory for a just-remembered item is greater than otherwise.

This effect, sometimes termed rehearsal, is incorporated in our model through the idea

that thoughts become data. Another means of modeling associative memory is that

of Gilboa and Schmeidler (1995), who replace axiomatic expected utility with utility

computed using probabilities that incorporate the similarity of the current situation to

past situations. Other models directly model the principle of recency using a constant-

gain model (Nagel and Xu, 2018), extrapolative expectations (Barberis et al., 2015),

or other non-Bayesian expectations-formation mechanisms (Fuster et al., 2010).

The remainder of the paper is organized as follows. Section 2 describes the model

and derives general properties. Section 3 describes the psychological and neural basis

for the model. Section 4 discusses applications to problems in economics and finance.

Section 5 briefly describes alternative approaches. Section 6 concludes.

2 Integrating Memory into Decision Making

We consider an agent who develops memories by experiencing events, and then makes

decisions. We represent one occurrence by Yt and the time series of these events

using {Yt}. We assume Yt can take on one of n values, which we group together in

Y = {y1, . . . , yn}. We also assume a persistent latent process Zt taking on values in

Z = {z1, . . . , zm}. Let pZik denote the probability of transition from state i to state

k: pZik ≡ Prob(Zt+1 = zk |Zt = zi). Let p(yj|z) denote the probability that Yt = yj

conditional on Zt = z for j = 1, . . . , n. It is as if nature delivers a set of persistent

states about which the agent can partially learn through observation. This is a standard

set-up in macroeconomics and finance (Hamilton, 1994; Sims, 2003).
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We consider a static decision problem under uncertainty. In each period, the agent

makes a choice denoted by π, perhaps subject to constraints. The agent has a utility

function V that depends on π and on the outcome of the state of the world next period.

We make the standard assumption that only outcomes traced to observables matter to

the agent.2

Assumption 1. The agent solves

max
π

EYt [V (Yt+1, π)] (1)

where EYt is the time-t subjective expectation over Yt+1.

The expectation EYt is the subject of our paper, and will be described more fully in

the sections that follow.

2.1 Human memory

A standard approach to the problem outlined above is to endow an agent with a system

of prior beliefs on the joint dynamics {Yt, Zt}. Based on this prior and on the data,

which are assumed to be equally at the agent’s fintertips at all points in time, the

agent can infer a posterior distribution over unknown quantities of interest such as

transition probabilities and latent states. Depending on how restrictive one makes the

agent’s prior distributions, the problem becomes more or less well-identified, with an

unavoidable tradeoff between bias and precision. Thus the agent’s inference problem

is a difficult one.

The literature on human memory offers an alternative approach to the problem

of decision-making under uncertainty. We draw on the vast literature describing the

influence of past experience on present behavior, a topic that has occupied the atten-

tion of experimental psychologists for more than a century (Ebbinghaus, 1913; Müller

2Assumption 1 implies that the latent state, and hence context, does not play a direct role in utility.
The agent is only influenced by, say, mood through what mood tells the agent about the distribution
of future features.
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and Pilzecker, 1900; Jost, 1897; Müller and Schumann, 1894; Ladd and Woodworth,

1911; Carr, 1931). Because memories of recent experiences readily come to mind, this

early work sought to uncover the factors that lead to forgetting. Experimental find-

ings quickly challenged the folk assertion that memories decay over time, eventually

becoming completely erased. Rather, they revealed that removing a source of interfer-

ence, or reinstating the “context” of original learning, readily restored these seemingly

forgotten memories (McGeoch, 1932; Underwood, 1948; Estes, 1955).

The original view of context was that it consisted of latent, background information

unrelated to the present stimulus. Experiments often treated context as an aspect

of the external environment. In contrast to this early work, Howard and Kahana

(2002) proposed a model in which context became a mental representation of what

had formerly been thought of as the physical environment. Context went from being

an external physical concept to the internal state of the agent. In the Howard and

Kahana theory, which we term retrieved context theory, the set of psychological (or

neural) features that represent a stimulus enter into association this with internal

mental state. The database of such associations form the basis for performance in

recall, recognition, and categorization tasks. Subsequent work, e.g. Polyn et al. (2009)

Lohnas et al. (2015), has thus emphasized the view of context as an internal process,

evolving endogenously based on the stimuli which the agent encounters.

In a free recall experiment, the researcher presents subjects with a list of of items,

often words, which they can recall in any order. We draw an analogy from this list

of items to the features that nature presents to the agent (an analogy that is implicit

in the notion of the free recall experiment). Howard and Kahana (2002) model these

features (words) as basis vectors in a large n-dimensional space ft. Their key innovation

is the idea of a mental context that links these features through time:

xt = (1− ζ)xt−1 + ζxint , (2)

where xin (the “in” stands for input) is the aspect of context that arises (is retrieved)
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from the current environment, and where ζ lies between 0 and 1.3 Context is an m-

dimensional vector. As we will see, the context vector contains the decision-maker’s

subjective probabilities of latent states.

A defining assumption of retrieved context theory is the manner in which the agent

retrieves context from the environment. The agent has a prior record of associations

between features and internal context, stored in a “memory matrix.” Retrieved context

arises from multiplying current features ft with the memory matrix:4

xint ∝Mt−1ft.

where Mt−1 is the value of the memory matrix as of time t−1. It is convenient to scale

xin so its elements sum to one:

xint ≡
Mt−1ft
||Mt−1ft||

, (3)

where, unless stated otherwise, || · || denotes the sum of the elements in the vector.5

After observing ft and forming xt based on retrieved context xint , the memory matrix

updates based on the outer product between current context and features:

Mt = Mt−1 + xtf
>
t . (4)

The current state for the agent is then summarized by m× n memory matrix Mt and

m× 1 vector xt.
6

3Formally, features fi are elements of Bn ⊂ Rn, where Bn is a set of basis vectors that spans
n-dimensional space. Context is an element of Am ⊂ Rm, for m ≤ n. That is Am = {xt =
[x1t, . . . , xmt]

> ∈ Rm | ι>xt = 1}, where ι denotes a conforming vector of ones. We will have use for
features that are not basis vectors, in which case they are elements of the unit circle in n-dimensional
space.

4The symbol ∝ denotes equality up to multiplication by a positive scalar. Its use implies that we
only care about the magnitude of the elements of the vector relative to one another, not in absolute
terms.

5Because all the vectors we consider have non-negative entries, || · || is a valid distance measure;
in fact it is distance under the L1-norm. The memory literature, e.g. Polyn et al. (2009), uses the
L2-norm, with xt = ρtxt−1 + ζxint and ρt ≈ 1− ζ, to maintain xt on the unit circle.

6To complete the model, the agent must possess initial associations M0. How the agent comes by
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To understand the implications of (3) and (4), consider what happens when the

agent is cued with features ft. This cuing will recover all the contexts previously

associated with those features. Retrieved context equals:

xint =
Mt−1ft
||Mt−1ft||

∝ M0ft +
t∑

s=1

(xsf
>
s )ft

∝ M0ft +
t∑

s=1

xs(f
>
s ft). (5)

A benchmark case (Assumption 2 below) has f>s ft equal either to zero or one. It is

zero if fs 6= ft; it is one if fs = ft. Equation 5 shows that features evoke the past

contexts under which they are experienced. A context xs appears in the sum in (5)

if the corresponding fs equals ft; otherwise it does not. The interpretation remains

valid even when fs are not orthonormal basis vectors. Even when features are not

orthonormal, (5) is an average of past contexts under which similar features were

experienced.7

According to retrieved context theory, context determines what an agent is most

likely to remember. Figure 1 illustrates the mechanism. The current state of context

contains a component that overlaps with the contexts of recent experiences, and a

retrieved context component that overlaps with items experienced close in time to the

just-recalled item(s). The figure illustrates these two effects as spotlights shining down

on memories arrayed on the stage of life. Memories are not truly forgotten, but just

obscured when they fall outside of the spotlights. Section 3 discusses the implications

of this model for memory, and in particular for the temporal contiguity property in the

introduction.

The theory developed by Howard and Kahana (2002), Polyn et al. (2009), and

these associations is beyond the reach of this paper.
7The theory is silent on initial associations M0. It is convenient to assume that M0 is of full rank

so that any observed features will retrieve a non-zero context.
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Lohnas et al. (2015) among others treats memory as an outcome of a mechanistic

process. There is no decision-maker maximizing an objective function, nor is there

an underlying probability space on which such an agent would form beliefs. The first

step in mapping their framework to decision-making under uncertainty is to connect

features with observable aspects of the environment:

Assumption 2. At each time t, an n-dimensional vector ft characterizes the physical

environment, with

ft(j) =

 1 if Yt = yj

0 otherwise.

That is, ft = ej, the jth standard basis vector in n-dimensional space, where j corre-

sponds to the state of Yt.

The assumption of basis vectors for physical features is analytically convenient and

standard in the memory literature. It is less restrictive than it may appear, given

that n could be very large.8 It will at times be useful to consider features arising, for

example, in an experiment, and also as part of the agent’s recollections. These may

not be basis vectors.

The second step in linking memory to decision-making is to relate the contents of

memory to subjective probabilities.9 Context forms the probabilities over latent states.

Then, (2) and (5) imply that beliefs about latent states today are a weighted average

of such beliefs in the recent past and over the agent’s lifetime with the weighting on

the latter determined by similarity of features.

Assumption 3. At time t, the agent assigns the probability xt(i) to state i, and acts

as if this probability is permanent.

8A realistic dimensionality n for the features space is on the order of 107, an estimate of the number
of neurons in the brain involved in memory storage.

9Behind Assumption 3 is the idea that what memory brings to mind is the basis of probabilities that
inform financial decisions. That there should be some link between memory and beliefs is confirmed
by recent experimental work in finance (Gödker et al., 2019; Enke et al., 2020). The second part of
the assumption, namely that beliefs are permanent, pertains to the agent’s view of future self. It is
necessarily more speculative, but it is plausible given the observed power of context.
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To motivate how a model of memory could becomes model of beliefs and ultimately

choice, it is helpful to understand what happens when latent states are observed. The

key insight is that (??) counts co-occurences. If xt and ft equal the ith basis vector

and jth basis vector respectively, then xtf
>
t represents exactly one occurrence of state

Zt = zi and Yt = yj. Elements appear in Mt in proportion to their relative occurrence

in the agent’s environment.

Theorem 1. Assume context corresponds to the underlying state Zt, and that it is

fully observable. Then Mt correctly encodes posterior probabilities of each state.

Given that Mt “counts” occurences, a direct implication of (??) is that retrieved

context has an interpretation as a conditional probability:

Theorem 2. Consider a Bayesian agent who assumes {Zt} is iid and who interprets

Mt−1 as containing (known) probabilities of joint occurrences of {Zt} and {Yt}. Then

retrieved context (3) is the conditional probability of Zt given Yt.

These analogies to Bayesian updating are limited because they assume states are

observed, and say nothing yet about dynamics. Before considering these aspects of

the model, which will lead to departures from Bayesian updating, we turn to one more

important basic property:

Now suppose context is latent and evolves endogenously. Equation 4 still implies

that the agent stores joint occurrences of context and features. Supposing that ζ =

1, the agent will retain the incorrect associations, regardless of how much data are

observed:

Theorem 3. Assuming ζ = 1, Mt evolves such that the relative magnitudes of the

elements in each column remain invariant while the magnitudes across columns change.

That is, the agent correctly estimates the occurence of features, but incorrectly associates

features with context.

In the special case of ζ = 1,

xt+1 = xint+1 = αMtft+1,
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where α is a positive scalar of proportionality. Consider the formation of the new

association:

Mt+1 = Mt + xt+1f
>
t+1

= Mt + αMt

(
ft+1f

>
t+1

)
. (6)

Suppose, for example, that ft+1 = e1, the first basis vector. Then ft+1f
>
t+1 is the

matrix with 1 in the first diagonal element and zero otherwise. Equation 6 takes the

first column of Mt and multiplies it by 1 +α, leaving the rest of the matrix unchanged.

Consider the intuition behind Theorem 1: the agent experiences events and stores

them in memory. Similar reasoning is at work in Theorem 3: the agent “experiences”

joint occurrences of xt and ft and stores them in memory (the agent’s thoughts become

data). However, xt is not reality; rather it is context that is retrieved based on prior

associations from features. The agent nonetheless stores it as an event in memory. The

agent correctly learns the frequency of outcomes of {Yt}, but matches this frequency

incorrectly to the underlying states.

This intuition extends to ζ < 1. Note that columns of M translate directly into

which context is retrieved; for this reason, we describe the more general result directly

in terms of retrieved context. Rather than being equal at all times, retrieved context

decays at a rate that is slower than exponential, and at an ever slower rate as time

goes by. The decay takes place in “event time,” not in calendar time. For example,

consider, as we will in Section 4, the experience of stock market losses. Suppose these

take place at a sequence of times t1, t2, . . .. For the first loss that the agent experiences,

retrieved context is determined by the initial matrix M0. For the second loss,

xint2 =

(
1− 1− ζ

2

)
xint1 +

1− ζ
2

xt2−1,

where xt2−1 is the context just before the loss. We generalize this to an arbitrary

number of losses in the following theorem:
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Theorem 4. Consider events occurring at a subsequence of times {t1, t2, . . . , t`, . . .}.

Assumption 2 implies that retrieved context follows the vector process

xint` =

(
1− 1− ζ

`

)
xint`−1

+
1− ζ
`

xt`−1 (7)

for ` > 1. For the first occurrence of the event (` = 1), xint1 ∝ M0ei, where ei is the

basis vector corresponding to the event.

Theorems 3 and 4 give two key properties of the model: thoughts become data

and recency that is independent of scale. Theorem 5 describes another key property:

similarity, namely better memory for an item that is similar to the just-remembered

item.

Theorem 5 (Similarity). Assume that f̂t is geometrically close to ft in a vector space.

Then the context retrieved by f̂t is close that that retrieved by ft.

Similar features evoke similar contexts; but similar features are not always relevant.

For example, similarity can arise because of anniversary effects, or through, say wit-

nessing a scene from a movie. These events powerfully bring to mind a context similar

to the original. The model shares the basic similarity mechanism with Bordalo et al.

(2020b), who model context as an exogenous cue.

So far, we have shown similar features evoke similar contexts (a step necessarily

absent in a model with exogenous context). Section 2.3 will show how context then

determines what is remembered, and hence what the agent believes.

2.2 Implications of autoregressive context

Prior to the full specification of beliefs, we briefly discuss properties implied by autore-

gressive context. Many of these ideas have antecedents in the behavioral literature,

and they will be useful in the applications.

Gennaioli and Shleifer (2018) posit that agents have a tendency to neglect risk.

One possible source for this effect is contextual drift.
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Theorem 6 (Neglected risk). Fix a state i and assume that between time t and t′,

the agent fails to experience features associated with state i. Further assume mutually

orthogonality of features experienced between t and t′.10 Then the probability the agent

places on state i decays exponentially: xt′(i) = (1− ζ)t−t
′
xt(i).

More generally, (2) implies that recently-experienced features are over-represented

in the agent’s context xt, providing a mechanism for extrapolative beliefs (Barberis

et al., 2015). It is, however, also the case that agents’ beliefs also can adjust quickly

based on new information arising from retrieved context. Beliefs can jump if fea-

tures are sufficiently novel. The following theorem analyzes when this “jump” effect

dominates, and when more traditional recency (neglected risk, extrapolative beliefs)

dominates: 11

Theorem 7 (Short-run under-reaction; long-term reversal). Consider a state i that

is uniquely associated with a latent state, and assume correct associations at t (see

Appendix B). Assume that t is large, or that Yi contains many elements. Then

1. If features associated with i are novel, and if states are persistent, upward revi-

sions to beliefs about i tend to be followed by further upward revisions.

2. If the agent has repeatedly experienced features associated with i, then beliefs tend

to reverse.

There is another sense in which the agent over-reacts. If states are sufficiently

transitory, the agent confuses a conditional probability with an unconditional one:

10The assumption of independent features allows us to focus on the exponential decay of context,
suppressing the creation of associations in M (explored at length later in the paper). Orthogonal
features, are used in the memory laboratory to reset context. These features consist of “distractor
tasks,” such as asking subjects to solve arithmetic problems, or to view outdoor scenes (Howard and
Kahana, 1999; Manning et al., 2016).

