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1 Introduction

Contribution games typically feature positive externalities that result in free-riding and

miscoordination. These two forces can lead to underprovision, which has been widely

studied in the context of public goods. Although free-riding may be alleviated if investors

receive private benefits in exchange for contributions, miscoordination can persist due to

uncertainty about future contributions. In this paper, we show how the dynamic inter-

action between differently motivated participants—a publicly-motivated contributor and

privately-motivated investors—can alleviate miscoordination and promote success.

We study a contribution game where randomly arriving investors decide whether to

contribute to a project that only succeeds if enough contributions are made before a dead-

line. If the project succeeds, investors who pledged support receive a fixed, private bene-

fit. A representative, long-lived donor values the public benefits, but his valuation for the

project, akin to a budget, is his private information. The donor can contribute throughout

the game, and his payoff is equal to his valuation less the total contribution he makes. If the

project fails, all contributions are returned, but investors bear an opportunity cost. There-

fore, investors contribute only if they believe the project will succeed with a sufficiently

high probability. The probability of success is shaped by investor beliefs about the donor’s

valuation and the commitments made by other investors over time.

Such contribution games arise in many settings. Our leading application is reward-

based crowdfunding, where entrepreneurs raise funds via a combination of donations and

purchases. Another application is fixed-duration capital campaigns launched by non-profits

targeting large leadership donors and small privately-motivated contributors. The forces of

our model also manifest in settings in which a government strategically times its interven-

tions (e.g., with subsidies) to encourage investment in a sunrise industry or a multinational

firm needs to encourage suppliers to invest in nearby facilities.

Our analysis yields two key new insights. First, we show that the donor can alleviate the

coordination risk faced by private investors by signaling his valuation for the project. We

derive bounds on the effect of dynamic signaling on the probability of project success and
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establish that making the donor’s valuation public would result in the lowest probability

of success. Second, we show that there exists a trade-off between maximizing the donor’s

and investors’ payoffs. The donor prefers the equilibrium that maximizes the probability

of success. However, this equilibrium does not internalize investors’ opportunity costs of

foregoing the outside option and therefore, investors prefer equilibria with intermediate

probabilities of success.

Formally, we first show that a perfect Bayesian equilibrium that maximizes the prob-

ability of success can be attained by a Markov equilibrium with an intuitive structure in-

volving a dynamic, state-dependent donation threshold. Donating less than the threshold

stops privately-motivated investments irreversibly, causing the project to fail, while donat-

ing more squanders funds. Hence, all donors with a sufficiently high valuation donate just

above the required threshold. For this reason, we call such equilibria pooling-threshold

(PT) equilibria. The threshold decreases after a pledge, but increases in the absence of one.

In the success-maximizing equilibrium, the threshold is such that the donor makes in-

vestors just indifferent between contributing and selecting the outside option. We construct

this equilibrium by induction on the number of additional investors necessary to achieve

the goal if no more donations are made. To establish that it maximizes the probability of

success, we use an innovative proof approach that recasts the problem as a dynamic infor-

mation design problem. We then show that the solution to this relaxed problem is attained

by the constructed equilibrium.

We next characterize the unique outcome that minimizes the probability of success in

any perfect Bayesian equilibrium. It is also attained by a PT equilibrium, but the donation

thresholds are so high that investors contribute even if they assumed that no additional

donations will be made. The success-minimizing equilibrium outcomes coincide with a

game where the donor’s valuation is public information, i.e., a game without signaling.

Campaign participants prefer different equilibria. The donor-preferred equilibrium is

the success-maximizing equilibrium. Investors want to reduce their coordination risk as-

sociated with forgoing their outside option. They prefer equilibria with probabilities of
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success strictly between the success-maximizing and success-minimizing equilibria.

Because our proof approach involves recasting the success-maximization problem as

a general information design problem, we can also establish that no other mechanism in-

volving donations, fixed investments, and observable contribution histories can achieve a

higher probability of success. For example, the probability of success is lower if the donor

is restricted to contribute only at the beginning or at the end of a campaign.

We consider several extensions that highlight the broader applicability of our findings.

For example, we show that the success-maximizing equilibrium is still achievable in the

presence of multiple donors that know each other’s valuations. We also consider an exten-

sion where the campaign is no longer all-or-nothing, the goalpost is uncertain, and invest-

ments have some scrap value. This extension can represent a government (donor) seeking

to encourage investment by private firms in developing industries, or a large, multinational

firm establishing a new location, seeking potential suppliers to invest. We highlight that the

government/multinational firm can best coordinate firms/suppliers by withholding some re-

sources initially. A single, initial large push to get investors to make commitments, or fully

revealing the the level of support of the government/multinational firm, does not maximize

the probability of success.

Finally, we apply our framework to reward-based crowdfunding using data from the

platform Kickstarter. On this platform, entrepreneurs initiate campaigns to raise funds to

launch new products (rewards). The platform allows for both donations and investments—

in this case, pledges to buy a product. These campaigns map well to our theoretical model.

Our sample covers all campaigns launched between March 2017 and September 2018. A

novel aspect of our data is that it distinguishes pledges for rewards from donations at 12-

hour frequencies. We document that donations constitute 14% of all funds raised.

Our empirical analysis proceeds in two steps. First, we validate our modeling assump-

tions and provide descriptive evidence consistent with equilibrium predictions. For exam-

ple, we show that pledges are consistent with the two distinct contribution incentives of

our model. While pledges occur throughout time, donations decline close to zero after
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a campaign succeeds as our model predicts. Second, we calibrate our model to the data

and conduct counterfactuals. Our results emphasize the crucial role dynamic signaling

plays at facilitating coordination as there is a significant gap in the success rate between

the success-maximizing (16%) and the success-minimizing equilibria (3%). We also sim-

ulate counterfactuals that restrict donations to occur at the start (or end) of the campaign.

Although this tends to result in larger initial commitments by the donor, we find that the

success rate is even lower than what we estimate under the success-minimizing equilibrium

with continuous donations.

1.1 Related Literature

Our setting is related to public good contribution games (Bagnoli and Lipman, 1989; Ad-

mati and Perry, 1991; Fershtman and Nitzan, 1991; Varian, 1994), but as in Alaei et al.

(2016), participants receive private benefits.1 At the core of our model is a socially-minded

donor who can incentivize contributions, akin to the leadership giver in Andreoni (1998)

who can help overcome free-riding. While our setting has no free-riding, we show that

signaling by the donor alleviates coordination risk.

Our results on success-maximizing mechanisms complement recent work examining

optimal mechanism design in crowdfunding, including Strausz (2017), who finds the opti-

mal mechanism in the presence of moral hazard of investors, Ellman and Hurkens (2019b),

who find the optimal mechanism with price discrimination, and Chang (2020), who studies

two funding mechanisms when the quality of the project is unknown.2

We also contribute to the literature on dynamic signaling. Unlike classic dynamic sig-

naling environments, including Noldeke and Van Damme (1990) and Swinkels (1999),

in our setting investments are welfare enhancing and are not wasteful. Our construction

of PT equilibria involves belief thresholds to guarantee participation as common in mod-

1See also, Marx and Matthews (2000); Campbell et al. (2014); Cvitanić and Georgiadis (2016); Bonatti
and Hörner (2011); Sahm (2020). We are also related to work on crowdfunding, including Liu (2018); Chemla
and Tinn (2020); Chakraborty et al. (2023); Chakraborty and Swinney (2020); Ellman and Fabi (2022).

2Ellman and Hurkens (2019a) relax the ex-post individual rationality constraint. Belavina et al. (2020)
further distinguish between funds misappropriation and performance opacity.
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els of reputation, contests, and lemons markets (Bar-Isaac, 2003; Daley and Green, 2012;

Gul and Pesendorfer, 2012; Kolb, 2019; Gryglewicz and Kolb, 2022). Similar to Ely and

Szydlowski (2020), we solve an information design problem of a principal with private

information, but our setting entails multiple agents who face coordination problems them-

selves. As a result, our donation thresholds depend on a stochastically changing state as in

Gryglewicz and Kolb (2022). We adopt an approach of optimizing over beliefs rather than

strategies, similar to that used in dynamic information design and mechanism design with

limited commitment (e.g., Doval and Ely, 2020; Doval and Skreta, 2022).

Finally, we provide new empirical insights on reward-based crowdfunding. Our find-

ings connect to the economics of innovation (Belleflamme et al., 2014; Lee and Persson,

2016; Sorenson et al., 2016; Grüner and Siemroth, 2019) and complement experimental

work on how contributions affect campaign success (Van de Rijt et al., 2014). We quantify

the effects of pro-social incentives (Kuppuswamy and Bayus, 2018; Dai and Zhang, 2019),

which have also been observed in equity crowdfunding (e.g., Agrawal et al., 2015) and

capital campaigns (e.g., List and Lucking-Reiley, 2002).

2 Model of Crowdfunding

In this section, we present our baseline model of a contribution game. The objective is to

raise a goal amount G > 0 by a deadline T > 0. We say the project succeeds if the goal

amount is raised by the deadline. Time is divided into periods of length ∆. Let T∆ :=

{∆, 2∆, . . . , T } denote the set of periods. For any period t ∈ T∆, there is a corresponding

time remaining u := T − t ∈U∆ ≡ {T −∆, . . . ,∆, 0}.