11For models and for a discussion of the evidence on under-reaction and reversal, see Daniel et al.
(1998), Barberis et al. (1998), and Hong and Stein (1999). The price momentum effect is the finding
that stocks with the highest price appreciation measured over the past 12 months outperform those
with the lowest price appreciation (Jegadeesh and Titman, 1993). These gains partially reverse one
year later. Macroeconomic expectations appear to under-react and then overshoot Angeletos et al.
(2020), as do earnings expectations Bordalo et al. (2020a).

15



Theorem 8 (Over-reaction). When context is sufficiently persistent and states transi-

tory, upward revisions to beliefs about state i tend to reverse.

It is useful to compare the context updating equation to the physical updating

process. Let E denote the expectation calculated by the econometrician. Revisions in

beliefs equal:

Et[∆xt+1(i)|∆xt(i) > 0] ≈ ζ(pZii − xt(i))

≈ ζ
(
pZii − ((1− ζ)xt−1(i) + ζ)

)
, (8)

because xint+1(i) = 1. Consider first the case with pZii high and xt−1(i) low (think of it

as zero). This is the setting of the first statement of Theorem 7. Beliefs under-react to

news because the persistence of state i is greater than the weight of the new information

is context. Slow adjustment of context implies that the agent cannot “take in” all the

information at once. Now consider pZii high, xt−1(i) high (think of it as one). This is the

setting of Theorem 6 and of the second statement of Theorem 7. If the agent has seen

sufficient observations consistent with a state, the agent forgets that other states are

possible. Beliefs predictably reverse because of mean-reversion in the state. Finally,

consider the case of pZii low. This is the setting of Theorem 8. If the agent puts relatively

high weight on new information, or if the state is transitory, then then the agent over-

reacts. In the last two cases, the agent forgets that the world may be different next

period. Note that our model generates over-reaction from contextual dynamics; this

is contrast to Mullainathan (2002) and Bordalo et al. (2020b), in which over-reaction

through a mechanism akin to similarity, namely that irrelevant information acts as a

cue. Our model also incorporates this latter effect, but over-reaction can occur even

when the agent’s associations are correct.

While optimality of memory lies outside the scope of this study, one might conjec-

ture that slow context evolution protects against over-reaction. If the state is transitory,

then it is indeed inappropriate to react strongly. On the other hand, times might call

for an instantaneous shift in perspective, as captured by Theorem 8. Understanding
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the constraints on storage and retrieval is a prerequisite to a study of optimality of

memory; Azeredo da Silveira and Woodford (2019) offer a theory of such constraints.

A constrained-optimal view of memory might shed light on when there is sufficient in-

formation for an agent to act as Bayesian models specify, and when the agent instead

must rely on the mechanisms that we emphasize here.

2.3 Features retrieval

The previous analysis still leaves unanswered the question: how do agents go from

probabilities on underlying states in Z (given by context) to outcomes in Y? While

nature supplies the true p(y|z), agents must infer this distribution. Consistent with

the literature on human memory, we assume that agents draw on their memories in

forming this distribution, and that the same associative principles apply. Besides being

a necessary step in implementing our approach to decision-making, temporal contiguity

(which the next section describes) requires a features retrieval step.

Consider the free recall experimental framework from Section 2.1 used to motivate

internal context. In this experimental paradigm, subjects recall words in any order.

The step from context to features is known as features retrieval. This features retrieval

step (what features a current context calls to mind) will give us the probabilities that

underly the decision problem (1).12

First define features that are retrieved by a vector putting 100% weight on context

i: 13

f in
i,t ≡

M>
t−1êi

||M>
t−1êi||

. (9)

This equals the conditional probability p(y | zi). Averaging over these vectors give us

the subjective probabilities underlying EYt .14

12While we model features retrieval in a way that supports Bayesian updating as a special case,
the memory literature tends to assume a retrieval rule that is closer to winner-take-all (“stronger”
features, i.e. those with a higher weight in (10), inhibit the recall of weaker ones), e.g. a “leaky
accumulator” model.

13The notation êi denotes features in m-dimensional context space, to distinguishing them from
features basis vectors ej .

14Implicit in Assumption 4 is an assumption on timing. The agent enters period t with memory
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Assumption 4. Define f in
i,t as (9) and

f in
t ≡

m∑
i=1

xt(i)f
in
i,t . (10)

Then f in
t are the probabilities that define EYt ,

Theorem 9. Under the conditions of Theorem 2, and under Assumption 3, features

(10) represent the probability of distribution over Y given Zt.

The existence of retrieved features that are not the same as physical features raises

the question: which are encoded in (4)? A natural assumption is that it is the physical

features, However, while economic models assume agents see reality unfiltered (Wood-

ford (2020) discusses exceptions), neurobiology supports a notion of filtering based on

memory-driven expectations (Reynolds and Chelazzi, 2004; Makino and Komiyama,

2015). What is retained in each re-remembering is not exactly what occurred, but

rather a distorted copy of the original event (Rubin et al., 2008). Experimental evi-

dence supports encoding of retrieved features at study (Greene, 1992; Siegel and Ka-

hana, 2014), and at test (Zaromb et al., 2006; Howard et al., 2009; Miller et al., 2012;

Kuhn et al., 2018). Encoding of retrieved features is a form of rehearsal, as discussed

by Mullainathan (2002). It is realistic to assume that sometimes the agent encodes

retrieved features and sometimes physical features. When one or the other occurs is

outside the scope of the model.

Features retrieval implies similarity: better memory for an item similar to a just-

remembered item. Features retrieval also implies an intuitive property of the model:

similar contexts imply similar beliefs. In fact, beliefs are a weighted average of beliefs

held under similar contexts. The process of features retrieval and encoding is how

disparate features become “glued” together. As we show in the following section, it is

matrix Mt−1 and context xt−1. The agent then experiences features ft, and forms retrieved context

xint and using xt−1, context xt. The agent then uses Mt−1 and xt to form f in
t . Only after this is

Mt−1 updated to Mt. This assumption mirrors that in the memory literature, and implies a memory
“cycle” through with Mt−1 remains constant.
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key to understanding temporal contiguity and the jump back in time.

2.4 Temporal Contiguity

Temporal contiguity serves as a fundamental organizing principle of the memory system

(Healey et al., 2019). In this section we show, by means of an example, how the

model accounts for temporal contiguity effects. We consider a stylized model of the

Great Depression, in which an economic collapse follows a financial crisis. Subsequent

to the Great Depression, many narratives emphasized the importance of the stock

market crash of 1929, runs on financial institutions, and the connection between these

purely financial events and the subsequent period of high unemployment and sharply

decreasing output and consumption from which the Great Depression received its name.

But from where did these narratives arise in the first place?

Let x1929 denote context as of 1929, which we refer to as time t − 1. Let fcrisis be

features associated with the failure of a financial institution, also occurring at t − 1.

Equation 4 implies that this combination of features and context become associated in

memory:

Mt−1 = Mt−2 + x1929f
>
crisis. (11)

Let fdepression be features associated with depression occurring in the next period t.

Call xindepression the context retrieved by features fdepression:

xindepression ∝Mt−1fdepression. (12)

Retrieved context xindepression is the agent’s state of mind when confronted with the

observable features of the Great Depression, such as mass unemployment. Calling this

state of mind xindepression is simply terminology; there need not be anything “depression-

like” about this context. Features fcrisis and fdepression are orthogonal, so that even

though Mt−1 appears in both (12) and (11), the occurrence of the crisis nothing to do

19



with the retrieval of xindepression.15

Context evolution (2) implies that the retrieved depression context combines with

previous context, to create the current context:

x1930 ≡ xt = (1− ζ)x1929 + ζxindepression, (13)

where x1929 is the time-(t−1) context and x1930 is the time-t context.16 Crucially, x1930

is a weighted average between xindepression and x1929, even if the events leading to the

retrieval of xindepression had nothing to do with the events of x1929. From (4), it follows

that

Mt = Mt−1 + x1930f
>
depression. (14)

Thus far, it is clear that fdepression and x1930 are associated, as are fcrisis and x1929. What

is not yet clear is how fcrisis relates to fdepression.

Suppose fcrisis appears at some future time t′ > t. As described in Theorem 8, there

is a jump back in time – the agent retrieves x1929:

xint′ ∝ Mt′−1fcrisis

∝
(
M0 +

t−2∑
s=1

xsf
>
s + x1929f

>
crisis +

t′−1∑
s=t

xsf
>
s

)
fcrisis (15)

∝ x1929. (16)

To obtain (16) from (15), we assume fcrisis only appears once – in 1929, and that there

are no other prior associations with fcrisis. These assumptions simplify the algebra

without changing our conclusions, and we relax them in Appendix E. In any case, a

financial crisis retrieves x1929 – a crisis retrieves the context of the previous crisis. It

does not retrieve x1930. And yet the agent believes a depression is imminent. Why is

this?

15More precisely, xindepression would be retrieved whether or not the crisis had occurred.
16For simplicity, we refer to this as context in 1930, even though unemployment rose throughout

the early 1930s.
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The reason lies with the features retrieved by x1929:
17

f in
t′ ∝ M>

t′−1x1929

∝ M>
0 x1929 +

t′−1∑
s=1

(fsx
>
s )x1929

∝
(
M>

0 +
t−2∑
s=1

fsx
>
s

)
x1929︸ ︷︷ ︸

prior associations

+ fcrisis +
t′−t∑
l=1

(1− ζ)lft+l−1︸ ︷︷ ︸
depression features

+ · · · (17)

The re-appearance of the crisis retrieves features associated with x1929 prior to the

actual crisis (the first term in (17)). They retrieve fcrisis, because x1929 is the very con-

text under which the crisis was experienced. Most importantly, they retrieve fdepression

because x1929 was part of context (13) at the time of depression. The time–t term in

(17) equals

ftx
>
t x1929 = fdepressionx

>
1930x1929

= fdepression
(
(1− ζ)x1929 + ζxindepression

)>
x1929

= (1− ζ)fdepression

Thus re-appearance of a crisis retrieves the depression. If the depression features had

previously continued for more multiple periods, as in fact occurred, the crisis context

re-instates these as well, with geometrically declining weights.

Because we do not take a stand on whether context x1929 is retrieved at some future

time, there is a potential for additional terms in (17). That is, xins , for s = t+1, . . . , t′−1

might be correlated with x1929. If, for example, a financial crisis occurred again while

the agent was already in context x1930, that would lead to additional terms in (17)

containing fdepression and would strengthen the associations between depressions and

crises. If, on the other hand, a crisis occurred during a context very different from

17To simplify the algebra, we assume that xt′ ≈ xint′ as will be the case if crisis features are persistent.
We also assume xt′ is a basis vector. We relax these assumptions in Appendix E.
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x1929, the additional terms in (17) would be orthogonal to fdepression, and the association

would weaken.

Note that retrieved features (17) form the probability distribution for the agent’s

expectations EY , after having witnessed a financial crisis. We have seen that temporal

contiguity leads the agent to place additional weight on the depression outcome. How

much weight? One way to answer this question is to compare the probabilities to those

retrieved by the depression: fdepression retrieved by x1929 versus x1930. Substituting in

the latter, we find:

f in
depression ∝

(
M>

0 +
t−2∑
s=1

fsx
>
s

)
x1930︸ ︷︷ ︸

prior associations

+ (1− ζ)fcrisis +
t′−t∑
l=1

(1− ζ)l−1ft+l−1︸ ︷︷ ︸
depression features

+ · · · (18)

Both retrieve depression features, and with similar weights. This is purely because

they occurred close in time.

It is useful to compare the role of associations in this model to a Bayesian one. Con-

sider the reasoning that lies behind the formation of subjective Bayesian probabilities.

The agent conceptualizes states of the world. The agent knows features that occur in

each state of the world. There is a concept of events occurring “at the same time”

– and yet in reality hardly anything occurs truly contemporaneously. If the agent’s

conceptualization of the underlying states happens to be correct, then arrival of one of

the features is correctly taken as a signal that others will soon occur, and the agent’s

model of the world moves closer to the truth. The Bayesian set-up is convenient, but

fragile. If the agent’s prior did not allow for the correct features to signal a change in

states (and there are a great many potential signals), there would be no way for the

agent to learn.

Indeed, the “signal” argument requires that, in 1929, the agent foresaw the Great

Depression, and then prior to 2008, believed that a signal such as one received in 1929

might recur, foreshadowing the next Great Depression. It seems more likely that in

1929, agents did not place some probability on the Great Depression being imminent;
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had they, events might have unfolded differently. Thus they did not start with priors

that the Bayesian analysis would require. Rather, after the Great Depression occurred,

they associated the events (note that our analysis greatly reduces the sensitivity of

the prior; M0 is part of the analysis, but does not prevent the agent from forming

other associations). The crisis followed by the depression created an association that

simply was not present before. Then, after years went by and context shifted, the

assumption became that great depressions, and for that matter financial crises, were a

thing of the past (accorded zero probability), until events sufficiently similar to 1929

made individuals feel that the Great Depression was about to occur all over again.

One might argue that the fact that individuals explicitly considered this possibility,

whereas they had not in 1929 is what prevented the Great Depression from recurring

in 2009.

One might object that this temporal association is unrealistic. Clearly agents should

be able to distinguish between reminders and actual shifts in distributions. Simply

because an event recurs, or a context changes should not change an agent’s perspective.

The well-known phenomenon of post-traumatic stress disorder, suggests that this idea

is not so easily dismissed. In the next section we discuss the psychological and neural

basis for contextual retrieval.

3 Psychological and Neural Basis for Contextual

Retrieval

Before turning to specific applications, we summarize the psychological and neural

evidence for context as an internal state.

In the memory laboratory, researchers create experiences by presenting subjects

with lists of easily identifiable items, such as common words or recognizable pictures.

Subjects attempt to remember these items under varying retrieval conditions: these

include free recall, in which subjects recall as many items as they can in any order,
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cued recall, in which subjects attempt to recall a particular target item in response

to a cue, and recognition in which subjects judge whether or not they encountered a

test item on a study list. In each of these experimental paradigms, memory obeys

the classic “Laws of Association” which appear first in the work of Aristotle, and

later in Hume (1748). The first of these is recency : human subjects exhibit better

memory for recent experiences, semantic similarity : we remember experiences that are

most similar in meaning to those we are currently experiencing, and finally, temporal

contiguity : we remember items that occurred contiguously in time to recently-recalled

items. Although quantified in the memory laboratory, each of these phenomena appears

robustly in real-world settings, as described below.

A longstanding and persistently active research agenda in experimental psychology

seeks to uncover the cognitive and neural mechanisms that could give rise to these

regularities. Students of memory have proposed many hypotheses which they have

tested in the laboratory. Some striking findings include the fact that recency and

contiguity appear regardless of whether you measure memory for list items presented

seconds apart or many minutes apart, or for autobiographical memories separated by

days or weeks.

What gives rise to the recency and contiguity effects that appear ubiquitously in

both laboratory memory experiments and in our daily lives? One influential class of

explanations posits the existence of a fixed-capacity memory buffer, better known as

“short-term memory.” In such models, retrieval involves two stages: first, subjects

report the items maintained in the short-term store; next, they search through long-

term memory guided by interitem and context-to-item associations, and subject to

interference from similar memories. This model accounts for contiguity owing to the

strengthening of interitem associations among items that share time in the short-term

store (Kahana, 1996). The classic work of Mullainathan (2002) builds on a short-term

memory model.18

18Mullainathan’s model is fundamentally one of short-term memory in that it has two states R = 0, 1
(in the notation of that paper). If an event has R = 1, it enters short-term memory, which it then
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Although the short-term memory model produces recency and contiguity in imme-

diate recall, it cannot readily explain why similar recency and contiguity effects appear

for experiences that are widely separated in time, and thus neither likely to be present

in short-term store at the time of recall, or to have occurred together in short-term

store (Howard and Kahana, 1999; Healey et al., 2019).19 Related to accounts based on

short-term memory, neurobiological models of association posit that patterns of brain

activity can associate with one another when they co-occur within a short time window

governing synaptic plasticity (Abbott and Blum, 1996; Kempter et al., 1999). These

models, however, also struggle to explain why robust temporal contiguity appear for

temporally separated events.