Players and payoffs. There are two types of contributors, randomly-arriving investors

(she), and a single, representative long-lived donor (he). In every period, an investor arrives

with probability ∆λ ∈ (0, 1). Upon arrival, she makes a one-shot decision to either pledge

to pay p or to choose an outside option of value v0 > 0. If the project succeeds, all investors

who pledged to pay p receive a reward of v > 0, resulting in a payoff of v −p > v0. If the
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project fails, investors pay nothing and receive a payoff of 0. In the context of reward-based

crowdfunding, v is an investor’s valuation of a product. The term v0 can be interpreted as

the value of a short-lived investment opportunity.3

The long-lived donor values a successful project at w ≥ 0. If the project succeeds, the

donor’s payoff is w−DT , where DT is the total donor contribution made. If the project fails,

donations are returned, and the donor’s payoff is 0. Hence, the donor never donates more

than w . Investors do not observe w . They only know that it is drawn from a distribution

on [0,∞), with a continuously differentiable and strictly increasing cumulative distribution

function (cdf) F0. We denote the random variable by an upper-case W .

Figure 1: Timing of the game

. . .
0 ∆ 2∆ T −∆ T

period ∆ period 2∆ period T

Donor makes
donation

Investor arrives
with prob ∆λ,
chooses to pledge or not

Donor makes
donation

Investor arrives
with prob ∆λ,
chooses to pledge or not

Donor makes
donation

Investor arrives
with prob ∆λ,
chooses to pledge or not

Donor makes
donation

Note: The donor can contribute at the beginning of time (t = 0). Then, within every period, an investor arrives
(or not) and decides to pledge. The donor then decides if/how much to donate. The game ends at t = T .

Timing, histories, and strategies. Figure 1 illustrates the timing of the game. Within

a period, if an investor arrives, she decides whether to pledge p or not. Then, the donor

decides whether and how much to donate. The donor is also allowed to donate at the

start of the game (t = 0). We denote cumulative pledges and cumulative donations up to

and including period t by Nt and Dt , respectively. The final project revenue is equal to

RT =DT +NT p . Success requires RT ≥G .

The history h B ,∆
t of an investor who arrives in period t consists of all cumulative

pledges and donations up to period t −∆. We denote the set of period-t investor histories

3It can also be interpreted as an inspection cost, a transaction cost of pledging, or a disappointment cost
of not receiving a product if participants are loss-averse.

6



byH B ,∆
t .4 A period-t donor history h D ,∆

t additionally includes the period-t pledge, if any.

We denote the set of period-t donor histories byH D ,∆
t . A strategy of a period-t investor is a

mapping b̃∆t :H B ,∆
t → [0, 1], where b̃∆t (h

B ,∆
t ) is the probability of an investor purchasing at

history h B ,∆
t . We denote the collection of all investor strategies by b̃∆ := (b̃∆t )t . The donor

strategy is a mapping D̃∆
+ :

⋃

t ∈T∆H D ,∆
t × [0,∞)→ R, where D̃∆

+ (h
D ,∆
t ; w ) = Dt ≥ Dt−∆

represents cumulative donations after the donation decision at history h D ,∆
t .5 Investor be-

liefs, F̃ ∆ :
⋃

t ∈T∆H B ,∆
t → [0,∞)R, map each investor history h B ,∆

t to a cdf F̃ ∆(·; h B ,∆
t ).

Solution concept. A perfect Bayesian equilibrium (PBE) is given by an assessment

(b̃∆, D̃∆
+ , F̃ ∆), or a tuple of strategies and beliefs, such that

i) the donor strategy D̃∆
+ maximizes the donor’s expected payoff at any donor his-

tory h D ,∆
t given investor strategies and beliefs;

ii) each period-t investor strategy b̃∆t maximizes the expected payoff of the investor at

any history h B ,∆
t , given investor beliefs, and the donor and other investor strategies;

iii) investor beliefs about W , F̃ ∆(·; h B ,∆
t ), are derived from all strategies according to

Bayes’ Rule whenever possible.

An equilibrium outcome is given by a sequence of cumulative pledges and donations.

The distribution of investor arrivals, the donor’s valuation distribution, and an assess-

ment (b̃∆, D̃∆
+ , F̃ ∆) induce a probability measure P that govern equilibrium outcomes.

Payoff-relevant state and Markov equilibria. All players’ payoffs only depend on the

cumulative number of pledges and the cumulative donation amount. Therefore, we define

the payoff-relevant state in period t to be

x := (N , D , u ) ∈X∆ :=N× [0,∞)×U∆,

or equal to (Nt−∆, Dt−∆, T − t ) for an investor, and (Nt , Dt−∆, T − t ) for a donor.
4We assume that investors do not observe arrivals, but only pledges. Arrivals are not payoff relevant, so

the Markov equilibria we characterize later are also equilibria in a game where arrivals are observed.
5Formally, we allow for mixed strategies. In that case, D̃∆

+ (h
D ,∆
t ; w ) denotes the random variable that

describes the mixed strategy at the corresponding history.
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Donor strategies, investor strategies, and investor beliefs are said to be Markovian if

they only depend on the state, both on and off equilibrium path. These objects are repre-

sented by D∆ : X∆ × [0,∞)→ R, b∆ : X∆ → [0, 1], and F ∆ : X∆ → RR, respectively. We

call PBEs in Markovian strategies and beliefs Markov equilibria, described by a Markovian

assessment (b∆, D∆
+ , F ∆).

3 Characterization of Equilibrium Outcomes

In this section, we characterize the game’s PBE and bound the effects of dynamic signaling

on the probability of success. We identify PBEs preferred by the donor and investors,

respectively. Finally, we demonstrate that alternate campaign designs with varied donation

timings or information about donor valuation cannot increase the probability of success.

All proofs are in Appendix A.

3.1 Preliminaries

Given a Markovian assessment (b∆, D∆
+ , F ∆), let π∆(x) denote the induced probability of

success from the perspective of the N + 1st investor if she pledges in state x = (N , D , u ).

Upon arrival, an investor in state x is willing to pledge if and only if the expected utility of

pledging is greater than the utility of the outside option. That is,

π∆(x) · (v −p )≥ v0. (Investor-PC)

The probability of success π∆(·) is determined by the assessment (b∆, D∆
+ , F ∆) and two

sources of uncertainty. First, investors are uncertain about the donor’s valuation w and

update their beliefs based on the observed state x. Second, there is uncertainty about the

number of future investor arrivals. We say a project is active in state x if beliefs are suffi-

ciently high to incentivize pledging, i.e., π∆(x)≥ v0
v−p .
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3.2 Pooling-Threshold Equilibrium Structure

Next, we describe Markov equilibria in which the donor strategies have an intuitive struc-

ture. We later establish that equilibrium outcomes that maximize/minimize the probability

of success can be attained by such equilibria. In these equilibria, all donors with a suffi-

ciently high valuation donate just above a state-dependent threshold (see Definition 1).

Definition 1. We call a Markovian donor strategy D∆
+ a pooling-threshold (PT) strategy if

for any N and u , there is a donation threshold D∆
∗ (N , u ) ≥ 0, with D∆

∗ (N , 0) = G −N p ,

such that

D∆
+ (x; w ) =max

¦

D , D∆
∗ (N , u )

©

,∀w ≥D∆
∗ (N , u ),

and D∆
+ (x; w ) =max{w , D }, otherwise.

Given a PT donor strategy, donations serve to signal the donor’s valuation. If donations

are sufficiently high, investors are optimistic that the project will ultimately succeed. The

donation threshold ensures that the next arriving investor will believe that the campaign

succeeds with a probability higher than v0
v−p . In equilibrium, investors pledge if and only if

cumulative donations exceed the donation threshold of the donor in the preceding period,

b∆(N , D , u ) = 1 ⇐⇒ D ≥D∆
∗ (N , u +∆). (PT-investor)

Additionally, for the Markov equilibria that we construct, the donation threshold D∆
∗ (N , u )

is decreasing in both N and u . Thus, fewer donations are required to keep the project

active when more investors have pledged and more time remains until the deadline. As a

result, these equilibria can be supported by investor beliefs that are truncations of the prior

distribution F0 when D ≥D∆
∗ (N , u +∆). PT beliefs are equal to

F ∆(w ; x) =







F0(w )− F0(D )
1− F0(D )

·1(w ≥D ) if D ≥D∆
∗ (N , u +∆)

1(w ≥D ) otherwise
. (PT-belief)

As soon as cumulative donations fall below D∆
∗ (N , u +∆), investors believe that the donor
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has exhausted his valuation, and w =D .6 We define a PT assessment in Definition 2.

Definition 2. An assessment (b∆, D∆
+ , F ∆) is a pooling-threshold (PT) assessment if D∆

+ is

a PT strategy with a donation threshold D∆
∗ (N , u ) ∈ [0,G −(N +1)p ) for u > 0, if Equations

PT-investor and PT-belief are satisfied, and if the following conditions hold for u > 0:

i) Weak monotonicity in u and strong monotonicity in N , i.e.,

D∆
∗ (N , u )≥D∆

∗ (N +1, u −∆)≥D∆
∗ (N +1, u );

ii) Strict monotonicity in N , i.e., D∆
∗ (N , u )>D∆

∗ (N +1, u ) if D∆
∗ (N , u )> 0;

iii) No donation threshold after success, i.e., D∆
∗ (N , u ) = 0 for (N +1)p ≥G .