These findings suggested the alternative retrieved context framework that we extend

to economic choice behavior. According to this view, context evolves recursively by

adding the retrieved past contexts associated with an item, remembered or experienced,

to the prior state of context. The retrieved context will bear similarity to contiguously

experienced items, generating the contiguity effect. Because retrieval depends on the

relative similarities among competing items, strong contiguity effects can appear even

for items separated by very long intervals. The same is true for recency effects, in both

the model and in the data.

Figure 2 illustrates the temporal contiguity effect (TCE) and how it has provided

empirical support for the idea of context retrieval. To measure the effect of contigu-

ity on memory retrieval, researchers examine subjects’ tendency to successively recall

items experienced in proximate list positions. In free recall, this tendency appears as

decreasing probability of successively recalling items ft and ft+lag as a function of lag,

conditional on the availability of that transition (Kahana, 1996). This TCE reaches its

falls out of with an exponentially increasing probability. If R = 0, it is the generic memory store.
19Within economics, Mullainathan (2002) could be understood as a model of short-term memory.

Items are available to be recalled (in the short-term store) or are not. They enter and exit the short-
term store with probabilities determined by associations with current events. However, there is no
mechanism by which an item from the distant past can evoke another item simply by virtue of being
proximate in time. Nagel and Xu (2018) invoke long-term recency to explain economic phenomena,
but do not otherwise employ associativeness.
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maximum at lag = ±1, but also exhibits a forward asymmetry in the form of higher

probability for positive as compared with negative lags. Equations 2–4 generate a for-

ward asymmetry in the contiguity effect because recalling an item reinstates both its

associated study-list context and its associated pre-experimental context. Whereas the

study-list context became associated, symmetrically, with both prior and subsequent

list items, the pre-experimental context became associated only with subsequently en-

coded list items, leading to a forward asymmetric contiguity effect, as seen in the

data.20

Figure 1A shows that interitem distraction does not disrupt the TCE. Figure 1B-D

shows that the TCE appears robustly for both younger and older adults, for subjects

of varying intellectual ability, and for both näıve and highly practiced subjects. Figure

1E shows that the TCE appears even for transitions between items studied on distinct

lists, despite these items being separated by many other item presentations. Figure

1F-H shows that the TCE also predicts confusions between different study pairs in a

cued recall task, in errors made when subjects attempt to recall an individual list item

in response to a sequential cue, and in tasks that do not depend on inter-item associ-

ations at all, such as picture recognition (see caption for details). Finally, long-range

contiguity appears in many real-life memory tasks, such as recalling autobiographical

20Consider the example in Section 2.4, and treat the 1929, 1930 episodes as a “study phase.” The
model predicts that crises better recall economic contractions than the reverse. Let

x1929 = (1− ζ)xprior + ζxincrisis,

where xincrisis is comprised of the 1929 stock market crash and any previous financial crises. These
previous financial crises form the “pre-experimental” context associated with a crisis. The depression
then becomes associated with this pre-experimental crisis context as well as with the 1929 crash
because they are both part of xincrisis, x

in
crisis is part of x1929, and x1929 is a part of x1930 which co-

occurs with fdepression.
In contrast, there are no means by which previous economic contractions can become associated

with crises. Consider (13), where xindepression consists of the Great Depression and previous economic

contractions. Like crises, these previous economic contractions are part of “pre-experimental” context.
However, whereas prior crises become associated with depressions, prior depressions do not become
associated with crises. Why? Though these depressions are part of xindepression, they are orthogonal to

x1929, which is the means by which crises and depressions are associated. Thus there are two routes in
memory by which a crisis recalls a depression: the 1929 crisis itself, and any previous crisis. However,
there is only one route by which a large contraction recalls a crisis, and that is the Great Depression.
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memories (Moreton and Ward, 2010) and remembering news events (Uitvlugt and

Healey, 2019). These findings argue for a general associative memory mechanism,

like context retrieval, that requires neither strict temporal proximity, nor specialized

mnemonic strategies.

A second source of data in favor of retrieved context arises from neurobiology.

The theory implies that brain states representing the context of an original experience

reactivate or replay during the subsequent remembering of that experience. Several

studies tested this idea using neural recordings. These studies found that in free recall

(Manning et al., 2011), cued recall (Yaffe et al., 2014) and recognition memory (Howard

et al., 2012; Folkerts et al., 2018) brain activity during memory retrieval resembles not

only the activity of the original studied item, but also the brain states associated

with neighboring items in the study list. Thus, one observes contiguity both at the

behavioral and at the neural level, with these effects being strongly correlated (Manning

et al., 2011). Finally, this recursive nature of the contextual retrieval process offers a

unified account of many other psychological phenomena including the spacing effect

(Lohnas and Kahana, 2014b), the compound cueing effect (Lohnas and Kahana, 2014a),

and the phenomena of memory consolidation and reconsolidation (Sederberg et al.,

2011).

Memory theory thus indicates that remembering an item involves a jump-back-in-

time to the state of mind that obtained when the item was previously experienced.

This reinstatement, in turn, becomes encoded with the new experience and also per-

sists to flavor the encoding of subsequently experienced items. The persistence of the

previously retrieved contextual states enables memory to carry the distant past into

the future, allowing the contextual states associated with an old memory to re-enter

one’s life following a salient cue and associate with subsequent “neutral” memories.

While the original memory is retained in association with its encoding context, the

retrieval and re-experiencing of that memory forms a new memory in association with

the mixture of the prior and retrieved context.

One might argue that, while retrieved context theory offers a persuasive account of
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human memory phenomena, memories need not affect behavior, and still less, conscious

decisions such as how much to invest in the stock market. While evidence on the role of

experience in economic decision-making suggests otherwise, one might still argue that

experience operates through a conscious process of attaining knowledge, rather than

memory per se. Such a purely rational account would, however, miss important mem-

ory phenomena.21 Evidence shows that agents re-live events from both the remote and

recent past, often involuntarily (Rubin and Berntsen, 2009). If memory is a process of

knowledge accumulation, it appears to be one that is outside of conscious control. An

extreme example of the power of involuntary memory is post-traumatic stress disor-

der (PTSD), in which a traumatic event is not only “persistently reexperienced” but

“causes clinically significant distress or impairment in social, occupational, or other

important areas of functioning.”22 Studies show that PTSD is diminished when brain

injury, childhood amnesia, or pharmacologically-induced amnesia blunts encoding, in-

dicating that it is primarily a memory disorder (Rubin et al., 2008). As such, it exhibits

patterns that are well-accounted for by retrieved context theory (Cohen and Kahana,

2020). Overall, evidence on PTSD suggests that it is best understood in terms of

principles that govern “normal” memory functioning (Rubin et al.). In other words,

there is no clear line separating trauma-induced and normal memories. It appears that

people relive the past involuntarily and unawares, to the extent that they base their

behavior on a biased representation of the external environment. In what follows, we

show how this idea can account for economic phenomena that are difficult to explain

otherwise.

21Though such an account would also have to explain why agents base their decisions on their
particular experience.

22See the Diagnostic and Statistical Manual of Mental Disorders (4th ed., text revision.; APA, 2000,
pp. 467–468).
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4 Applications

This section describes three applications of our theory. Section 4.1 describes an appli-

cation to portfolio allocation, illustrating how long-run stock-market experience might

influence portfolio choice. Section 4.2 shows how memory dynamics might effect stock

prices and interest rates in an otherwise standard macro-finance model in which cir-

cumstances lead an agent to recall a rare event such as an economic depression. Lastly,

Section 4.3 shows how the model can account for the effects of changes in short-term

context, thus explaining observed experimental effects on portfolio choice.

In each of these sections, rather than modeling the full lifetime of an agent’s mem-

ories, we assume a self-contained decision problem. We follow the memory literature

in making an assumption on the matrix Mt prior to the decision problem at hand.

Associations represented by Mt are motivated by the temporal contiguity property

(Section 2.4). That said, we do not generate the prior Mt within the model. In par-

ticular, we require a memory matrix that is sparser than lifetime simulations of the

process (2), (4) and (9) would imply. Augmenting the model with costly storage (Az-

eredo da Silveira and Woodford, 2019) could endogenously generate such sparsity while

maintaining the model’s ability to account for temporal contiguity. Encoding of re-

trieved features, generated using a process that downweights low probability items also

“organizes” memory, leading to a sparser Mt as noted by Polyn et al. (2009). Wachter

and Kahana (2020) show that winner-take-all retrieval and encoding leads to a more

organized Mt.
23

4.1 Retrieved-context theory and the persistence of beliefs

A basic account of the behavior of financial markets and the macroeconomy requires

that agents disagree (Lucas, 1975; Grossman and Stiglitz, 1980). Such disagreement

poses a problem for standard Bayesian models in which agents begin with possibly

23Wachter and Kahana (2020) also shows that winner-take-all can account for the representative
heuristic (Bordalo et al., 2021), and is therefore related to diagnostic expectations (Bordalo et al.,
2018).
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different priors, but nonetheless see the same data and take a rational view of oth-

ers’ beliefs beliefs. Recent evidence linking economic decisions to lifetime experience

suggests that experience may be the place to look for understanding how disagree-

ment arises and what causes it to persist (Malmendier and Nagel, 2011, 2016). The

explanatory power of experience immediately suggests a role for memory.

We focus on the results of Malmendier and Nagel (2011), who show that experi-

enced stock returns affect portfolio decisions, because the departure from rationality is

particularly striking. The size of the equity premium – the expected return on stocks

over Treasury bills – is discussed in finance textbooks, the media, and in popular

books. Provided that the equity premium is positive, participation in the stock market

is optimal (Arrow, 1971). Yet a large percentage of households do not participate in

equity markets (Campbell, 2016). In what follows, we show how the theory in Section 2

can generate, based on life experience, permanent pessimism regarding stock returns.

While survey evidence suggests agents are on average pessimistic (Goetzmann et al.,

2017), the aim in this section is not to explain average pessimism, but why some agents

remain pessimistic in the face of contrary data. This is what is required to account for

non-participation.

4.1.1 The portfolio choice problem

Assume latent states Z = {z1, z2}, and let p < 1/2 denote the unconditional probability

of the adverse state z2. The investor allocates wealth between a risky asset with net

return r̃, and a riskfree bond with zero net return. The agent also receives risky labor

income ˜̀. The set Y thus consists of joint outcomes of labor income and stock returns.

Assume that the value of labor income is known given the state: `(z1) > `(z2) = 0.

Assume that the stock return r̃ takes on values rg (gain) and rl < rg (loss). Assume

Prob(rg|z1) = 1
2
(1− p)−1 and Prob(rg|z2) = 0 so that the marginal distribution of r̃ is

50% gains and 50% losses. Because gains do not occur in state 2, their probability is

slightly elevated under the normal state z1.
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For simplicity, we assume mean-variance preferences:

max
π

E[(1 + πr̃ + ˜̀)]− 1

2
Var(1 + πr̃ + ˜̀), (19)

where π is the percent allocation to the risky asset. The expectation and the variance in

(19) are with respect to the agents’ subjective expectation in (1). Setting the derivative

of the objective function with respect to π equal to zero leads to

π =
Er̃ − Cov(r̃, ˜̀)

Var(r̃)
. (20)

Let µ equal the mean of r̃ and σ the standard deviation, so that rg = µ+σ, r` = µ−σ.

Let ˜̀(z1) = ` > 0 and ˜̀(z2) = 0, so that the optimal allocation (20) equals

π(p) =
µ− pσ`
σ2

. (21)

The greater the probability that the agent assigns to the adverse state, the less he or

she allocates to the risky asset.

4.1.2 Memory for stock market gains and losses

In the Bayesian benchmark (Theorem 1) the agent retains a perfect memory of gains

and losses, and their associations with depressions. We consider the implications of

contextual retrieval and encoding for the agent’s beliefs and portfolio allocation. To

highlight what is novel about our mechanism, we temporarily turn of the persistent

feature of context. In the next subsection, we show how incorporating persistence

matters, and how it can combine with contextual retrieval to generate a slowly-decaying

experience effect.

Because both labor income states and stock returns influence utility, Assumption 1

implies that they both must be features of the environment.24 Table 1 summarizes the

24Under our assumptions, gains cannot occur with a negative outcome of `. There are thus three
possible features.
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features space.

Table 1: Features corresponding to gains, losses, and depressions

Basis Vector Features Outcome for wealth
e1 gain 1 + πrg + `
e2 loss 1 + πrl + `
e3 depression 1 + πrl

The following matrix represents the agent’s prior associations:

Mt−1 ∝

 1
2

0 0

0 1
2
− p∗ p∗

 (22)

The second row of Mt−1 has nonzero entries corresponding to columns for both loss and

for depression. This means that loss and depression occur in the same context: a key

assumption for the results that follow. Section 2.3 shows how associations of the form

(22) arise, simply due to the fact that stock market losses preceded a depression.25

Prior to exploring the implications of the full model dynamics, we follow the format

of Section 2.1 and consider the special case of ζ = 1. While stark, this most directly

contrasts the implications of the memory model with the standard Bayesian approach.

We first explore retrieved context, and then retrieved features. If the agent experiences

a gain, namely ft = e1, retrieved context is the first basis vector:

xt = xint ∝Mt−1e1 =

 1

0

 .
25More precisely, Section 2.4 shows these events would have contexts that are close to one another

because they occur close in time. Having contexts that are close is sufficient to have context retrieval
imply similar features retrieval. In order to focus on the main mechanism in this and in the following
examples, we assume that the agent experiences depressions and stock market losses under the same
context. It is reasonable to imagine memory consolidates contexts that are sufficiently close into a
single context.
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It follows from (9) that context in turn retrieves features corresponding to a gain:

f in
t ∝M>

t−1

 1

0

 =
1

2
e1 ∝ e1

Now consider retrieved context in response to a loss (ft = e2):

xt = xint ∝Mt−1e2 =

 0

1
2
− p∗

 ∝
 0

1

 . (23)

It follows from (9), that context (23) retrieves some probability on depression as well

as on loss:

f in
t ∝M>

t−1

 0

1

 =


0

1
2
− p∗

p∗

 ∝


0

1− 2p∗

2p∗

 (24)

All that happened was a stock market loss, but the loss brought to mind the depression,

simply because the two shared a context.

Having recalled features (24), the agent encodes them with context (23). Memory

Mt evolves according to (4), with

xtf
>
t =



 1

0

 e>1 =

 1 0 0

0 0 0

 if gain 0

1

 [ 0 1− 2p∗ 2p∗ ]
=

 0 0 0

0 1− 2p∗ 2p∗

 if loss

(25)

After τ periods of which k are gains:

Mt+τ ∝

 1
2
t+ k 0 0

0 (1
2
− p∗)t+ (1− 2p∗)(τ − k) p∗t+ 2p∗(τ − k)

 (26)

Note that the relative probability of losses and depressions, M(2, 2)/M(2, 3), remains
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the same (as in Theorem 3), regardless of how much experience the agent accumulates.26

The agent does learn, in particular, about the relative probabilities of stock market

losses and gains. In fact, the agent’s beliefs will converge to the truth in this regard.

However, the agent still overestimates the probability of a depression.27

In this stark example, the agent fails to update probabilities entirely. A loss makes

the agent think of a depression by reinstating a context. This act of recalling the

depression context is similar to experiencing the depression. Thus, a high probability of

depression remains associated with losses in the agent’s mind – thoughts extrapolative

data.

We assumed ζ = 1 as an purely for illustration. In practice, the speed at which

the association weakens (if indeed it does weaken), depends on many factors. Below,

we re-consider this example using the full model, and show that learning takes place,

though it can be very slow. Figure 3 illustrates this case in a line with ’x’ marks; note

that after 20 years of data the probability still fails to converge to the Bayesian case,

and as a result, the optimal portfolio choice remains significantly lower.28 In contrast,

the Bayesian agent quickly learns that depressions are unusual, though he or she will

take a long time to learn the precise value.29

4.1.3 Generalizing to autoregressive context

This section generalizes the conclusions of the previous section to ζ < 1. Consider

a richer features space, but continue to assign e1 to gains e2 to losses, and e3 to

losses combined with a depression. For simplicity, assume the following form for initial

26Note that ((1
2 − p

∗)t+ (1− 2p∗)(τ − k))/(p∗t+ 2p∗(τ − k)) = ( 1
2 − p

∗)/p∗ regardless of τ or k.
27We can directly map the entries ofMt, which have the interpretation of unconditional probabilities,

into the agent’s decision problem by assuming a neutral “decision context”, xt = 1
2 ê1 + 1

2 ê2. This

context implies retrieved features f in
t = [ 12 ,

1
2 − p

∗, p∗], which implies (21), with p∗ substituted in for
p.