Condition (i) in Definition 2 imposes that the donation threshold is weakly decreasing

in u , but also that if there is a pledge in period u −∆, then the donation threshold D∆
∗ (N +

1, u −∆) does not increase. Monotonicity in N is stronger than the monotonicity in u .

Condition (ii) simply imposes strict monotonicity of D∆
∗ in N , and Condition (iii) requires

that D∆
∗ drops to zero if investors alone raise the goal amount.

Because the donation threshold is decreasing in N and u , once a project reaches a state

in which it is inactive, it can never be active again. This allows us to define cut-off times

(CT) such that given realized donor valuation w and the number of additional investors j

needed for success, the project will fail unless the next investor arrives before the cut-off

time u = ξ∆j (w ). Let M (D ) = ⌈G−D
p ⌉ denote the total number of investors needed for success

given total donations D , if no further donations are made. Then, for j ≤M (w ),

ξ∆j (w ) :=min
§

u ∈U∆ :π∆(M (w )− j , w , u )≥
v0

v −p

ª

, (CT)

6Many other investor beliefs can sustain a PBE in which the donor plays a PT strategy. Technically,
the beliefs chosen here violate the “cannot signal what you do not know" condition off equilibrium path as
introduced in Fudenberg and Tirole (1991), in the sense that early investor pledges can affect the beliefs of
later investors independently of the donor’s actions. We could recover the “cannot signal what you do not
know" condition without altering anything qualitatively by imposing that for any off-path history h B ,∆

t such
that there exists a s ≤ t with Ds < D∆

∗ (N , T − s ), we have F (w ; h B ,∆
t ) = 1(w ≥min{Ds : Ds < D∆

∗ (N , T −
s ), s ≤ t }). Instead of allowing such non-Markovian, off-path beliefs, we choose the Markovian on- and
off-path beliefs given in Equation PT-belief for their clean structure.
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where we set ξ∆j (w ) = T if π∆(M (w )− j , w , u ) < v0
v−p for all u ∈ U∆. Monotonicity of

D∆
∗ guarantees that π∆(M (w )− j , w , u ) ≥ v0

v−p for u ≥ ξ∆j (w ). Therefore, given state x

with N =M (w )− j , a donor with valuation w is not able to satisfy Equation Investor-PC

if and only if u < ξ∆j (w ). Investors will pledge in equilibrium if and only if they arrive

before the specified cutoff times. If they arrive too late, the donor will “run out of funds”

because he would need to donate more than w to keep the project active. Ex-ante, there

is an information asymmetry between donor and investors about ξ∆j (w ), but once period

ξ∆j (w ) is reached, the asymmetry is resolved.

We construct Markov equilibria in which the donor plays a PT strategy, which we refer

to as pooling-threshold (PT) equilibria. To construct PT equilibria, we define a dona-

tion threshold D∆
∗ (N , u ), and show that the equilibrium conditions are satisfied. We show

that for any PT assessment, beliefs are consistent with Bayes’ rule and donors are best-

responding to the investor strategy. Hence, for any specific PT equilibrium, it only remains

to show that investors are best-responding as well.

To provide some intuition, we illustrate a PT equilibrium and a sample equilibrium

path as ∆→ 0 in Figure 2. We have chosen w such that M (w ) = 5 investors are needed for

success. The horizontal axis marks time. The τs mark investor arrival times and ξ j (w )s

denote calculated cut-off times. The N -th investor must arrive with at least ξM (w )−N+1(w )

time remaining before the deadline in order to be willing to pledge. If the N -th investor

arrives after that instant, the expected utility from pledging for this investor (and subsequent

investors) drops below v0, and the project fails.

In Figure 2, the donor contributes along the donation threshold (solid orange) through

the first investor arrival at τ1. He does so to ensure that the first investor pledges. After

this investor pledges, the donation threshold drops, and the next arriving investor is more

confident that the project will succeed. As a result, donations stop for a while and later

resume along the updated donation threshold to keep the project active. In the figure,

the second investor arrives after ξ4(w ), and the donor runs out of funds, i.e., Dt = w

(dashed blue line). This means that all investors after τ2 choose the outside option, and the
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project fails. The dashed orange lines after ξ4(w ) mark counterfactual donation thresholds

if investors had arrived before the relevant cut-off times.

Figure 2: Sample equilibrium path given donor valuation w such that M (w ) = 5

ξ5(w) ξ4(w) ξ3(w) ξ2(w) 0cut-off times
u = T − t

t

campaign never
active again

investor pledges investors do not pledge

D∗(N, u): realized donation threshold
Dt: cumulative donation path
donation threshold had everyone invested

w

τ1 τ2 τ3 τ4 τ5 T0

Donations

Note: The bottom line shows the cut-off times ξ j (w ) by which the M (w )− j + 1-th investor must arrive in
order for the project to stay alive. The x-axis marks time and depicts realizations of investor arrivals (by blue
dots). Also included are the donation thresholds and cumulative donations (up to w ). The second investor
does not arrive in time, i.e., τ2 > T −ξ4(w ). The donor runs out of funds, and the project fails at T −ξ4(w ).
We also include a counterfactual donation threshold had everyone invested.

3.3 Success-Maximizing Equilibrium

We first construct a PBE that maximizes the probability of success. Because the donor

is willing to donate up to his valuation if necessary, maximizing the probability of suc-

cess boils down to providing investors with incentives to pledge whenever possible. In a

success-maximizing equilibrium, even relatively low cumulative donations can be a suffi-

ciently strong signal to make investors optimistic enough to pledge. A PT strategy with

a minimal donation threshold that can support a PBE can generate such optimistic be-

liefs. We calculate a minimum donation threshold for any given history and show that at

this threshold, investors are exactly indifferent between pledging or not. The donor should

never donate more than this threshold because the threshold will increase in the future if in-

vestors do not pledge. Therefore, it is prudent to hold back funds to potentially induce later

investors to pledge. All donors with a valuation greater than the threshold pool and donate
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just enough to meet the threshold. The following proposition summarizes key properties of

a success-maximizing equilibrium.

Proposition 1 (Success-Maximizing Equilibrium).

i) Given any ∆> 0, there exists a success-maximizing PBE that is a PT equilibrium;

ii) Any sequence of these PT equilibria {(b∆, D∆
+ , F ∆)}∆ converges to a unique limit

(b , D+, F ) as ∆→ 0. The donor’s limiting PT strategy admits a donation threshold

D∗(N , u ) = D (N , u ) where D (N , u ) = 0 if π(N , 0, u ) > v0
v−p , and otherwise, the next

investor is made indifferent such that

π(N , D (N , u ), u ) =
v0

v −p
,

where π := lim
∆→0
π∆ (the limit being uniform in D ). Given a realized valuation w

and cumulative pledges N with M (w )−N = j > 1, the project fails in the limit at

ξ j (w ) := lim
∆→0
ξ∆(w ) satisfying

π(M (w )− j , w ,ξ j (w )) =
v0

v −p
.

If j ≤ 1, the project never fails.

In the proof, we first construct a PT equilibrium for fixed ∆ that satisfies analogous

discrete-time properties described in Proposition 1. We then show that this PBE maximizes

the probability of success and take the limit as ∆→ 0.

The construction uses the insights provided in Section 3.2. We cannot directly define

a donation threshold for every state such that investors are indifferent between pledging or

not pledging because such a condition is endogenous to all participant strategies. Instead,

we use an induction in the number of investors needed to reach the goal if no additional do-

nations are made, j =M (D )−N . Within each induction step in j , we construct equilibrium

objects D∆
∗ (N , u ), π∆(N , D , u ), and ξ∆j (w ).
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A success-maximizing PBE is simply one that maximizes investor pledges. The exact

donation amounts do not matter, as long as they incentivize pledging. It suffices to consider

“reduced histories" that ignore the precise donation amounts and only keep track whether

or not a donation keeps the project active. We recast the problem by directly choosing

probabilities of reaching each reduced history subject to a martingale constraint and an

investor participation constraint. We show that the PBE constructed in the first step achieves

the value of this relaxed problem.

3.4 Success-Minimizing Equilibrium—No Signaling Benchmark

In the unique success-minimizing equilibrium, the ability of the donor to signal his value

does not facilitate coordination between investors. The donor plays a PT strategy with a

donation threshold that is so high that investors are willing to pledge even if the donor

stopped contributing. To define this threshold, suppose that w is known to be zero, that is,

F0(w ) = 1(w ≥ 0) and let ξ
∆

j := ξ∆j (0) be the cutoff times from Proposition 1. Furthermore,

define ξ j := lim
∆→0
ξ
∆

j , D
∆
(N , u +∆) :=max{G − ( j −1)p −N p , 0} for u ∈

�

ξ
∆

j−1,ξ
∆

j

�

, and

D (N , u ) :=max{G − ( j −1)p −N p , 0} for u ∈
�

ξ j−1,ξ j

�

as ∆→ 0. (D )

This is the maximum donation threshold that can arise in a PBE. Indeed, in any PBE, the

donor would not contribute if total revenue already exceeds G − ( j −1)p at u ∈
�

ξ
∆

j−1,ξ
∆

j

�

,

since all future investors will pledge anyway. As ∆→ 0, donors always donate exactly p

in order to “compensate” for the absence of an investor arrival.

We show that the PT equilibrium with donation threshold D minimizes the probability

of success (see Proposition 2). Unlike in the success-maximizing PT equilibrium, now

when an investor pledges, she has a strict incentive to do so.