28In calculating portfolio choice, we use (21), with p∗ taken from (26). Alternatively, we could use
the idea of a neutral decision context as defined in the section below.

29For the purposes of the figure, p = 0.02, p∗ = 0.50, σ = 1, and ` = 2.
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associations:

M0 ∝


1 0 0 0 · · ·

0 1− 2p∗ 2p∗ 0 · · ·

0 0 0 M̂0

...
...

...

 , (27)

where M̂0 represents associations other than gains, losses, and depressions.30 Many

paths of experience could influence the agent’s memory for losses. Here, we will focus

on one such path. Appendix F gives details of the arguments below.

Assume the agent experiences losses at times t1, t2, . . . , t`, . . .. Also assume that the

agent does not experience actual depressions; relaxing this assumption will strengthen

our results. Context at the time of the first loss equals xt1 = (1− ζ)xt1−1 + ζê2, where

x>t1−1ê2 = 0, and where features retrieved by xt1−1 put no weight on depressions. It

follows from (10) that

f in
t1

= ζ[ 0, 1− 2p∗, 2p∗, 0, . . . ]> + (1− ζ)f in
t1−1. (28)

The subjective probability of depression (the third element of (28)) equals 2ζp∗. Re-

trieved features are encoded with context xt1 . Contextual drift will lead this agent to

dis-associate the context loss with losses and depressions, thus putting a progressively

lower weight on depressions.31 If, for example, the agent experienced a single loss and

saw no other features to remind him or her of a loss or a depression, then the weight on

the depression would decay exponentially to zero. However, should another loss arise,

even after an arbitrarily long time delay, the agent will recall the depression as if no

30The column sums in M0 can be interpreted as the number of observations of each feature in a
prior sample. See Appendix A, Lemma A.1. Our assumptions on these do not qualitatively effect the
results.

31This conclusion would not necessarily hold under winner-take-all features retrieval. See Section 2.3
and the introduction to Section 4 for further discussion. Winner-take-all would lead retrieved features
to continue to place high weight on the depression, assuming that agents’ beliefs in a depression were
above a threshold. In this respect, it would make it easier for us to derive our main result. However,
incorporating winner-take-all features retrieval would complicate the analysis, which is why we do not
assume it here.
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time has passed.

Theorem 4 shows that retrieved context follows a recursion, assuming that encoding

takes place with basis vector features. Appendix F proves an analogous result when

encoding is with non-basis features. Let q̃t denote the agent’s subjective probability

of z2 ∈ Z, namely, q̃t = xt(2). Assume at least one loss has taken place (t > t1).

Appendix F shows

f in
t,2 =

(
1− q̃t−1(1− q̃t−1)

1 +
∑t−1

s=1 q̃s

)
f in
t−1,2 +

q̃t−1(1− q̃t−1)
1 +

∑t−1
s=1 q̃s

f in,⊥
t−1,2, (29)

where

f in,⊥
t−1,2 = (1− q̃t−1)−1

∑
j 6=2

xt−1(j)f
in
t−1,j.

The third element of (29) gives the subjective probability of a depression.32 Iterating

on (29) shows how the subjective probability decays from its initial value of 2ζp∗. As

of time T , the subjective depression belief p̃T = f in
T,2(3) equals

p̃T = 2ζp∗
T∏
t=t1

(
1− q̃t−1(1− q̃t−1)

1 +
∑t−1

s=1 q̃s

)
. (30)

Note that the rate of decay depends on q̃t−1(1 − q̃t−1) = (x>t−1ê2)(1 − x>t−1ê2). If xt−1

is either orthogonal or proportional to ê2, then f in
t,2 = f in

t−1,2. In neither case do beliefs

decay, because associations are unchanged. If xt−1 has some, but not perfect, overlap

with ê2, then the agent learns new associations with the current context, causing beliefs

to decay more quickly. Over time, the rate of decay slows, as captured by 1 +
∑t−1

s=1 q̃s.

As the sum increases, the term multiplying f in
t−1,2 also tends to increase, causing the

process to become more persistent.

We now assume that, following each loss, context decays to a neutral value (one

that is not associated with depression features). The most recent loss occurred at

32We make the conservative assumption that f in,⊥
t−1,2 places zero weight on the depression; if not,

beliefs in depressions will be greater.
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t` = argmintj{t− tj; tj < t}, and τ = t− t`, the time elapsed since the loss event. Then

xt`+τ = (1− ζ)τζê2 + (1− (1− ζ)τζ)x̄, (31)

is the required time path of context.33

We continue to assume that stock market gains and losses are equally likely.34 We

also assume that gains and losses occur one out of every J periods, capturing the

fact that the agent experiences other types of features (greater values of J correspond

to slower decay of probabilities). We assume that portfolio choice takes place when

the agent is in a neutral decision context, namely a context that is 1
2
(ê1 + ê2). This

neutral decision context implies a depression probability of p∗
∏T

t=t1

(
1− q̃t−1(1−q̃t−1)

1+
∑t−1

s=1 q̃s

)
.

Figure 3 shows these values, and the resulting portfolio choice when we average over

1000 individuals and assume J = 4 and p∗ = 1/2. The figure shows that slow decay of

beliefs is not special to ζ = 1; incorporating contextual drift allows for the more realistic

conclusion that early memories still exercise influence, but that they fade gradually over

time. This is key to explaining results such as Malmendier and Nagel (2011), in which

early-life experience, while mattering less on average than recent experience, continues

to have a statistically significant effect on choice.35

33 We continue to assume that features that are losses retrieve context ê2. Appendix F explains
why this assumption is valid for p∗ close to 1

2 . In short: for p∗ ≈ 1
2 , retrieved features are more like

depressions than losses. Thus actual losses retrieve the context associated with the initial loss.
34Strictly speaking, because depressions do not occur in the sample we are considering, losses should

be slightly less likely; we ignore this effect here.
35In contrast, a Bayesian model would produce a null result in regressions on experience, because a

relatively short amount of data suffices to determine optimal choice as described above. While more
complicated Bayesian models might produce other patterns, it is hard to imagine one in which the
early period takes on particular importance
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4.2 Context and the jump back in time: Application to the

financial crisis

The failure of Lehman Brothers is widely recognized as a point of inflection in the 2008

financial crisis.36

An open question is: why was the failure of Lehman Brothers so pivotal? A grow-

ing line of research answers this question by focusing on the importance of financial

intermediation to the overall the economy. Brunnermeier and Sannikov (2014) and He

and Krishnamurthy (2013) develop models in which the balance sheets of intermedi-

aries contribute to business cycle fluctuations. However, while it may be necessary

to have specialized institutions trade certain complicated investments, it is not clear

why the failure of a financial institution should be followed by a broad-based stock

market decline. Common stocks are not intermediated assets: trading costs for com-

mon stocks, already quite low for the past half-century, have only gotten lower (Jones,

2002). Another possibility is that Lehman represented a sunspot that caused a run

on other intermediaries, and other forms of debt (Allen and Gale, 2009; Gorton and

Metrick, 2012). Unanswered is why this should cause the stock market to crash, as

it did in the fall of 2008, when most companies have very low leverage and can fund

themselves through retained earnings?37

Gennaioli and Shleifer (2018) emphasize a third possibility: individuals and finan-

cial institutions took on too much debt because they incorrectly extrapolated from

a recent low-risk environment. This debt created unstable conditions. The Lehman

bankruptcy caused a sudden shift in beliefs by reminding agents of the risks they had

forgotten. This account is most in spirit of the discussion here. Indeed, our hypothesis

is that the financial crisis was a psychological event caused by the failure of Lehman

Brothers.

36See, for example, French et al. (2010).
37Kahle and Stulz (2013) argue that firms dependent on bank-lending were not unduly affected by

the crisis. Gomes et al. (2019) argue that fluctuations in borrowing conditions are more likely to be
affected by investment opportunities than the other way around.
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In the model described below, the failure of an important financial institution in

the absence of insurance reminds investors of the Great Depression.38 Some felt that

they had – literally – returned to the Great Depression. Once this feeling entered

the discourse, it proved hard to shake. Subsequent events showed that in fact there

was no Great Depression; yet the association continued through a greatly renewed

interest in financial crises and the macroeconomy, and through even the very name

Great Recession.39

4.2.1 Endowment and preferences

Assume an endowment economy with identical log utility agents, each with time-

discount factor β. LetWt denote an agent’s wealth at time t, and let Ct be consumption.

Each agent solves

max
πt,Ct

(1− β) logCt + βEt[logWt+1] (32)

subject to

Wt+1 = (Wt − Ct) [Rf,t+1 + πt(Rt+1 −Rf,t+1)] , (33)

where, πt denotes the percent allocated to the risky asset and where, because agents

are identical, we omit an agent subscript. Each agent trades in a risky asset with

gross return Rt+1 and a riskless asset with gross return Rf,t+1 (known at time t).40 We

specify the aggregate endowment; asset prices will then equilibrate so that it is optimal

for the agent to consume this endowment (Lucas, 1978). Let g denote the growth rate

in consumption during normal times, and δ ∈ [0, 1) the decline in consumption, should

38See, for example, the reporting of The Guardian on the day’s events:
https://www.theguardian.com/business/2008/sep/15/marketturmoil.stockmarkets.

39The model below is stylized; it cannot capture many interesting features of the Great Recession.
One line of research in particular focuses on a channel from asset valuations to the real economy, either
through real-business-cycle mechanisms (Gourio, 2012) or New Keynesian mechanisms (Caballero and
Simsek, 2020). This literature can be viewed as taking beliefs in a changed regime as given and deriving
joint implications for real outcomes and asset markets. Our model is about endogenizing the beliefs.

40Under time-consistent beliefs, the assumption of log utility implies that (32) is a recursive formu-
lation of the multiperiod consumption and savings problem (Samuelson, 1969).
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a depression occur:

Ct+1

Ct
=

 1 + g with probability 1− p

(1 + g)(1− δ) with probability p
(34)

The aggregate market is a claim to dividends Dt satisfying Dt+1/Dt = (Ct+1/Ct)
φ, with

φ > 1. The assumption of φ > 1 captures the fact that payouts to shareholders fell

by far more than consumption during the Great Depression (Longstaff and Piazzesi,

2004).41 Equilibrium will require that πt = 1, and that the dividend claim and the

riskfree asset are in zero supply.

We briefly describe equilibrium under full information. The wealth-to-consumption

ratio Wt/Ct = 1/(1− β). In equilibrium, the riskfree rate equals a constant given by

Rf = E
[
β
Ct
Ct+1

]−1
= β−1(1 + g)

(
1 + p

(
1

1− δ
− 1

))−1
. (35)

From (35), it follows that (in a comparative statics sense) an increase in the depression

probability p lowers the interest rate. An increase in the depression probability leads

the investor to want to save today. Bond prices rise, and riskfree rates fall.

Let St equal the value of the aggregate stock market. In equilibrium,

St = Et
[
β
Ct
Ct+1

(St+1 +Dt+1)

]
, (36)

41This specification implies dividends and consumption are perfectly conditionally correlated. In
the data, dividends have greater normal-times volatility than consumption, and they are imperfectly
correlated with consumption. Both facts could be introduced into the model by assuming that divi-
dends also are subject to independent shocks. Because these shocks are unpriced, and assuming that
we abstract from dividends as features about which the agent learns, they would have a negligible
effect on the results of interest. The assumption that normal-times growth in dividends is (1 + g)φ

could similarly be relaxed without affecting the results.
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Solving for a fixed point yields:

St
Dt

=
β(1 + p

(
(1− δ)φ−1 − 1

)
)

(1 + g)1−φ − β(1 + p((1− δ)φ−1 − 1))
(37)

for all t. For φ > 1, an increase in p lowers the stock price. Realized returns on the

stock market equal

RS
t+1 =

 R̄S with probability 1− p

R̄s(1− δ)φ with probability p
(38)

where R̄S is the stock market return during normal times:42

R̄S = β−1(1 + g)

(
1 + p

(
1

(1− δ)1−φ
− 1

))−1
. (39)

The expected return for the stock market equals:

EtRS
t+1 = R̄S(1 + p((1− δ)φ − 1)). (40)

Subtracting the log of the riskfree rate (35) from the log of the expected return (40) give

the equity premium. For small p (in the continuous-time limit), the equity premium is

well-approximated by

logEt
[
RS
t+1/Rf

]
≈ p

(
(1− δ)−1 − 1

) (
1− (1− δ)φ

)
.

The right hand side is is the negative change in marginal utility multiplied by the

change in stock price during depressions.

42Let Φ = β(1 + g)φ−1(1 + p
(
(1− δ)φ−1 − 1

)
). Then

R̄S =
St+1/Dt+1 + 1

St/Dt
(1 + g)φ =

Φ/(1− Φ) + 1

Φ/(1− Φ)
(1 + g)φ = Φ−1(1 + g)φ
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4.2.2 Features, context, and memory

Now assume that agents update beliefs according to retrieved-context theory. An

application to asset pricing immediately raises the question of agent’s beliefs about

others’ beliefs. Here we assume agents have identical initial associations M0, identical

experiences (and thus the same Mt), and that beliefs are common knowledge. Relaxing

these assumptions would be desirable and would have interesting implications.

There are three possible outcomes in Y , captured by basis features vectors: e1

(normal), e2 (crisis), and e3 (depression).43 At each time t, the agent observes Wt and

ft (we abstract from wealth as a feature). We conjecture an equilibrium in which the

agent possesses the correct mapping between ft and rf,t+1 and ft and rt. The agent

solves (32–33) under the subjective expectation, formed from memory as Section 2.3

describes.44 The agent’s problem satisfies Assumption 1 in that it depends only on the

distribution of future features.45

The agent’s optimal consumption continues to equal 1/(1−β) times wealth. Consis-

tent with (10), the subjective probability of depression (which is next period’s feature)

is pt = e>3 f
in
t . The agent will allocate πt = 1 to the consumption claim provided that

rf,t+1 satisfies (35), and rt+1 satisfies (38) and (39) with φ = 1. The assumption that

pt is permanent (agents do not foresee a change in their own, or others’ beliefs) implies

that (37) is also satisfied in equilibrium. Table 2 summarizes features and their effects

on outcomes of interest.

Equilibrium returns on the consumption claim equal growth in consumption, scaled

43 We assume two underlying states in Z, one in which crises take place with greater probability.
While it is not necessary to take a stand on whether there is a physical association between a depression
and a financial crisis, for ease of comparison with the full-information case above, we assume that the
true correlation between disasters and crises equals zero. That is, disasters are equally likely in the
two states.

44The agent retrieves context xint from features ft and memory Mt−1. Retrieved context and lagged

context xt−1 combine to determine xt through (2). Using M>t−1, the agent retrieves f in
t , which gives

the probability distribution over future features.
45We assume the agent is capable of conceiving of the equilibrium and calculating quantities that

are directly implied, through algebraic equations, to features (this is required for optimization as well
as equilibrium). This is a strong assumption, which we make to focus on one departure from the
standard model at a time.
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Table 2: Features corresponding to normal times, financial crises, and depressions

Basis Vector Features Consumption claim return Crisis?
e1 normal β−1(1 + g) No
e2 crisis β−1(1 + g) Yes
e3 depression β−1(1 + g)(1− δ) Yes

by β−1, and thus depend only on the realization of a depression. While the agent uses

current features (such as crises) to form beliefs as in (1), and indeed the value function

depends in equilibrium on the riskfree rate and hence on current features, the only

future feature of interest to the agent is whether or not there will be a depression.