Proposition 2 (Success-minimizing Equilibrium).

i) Given any ∆> 0, there is a unique success-minimizing PBE that is a PT equilibrium.
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ii) Any sequence of such PT equilibria {(b∆, D∆
+ , F ∆)}∆ converges to a unique limit

(b , D+, F ) as ∆ → 0. The donor’s limiting PT strategy has a donation thresh-

old D∗(N , u ) =D (N , u ) given by Equation D .

Note that if the donation threshold is D , then investors contribute as if the donor’s val-

uation is equal to the current level of cumulative donations. As a result, in this equilibrium,

there is no signaling to aid coordination. The donor just serves to decrease the effective

goal amount from G to G −w .

3.5 Donor- and Investor-Preferred Equilibria

Next, we investigate which equilibria are preferred by campaign participants. We show that

there is a trade-off between maximizing donor and investor payoffs, but both parties benefit

from the coordination arising from the donor signaling his valuation.

First, consider the donor-preferred equilibrium. If the donor could be refunded excess

donations after the deadline (see Section 4), then the donor would want to simply maximize

the probability of success, and the success-maximizing equilibrium of Proposition 1 is also

the donor’s preferred equilibrium. When this is not possible, one might conjecture that the

donor “over-donates” in the success-maximizing equilibrium and can benefit from reducing

donations at the expense of a lower success probability. We show that this is not the case.

Proposition 3 (Donor-Preferred Equilibrium). The success-maximizing PT equilibrium

outcome constructed in Proposition 1 is also optimal for the donor.

The key step to proving Proposition 3 is to show that if there is a donor-preferred equi-

librium, then there must be a donor-preferred equilibrium in which after any history, the

donor donates either nothing or just enough to induce the next investor to pledge. The

donor’s problem then reduces to one in which he chooses probabilities over the same re-

duced histories (as in the proof of Proposition 1) and minimal donation thresholds that

satisfy a donor incentive compatibility constraint. Since early-arriving investors can al-

ways be induced to pledge with fewer cumulative donations than later-arriving investors,
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the donor-preferred equilibrium coincides with the success-maximizing equilibrium.

Next, we show that investors prefer equilibria with a probability of success strictly

between the success-maximizing and success-minimizing equilibrium outcomes.

Proposition 4 (Investor-Preferred Equilibrium). For sufficiently small ∆, any PT equi-

librium preferred by investors yields a probability of success strictly between the success-

maximizing one in Proposition 1 and the success-minimizing one in Proposition 2.

The success-maximizing equilibrium is not investor-preferred because it does not inter-

nalize the opportunity cost of pledging. For example, suppose that the first investor arrives

late in the game (with u time remaining) and observes total donation D∆(0, u ). This in-

vestor pledges in equilibrium, but if the donor type is such that he is nearly out of funds,

then the probability of success is actually low, and pledging would be a mistake ex-post.

The investor would be better off in a PT equilibrium with a slightly higher threshold where

she could screen out such donor types who are nearly out of funds.

The success-minimizing equilibrium is also not investor-preferred because investors

benefit from some dynamic signaling. To understand why, suppose the realized donor

valuation is w =G −p −ε for small ε > 0. Then, the project succeeds with two investors.

The first investor contributes if (v −p )
�

1− (1−∆λ)u/∆
�

− v0 ≥ 0, but total investor surplus

is maximized if she instead considered

(v −p )
�

1− (1−∆λ)u/∆
�

︸ ︷︷ ︸

prob. of at least
one more arrival

−v0+ (v −p − v0)λu
︸ ︷︷ ︸

externality on
future investors

≥ 0.

Hence, incentivizing the first investor to contribute beyond ξ̄∆2
�

G −2p
�

increases overall

investor surplus. This can be achieved by lowering the donation threshold D
∆
(0, u ) =G −p

on u ∈ [ū , ξ̄∆2 (G − 2p )) by ε, where ū solves the above inequality with equality. We show

formally that this lower donation threshold defines a PT equilibrium that investors prefer to

the success-minimizing equilibrium.
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3.6 Alternative Campaign Designs

We have shown that with incomplete information about the donor valuation, if the donor

can dynamically signal his valuation over time, this can maximize the probability of suc-

cess. A natural question to ask is whether there are campaign designs that outperform

this one. The proof of Proposition 1 offers some answers. Restricting the donor’s abil-

ity to donate, or altering the information (revealing more or less at different times) about

the donor’s valuation, cannot increase the probability of success relative to the success-

maximizing equilibrium outcome. This means that a campaign design in which donations

are collected in a first stage, and investors engage in a crowdfunding campaign in a second

stage, must result in a lower probability of success compared to the success-maximizing

equilibrium outcome. The same is true when donations occur only at the deadline to “top

up” the campaign. It is possible, however, that these alternative campaign designs result in a

higher probability of success than that achieved under the success-minimizing equilibrium.

We empirically investigate this possibility in Section 5.

4 Extensions

Next, we discuss some extensions that show that our central insights extend to a broad class

of contribution games. Examples for this section can be found in the Online Appendix.

4.1 Relaxing Modeling Assumptions

Our first set of extensions consider relaxing a single assumption at a time. We note any

substantive changes to Propositions 1-4.

Multiple Donors: Although our baseline model considers a single donor in order to avoid

modeling the free-rider problem, we argue that the success-maximizing equilibrium can

still be supported when multiple donors observe each others’ valuations.

To see why, assume that there are two (or any finite number of) long-lived donors with

valuations w1, w2 such that w :=w1+w2 is distributed according to F0. Donors simultane-
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ously decide contributions at the end of each period. The success-maximizing equilibrium

can be supported by donor strategies in which the first donor contributes according to the

PT strategy of Proposition 1, and the second donor does not contribute until the donation

threshold reaches w1. Investor beliefs and strategies coincide with those of Proposition

1. However, we note that the presence of free-riding can lower the probability of success

in the success-minimizing equilibrium. For example, consider a two-period version of our

model with 2p <w1 <G <w1+w2. Both donors must contribute for the project to succeed,

but it is also an equilibrium for both donors to not contribute.

Time-Varying Arrivals and Outside Options: For expositional reasons, our baseline

model assumes a constant arrival rate and outside option. Both assumptions can be re-

laxed. Our analysis remains unchanged with a time-varying arrival process as long as the

arrival rate is smooth in t . A time-dependent outside option is also possible as long as it

does not decrease too quickly. Otherwise, an inactive campaign can become active again

at a later point in time, and the cutoffs ξ∆j (w ) may not exist. This would complicate the

equilibrium analysis significantly.

4.2 Application: Crowdfunding

We capture additional features of crowdfunding with two natural extensions.

Project Creator as the Donor: Our exposition suggests that the campaign creator is dis-

tinct from the donor, but all results hold if the donor contributes to his own campaign and

excess donations are returned at the deadline. This is because the probability of success and

investor outcomes remain unchanged if donations are returned. Consequently, the bounds

on the probability of success remain unchanged; however, additional equilibria may arise.

Social Learning about Product Quality: Our framework can accommodate environments

in which investors learn about the quality of the product from other investor pledges. This

may be relevant when investment occurs prior to production of a product.

To model social learning, we assume that investor valuations are v q , where v is de-

terministic and q ∈ {0, 1} is the unknown quality of the project. Each investor receives an
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independent signal about quality s ∈ {0, 1} that is equal to 1 with certainty if q = 1 and with

a probability less than one if q = 0. Thus, investors who see s = 0 learn with certainty that

q = 0 and do not pledge. The participation constraint of investors with a positive signal

s = 1 is

P(NT p +DT ≥G )|x)
︸ ︷︷ ︸

probability of success
in state x

�

E
�

(v q −p ) ·1(NT p +DT ≥G )|x
�

P(NT p +DT ≥G )|x)
︸ ︷︷ ︸

expected value
conditional on success

−p

�

≥ v0.

This expression shows that with social learning donations can simultaneously increase the

probability of success while lowering the expected benefits of contributing. This can make

signaling equilibria possible, but harder to sustain. We formalize this intuition in a two-

period example in the Online Appendix by showing that a PT equilibrium construction

analogous to that in Proposition 1 is possible if there is not too much uncertainty about

quality.

4.3 Application: Industrial Policy

Our framework can be applied to settings that are not all-or-nothing. Consider a govern-

ment interacting with firms in a new sector, such as green energy. Typically, a government

encourages investments in a sunrise industry by offering subsidies and other support. Firms

receive private benefits for making an investment, but benefit more if a critical mass of

firms make complementary investments. We relax three assumptions and showcase how

our framework can be used to study industrial policy in this context.

Alternative investor payoffs: To capture the notion of increased returns when contribu-

tions are complementary, we assume that if a firm makes an irreversible investment of p ,

this guarantees a return of at least vL . If the sunrise industry takes off, i.e., the campaign

is successful, investing firms get a higher payoff vH > vL . This results in an alternative
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investor participation constraint of the form

vHπ(N , D , u ) + vL (1−π(N , D , u ))−p ≥ v0 ⇔ π(N , D , u )≥
v0− vL +p

vH − vL
,

which is isomorphic to Equation Investor-PC as long as v0−vL+p
vH−vL

∈ (0, 1). That is, our model

immediately extends to campaigns that are not all-or-nothing with this assumption.

Adding uncertainty to the goal: In new industries, there may be uncertainty ex-ante

about what defines success, and both the government and contributing firms may update

their beliefs on the level of investment required for success. Formally, we assume that

all participants face symmetric uncertainty about the goal, given by G̃ = G − X , where

G , X ≥ 0, and X ∼ H on [0,G ). X is unknown to all players until contributions reach G̃ .

The government has the same payoff function as in our baseline model. Its valuation, or the

fixed budget to spend, is W ≥ 0 with W ∼ F0. The budget includes things, such as political

capital, that is not observed to firms.

This game is similar to our baseline model, except that the campaign can succeed early

if D +N p + X ≥ G . We argue that the probability of success of a game where W is

announced upfront is lower than the probability of success when W is the government’s

private information. That is, dynamic signaling is still valuable even if the goal is uncertain.

The same argument holds if the government maximizes the probability of success subject

to a private budget constraint, which captures the notion of earmarking.

Alternative government payoff: Investments made by the government may have some

scrap value if the industry does not take off. Specifically, we consider the government’s

payoff function to be (W −γDT )1(RT ≥G )− (1−γ)DT , where γ ∈ [0, 1] is the scrap value of

investment if the goal is not reached. Note that when γ = 1, the payoff function coincides

with our baseline model.

The ability for government investments to be put to alternative uses if the project fails

complicates the solution of the game because the probability of success affects the gov-

ernment’s (donor’s) decisions. The government may prefer to not contribute if success is

unlikely because funds can be put to alternative uses. As a result, the donor-preferred equi-
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librium will no longer be success-maximizing. Nonetheless, the qualitative forces remain:

The ability for the government to dynamically signal its valuation can increase the prob-

ability of success. We illustrate this qualitative force using a two-period example in the

Online Appendix. The policy implication is that a government encouraging firms to make

investments in a sunrise industry may be better off by not offering an initial big push but

rather, providing incremental support as firms make commitments.

Alternative interpretation: The game just described extends to other settings as well. The

donor could represent a large multinational firm seeking to expand production in a new

location. The firm needs to encourage a potential supplier network to provide components

and services. Our model suggests that the multinational firm should dynamically respond

to investments made by local complementary businesses.

5 Empirical Application to Reward-based Crowdfunding

We consider an empirical application to reward-based crowdfunding with two objectives.

Our first objective is to document empirical patterns that are consistent with our model. Our

second objective is to quantify the coordination benefits of dynamic signaling by calibrating

our model and performing counterfactuals.

5.1 Reward-Based Crowdfunding Platforms

The core features of our model are similar to what is observed on reward-based crowd-

funding platforms, including Kickstarter and Indiegogo. On these platforms, entrepreneurs

raise funds to create new products. The entrepreneur specifies a funding goal (G ), a fund-

ing deadline (T ), and prices for rewards (p ). Once a campaign goes live, these campaign

features cannot be changed. Rewards are exclusive to the participants that pledge support

to the campaign. Donating without receiving a reward is also possible.7 We refer to in-

7In principle, a participant can pledge for a reward and donate simultaneously by entering an amount
greater than the reward price, however, we do not observe this possibility without individual-level data.
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vestors in this section as “buyers” and retain the term “donor” to refer to an individual who

contributes without selecting a reward.

Most platforms use an all-or-nothing model so that transactions are realized if and only

if the funding goal is reached by the deadline. Entrepreneurs may offer different reward

versions, however, we abstract away from the use of price discrimination. After the cam-

paign period, some rewards eventually become mass-market products, adding (social) value

beyond the campaign. Examples of mass-market products that started as crowdfunding

campaigns include the Peloton bike and Oculus VR headset (acquired by Meta). In line

with our model, we do not examine post-campaign outcomes.

5.2 Data Sample and Summary Analysis

Our empirical analysis uses Kickstarter data for campaigns launched between March 2017

and September 2018. We create a panel by tracking every campaign, every twelve hours,

from campaign launch through its deadline. Our data separately identify pledges for re-

wards from donations.8 This allows us to study campaign dynamics and interactions be-

tween participant types. In Online Appendix C, we provide additional details on construct-

ing our sample. We also perform 12 sets of robustness exercises, including treating some

rewards (e.g., a thank you card or meeting the entrepreneur) as a donation.

We provide summary statistics for the 42,462 campaigns included in our sample in

Table 1.9 42% of campaigns succeed. Campaigns with larger goals tend to have longer

deadlines (corr. coef. = .14). Unsuccessful campaigns tend to have a larger fraction of

revenues coming from donations. Regardless of campaign outcome, donations are a key

component of overall contributions, constituting 14% of total revenue.10

We plot additional campaign outcome summaries in Figure 3. In panel (a), we show

8Kuppuswamy and Bayus (2018) identify “family" contributions using last name matching based on self-
selected usernames that were visible before 2012.

9Table 8 in Online Appendix C contains summary statistics for the largest four categories.
10We maintain the assumption that rewards are exclusive but nonrivalrous because while campaign creators

can assign capacity limits to rewards, these tend to be nonbinding. We find that 92% of rewards do not have
a capacity limit, and only 21% of rewards with capacity limits ever sell out.
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Table 1: Summary Statistics for the Data Sample

Variable
Mean

Median 5th % 95th %
(All) (Uns.) (Suc.)

Project Length 33.1 34.7 30.7 30.0 15.0 60.0
Goal ($) 16366.5 21982.5 8613.9 5113.6 312.0 60247.9
Number of Rewards 7.2 6.0 9.3 6.0 1.0 17.0
Donor Revenue (per 12 hrs.) 19.1 3.3 43.7 0.0 0.0 44.0
Buyer Revenue (per 12 hrs.) 119.5 14.0 283.8 0.0 0.0 391.0
Total Donations / Total Rev. (%) 29.2 33.1 24.6 15.8 0.0 100.0
Number of Campaigns 42462 24624 17838 − − −

Note: Summary statistics for the 42,462 campaigns in the sample. Donor and investor contributions are the average
over 12-hour periods. Means for all statistics are computed for all campaigns (All), unsuccessful campaigns (Uns.),
and successful campaigns (Suc.). Also reported are the 50th, 5th, and 95th percentiles.

total revenue raised relative to the goal amount (R/G ). There is considerable bunching at

zero and one meaning that most campaigns either receive little support or raise exactly the

goal amount. In panel (b), we plot the time period in which successful campaigns reach

their goal. We refer to this time as the success time. Success times are bimodal, with many

campaigns succeeding both close to the start and close to the deadline.

5.3 Validating Model Assumptions and Theoretical Predictions

Before calibrating our model, we provide descriptive evidence on contributor incentives

and contribution dynamics. Recall that in our theoretical model, the donor contributes

solely to increase the probability of success and buyers are motivated by obtaining private

rewards. This suggests that donations should stop after a campaign reaches success, but

buyer activity should continue. We estimate that donations drop by 72% within three days

after reaching success, whereas buyer contributions drop by only 37%.

Another salient feature of the data that suggests different contribution incentives is the

strong relationship between the relative importance of donations versus purchases and suc-
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Figure 3: Frequency Histograms of Campaign Outcomes
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Note: (a) Histogram of final campaign revenue (R ) over the goal amount (G ). The long, thin tail after R/G = 2
is not plotted. There is considerable bunching at 0 and 1. (b) Histogram of when 30-day campaigns succeed.
Period t = 0 corresponds to the first day of the campaign, and t = 30 corresponds to the deadline. Success
times are bimodal.

Table 2: Descriptive Statistics for Early-, Middle- and Late- Finishing Campaigns

Variable Early Middle Late

Goal ($) 2000.0 3510.4 5253.6
Number of Rewards 8.0 8.0 8.0
Average Price 90.6 118.7 171.5
R/G 3.1 1.2 1.0
D /R (%) 4.8 14.7 34.3
D /G (%) 17.0 20.9 36.7
Number of Campaigns 1437 3470 2616
Top Categories Theater Theater Theater

Design Music Film & Video
Games Design Music

Note: Summary statistics for successful campaigns partitioned by success time. Only 30-day campaigns
are included. Early finishers complete within three days. Late finishers complete in the last three days.
The middle category denotes campaigns that complete between 3 and 27 days. R denotes final revenue; G
denotes the goal, and D denotes total donations. Medians reported. Donations become increasingly important
for campaigns that finish late.

cess times. At the aggregate level, campaigns that succeed close to campaign launch should

receive lower total donations than those that complete close to the deadline. To test this hy-

pothesis, we partition the sample according to success times using three groupings: those
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with success time in the first three days (early finishers), those with success time in days

3-27 (middle finishers), and those with success time in the last three days before the dead-

line (late finishers). Table 2 provides summary statistics for these groupings that show stark

differences between early- and late-finishing campaigns consistent with participants having

different incentives. For example, the relative importance of donations increases in success

time: 5%, 14%, 34% for early-, middle-, and late-finishers, respectively. In Figure 4, we

plot contribution flows from buyers (panel a) and donors (panel b) for early-, middle- and

late-finishing campaigns.11 While all campaigns have an initial spike in purchases at the

beginning, the only spike for donations are for campaigns that succeed at the deadline.

Figure 4: Contributions of Buyers and Donors over Time for Successful Campaigns
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(b) Donations
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Note: (a) Fitted values of a polynomial regression of degree 4 of time on percentage of total buyer revenues
obtained within the period (Bt /RT ). (b) Fitted values of a polynomial regression of degree 4 of time on per-
centage of total donor revenues obtained within the period (Dt /RT ). For both figures, the 3 lines correspond
to early finishers, middle finishers, and late finishers. Only 30-day campaigns are included. There is a spike
in donations for late-finishing campaigns only.