Prior to the crisis, we assume associations take the form:

Mt−1 ∝


normal crisis depression

1− pc 0 0

0 pc(1− q) pcq

 (41)

As in the previous example, two sets of features share a context. In this case, it is

a financial crisis and a depression. We see this from the fact that Mt−1 has nonzero

entries in its second row. As in that example, the motivation is as in Section 2.3:

associations of the form (22) arise, simply due to the fact that stock market losses

preceded a depression.

Assume that there has been a sufficiently long period of normal features e1. so

that the agent exhibits neglected risk: namely context xt−1 = [1, 0]> (Theorem 6).46

Though agents neglect the depression state, they have not forgotten it. Representing

the failure of Lehman brothers is ft = e2, the well-publicized failure of a major financial

institution. Retrieved context in response to crisis features equals

xint ∝Mt−1e2 ∝ [0, 1]>. (42)

46Strictly speaking, this requires a large number of neutral features; it is simple to alter this example
to include these but it also makes the notation more complicated.
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Context therefore equals

xt = (1− ζ)

 1

0

+ ζ

 0

1

 =

 1− ζ

ζ

 . (43)

As in Section 2.3, we calculate features retrieved by each component of context:

f in
1,t ∝ M>

t−1

 1

0

 ∝ e1

f in
2,t ∝ M>

t−1

 0

1

 ∝


0

1− q

q


Therefore, applying (43) and (10),

f in
t =


1− ζ

ζ(1− q)

ζq

 . (44)

Equation 44 represents reinstatement of the depression context – the financial crisis

reminds the agent of the depression. This same expression also gives the probabilities

that the agent uses in the decision problem; that is, they are the probabilities underlying

EYt . The subjective probability of a depression rises from 0 to ζq, causing an immediate

decline in stock prices (37) and in the riskfree rate (35).47 The sharp drop between

t = 0 and t = 1 of Figure 4 illustrates this effect on the price-dividend ratio and on the

riskfree rate.48. Figure 4 also shows a sharply negative return corresponding to this

47Note that Assumption 3 implies that the agent views this change as permanent. Equation 36
should thus be understood as the price of a future stream of dividends assuming this increased prob-
ability. It is equivalent to substitute the probability directly into the right-hand side of (37).

48When we report the riskfree rate in the figure, we assume a zero lower bound. That is, we assume
that for institutional reasons, the observed riskfree rate cannot fall below zero, whereas the true
riskfree rate might
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event.49 Note that while both the recent past of economic calm and the depression

cue are part of recent experience, we might well say that the “jump-back-in-time”

effect dominates the recency effect that is the focus of prior work on memory and

economics. Pure recency would suggest positive economic news dominates (because

the bank failure, by construction, does not affect consumption). The novel and unique

cue from bank failures, however, powerfully reinstates the context of the depression.

What does the model say about the time path of context, and hence that of prices,

interest rates, and stock returns, following the event? We discuss in detail one such

possible path. Consistent with events in late 2008, we assume several (specifically,

three) observations of crisis features, and then normal features. Assume a sufficiently

long prior sample so that updating memory is not first-order.50 If the agent continues

to observe crisis features, context updates as follows:

xt+1 = (1− ζ)2

 1

0

+ (ζ(1− ζ) + ζ)

 0

1

 (45)

Thus recall of the depression increases, the stock price declines further, and realized

returns continue to be negative. Figure 4 shows this continued decline. Thus while the

initial drop was an over-reaction relative to the correct iid benchmark (Theorem 8),

there is also a sense in which it was, in the short run, an under-reaction because

prices fall more before they stabilize (Theorem 7). Given sufficient crisis observations,

the stock price would stop declining once context reached a steady state of [1− q, q]>,

implying zero weight on normal features. In this example, however, assume that normal

features return after three periods, leading to a partial recovery. Returns are positive

and high, because they represent good news that there has not been a depression.51

Prices recover more slowly than they fall. In this model with autoregressive beliefs,

49We assume q = 0.5, pc = 0.05, δ = 0.15, β = .98, g = 0, φ = 2.
50The solution shown in Figure 4 assumes a prior sample of 100 years and calculates the exact path

of context.
51Due to log utility, the equity premium is small in this model, even with a high probability of a

rare. Little of realized returns correspond to an equity premium.
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this is mainly due to the effects of duration embedded in (37). An increase in the

probability of disaster decreases the effective maturity of the stock return, and so any

increase in p from this low point has a smaller effect.

This duration explanation cannot, however, account for the fact that the price-

dividend ratio asymptotes to a lower level. This is because as depression features are

retrieved, not only are they encoded with the crisis context (as in Section 4.1), but they

are also encoded with the normal context. The agent then associates this context with

depression, so that even a return to a normal context implies a permanently elevated

probability of depression. More precisely, the agent associates whatever was in context

just before the crisis with depression, even though the depression did not occur. The

continued retrieval of the depression context ensures that this is a permanent effect. To

the extent that (previously normal features) reminiscent of 2009 re-appear, they will

remind agents of the Great Recession, which in turn will recall the Great Depression.52

4.3 Fear and asset allocation

Psychological and neuroscientific research reveals a tight link between memory and

emotion. For example, when people are sad or depressed, they tend to recall negative

events (Matt et al., 1992; Teasdale and Fogarty, 1979). When people remember an

emotionally-valent word (positive or negative) in a list of mixed-valence words, the next

word they remember tends to be emotionally congruent (Long et al., 2015; Siddiqui and

52While Figure 4 represents a clear departure from a full-information benchmark, another bench-
mark of interest is one in which a Bayesian agent believes in the existence of two states and that the
financial crisis serves as a signal for depression. That is, the Bayesian agent shares the associations
Mt−1, and thus is as close as possible to the agent we consider. Wachter and Zhu (2019) model
Bayesian learning in such a setting. The Bayesian agent does not neglect risk (or at least not to the
same degree): there is always some probability on the depression state regardless of how long a period
of normalcy occurs. The total decline in price relative to the Bayesian benchmark represents an over-
reaction; the Bayesian agent believes the state will revert. However, unlike the Bayesian agent, there
is also under-reaction in the sense that prices do fully react immediately to the “news” — they take
several periods to respond. The permanent adjustment in prices due to the new associations shown
in Figure 4 is absent in the Bayesian model, nor does the Bayesian model explain how an agent came
to associate crisis and depression in the first place. The initial slow adjustment and the permanent
change in prices also differentiates the model from that of Gennaioli and Shleifer (2018). Note that
this comparison also assumes the agent begins with conditional probabilities that the present model
endogenizes through temporal contiguity.
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Unsworth, 2011). Emotion also affects memory for neutral items — subjects exhibit

superior recall when tested under a state that is emotionally congruent to the study

state (Eich, 1995).

The connection between emotion and memory extend to the financial domain.

Guiso et al. (2018) found that after the 2008–209 financial crisis, professional investors

required twice the premium to accept a risky bet rather than a sure payoff than before,

suggesting a role for fear in decision-making. In this case, the finance professionals’

response need not be due to fear; an alternative is that they were materially worse off

following the crisis, and that they exhibit risk aversion that increases as wealth falls.

To demonstrate that it is the memory and not the wealth change that influences risk

aversion, Guiso et al. conduct an experiment in in which subjects are randomly as-

signed to view a scene from a horror movie. Subjects who viewed the scene required a

50% greater premium to accept the lottery as compared to those that did not. Similar

results are found by Cohn et al. (2015), who conduct an experiment in which financial

professionals are selected randomly to view a chart of a stock market boom versus a

crash. Investors in the boom condition invested significantly more in the risky asset

that those in the crash condition. The effect of emotion on financial decisions extends

beyond the laboratory. Cuculiza et al. (2020) show that analyst earnings forecasts

become more negative upon anniversaries of terrorist attacks (as well as following the

attacks themselves). Ramadorai et al. (2020) examine the trading behavior of investors

following the outcome of IPO lotteries. Investors who received shares in companies that

subsequently performed well not only purchase similar stocks, but trade more in gen-

eral. While Loewenstein (2000) proposes a model by which emotion influences utility,

his model is silent on the connection between emotion and recent experience.

In what follows, we apply our framework to explain findings on fear and aversion

to risk. We specifically consider the set-up of Guiso et al. (2018), in which an agent

chooses between a risky asset (a lottery) and a sure investment. As in Section 4.1, the

agent chooses an allocation π to a risky investment with net return r̃, and 1 − π to a

safe investment with net return of zero. Also as in Section 4.1, the agent is subject to
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a second source of risk. While we focused on job loss in that example, here we would

want to think more broadly in terms of anything that might severely and suddenly

impair the human capital of the agent, analogous to physical danger. For convenience,

we continue to refer to this as human capital. The risky investment (capturing the

lottery in the experiment) experiences a gain or a loss, each with equal probability:

r̃ =

 µ+ σ prob. 1/2

µ− σ prob. 1/2.

Wealth equals 1 + πr̃ − ˜̀, where ˜̀ is the second source of risk mentioned above:

˜̀=

 0 prob. 1− p

δ prob. p.

In what follows, we refer to ˜̀ as a human capital shock.

Because r̃ is the outcome of a lottery, ˜̀ and r̃ must be independent. Moreover,

r̃ has a well-defined set of outcomes (it obeys the Savage (1954) model). Unlike in

Section 4.1, we cannot rely on the agent’s misperception of the correlation between

the stock return and human capital. While it is possible that the agent has such a

misperception, here we assume that agents understand that the outcome of the lottery

does not bear on other events.

While the agent is told that the outcome of the lottery is 50/50, the probability

p is unknown. The agent determines the more ambiguous probabilities of ˜̀ based

on memory. Assume that the agent has log utility over wealth, so that perceived

probabilities of ˜̀ influence the utility of the lottery (any power function over wealth

would have this property). The agent feels more fearful of a bad outcome, and thus is

less likely to take on risk. Whereas the connection between an increased likelihood of

a bad outcome and a willingness to take on risk is not irrational, the increased fear of

the bad outcome is.

As in Section 4.1.3, we assume the first features vector corresponds to a normal
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state, whereas the next two correspond to the negative outcomes. There are also a

large number of “neutral” features, i.e. neither positive or negative. The matrix Mt−1

takes the form:

Mt−1 ∝



normal fin. crisis danger other associations

1− p1 − p2 0 0 0 · · ·

0 p1 p2 0 · · ·

0 0 0 M̂t

...
...

...


The second context corresponds to a state in which negative events occur. Temporal

contiguity could account for the associations between a financial crisis and danger in

this context. The relative values of columns indicate how much of each feature the

agent has experienced. Given our focus on context and feature retrieval, this will not

be important in what follows. Features retrieved by each component of context are:

f in
1,t ∝ M>

t−1ê1 ∝ e1

f in
2,t ∝ M>

t−1ê2 ∝ (p1 + p2)
−1(p1e2 + p2e3)

Let q̃t = xt(2) denote the subjective probability of the second state (in which ˜̀ = δ),

and assume that, prior to the experiment, q̃t−1 = p1 + p2 ≡ p.

The scene from the movie is a feature that is similar to, but not exactly the same

as, danger. That is, ft ≈ e3, with the difference representing movie-specific features.

Assuming ft is sufficiently close to e3, then Theorem 5 applies: retrieved context will

be similar to what would occur under actual danger. That is xint ≈ ê2, and q̃t ≈

(1−ζ)q̃t−1 +ζ. If the agent had watched this particular scene on a prior occasion, then

the approximation xint would be further from ê2 because movie-specific features would

pull up the context from the last time the movie was viewed. Guiso et al. (2018) chose

a scene likely to be unfamiliar to subjects.

Ultimately it is retrieved features that matter for decision-making. It follows from
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(10) that

f in
t ≈ (1− q̃t)e1 + q̃t ∝ (p1 + p2)

−1(p1e2 + p2e3), (46)

so that the probability of danger or depression equals q̃t. The agent chooses π to

maximize:

E`
[

1

2
log(1 + π(µ+ σ)− ˜̀) +

1

2
log(1 + π(µ− σ)− ˜̀)

]
, (47)

where the outcome ˜̀ = δ occurs with probability q̃t and is 0 otherwise.53 We assume

an excess return µ = 4%, a standard deviation σ = 20%, a prior probability of the

negative labor market outcome p = 2%, and a percent decline δ = 0.8, should the

outcome occur. As elsewhere, ζ = 0.35. The agent trades off the higher return arising

from greater π with greater risk. The higher is the probability of a bad realization, the

less risk the agent can afford to take. The experiment reminds agents that such bad

realizations can occur.

Figure 5 shows (47) as a function of the allocation π. At an initial level of zero,

taking on a small value of risk is optimal (the function is increasing). After a certain

level of π, the function begins to fall, representing the curvature in the utility function.

When the agent is not fearful, this occurs at 70%. When the agent is fearful, it occurs

at 30%. The response of the agent to the experiment cannot be Bayesian: a movie

has not changed anything about the outside world. In that sense, the response of

risk-taking to viewing a horror movie is a good test of our theory. This, and related

results, show that it is possible to manipulate internal mental state (context) in a way

that changes decision-making. Context alters agents beliefs about the outside world,

and hence agents’ decisions.

53In the notation of the general decision problem from Section 2, (Assumption 1), V (Yt+1, π) =
1
2 log(1+π(µ+σ)− ˜̀(Yt+1))+ 1

2 log(1+π(µ−σ)− ˜̀(Yt+1)), and EY arises from the probabilities (46).
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5 Retrieved Context Theory and Alternative Mem-

ory Models

Our theoretical framework for modeling human memory—retrieved context theory—

builds upon scholarship going back to the early 20th century. McGeoch’s classic (1932)

theory of forgetting assumed that memories do not wither away in time, but rather

that the retrieval cues used to search memory may either reveal or occlude a particular

experience.54 McGeoch theorized that this retrieval-based interference depends on the

state of context, the mental “set” of the rememberer, and the activation of similar

“competitor” memories. Estes (1959) and Bower (1972) developed a mathematical

foundation for these ideas, positing a VAR context representation that determined the

retrievability of items from memory, accounting for the law of recency (Crowder, 1976).

These models also allowed for explicit manipulations of context that could alter the

memorability of particular experiences, as seen in experimental studies.

Unlike recency effects, which are easy to quantify, the influence of contiguity eluded

careful measurement (Murdock, 1974). In studying the order and timing of recall

sequences, (Kahana, 1996) introduced a conditional-probability measure of contiguity

by computing the likelihood of recalling an item as a function of its contiguity to the

just recalled item. Howard and Kahana (1999) theorized that contiguity could arise

from retrieval of context, rather than direct interitem associations, and subsequent

work provided support for this account (see, Healey et al., 2019, for a review).

Retrieved-context theory provides a unified account of recency and contiguity ef-

fects at short and long time scales. As a vector-based model of associative learning,

this theory nests earlier work on similarity-based organization in memory and cue-

dependent interference effects (Kahana, 2012). Two key aspects of this model make

novel predictions not shared by most other memory theories: First, each encoding

54Applications 1 and 3 seem, at first glance, to be consistent with this notion of “withering away.”
However, these two examples show that any such withering must occur at vastly different time scales,
already revealing that there is more than meets the eye.
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event involves an internal retrieval whose output modifies memory. Thus, thoughts

become memories that influence subsequent retrieval. Second, the recursive definition

of context predicts a forward asymmetry in memory retrieval because the contextual

states previously associated with an item recombine with the items context and as-

sociate with subsequent items. The recursive contextual dynamics imply that when

a new event matches, or closely resembles, an earlier experience, the context of that

earlier experience will re-embed in memory; analogously, new contexts that resemble

old contexts will tend to retrieve old features, which will also re-embed in memory. In

the present theory of economic choice, these re-embeddings help to explain persistent

disagreement in the face of accumulating evidence.

Whereas modern memory theorists have adopted McGeoch’s early emphasis on re-

trieval processes, other classic models saw memory-guided choice as primarily reflecting

the strength of memories established during learning. Consider a repeated event, such

that each occurrence supplies an agent with information about the world (e.g., or-

dering a cappuccino and learning about its price). According to strength theory, the

association between a cappuccino and its price continuously updates, and a future re-

minder of a cappuccino retrieves a single sufficient statistic reflecting the distribution

of experienced prices. In this model, one updates the summary statistic and discards

the memories of each experienced event. A fundamental problem facing strength the-

ories of memory is defining the unit of memory; at some point a new experience is

sufficiently different from an existing “memory” to constitute a new memory, but the

model is silent as to how that point is determined.