Next, we establish properties on contribution dynamics of pooling-threshold equilibria

and provide simple empirical evidence to validate these predictions in the data.

Proposition 5 (Contribution Dynamics in Pooling Threshold Equilibria). All PT equi-

libria satisfy the following properties:

11We provide figures that measure the percentage of campaigns (also weighted by within campaign rev-
enues) and include unsuccessful campaigns in Figure 13 in Online Appendix C.

25



i) Campaigns that succeed at the deadline would fail without a donation and raise ex-

actly the goal with high probability. Formally, P(NT p +DT−∆ <G |ST )> 1−∆λ and

P(DT =G −NT p |ST )≥ 1−∆λ, whereSt =
�

Nt−∆p +Dt−∆ <G and Nt p +Dt ≥G
	

.

ii) Campaigns that succeed before the deadline succeed due to a buyer pledge. For-

mally, P(Dτ−∆+Nτp ≥G ) = 1 if τ< T ;

iii) Donations drop to zero after a buyer pledges. Formally, D∆
∗ (N , u +∆) ≥ D∆

∗ (N +

1, u );

iv) Conditional on failing, campaigns with larger donor valuations fail later. Formally,

given donor realizations w > w ′, if a campaign is unsuccessful for both w and

w ′, and given the same buyer arrival realization, then the failure time ι := inf
¦

t ≥

0
�

�π(Nt , Dt , T − t )< v0
v−p

©

is larger for w than for w ′.

v) In success-minimizing PT equilibria, all donations are at least p .

Empirical Evidence (Proposition 5).

i) Our model suggests that contributions that cause a campaign to succeed at the deadline

must come from donations. This is a consequence of the donor valuing success and the

probability of a buyer arrival in the last period being small. We empirically test this by

considering all campaigns that succeed at the deadline and subtracting any last-minute do-

nations. We find that 78% of campaigns would have failed if not for last-minute donations.

ii) A consequence of the PT equilibrium structure is that donations are made to ensure that

the next buyer pledges. Hence, a donor will never donate to bring cumulative donations

beyond G − (N + 1)p . We test this by calculating the percentage of revenue coming from

buyers in the period in which a campaign succeeds. We find that the median percentage of

revenues from buyers is 91% (see Figure 14-(a) in Online Appendix C for the histogram).

iii) When beliefs about the probability of success are sufficiently high, donations are not

required. As a result, in PT equilibria, the donation threshold drops immediately after
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a pledge. To explore how donations respond to contributions over time, we specify dy-

namic panel regressions where the dependent variable is observed donations. We use

lagged values of cumulative revenues over the goal amount relative to the median campaign

(within that category, time period) as controls, i.e., 1
�

R j ,t−k/G j >median
�

R·,t−k/G·
��

, for

k = 1, 2, 3, 4. We generally find a negative association of donations and progress toward the

goal (for all lags), which we report in Table 9 in Online Appendix C.

iv) The positive relationship between the donor’s valuation and when a campaign fails,

arises because donors with high valuations pool with donors of lower valuations, i.e., the

behavior of donors of high and low valuations look similar, but donors with higher valua-

tions can keep campaigns active for longer. To test this prediction, we infer the failure times

of campaigns using a logistic regression, i.e., 1 [reaches success] j ,t = x j ,tβ+ϵ j ,t , where the

outcome variable is an indicator function of the campaign outcome (success/failure) and

x j ,t includes campaign state covariates.12 This simple prediction model produces an out-

of-sample prediction accuracy of 91%, which we use to infer the failure time ι for each

failed campaign. We define this to be the last period in which the probability of success is

greater than 10%. We then correlate cumulative donations for failed projects with the esti-

mated failure time. We find that the correlation is positive (corr. coef.=0.15) and significant

(t-stat= 10.1), meaning projects with larger donations fail closer to the deadline.13

v) The success-minimizing donation threshold requires donations of at least p in order

to “compensate” for the absence of a buyer arrival. This motivates a simple analysis to

test if campaign dynamics are consistent with success-minimizing equilibria. We calculate

the average donation level for each campaign as cumulative donations (excluding the last

period), divided by the number of donors observed. We label this average as µD
j . We

also calculate the quantity-weighted reward price for each campaign, which we denote µB
j .

12See Figure 15 in Online Appendix C for more details.
13Alternatively, we could infer the failure time by marking the last observed donation. However, Kick-

starter promotes projects near the deadline, which likely drives some last-minute contributions. This approach
implies that campaigns commonly fail at the deadline whereas our prediction model suggests that campaigns
fail much earlier.
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Finally, we verify if µD
j ≥ µ

B
j which is satisfied in success-minimizing equilibria. We find

that only 29% of campaigns satisfy this inequality.

5.4 Empirical Model of Reward-Based Crowdfunding

Next, we calibrate our model to the data. Our model has three sets of unknown parameters:

distribution of donor valuations, the arrival process parameters, and investor utilities. We

sequentially estimate these unknowns. We outline our approach here and provide additional

details in Online Appendix C.

First, we estimate the distribution of donor valuations using maximum likelihood. Note

that donor valuations are subject to selection. According to the model, we observe valu-

ation realizations for campaigns that fail, but we do not observe them for campaigns that

succeed.14 We account for selection using the ideas in Heckman (1979). Formally, we ag-

gregate the data to the campaign level ( j ) and assume that the donor valuations w j follow

a log-linear model log(w j ) = x W
j β

W +u (1)j . Selection into the sample is governed by

s j =







1, z W
j γ

W +u (2)j > 0

0, otherwise
,

where we assume a bivariate-normal distribution on the unobservables, i.e., (u (1)j , u (2)j ) ∼

N
�

0, (τ2,τµ, 1)
�

. Hence, the unobserved components are potentially correlated. With these

parametric assumptions, the log-likelihood of the donor valuation model is proportional to

log(LW )∝
∑

j

s j · log

 

Φ

 

z W
j γ

W +
�

log(w j )− x W
j β

W
�

·µ/τ
p

1−µ2

!!

+ s j ·
1

2

�

log(w j )− x W
j β

W
�2

τ2
− s j · log (τ) + (1− s j ) · log

�

Φ(−z W
j γ

W )
�

,

where the superscript W denotes aspects of the model that pertain to the donor, and Φ(·)
14More precisely, we only observe a lower bound for campaigns that succeed.
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denotes the standard normal cdf.

Second, we estimate the arrival process parameters. Without access to Kickstarter

search data, buyer arrivals are also only partially observed. We observe arrivals for cam-

paigns that succeed (as all arrivals pledge). However, we do not observe arrivals for cam-

paigns that fail. We follow Terza (1998), who considers Poisson regression subject to

sample selection. Let n j ,t denote investor arrivals for project j in period t such that

E
�

n j ,t | x A
j ,t ,ϵ(1)j ,t

�

=λ j ,t = exp
�

x A
j ,tβ

A + ϵ(1)j ,t

�

.

The selection equation is given by

a j ,t =







1, z A
j ,t γ

A + ϵ(2)j ,t > 0

0, otherwise
,

where we again assume that the unobservables follow a bivariate-normal distribution, i.e.,

(ϵ(1)j ,t ,ϵ(2)j ,t )∼N
�

0, (σ2,σρ, 1)
�

. With these assumptions, the log-likelihood is equal to

log(L A(θ A)) =
∑

j

∑

t

a j ,t ·log
�

Pr(n j ,t , a j ,t = 1 ; x A
j ,t , z A

j ,t ,θ A)
�

+(1−a j ,t )·log
�

Pr(a j ,t = 0 ; z A
j ,t ,θ A)

�

,

where

Pr(n j ,t , a j ,t = 1 ; x A
j ,t , z A

j ,t ,θ A) =

∫ ∞

−∞

λ
n j ,t

j ,t ·exp(−λ j ,t )

n j ,t !
Φ

�

z A
j ,t γ

A +ρϵ(1)
p

1−ρ2

�

φ(ϵ(1))d ϵ(1), and

Pr(a j ,t = 0 ; z A
j ,t ,θ A) =

∫ ∞

−∞
Φ

�

z A
j ,t γ

A +ρϵ(1)
p

1−ρ2

�

φ(ϵ(1))d ϵ(1).

Because the log-likelihood does not have a closed-form solution, we approximate it using

Gauss–Hermite quadrature.

Finally, we calibrate investor utilities under the additional assumption that all cam-

paigns follow the success-maximizing equilibrium. We normalize the utility of not pledg-

ing (v0 = 1) as our data does not separately identify the value of the outside option versus
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choosing to pledge, conditional on the other parameters. We calibrate v j using method of

simulated moments (MSM). More precisely, for a candidate investor utility ṽ j , we solve for

equilibrium objects,
�

b (ṽ j ), D+(ṽ j ), F (ṽ j )
�

using the induction argument of Proposition 1.

Implicitly, equilibrium objects depend on bλ j , ÒFj ,G j , pj , Tj , x j ,. After solving the dynamic

game, we simulate the probability of success,

Pr(success |b (ṽ j ), D+(ṽ j ), F (ṽ j ))≈
1

I

I
∑

i=1

1
�

R̃ (i )Tj
≥G j

�

,

where R̃ is the final revenue for simulation i . Success depends on strategies, beliefs, arrival

realizations, and donor valuation draws. We set I = 10, 000.

We face two challenges in calibrating v j . First, we do not have repeat observations

for a given campaign j , nor do we observe many campaigns with the exact same features,

e.g., goal and price. Therefore, it is not possible to calibrate campaign-specific parameters.

Instead, we partition the data based on campaigns features. Using this partition, we match

the empirical fraction of campaigns that succeed to its model counterpart, i.e., for a given

group of campaigns G , we estimate vG by solving

min
v :v−pG≥1

 

1

|G |

|G |
∑

j=1

1
�

campaign j succeeded
�

−Pr(success |b (v ), D+(v ), F (v ))

!2

.

The second challenge is computational burden. For example, solving the game when G /p

is high is difficult. For this reason, we do not calibrate parameters for all campaigns in the

sample. We validate our calibration by reporting non-target moments.

5.5 Empirical Specification and Parameter Estimates

For donor valuations, we include fixed effects for the campaign category, an indicator if

the project is “loved” by Kickstarter, and the log of the goal amount.15 We use the log of

total pledges plus one, log
�∑

t B j ,t +1
�

, as the excluded variable that influences selection

15For more information on the “loved” indicator, see Figure 16 in Online Appendix C.
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but not donor valuations. The intuition is that pledges shift the probability of success but

not the distribution of donor valuations. Rather, pledges affect the donor’s strategy.

For investor arrivals, we include fixed effects for the campaign category, a quadratic

expansion in time, the “loved” by Kickstarter indicator, and the log of the goal amount.

We use cumulative donations divided by the goal as the excluded variable that influences

selection but not arrivals. Donations shift the probability of success and investor strategies,

but we assume that donations do not directly influence buyers’ arrivals.

Finally, given donor valuation and arrival process parameters, investor utilities are

matched to the probability of success. Intuitively, the probability of success is increas-

ing in v : when v approaches v0+p , the probability that a campaign succeeds goes to zero,

and when v increases, the probability of success can approach one.

Figure 5: Parameter Estimates for Arrivals and Donor’s Valuations

(a) Donor Valuations
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(b) Arrival Rates
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Note: (a) Kernel density plot of the fitted values of the donor’s valuation for all categories. The dashed orange
line shows the empirical density of the selected sample. (b) Kernel density plot of the fitted values of buyer
arrivals for all categories. The dashed orange line shows the empirical density of the selected sample over the
range (x-axis) obtained under the model estimates up until the 99th percentile.

We limit our sample by focusing on 30-day campaigns and the first quartile of data in

terms of goal amount, by campaign category. We plot fitted values for the donor’s valua-

tion distribution and buyers arrivals in Figure 5. We provide the corresponding parameter

estimates in Online Appendix C. In panel (a), we compare the fitted values for the donor’s

valuation to the selected sample. Accounting for sample selection shifts the distribution to
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the right as we would expect. In panel (b), we compare fitted arrival rates to the selected

sample. For readability reasons, we exclude the long-tail of empirical distribution (orange).

The mean observed arrival rate is higher than what we find under the fitted values.

In Table 3, we provide estimates for the buyer utility from pledging, a comparison of

the data moment to its model counterpart, and three sets of non-targeted moments (total

donations, number of pledges, and total donations over the goal amount). We find that

for some categories the targeted and all non-targeted moments match well, e.g., fashion.

In other categories, it is difficult to match the probability of success given our estimated

arrival rates and donor valuation distribution. For example, for the theater category, our

empirical estimates understate the variance in observed donations. As a consequence, we

understate the probability of success compared to what is observed in the data.

Table 3: Parameter Estimates for Investor Utility

Category Util. Est. Data Moment Model Moment Non-Targeted Models (Data, Model)
Total Donations ($) Number of Pledges Donations / Goal

Art 62.441 0.215 0.217 41.766 38.336 5.526 2.481 0.100 0.088
Comics 50.154 0.284 0.282 79.629 82.372 11.968 7.367 0.100 0.111
Crafts 42.336 0.130 0.144 45.877 37.575 4.024 3.369 0.093 0.083
Design 85.610 0.147 0.146 117.677 119.509 11.639 4.008 0.078 0.074
Fashion 61.132 0.138 0.138 40.783 43.653 5.619 5.855 0.063 0.055
FilmVideo 95.442 0.289 0.287 192.842 83.385 6.142 4.642 0.175 0.079
Food 124.866 0.185 0.023 233.265 103.505 8.432 8.786 0.113 0.045
Games 46.700 0.091 0.091 61.048 75.007 9.300 5.728 0.054 0.056
Journalism 65.248 0.065 0.066 53.058 49.130 1.419 1.198 0.064 0.063
Music 60.414 0.300 0.295 195.941 63.964 7.281 7.200 0.182 0.065
Photography 50.366 0.183 0.183 96.783 61.013 5.662 9.288 0.109 0.074
Publishing 53.491 0.201 0.199 101.197 77.370 5.727 4.891 0.109 0.088
Technology 112.166 0.084 0.083 156.271 93.723 7.773 3.394 0.058 0.033
Theater 68.239 0.422 0.088 398.868 167.431 8.000 12.835 0.273 0.126

Note: Calibration of buyer utilities assuming the success-maximizing equilibrium and using donor valuation
estimated in Table 6 and arrival process estimates in Table 7. We consider each category separately and
match moments for the first quartile of campaigns in terms of goal amount. We set v0 = 1. We report our
targeted moment (fraction of campaigns that succeed) and non-targeted moments.

In Figure 6, we provide an example equilibrium path. The initial donation spike (orange

triangle at t = 0) is reminiscent of the role of “seed money” in charitable fund-raising

campaigns (Andreoni, 1998). This ensures that beliefs are sufficiently high (panel b). The

graphs show that beliefs jump as pledges occur. In the absence of pledges, the donor

contributes to keep beliefs above the cutoff value.

32



Figure 6: Success-Maximizing Equilibrium Example Path

(a) Contributions over Time
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(b) Beliefs about Success
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Note: (a) Cumulative donations, pledges, and revenues over time for an example equilibrium path in the
Journalism category where w = 130. The (orange) triangles mark where donations occur. (b) Buyer beliefs
about the probability of success over time. The horizontal (dashed) line corresponds to the cutoff value,
v0/(v −p ). The same (orange) triangles mark donation events. The donor ensures that beliefs stay above the
cutoff value. In this example, the project reaches success toward the end of the campaign.

5.6 Counterfactual Analysis

Using our parameter estimates, we simulate three counterfactuals: the success-minimizing

equilibrium, allowing for a single donation at the beginning of the campaign, and allowing

for a single donation at the end of the campaign. The latter two scenarios correspond to the

alternative project designs described in Section 3.6.

We report counterfactual results in Table 4, focusing on the probability of success across

categories. We find two key results. First, the gap in the probability of success between the

success-maximizing and success-minimizing equilibrium tends to be large. We estimate the

difference to be 13% on average, across categories. This suggests that coordination benefits

from dynamic signaling are high. Second, we find that the probability of success under the

alternative project designs tends to be even smaller than that under the success-minimizing

equilibrium. This is not obvious ex-ante, as our theory establishes that the probability of

success must be lower than that of the success-maximizing equilibrium, but not necessarily

lower than that of the success-minimizing equilibrium. To demonstrate the implications of

this finding, we provide initial donation values under the success-maximizing equilibrium
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Table 4: Counterfactual Results

Category Probability of Success (%)
Success-Maximizing Success-Minimizing Donate at Beginning Donate at End

Art 21.750 0.381 0.312 0.000
Comics 28.160 0.605 0.564 0.000
Crafts 14.440 13.260 12.448 8.950
Design 14.590 0.312 0.301 0.000
Fashion 13.840 9.267 8.280 12.440
FilmVideo 28.730 6.768 6.391 0.000
Food 2.270 1.089 0.884 0.860
Games 9.120 0.750 0.644 0.000
Journalism 6.550 1.592 1.472 0.000
Music 29.550 0.864 0.768 0.000
Photography 18.310 6.631 5.341 8.210
Publishing 19.880 0.487 0.460 0.000
Technology 8.290 0.040 0.037 0.000
Theater 8.830 4.102 2.778 3.190

Note: Counterfactual estimates of the percentage of campaigns that reach the goal. We consider the
success-maximizing equilibrium (assumed in estimation), success-minimizing equilibrium, and two al-
ternative campaign designs where the donor can only contribute at the beginning or end of the campaign.

and the when the donor only contributes at the beginning of time across W (x-axis) in

Figure 7. Panel (a) shows that initial donation levels when donations occur once are higher

than under the success-maximizing case, but this does not lead to a higher probability of

success (panel b). Allowing the donor to provide incremental support to the campaign is

the best way to achieve success.
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Figure 7: Counterfactual Equilibrium Initial Donation Levels and Success

(a) Initial Donation Level
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(b) Probability of Success
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Note: (a) Initial donation amount (y-axis) given realized donor valuation (x-axis) for Publishing. The shaded
regions correspond to situations where there is multiplicity in initial donations because all campaigns fail. (b)
Probability of success (y-axis) given realized valuation (x-axis). The two lines correspond to restricting the
donor to just contribute at the start of the campaign (orange) and the success-maximizing equilibrium (blue).