Unlike strength theory, similarity-based exemplar theory assumes that the mem-

ory system separately records each event (feature vector) in an ever growing matrix

of memories (Estes, 1986; Hintzman, 1988; Nosofsky, 1992). The events retain their

individuality, including their ordinal position within the series. Aggregation of mem-

ory happens at the time of retrieval, when the memory system compares a cue event

against all previously stored examples, computing the summary statistic at the time

of test (as in Bordalo et al. (2020b)). Although a wealth of data favor exemplar over
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strength-based models, the latter have resisted extinction due to their parsimony and

computational efficiency (Murdock, 1985; Wixted, 2007).

Exemplar and strength-based models share a major limitation: they lack any mech-

anism for associating events that co-occur in a spatiotemporal context (that is, they

lack a mechanism to explain temporal contiguity). Such associations have long held a

central role in philosophical conceptions of the “association of ideas” (Hume) and form

the basis for the Aristotelian “Law of Contiguity”. Continental philosophers (Herbart,

1834) developed theories based on chained associations that stimulated the earliest ex-

perimental work on human memory (Ebbinghaus, 1913). These theories did not posit

a specific representation of time, but rather assumed that contiguously experienced

events become associated and that the strength of this associations falls as a function

of the temporal separation of the events (Solway et al., 2012). The repetition of an

item, evoked by an external stimulus or an internal retrieval, triggers retrieval of the

item’s neighbors as a function of the strength of their association. Chaining theory

encounters serious obstacles when two lists of sequentially presented items share an

overlapping item, or an overlapping subsequence of items. In this case, one cannot

recall either list without suffering catastrophic interference between the competitor

items (i.e the items that follow the overlapping items in both lists). Such interference

prevents the model from recovering order information, or even accurately recalling a

series with repeated or high similar elements (Lashley, 1951; Henson et al., 1996; Ka-

hana and Jacobs, 2000). Despite the failure of many of its predictions, chaining theory

retains a powerful appeal based in part on the everyday experience of sequential cuing

of memories.

The idea that memories preserve a record of their spatial information, and the

complementary observation that spatial cuing offers an aid to learning and retention,

formed a centerpiece of the medieval “arts of memory” (Yates, 1966). Soon after the

advent of list memory studies in the late 1800s, researchers recognized that subjects

often visualized a series of items as occurring within a virtual, mental, space, much

as medieval scholars used the “palaces of memory” to commit vast written works to
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memory (Ladd and Woodworth, 1911). This idea of positional coding as a means of

representing ordinal information offered an alternative to the classic idea of chained

associations described above. Positional coding models assumed that in learning a

series of items, subjects formed associations between items and positions (location on

an array, or position within an ordinal series). Later, at the time of test, subjects

used positional information, assumed to be a mental primitive, to cue retrieval of

items. Modern positional coding theories offer some of the most successful accounts of

memory of short, ordered lists: phone numbers and postal codes and the like (Burgess

and Hitch, 2006; Brown et al., 2000).

Although one can imagine items in a series as occupying locations in space, they

actually occupy locations in time. For early researchers, this raised the question of

whether memories retain information about their time of occurrence. Although the

notion of time tagging appeared in some of the earliest psychological literature (James,

1890) memory scholars did not take stock of its significance until the emergence of

experimental procedures that required subjects to explicitly judge the temporal order

of studied items (Yntema and Trask, 1963; Hinrichs and Buschke, 1968) and models

developed to explain these data (Bower, 1972). Consistent with the aforementioned

notions of spatial and temporal coding of memories, neural recordings in both human

and non-human animals have identified individual neurons in the brain that encode

spatial information (O’Keefe and Dostrovsky, 1971; Ekstrom et al., 2003), and temporal

information (MacDonald et al., 2011; Pastalkova et al., 2008; Umbach et al., 2020).

Further, the activity of neural ensembles coding time and place during memory storage

predict aspects of subsequent recall even when the recall task requires neither memory

for the time or place of occurrence (Miller et al., 2013; Umbach et al., 2020).

An exemplar theory which posits that agents store a complete record of the at-

tributes describing every memory would support optimal choice. But the marked

failures of memory in our daily lives and the presumed finite capacity of the memory

system pose a serious challenge for such a model. If memory failures primarily reflect

inaccurate storage, there must be a massive degree of “lossy” data compression on
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the front end. A commonly adopted view is that initial processing occurs via a lim-

ited capacity short-term storage system; only a tiny fraction of information survives

to make it into long-term storage. Contrary to this limited storage view, Gallistel

and King (2009) summarize extensive data, and computational arguments, in favor of

the brain’s ability to store massive amounts of information. Failures of memory, they

argue, reflect failures of retrieval rather than storage (see, also, Tulving and Madigan

(1970)). Using sensitive indices of retrieval one can show that a once experienced lab-

oratory event can leave a near-permanent record in memory (Kolers and Magee, 1978;

Standing, 1973; Brady et al., 2011).

Thus, to build a choice model upon an exemplar theory with complete memory

requires a fully-specified model for retrieval.55 The principles of memory used to moti-

vate our modeling approach–similarity, recency and contiguity–would need to emerge

from the hypothesized retrieval process. Most retrieval choice rules will naturally give

rise to similarity effects (Kahana, 2012, Chapter 4); see also Bordalo et al. (2020b).

Recency effects arise based on the similarity of temporal codes between study and test

(recency is another form of similarity). The challenge, however, facing these models is

to explain the contiguity effect and its persistence across time scales. The ability to

retrieve temporal codes associated with past memories, and use those codes to retrieve

subsequent memories, requires substantial machinery that is not part of exemplar mod-

els. Although a chaining model, as described above, can produce associations among

nearest neighbors, it does not easily account for associations that span multiple items

as seen in the data. These findings require something like the contextual retrieval

process used in this paper.

To summarize, a half-century of scholarship has shown that memory depends crit-

ically on the cues present at the time of retrieval, and that retrieval operates during

both learning and recall. Retrieval during learning determines the information present

on subsequent learning and recall trials. Scholars no longer see encoding and retrieval

55This statement is also true for exemplar models in which time is an explicit characteristic, e.g. SIM-
PLE (Brown et al., 2007).
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as distinct phases of memory; both processes play an important role during the acquisi-

tion of new knowledge and the during the recall or recognition of past experiences. The

retrieved context framework builds upon classic notions of contextual variability and

cue-dependent recall to offer a unified account of the principles of recency, contiguity

and similarity, and their persistence across time scales.

The three applications in Section 4 illustrate the force of dynamic contextual re-

trieval in economic settings. Consider the first illustration: one of the role of early-life

experience. A canonical exemplar model with a lossy front-end might be considered

that of Sims (2003). Such models and successors (Gabaix, 2019) can explain under-

reaction because items take a long time to get into memory. However, they cannot

explain the curious persistence of memory. This requires selective retrieval after a long

gap, suggesting that the problem did not lie with the initial storage.

Exemplar models extended to incorporate static context, as in Bordalo et al. (2020b)

are closer. In these models, re-appearance of a static physical context could trigger long-

distant memories. However, while static models appear to offer a simpler explanation

for these phenomena, to get them to work requires a greater burden of assumptions.

In all three applications, time is a crucial variable.56 The first and third applications

require a latent inner state; pessimism retrieved by a stock market loss in the first and

fear retrieved by a scene in the movie in the third. The second application is literally

a jump-back-in-time, drawing on the notion of temporal contiguity. To explain this

using a static model would require not only collapsing time dynamics (the financial

crisis and the Great Depression would have to co-occur), but arbitrarily assigning to

the financial crisis the role of context. As this section shows, many of these challenges

and questions have had parallels in the literature on human memory.

56This may seem least clear in the third application, but note that even here the experiment is
performed after the scene is viewed, not in the middle of the scene as would be expected if evaluating
physical context.
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6 Conclusion

What makes us know what we know, perceive what we perceive, think what we think?

What makes us the same person when we get up in the morning as we were the day

before? What makes life a connection of meaningful events, and not just a random

set of stimuli? It is our memories – the experience of our lives that is unique to each

individual.

The standard model in economics would have it otherwise. Under this framework,

individuals maximize expected utility, seeing the form of the utility function and beliefs

about the future as fundamentally stable. These assumption arise from pure reason –

under a specific notion of rationality. Although empirical and experimental studies have

challenged this framework, its parsimony and the appeal of assuming agents smarter

than ourselves have led to its continued use.

In this paper we propose an alternative that is also parsimonious, potentially ra-

tional, and based on a centuries-old program in experimental psychology, namely, the

study of memory. We show that principles emerging from this program offer a very

different set of implications than the standard ones in economics.

First, decisions can be affected by seemingly irrelevant information, making revealed

preferences far less stable than they might be otherwise. Second, individuals have

trouble processing information, not because of the amorphous idea of lack of attention,

but because of a stable internal state. Because we carry with us an internal state, we

cannot “take in” our surroundings all at once. This internal state, however, allows

us to tag memories in time, with the powerful consequence of temporal contiguity, a

property of memory noted since ancient times. Temporal contiguity strings together

events, pulling up an entire universe with one memory, and forms a basis for conjectures

of causal behavior. Finally, retrieval and encoding of memories implies that our beliefs

may not converge, regardless of how many data points we observe. The reason is that

the same data comes, for everyone, with its own associations – its own context. This

context then triggers an actual perception of different data.
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This paper represents a start in connecting memory with decision-making. Many

questions remain unanswered. We assumed a single decision-maker solving a static

problem (though memory itself is dynamic). A key question pertains to the decision-

maker’s view not only of future self, but of other selfs in the economy. Like beliefs

about the physical world, these may also be contextually-dependent. A second question

pertains to the boundaries between the type of recall of probabilities that we consider

here, and model-driven decisions. To some extent we all do use models; at what level

does the model come into play? Finally, economics concerns itself with maximization

under constraints. Perhaps memory evolved to solve some maximization problem, but

if so, which one? These are some of the questions we hope will be answered in future

work.
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A Proofs of results in Section 2.1

The following Lemma clarifies that the elements of Mt can be thought of as proportional

to probabilities, with a prior distribution given by M0. The scaling in (3) implies that

the absolute magnitude of the elements in M is irrelevant. The time path of retrieved

context, will the same if one employs a modified updating rule for M that scales the

sum of its elements to equal one. The following Lemma makes this statement precise.

Lemma A.1. Let {xt}Tt=1 be the time path of context up to time T given {ft}Tt=1, M0,

x0, and updating rule (4). Let t0 = ι>M0ι, namely, the sum of the elements in M0. Let

{x̃t}Tt=1 be a time path of context given the same features, initial condition M̃0 = 1
t0
M0,

x0 = x̃0, and updating rule

M̃t =
t0 + t− 1

t0 + t
M̃t−1 +

1

t0 + t
x̃tf

>
t . (A.1)

Then x̃t = xt and M̃t = 1
t0+t

Mt.

Proof. Assume by induction that x̃t−1 = xt−1 and M̃t−1 = (t0 + t − 1)−1Mt−1. It

follows from (3) that xint = x̃in
t , implying that xt = x̃t. It remains to show that

M̃t = (t0 + t)−1Mt. By (A.1),

M̃t =
t0 + t− 1

t0 + t
M̃t−1 +

1

t0 + t
xtf

>
t (A.2)

Recall ι>M0ι = t0. Further recall that ι>ft = ι>xt = 1. It follows that the elements of

the outer product matrix xtf
>
t sum to one. Using the induction step and substituting

into (A.2) implies

M̃t =
1

t0 + t
Mt,

as required.

It might seem that the updating rule (A.1) contains more information than (4) in

that (A.1) includes both the current sample size t and a prior sample size t0. Lemma A.1
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says that this intuition is not correct and that they contain the same information. The

reason is that the extra information in (4) is contained in the size of M itself. The sum

of the elements inM equals the size of the sample, whereas the sum of the elements of M̃

equals one. The updating rule (A.1) takes information that was previously embedded

in M and puts it into the updating rule.

Proof of Theorem 1. We show that, given data on latent states and an observed

features ft, Mt(i, j) is proportional to the posterior probability of the co-occurence of

latent state i and observed state j.

Under the assumptions of the theorem, context xt is such that xt(i) = 1 if Zt = zi

and 0 otherwise. Consider a Bayesian agent with a Dirichlet prior, with parameters

given by M0. Specifically, let K = mn, and let P be the m × n matrix of prior

probabilities pij over state (zi, yj):

vec(P ) ∼ Dir(K, vec(M0)).

Note that the prior mean of pij is M0(i, j)/t0, with t0 = ι>M0ι. Suppose the agent

observes {Yt, Zt}tt=1. Let Ŷs = (Ys, Zs). Assume the agent computes a quasi-likelihood

function under the assumption that observations are iid:57

L(Ŷ1, . . . , Ŷt|P ) =
t∏
t=1

l(Ŷs|P )

Each term l(Ŷs|P ) is multinomial. The posterior distribution p(P |Ŷ1, . . . , Ŷt,M0) is

therefore Dirichlet (Gelman et al., 2004):

vec(P ) | {Yt, Zt}tt=1 ∼ Dir(K, vec(Mt)).

The mean of the posterior distribution for pij is then Mt(i, j)/(t0 + t) as required.

57Alternatively, the agent could use the true likelihood that would allow for autocorrelation. This
would necessitate a prior over pZij for all pairs (i, j). The quasi-likelihood function avoids this compli-
cation.
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Lemma A.2. Given Assumption 2, the following two invariance conditions are equiv-

alent:

1. For any positive integer s, t, if fs = ft then xins = xint .

2. For any basis vector f̄ , and any non-negative integers s, t, Msf̄ ∝Mtf̄ .

Proof. Assume condition 1 above. Assume fs = ft ≡ f̄ . By (3) and condition 1

Ms−1f̄ = Ms−1fs ∝ xins = xint ∝Mt−1ft = Mt−1f̄ ,

proving condition 2.

Now assume condition 2. Let fs = ft = f̄ . Then by (3) and condition 2,

xins ∝Ms−1fs ∝Mt−1f̄ ∝ xint .

Equality follows because elements of retrieved context must sum to 1. This proves

condition 1.

Note that the proof does not, strictly speaking, require Assumption 2. It holds for

any subset of possible basis vectors (assuming we restrict xin accordingly). In what

follows, we will mainly be concerned with the case in which the features are basis

vectors.

Proof of Theorem 3. Given Lemma A.2 and ζ = 1, it suffices to show that, for any

(basis) features vector f̄ , and any non-negative integer s, t, Msf̄ ∝Mtf̄ .

For convenience, normalize one of the times to 0. We prove, by induction, that for

non-negative integers t:

Mtf̄ ∝M0f̄ .

Clearly the statement holds for t = 0. Assume

Mt−1f̄ ∝M0f̄ . (A.3)
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It follows from (4) that

Mt = Mt−1 + xtf
>
t . (A.4)

It follows from (2), (3), and ζ = 1 that

xt = (||Mt−1ft||)−1Mt−1ft. (A.5)

Substituting (A.5) into (A.4) implies

Mt = Mt−1 + (||Mt−1ft||)−1Mt−1ftf
>
t . (A.6)

Consider some basis vector f̄ . It follows from (A.6) that

Mtf̄ = Mt−1f̄ + (||Mt−1ft||)−1(Mt−1ft)(f
>
t f̄). (A.7)

First assume f̄ 6= ft. Then f>t f̄ = 0, the second term on the right-hand side of (A.7)

equals zero and

Mtf̄ = Mt−1f̄ .

Now assume f̄ = ft. Then f>t f̄ = 1 and

Mtf̄ = Mt−1f̄ + (||Mt−1ft||)−1Mt−1f̄ ∝Mt−1f̄ .

Thus for any basis vector f̄ ,

Mtf̄ ∝Mt−1f̄ ∝M0f̄ ,

where the second statement of proportionality follows from the induction step (A.3).

Lemma A.3. Assume thus far an agent has experienced an event at times {t1, . . . , t`}.
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Then Assumption 2 implies

xint` =
1

`

(
xint1 +

`−1∑
k=1

xtk

)
. (A.8)

Proof. Without loss of generality, assume the event is represented by basis vector e1.

A direct application of (3) implies that, should this occur at time t:

xint ∝Mt−1e1 (A.9)

Substituting in from (5), we find:

xint ∝M0e1 +
t−1∑
s=1

xs(f
>
s e1) (A.10)

If the agent experienced the event at time s < t, f>s e1 = 1; otherwise it is equal to zero

(note that the Lemma assumes all features are basis vectors). Therefore:

xint ∝M0e1 +
∑

s∈{t1,...,t`}

xs

Note that the vector on the right hand side has elements summing to `. The result

follows from the fact that elements of xint must sum to 1.

Proof of Theorem 4. Consider retrieved context for the `th event. A slight rewriting

of (A.8) implies

xint` =
1

`

(
xint1 +

`−2∑
k=1

xtk + xt`−1

)

=
1

`

((
xint1 +

`−2∑
s=1

xtk

)
+ (1− ζ)xt`−1−1 + ζxint`−1

)
(A.11)
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The second line follows from (2):

xt`−1
= (1− ζ)xt`−1−1 + ζxint`−1

.

The term in the inner parentheses in (A.11) equals (` − 1)xint`−1
. This follows from

(A.8), applied to xint`−1
. Therefore,

xint` =
1

`

(
(`− 1)xint`−1

+ (1− ζ)xt`−1−1 + ζxint`−1

)
.

Collecting terms in xint`−1 establishes the result.

Proof of Theorem 2. Assume {Zt} is iid. Define a matrix P such that P (i, j) =

p(zi, yj), the joint probability of zi and yj. Then P (i, j) ∝ Mt−1, with the constant of

proportionality equal to the sum of the elements of Mt−1. Suppose Yt = yj. Then ft is

the jth basis vector and

xint =
Mt−1ft
||Mt−1ft||

=
Pej
||Pej||

=

(
m∑
i=1

p(zi, yj)

)−1 
p(z1, yj)

...

p(zm, yj)

 .

Note that
∑

i p(zi, yj) is simply the unconditional probability of yj. Thus

xint (i) = p(zi, yj)

(
m∑
i=1

p(zi, yj)

)−1
= p(zi | yj),

the conditional probability of Zt = zi, given Yt = yj.

Proof of Theorem 5. It suffices to show that, as a function of features elements, xint

is uniformly continuous, where we define continuity by the L1-norm. We first show
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that unscaled xint is uniformly continuous. Define t0 = ι>M0ι. We show that, for any

ε > 0, there exists a δ > 0 such that

∣∣∣∣∣∣ 1

t0 + t
(M0 +

t∑
s=1

xsf
>
s )(ft − f̂t),

∣∣∣∣∣∣ < ε (A.12)

provided that ||ft − f̂t|| < δ.

Standard triangle inequality argument imply that it suffices to show that

∣∣∣∣∣∣1
t

t∑
s=1

xsf
>
s (ft − f̂t)

∣∣∣∣∣∣ < ε/2 (A.13)∣∣∣∣∣∣ 1

t0
M0(ft − f̂t)

∣∣∣∣∣∣ < ε/2 (A.14)

For (A.13), note that f>s (ft − f̂t) is a scalar, so that

∣∣∣∣∣∣1
t

t∑
s=1

xsf
>
s (ft − f̂t)

∣∣∣∣∣∣ =
1

t

t∑
s=1

||xs||||f>s (ft − f̂t)||

≤ 1

t

t∑
s=1

||xs||||fs||||ft − f̂t||

=
1

t

t∑
s=1

||ft − f̂t|| = ||ft − f̂t||. (A.15)

For (A.14), note that

∣∣∣∣∣∣ 1

t0
M0(ft − f̂t)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1

t0

m∑
j=1

M0(i, j)(ft(j)− f̂t(j))
∣∣∣∣∣∣

≤
∣∣∣∣∣∣ 1

t0

m∑
j=1

M0(i, j)
∣∣∣∣∣∣max

j
{|ft(j)− f̂t(j)|}. (A.16)

It suffices then to choose δ so that the right-hand side of (A.15) and (A.16) are less

than ε/2.

We now extend this argument to show that xint is uniformly continuous.58 Define

58We treat the previous history of contexts and features, as well as M0, as fixed. Then xint is a
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xin∗t to be unscaled xint :

xin∗t =
1

t0 + t
(M0 +

t∑
s=1

xsf
>
s )ft

x̂in
∗t =

1

t0 + t
(M0 +

t∑
s=1

xsf
>
s )f̂t.

We have shown ||x̂in
∗t − xin∗t|| < ε. Our aim is to show ||x̂in

t − xint || < ε. Because we are

interested in the limit for a fixed ft (given t), and therefore a fixed xin∗t, it suffices to

show, with a suitable adjustment to ε, that

||x̂in
t − xint ||||xin∗t|| < ε.

Finally note that

||x̂in
t − xint ||||xin∗t|| =

∣∣∣∣∣∣xint ||xin∗t|| − x̂in
t ||x̂in

∗t ||+ x̂in
t ||x̂in

∗t || − x̂in
t ||xin∗t||

∣∣∣∣∣∣
=

∣∣∣∣∣∣(xin∗t − x̂in
∗t )− x̂in

t

(
||x̂in
∗t || − ||xin∗t||

) ∣∣∣∣∣∣
≤ ||xin∗t − x̂in

∗t ||+ ||x̂in
t ||
∣∣∣||x̂in
∗t || − ||xin∗t||

∣∣∣
= ||xin∗t − x̂in

∗t ||+
∣∣∣||x̂in
∗t || − ||xin∗t||

∣∣∣ < ε,

provided that ||xin∗t − x̂in
∗t || < ε/2.

B Proofs of results in Section 2.2

Definition (Associated features). Features vector f̄ and state Zt = zi are associated

at time t if either one of the two conditions hold:

1. ê>i M0f̄ 6= 0

function of time and of ft. We let f̂t → ft and show that the convergence of xint does not depend on t.
It will, however, depend on the choice of ft because it depends on the scale of 1

t0+t
(M0+

∑t
s=1 xsf

>
s )ft

as the subsequent argument makes clear.
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2. There exists an s ≤ t such that for f>s f̄ 6= 0, xs(i) 6= 0.

If f̄ is associated with state i, then the agent has either experienced features f̄ in

a context that places weight on state i, or initial memory associates f̄ with state i.

Definition (Uniquely associated features). Features vector f̄ and state Zt = zi are

uniquely associated at time t if f̄ is only associated with state i at t.

If f̄ is uniquely associated with state i, it can only retrieve state i.

Notation. Let Ωi,t ⊂ Bn denote the set of features uniquely associated with state i at

time t. Let Ω⊥i,t ⊂ Bn denote the set of features not associated with state i at time t.

Lemma B.1. 1. Features retrieve a context placing weight on i if and only if these

features are associated with state i.

2. Features uniquely associated with state i retrieve only state i (if ft+1 ∈ Ωi,t, then

xint+1(i) = 1).

Proof. Let f̄ be features at time t+ 1. Consider retrieved context (3):

xint+1 ∝ Mtf̄

∝ M0f̄ +
t∑

s=0

xs(f
>
s f̄),

it follows that

xint+1(i) ∝ ê>i M0f̄ +
t∑

s=0

xs(i)(f
>
s f̄)

The right hand side is nonzero, if and only if f̄ is associated with state i.

Now assume f̄ is uniquely associated with state i. Then, for k 6= i, xint+1(k) = 0.

Because the elements of the context vector sum to 1, xint+1(i) = 1.

Lemma B.2 (Context reset). For a given integer τ > 0, assume the agent experiences

a sequence of features ft+1, . . . , ft+τ ∈ Ω⊥i,t. Also assume the features are orthogonal to

one another. Then

xt+τ (i) = (1− ζ)τxt(i). (B.1)
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Thus as τ →∞, xt+τ (i)→ 0.

Proof. We prove (B.1) by induction on τ . It holds trivially for τ = 0. Assume (B.1)

holds for τ − 1. Given features ft+1, . . . , ft+τ , it follows from (4) that

Mt+τ−1 = Mt + xt+1f
>
t+1 + · · ·+ xt+1f

>
t+t+τ−1

Assume features ft+τ not associated with i at t and orthogonal to ft+1, . . . , ft+τ−1. It

follows from (3) that

xint+τ ∝ Mt+τ−1ft+τ

∝ Mtft+τ + xt+1f
>
t+1ft+τ + · · ·+ xt+1f

>
t+τ−1ft+τ

∝ Mtft+τ

Thus, lack of association at time t, xint+τ (i) = 0. Recall that we have assumed by

induction that xt+τ−1(i) = (1− ζ)τ−1xt(i). Then (B.1) follows from (2).

Exponential decay of context, combined with a sufficiently large number of orthog-

onal features, implies the possibility of context “reset.” Context reset is not a mere

mathematical construction: novel features are used in the memory laboratory to reset

context. These novel features, presumably orthogonal to the features that the agent

has recently experienced, are introduced through “distractor tasks” that often involve

solving arithmetic problems under time constraints (Howard and Kahana, 1999).

Proof of Theorem 6. See Lemma B.2.

The sets Ωi,t and Ω⊥i,t define subjective associations. It is useful to have notation

for the analogous concepts in the physical world.

Notation. Let Yi ⊂ Y denote the set of outcomes that can only occur in state i. That

is:

Yi ≡ {yj ∈ Y : p(yj | zi) > 0 & p(yj | zk) = 0,∀k 6= i}.
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Let Y⊥i denote the set of outcomes that cannot occur in state i:

Y⊥i ≡ {yj ∈ Y : p(yj|zi) = 0}.

Definition (Correct associations). The agent has correct associations with state i if

the agent’s associations reflect reality. That is: Ωi = Yi, and Ω⊥i = Y⊥i .

If features unambiguously signal a state, then context shifts in the direction of that

state.

Lemma B.3. Consider a nonempty state i such that Y⊥i = Y \ Yi. Assume at time

t− 1 that the agent has correct associations with state i. Then

1. For xt−1(i) ∈ [0, 1), xt(i) > xt−1(i) if and only if Zt = zi.

2. For xt−1(i) = 1, xt(i) = xt−1(i) if and only if Zt = zi.

Proof. First rewrite (2) as:

∆xt(i) = ζ(xint (i)− xt−1(i)). (B.2)

Under the stated assumptions, ft ∈ Ωi,t−1 implies Yt ∈ Yi and ft ∈ Ω⊥i,t−1 implies

Yt ∈ Y⊥i . Moreover, by Lemma B.1, ft ∈ Ωi,t−1 implies xint (i) = 1 and xint (i) = 0

otherwise. It follows that if xint (i) = 1, we must have Yt ∈ Yi. If xint (i) = 0, we must

have Yt ∈ Y⊥i . Therefore, xint (i) = 1 if and only if Zt = zi. It then follows from (B.2)

that

∆xt(i) =

 ζ(1− xt−1(i)) if Zt = zi

−ζxt−1(i) otherwise
(B.3)

Suppose first that xt−1(i) ∈ [0, 1). If Zt = zi, xt(i) − xt−1(i) = ζ(1 − xt−1(i)) > 0. If

Zt 6= zi, xt(i)− xt−1(i) = −ζxt−1(i) ≤ 0, establishing the first statement.

Now suppose xt−1(i) = 1. If Zt = zi, then xt(i) = xt−1(i) = 1. If Zt 6= zi.

xt(i) < xt−1(i) = 1, establishing the second statement.
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We use the notation E to denote the expectation taken under the econometrician’s

measure, whereas E is the expectation taken under the agent’s subjective probability.

Proof of Theorem 7. We calculate E[∆xt+1(i) |∆xt(i) > 0], where E denotes the

expectation that the econometrician calculates. We assume throughout that xt−1(i) <

1. Then lemma B.3 and the assumptions of the theorem together imply that ∆xt(i) > 0

if and only if Zt = zi. We therefore need only calculate E[∆xt+1(i) |Zt = zi].

Given that Zt = zi, we consider what happens at t+1. If Zt+1 6= zi, ft+1 6= ft by the

assumptions of the theorem. We have yt+1 ∈ Y⊥i , and ft+1 ∈ Ω⊥i,t. Thus, xint+1(i) = 0

by Lemma B.1. If, on the other hand, Zt+1 = zi, yt+1 ∈ Yi, and ft+1 ∈ Ωi,t−1. Recall

xint+1 ∝ (Mt−1 + xtf
>
t )ft+1. (B.4)

If the features are again novel (ft+1 6= fi), then xint+1(i) = 1 by Lemma B.1. However,

if ft+1 = ft, (B.4) becomes

xint+1 ∝Mt−1ft+1 + xt.

The first term is proportional to êi by assumption. Its magnitude will depend on

the magnitude of the elements in Mt−1. Let t0 be the length of the prior sample.59

Lemma A.1, implies

xint+1 ∝ (t+ t0 − 1)êi + xt

and therefore that

xint+1(i) = (||(t+ t0 − 1)êi + xt||)−1(t+ t0 − 1 + xt(i)). (B.5)

To summarize, conditional on Zt+1 = zi, we have

xint+1(i) =

 1 if ft+1 6= ft

(||(t+ t0 − 1)êi + xt||)−1(t+ t0 − 1 + xt(i)) ft+1 = ft

59The length of the prior sample is the sum of the elements in M0. See Lemma A.1 for further
discussion.
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Let

x̄in
t (i;xt) = Et[x

in
t+1(i)|Zt = Zt+1 = zi] (B.6)

Note that xt(i) < x̄t(i;xt) < 1. A large prior sample or many elements of Yi give us

x̄t(i;xt) close to 1.

Substituting (B.6) into (B.2) implies

Et[∆xt+1(i)|Zt+1 = Zt = zi] =

 ζ(x̄in(i;xt)− xt(i)) Zt+1 = zi

−ζxt(i) otherwise

Taking the expectation over the possible outcomes of Zt+1, we find:

Et[∆xt+1(i)|∆xt(i) > 0] = Et[∆xt+1(i)|Zt = zi]

= ζ(pZii x̄
in(i;xt)− xt(i)).

The theorem follows.

Proof of Theorem 8. Because Zt is iid, xint (i) = p(zi |Yt) (Theorem 2). Applying

(B.2):

∆xt+1(i) = ζ(p(zi|Yt+1)− xt(i)). (B.7)

The assumption of iid Zt implies that Yt is also iid. Thus,

Etp(zi|Yt+1) = Ep(zi|Yt+1) = p(zi). (B.8)

We now calculate Etxt(i), conditional on an upward revision in beliefs from t − 1

to t. First note p(zi) =
∑n

j=1 p(zi|yj)p(yj). For yj ∈ Y⊥i , p(zi|yj) = 0. Because p(zi)

averages these zero terms with terms j such that p(zi|yj) > 0,

E
[
p(zi|Yt) |Yt /∈ Y⊥i

]
> p(zi).

If we further add the provision that Yt is such that p(zi|Yt) > x̄ ≥ 0, we weakly increase
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the expectation on the left hand side above. That is,

E [p(zi|Yt) | p(zi|Yt) > x̄] = E
[
p(zi|Yt) |Yt /∈ Y⊥i & p(zi|Yt) > x̄

]
≥ E

[
p(zi|Yt) |Yt /∈ Y⊥i

]
> p(zi), (B.9)

because p(zi|yj) > x̄ implies p(zi|yj) > 0 which implies yj /∈ Y⊥i .

By definition, an upward revision in expectations about state i at time t occurs if

and only if xt(i) > xt−1(i), which in turn occurs if and only if xint (i) > xt−1(i). Finally,

recall p(zi |Yt) = xint (i). Putting these pieces together:

E
[
xint (i)|∆xt(i) > 0

]
= E [p(zi|Yt) |∆xt(i) > 0]

= E [p(zi|Yt) | p(zi|Yt) > xt−1(i)]

> p(zi), (B.10)

by (B.9). It then follows from (B.7) that

E [∆xt+1(i)|∆xt(i) > 0] = ζ
(
p(zi)− E[(1− ζ)xt−1(i) + ζxint (i)|∆xt(i) > 0]

)
= ζ

(
p(zi)− ζE

[
xint (i)|∆xt(i) > 0

])
− (1− ζ)E [xt−1(i)|∆xt(i) > 0]

For ζ sufficiently large, the first term p(zi) − ζE
[
xint (i)|∆xt(i) > 0

]
is negative by

(B.10), whereas the second term is small.

C Bayesian updating from rare events

Consider a Bayesian agent learning about the probability of a rare event from obser-

vations of the event. In the terminology of Section 2, we assume for the purpose of

this section that Zt is iid, and that there are two outcomes of {Zt}, and that the set Y

partitions into outcomes possible in one of these states and those possible in the other.
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This is of course the same as saying that Zt is observable.

Let p denote the probability of the rare event. The agent has prior

p ∼ Beta(p∗τ + 1, (1− p∗)τ + 1), (C.1)

for p∗, τ ≥ 0. This prior corresponds to beliefs if the agent had begun with a prior

that is uniform on [0, 1] and observed a sample of length τ , of which there were p∗τ

occurrences of the rare event. The density function corresponding to (C.1) is given by

f(p) ∝ pp
∗τ (1− p)(1−p∗)τ ,

where the constant of proportionality does not depend on p.

Assume T years of data. For concreteness, we will call the rare event a crisis.

Conditional on the probability p, the likelihood of exactly N occurrences of the event

equals

L(N crises | p) =

(
T

N

)
pN(1− p)T−N . (C.2)

Therefore the posterior distribution equals

f(p |N crises) ∝ L(N crises|p)f(p)

∝ pN+p∗τ (1− p)T+τ−(N+p∗τ)

where once again we have ignored terms that do not depend on p. This is proportional

to the Beta density, so

p |N crises ∼ Beta(N + p∗τ + 1, T + τ − (N + p∗τ) + 1).

It follows from properties of the Beta distribution that the posterior mean equals

E[p |N crises] =
N + p∗τ + 1

T + τ + 2
. (C.3)
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The posterior mean depends on the sample path. Figure 3 shows the average posterior

mean, assuming the likelihood (C.2):

E#crises [E[p |Ncrises]] =

∫
N + p∗τ + 1

T + 2
L(N crises | p) dN

=
pT + p∗τ + 1

T + τ + 2

where we have used the fact that, conditional on p, N has a binomial distribution,

and therefore E[N | p] = pT . The figure corresponds to the case of τ = 0, however the

results are very similar for τ > 0, provided that the actual sample is large relative to

the prior sample.

D Proof of the result in Section 2.3

Proof of Theorem 9. Following the proof and notation of of Theorem 2, note that

for any latent state i,

f in
it =

M>
t−1êi

||M>
t−1êi||

=
P>êi
||P>êi||

=

(
n∑
j=1

p(zi, yj)

)−1 
p(zi, y1)

...

p(zi, yn)

 .

Note that
∑n

j=1 p(zi, yj) is simply the unconditional probability of zi. Thus, the jth

entry of f in
it is the conditional probability p(yj|zi). the unconditional probability of
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p(yj) is therefore:

p(yj) =
m∑
i=1

f in
it p(zi)

=
m∑
i=1

f in
it x

in
t (i)

as required by (10).

E Generalizing results in Section 2.4

Consider the setting of Section 2.4: the agent experiences a crisis at time t − 1 (say,

1929), followed by a depression at time t. Section 2.4 considers the effect of re-

appearance of crisis features at time t′ > t under two simplifying assumptions, (1)

x1929 is a basis vector and (2) xint′ = xt′ . In this appendix we relax these assumptions.

Given the relative uniqueness of the 1929 stock market crash and the Great Depression

we fix ideas by assuming that fcrisis and fdepression were novel events, and that prior

associations through M0 were sufficiently weak as to be negligible. We assume that

depression features last for k periods. Because our primary interest is the jump-back-in

time and not details of associations per se, we assume that fdepression did not reoccurred

prior to t′, and that the context retrieved by the original depression features is not

associated with the context in 1929.60

The reappearance of crisis features, ft′ = fcrisis implies xint′ = x1929 as in Section 2.4.

Context at time t′ is now:

xt′ = (1− ζ)xt′−1 + ζx1929. (E.1)

Assume that t′ represents the first appearance of crisis features, so that x>t′−1x1929 = 0.

60This would occur if depression features were novel between t and t + k − 1. We disregard the
small effect of learning in this initial period.
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Let w1929,i be the projection of x1929 onto basis vector i, so that

x1929 =
m∑
i=1

w1929,iêi w1929,i ≥ 0. (E.2)

with
∑m

i=1w1929,i = 1.

From (9), it follows that features retrieved by (basis) context vector êi at time t′

equal

f in
i,t′ = αi,t′M

>
t′−1êi, i = 1, . . . ,m, (E.3)

where αi,t′ = ||M>
t′−1êi||−1 ensures that the elements of f in

i,t′ sum to 1. According to

(10), we calculate the features retrieved by context at time t′ by taking the weighted

sum of (E.3). Because context at time t′ is itself a weighted sum of prior context and

retrieved context, we can consider each of these terms separately.

Define the notation

f in
1929,t′ ≡

m∑
i=1

w1929,if
in
i,t′ .

By (10), f in
1929,t′ are the features retrieved by xint′ = x1929. The subjective probability

of a depression implied by f in
1929,t′ equals the inner product (fdepression)>f in

1929,t′ . Note

that fdepression is the basis vector representing physical depression features, so the inner

product is simply the entry of f in
1929,t′ that corresponds to depressions among all the

elements of Y . The inner product equals

(fdepression)>f in
1929,t′ =

m∑
i=1

w1929,i(fdepression)>f in
i,t′ .
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Using (E.3):

(fdepression)>f in
i,t′ = αi(fdepression)>M>

t′−1êi (E.4)

= αi(fdepression)>

(
M>

0 êi +
t′−1∑
s=1

fsx
>
s

)
êi (E.5)

= αi

t′−1∑
s=1

(fdepression)>fs)(x
>
s êi) (E.6)

= αi(xt + · · ·+ xt+k−1)
>êi (E.7)

= αi(
k∑
l=1

(1− ζ)lx1929 + x⊥1929)
>êi, (E.8)

where x⊥1929 is a vector orthogonal to x1929. Equation E.6 follows from the lack of

prior associations for depression features through M0. Equation E.7 follows from the

assumption of no depression features after time t + k − 1, and (E.8) follows from

the orthogonality of retrieved context and x1929 between t and t + k − 1. Because

x>1929êi = w1929,i,

(fdepression)>f in
i,t′ =

(
1

ζ
− 1

)(
1− (1− ζ)k

) m∑
i=1

αiw
2
1929,i (E.9)

In the case of basis x1929, w1929,i equals 1 for exactly one i and is otherwise 0. The

weight αI is determined by how common the context x1929 is. If uncommon, then αi

simply equals
(

1
ζ
− 1
) (

1− (1− ζ)k
)

and x1929 retrieves a probability of 1.

Note however, that total context is not xint′ = x1929 but rather (E.1). Under the

assumption of orthogonality, the probability of a depression goes from zero (features

retrieved by xt′−1 to ζ multiplied by (E.9).

F Proofs for Section 4.1

This Appendix contains proofs generalizing the results in Section 4.1 to ζ < 1. The

following is a simple extension of (5) to retrieved features.
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Lemma F.1. Features retrieved by context êi as of time t satisfy:

f in
t,i =

(
ι>M>

0 êi +
t−1∑
s=1

(x>s êi)

)−1(
M>

0 êi +
t−1∑
s=1

fs(x
>
s êi)

)
(F.1)

where fs can be physical or retrieved features, and where ι is the n× 1 vector of ones.

Proof. Combining (9) with (4) implies

f in
t,i ∝ M>

0 êi +
t∑

s=1

(fsx
>
s )êi

∝ M>
0 êi +

t∑
s=1

fs(x
>
s êi)

which is analogous to (5) for retrieved features. To construct the normalizing constant,

pre-multiply (F.2) with ι, and recall that ι>fs = 1 for all s.

The following is an extension of Theorem 4 to features retrieval.

Theorem F.2. Let ki = ||M>
0 êi||. Assume retrieved features are encoded with context.

Then retrieved features obey the following recursion

f in
t,i =

(
1−

(x>t−1êi)(1− x>t−1êi)
ki +

∑t−1
s=1 x

>
s êi

)
f in
t−1,i +

(x>t−1êi)(1− x>t−1êi)
ki +

∑t−1
s=1 x

>
s êi

f in,⊥
t−1,i, (F.2)

where

f in,⊥
t−1,i = (1− x>t−1êi)−1

∑
j 6=i

xt−1(j)f
in
t−1,j, (F.3)

namely f in,⊥
t−1,i represents features retrieved at t − 1 by context elements other than i.

The initial condition is f0,i ∝M>
0 êi.

Proof. We apply (F.1), setting ki = ι>M>
0 êi and fs = f in

s :

f in
t,i =

(
ki +

t−1∑
s=1

(x>s êi)

)−1(
M>

0 êi +
t−1∑
s=1

f in
s (x>s êi)

)
(F.4)
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We rewrite (F.4), using the same recursive reasoning as in the proof of Theorem 4:

f in
t,i =

(
ki +

t−1∑
s=1

(x>s êi)

)−1(
M>

0 êi +
t−2∑
s=1

f in
s (x>s êi)

)
︸ ︷︷ ︸

(1+
∑t−2

s=1 x
>
s êi)f

in
t−1,i

+

(
ki +

t−1∑
s=1

x>s êi

)−1
f in
t−1(x

>
t−1êi). (F.5)

Note that we apply (F.1) at t−1 to concludeM>
0 êi+

∑t−2
s=1 f

in
s (x>s êi) = (1+

∑t−2
s=1 x

>
s êi)f

in
t−1,i.

Retrieved features at time t−1 are a weighted average of those retrieved by êi, and

those retrieved by the other elements of context.

f in
t−1 = f in

t−1,i(x
>
t−1êi) + f in,⊥

t−1,i(1− x>t−1êi), (F.6)

where f in,⊥
t−1,i is as defined in (F.3). Combining (F.5) and (F.6) shows that f in

t,i is a

weighted average of f in
t−1,i and f in,⊥

t−1,i. Moreover, the coefficient multiplying f in,⊥
t−1,i must

equal
(
ki +

∑t−1
s=1 x

>
s êi
)−1

(1 − x>t−1êi)(x>t−1êi). Because the elements of f in
t,i must sum

to 1, it follows that the coefficient on f in
t−1,i equals one minus this quantity, as shown

in (F.2).

The following Lemma generalizes Lemma A.3 to encoding of retrieved features.

We assume that only the physical event triggers encoding of features that are non-

orthogonal to the event. For example, if the event is a stock market loss, we disregard

events that were not losses, but nonetheless reminded the agent of losses, as second-

order.

Lemma F.3. Assume the agent experiences an event at {t1, . . . , t`}, and that features

vectors are otherwise orthogonal to the event. Then retrieved context in response to

ft` = ei is proportional to

xint` ∝M0ei +
`−1∑
k=2

xtk(f>tkei) (F.7)
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Note that when features are basis vectors, (F.7) reduces to (A.8).

Proof of Lemma F.3. By (5) and the fact that t1 is the first occurence of the event:

xint1 ∝M0ei.

Moreover,

Mt1−1ei = M0ei

Assume by induction that (F.7) holds for the (`− 1)st occurrence of the event:

xint`−1
∝M0ei +

t`−2∑
k=2

xtk(f>tkei). (F.8)

and that

Mt`−1−1ei = M0ei +

t`−2∑
k=2

xtk(f>tkei). (F.9)

By (2), context equals

xt`−1
= (1− ζ)xt`−1−1 + ζxint`−1

and memory is updated as:

Mt`−1
= Mt`−1−1 + xt`−1

f>t`−1
. (F.10)

where it is not necessary to take a stance on whether ft`−1
= ei or features retrieved

by xt`−1
.

By (3),

xint` ∝Mt`−1ei.

By definition, t`−1 is the occurrence of the event just before the occurence at t`. Because

of this and additional assumptions of the theorem, all features between t`−1 and t` are
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orthogonal to ei. Therefore we can ignore terms in Mt`−1 that occur after t`−1, and

xint` ∝Mt`−1
ei

Substituting in from (F.10):

xint` ∝ (Mt`−1−1 + xt`−1
f>t`−1

)ei.

Substituting in from (F.9):

xint` ∝M0ei +

t`−2∑
k=2

xtk(f>tkei) + xt`−1
(f>t`−1

ei).

Because we can ignore terms in Mt`−1 that occur after t`−1:

Mt`−1ei = Mt`−1
ei

It follows from (F.9) and (4) that

Mt`−1
ei = M0ei +

t`−2∑
k=2

xtk(f>tkei) + xt`−1
(f>t`−1

ei),

completing the proof.
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Figure 1: Retrieved Context and the spotlights of memory. In this illustration, memo-
ries appear as circles on the stage of life. All experiences that enter memory, as gated
by perception and attention, take their place upon the stage. Context serves as a set
of spotlights, each shining into memory and illuminating its associated features. The
prior state of context illuminates recent memories, whereas the context retrieved by
the preceding experience illuminates temporally and semantically contiguous memo-
ries. Due to the recursive nature of context and the stochastic nature of retrieval, the
lamps can swing over time and illuminate different sets of prior features.
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Figure 2: Universality of Temporal Contiguity. A. When freely recalling a list
of studied items, people tend to successively recall items that appeared in neighbor-
ing positions. This temporal contiguity effect (TCE) appears as an in increase in the
conditional-response probability as a function of the lag, or distance, between stud-
ied items (the lag-CRP). The TCE appears invariant across conditions of immediate
recall, delayed recall, and continual-distractor recall, where subjects perform a demand-
ing distractor task between each of the studied items. B. Older adults exhibit reduced
temporal contiguity, indicating impaired contextual retrieval C. Massive practice in-
creases the TCE, as seen in the comparison of 1st and 23rd hour of recall practice. D.
Higher-IQ subjects exhibit a stronger TCE than individuals with average IQ. E. The
TCE is not due to inter-item associations as it appears in transitions across different
lists, separated by minutes, in a delayed final test given to subjects who studied and
recalled many lists. F. The TCE appears in conditional error gradients in cued recall,
where subjects tend to mistakenly recall items from pairs studied in nearby list posi-
tions. G. When probed to recall the item that either followed or preceded a cue item,
subjects occasionally commit recall errors whose distribution exhibits a TCE both for
forward and backward probes. H. The TCE also appears when subjects are asked to
recognize previously seen travel photos. When successive test items come from nearby
positions on the study list, subjects tendency to make high confidence “old” responses
exhibits a TCE when the previously tested item was also judged old with high con-
fidence. This effect is not observed for responses made with low confidence. Healey
et al. (2019) provide references and descriptions of each experiment.
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Figure 3: Posterior probability and asset allocation as a function of sample length
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Notes: The figure shows posterior mean of the probability of a depression (Panel A)
and the resulting asset allocation (Panel B) for the model presented in Section 4.1.
’Retrieved context (ζ = 1)’ is the retrieved context model when the agent places no
weight on prior context. ’Retrieved context (ζ = 0.35)’ corresponds to when the
agent places a weight of 1-0.35 on the prior context. ’Bayes’ corresponds to the mean
posterior probability when a Bayesian learns about a rare event from occurrences.
’Neglected risk’ corresponds to exponential decay of beliefs after observing a rare event,
as described in Section 2.2.
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Figure 4: Response of prices and returns to a financial crisis

Panel A: Price-dividend ratio and riskfree rate
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Notes: Panel A shows the time path of the price-dividend ratio and of the short-term
interest rate in response to a period of calm, followed by a financial crisis (in the model
of Section 4.2). The dashed lines show full-information values. Panel B shows realized
stock returns. The agent observes three periods of crisis features followed by normal
features. The figure shows the maximum of the model-implied riskfree rate and zero.
Returns are in annual terms.

98



Figure 5: Expected utility under context manipulation

Panel A: Prior beliefs
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Notes: This figure shows expected utility as a function of allocation to the risky asset
under the model of Section 4.3. Panel A shows utility prior viewing a scene from a
horror movie. Panel B shows utility after context has been manipulated by viewing the
scene. In Panel B, curvature of the utility function has increased, so that the optimal
allocation to the risky asset falls.
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