6 Conclusion

We introduce a dynamic contribution game in which randomly arriving investors can con-

tribute to obtain an uncertain private benefit, and a long-lived donor who values the public

benefits donates, while seeking to minimize his total contributions required for project suc-

cess. Participants face two forms of uncertainty: uncertainty in arrivals and uncertainty in

the donor’s valuation. We show that allowing the donor to dynamically signal his valua-

tion by strategically timing contributions, benefits all participants by facilitating coordina-

tion. Indeed, the success-minimizing equilibrium corresponds to outcomes where dynamic

signaling is not possible. The success-maximizing equilibrium maximizes ex-ante donor

payoffs, but exacerbates uncertainty borne by investors. Investors prefer equilibria strictly

in-between the success-maximizing and the success-minimizing equilibria. Our model ex-

tends to many economic environments where investment is socially-productive. We present

an empirical application to reward-based crowdfunding using data from Kickstarter. Our

model calibrations show that restricting the donor’s ability to dynamically signal his valu-

ation would greatly reduce the percentage of campaigns that succeed.
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Appendix

A Proofs

A.1 General properties of PT assessments and PT equilibria

A.1.1 Properties of PT assessments

In this section, we present some properties of PT assessments and the induced probability

of success π∆(N , D , u ) that we will use for the construction of PT equilibria.

Lemma 1. Consider a PT assessment with donation threshold D∆
∗ (N , u ). If the campaign

reaches a state (N , D , u ) with D <D∆
∗ (N , u +∆), it has failed with probability one.

Proof. Assume that a state (Nt , Dt , T − (t +∆)) with Dt <D∆
∗ (Nt , T − t ) is reached. Then

Dt = w , because the donor is playing a PT strategy and w < D∆
∗ (Nt , T − t ′) for all t ′ ≥ t

by Condition i) in Definition 2 of PT assessments. Thus, Nt ′ =Nt for all t ′ > t , given the

investor strategy in Equation PT-investor. All in all, (Nt ′ , Dt ′) = (Nt , w ) for all t ′ > t , where

Nt p +w <Nt p +D∆
∗ (Nt , T − t )<Nt p +G − (Nt +1)p <G . This concludes the proof. ■

Lemma 1 implies that beliefs in a PT assessment are consistent and that the induced

probability of success π∆ can be written in a recursive manner as we show in Lemma 2.

We also derive some other properties of π∆. For the proof, we use that for a PT assessment,

cumulative donations at time t must satisfy

Dt =max
t ′≤t

min{D∆
∗ (Nt ′ , T − t ′), w }. (1)

Lemma 2. A PT assessment (b∆, D∆
+ , F ∆) with donation threshold D∆

∗ (N , u ) satisfies the

following properties:

i) Beliefs F ∆ are consistent with the strategies b∆, D∆
+ ;

ii) The induced probability π∆(N , D , u ) satisfies the following:
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• N +1≥M (D ) if and only if π∆(N , D , u ) = 1;

• If N +1<M (D ) and D ≥D∆
∗ (N , u +∆), then π∆(N , D , 0) = 1−F0(G−p (N+1))

1−F0(D )
, and

for u > 0,

π∆(N , D , u ) = EF0

� u
∆
∑

i=1
(1−∆λ)i−1∆λ

π∆
�

N +1, max
�

D , D∆
∗

�

N +1, u − (i −1)∆
�	

, u − i∆
�

1
�

W ≥D∆
∗

�

N +1, u − (i −1)∆
�

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�

�W ≥D

�

;

• If N +1<M (D ) and D <D∆
∗ (N , u +∆), π∆(N , D , 0) = 0, and for u > 0,

π∆(N , D , u ) =P(D ≥ max
N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N )), (2)

where τu
n is the time of the n-th arrival after time t = T −u .16

iii) π∆(N , D , u ) is continuous and strictly increasing in D for G − (N + 1)p ≥ D ≥

D∆
∗ (N , u +∆), and π∆(N , D , u ) is weakly increasing in D otherwise;

iv) π∆(N , D , u ) ≤ π∆(N + 1, D , u −∆) ≤ π∆(N + 1, D , u ), and π∆(N , D , u ) is strictly

increasing in N , u , if 0<π∆(N , D , u )< 1.

Proof. i) Consider an investor in an on-path state (N , D , u ). By (1) this state is reached with

zero probability by donors with w <D , and if D <D∆
∗ (N , u +∆), then D =w . Further, if

D ≥D∆
∗ (N , u +∆), any donor with w ≥D must have followed the same donation strategy

on any equilibrium path history that led to (N , D , u ). Hence, by Bayes’ rule, the distribution

of donor types in a state (N , D , u ) is a truncation of F0 at D .

16Note that π∆(N , D , u ) is defined even if the corresponding purchase is not consistent with the investor
strategy. If D <D∆

∗ (N , u+∆) and the investor pledges, this deviation is not observed by an investor in period
u ′ < u . Thus, she pledges if D ≥ D∆

∗ (N + 1, u ′ +∆). The probability is with respect to the random arrival
time τu

N ′−N .
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ii) For N + 1 ≥ M (D ), π∆(N , D , u ) = 1 as the goal is reached if the (N + 1)th in-

vestor pledges. For N + 1 < M (D ), absent additional donations, at least one more

investor must arrive to reach the goal G after the (N + 1)th investor pledges because

D∆
∗ (N , u ) < G − (N + 1)p , so π∆(N , D , u ) < 1. The probability of success must satisfy

the following recursive property: First, π∆(N , D , 0) = 1−F0(G−(N+1)p )
1−F0(D )

1(D ≥D∆
∗ (N ,∆)), given

F ∆ defined in Equation PT-belief. For u > 0 and D ≥D∆
∗ (N , u +∆),

π∆(N , D , u ) =

EF0

� u
∆
∑

i=1
(1−∆λ)i−1∆λ
︸ ︷︷ ︸

next investor arrives
at u − i∆

π∆
�

N +1, max{D , D∆
∗ (N +1, u − (i −1)∆)}, u − i∆

�

︸ ︷︷ ︸

probability of success if the N +2nd investor pledges

1
�

W ≥D∆
∗ (N +1, u − (i −1)∆)

�

︸ ︷︷ ︸

wealth exceeds donation threshold

+(1−∆λ)u/∆
︸ ︷︷ ︸

no investor

1(W ≥G − (N +1)p )
�

� W ≥D
︸ ︷︷ ︸

beliefs are
truncation of

F0 at D

�

,

because by Lemma 1 the campaign fails with probability one if W <D∆
∗ (N +1, u−(i−1)∆).

For D <D∆
∗ (N , u +∆), the investor believes that W =D with probability one. Hence,

in the last period (u = 0), the campaign cannot succeed since D∆
∗ (N , u+∆)<G − (N +1)p

even if the N + 1th investor pledges. If u > 0 and the N + 1th investor pledges, then a

subsequent investor arriving in state (N ′, D , u ′) with N ′ ≥ N + 1 and u ′ < u pledges if

D ≥D∆
∗ (N

′, u ′+∆).

iii) We first show that π∆(N , D , u ) is strictly increasing and continuous in D for

D∆
∗ (N , u +∆)≤D ≤G − (N +1)p by induction in u .

Induction start (u = 0): π∆(N , D , 0) = 1−F0(G−(N+1)p )
1−F0(D )

1(D ≥ D∆
∗ (N ,∆)) is continuous and

strictly increasing in D for D∆
∗ (N ,∆)≤D ≤G − (N +1)p .

Induction hypothesis for u: π∆(N , D , u ) is continuous and strictly increasing in D for

D∆
∗ (N , u +∆)≤D ≤G − (N +1)p .
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Induction step (u⇝ u +∆): For D∆
∗ (N , u +2∆)≤D ≤G − (N +1)p we have by ii)

π∆(N , D , u +∆) =
u+∆
∆
∑

i=1
(1−∆λ)i−1∆λπ∆

�

N +1, max{D , D∆
∗ (N +1, u +∆− (i −1)∆)}, u +∆− i∆

�

·

1− F0(max{D , D∆
∗ (N +1, u +∆− (i −1)∆)})
1− F0(D )

+ (1−∆λ)u/∆
1− F0(G − (N +1)p )

1− F0(D )
,

which is continuous in D by the induction hypothesis because D∆
∗ (N +1, u+∆−(i−1)∆)≤

max{D , D∆
∗ (N + 1, u +∆− (i − 1)∆)} ≤G − (N + 1)p and also strictly increasing because

1−F0(max{D ,D∆∗ (N+1,u+∆−(i−1)∆)})
1−F0(D )

is equal to 1 if D ≥D∆
∗ (N + 1, u +∆− (i − 1)∆) and 1

1−F0(D )
is

strictly increasing in D .

Finally, if D > G − (N + 1)p , then π∆(N , D , u ) = 1, and if D < D∆
∗ (N , u +∆), then it

follows that π∆(N , D , u ) is weakly increasing in D directly from (2).

iv) By Condition i) in Definition 2 of PT assessments, D∆
∗ (N , u )≥D∆

∗ (N +1, u −∆)≥

D∆
∗ (N +1, u ). Hence, a donor w , who can incentivize the next investor to pledge in a state

(N , D , u ), can incentivize the next investor to pledge in state (N + 1, D , u −∆) in the next

period. Thus, more future investors are incentivized to pledge after state (N +1, D , u −∆)

than after (N , D , u ), so π∆(N + 1, D , u −∆) ≥ π∆(N , D , u ). Similarly, a donor w , who

can incentivize the next investor to pledge in a state (N + 1, D , u −∆), can incentivize

the next investor to pledge in state (N + 1, D , u ) in the period before. Thus, more future

investors are incentivized to pledge after state (N +1, D , u ) than after (N +1, D , u −∆), so

π∆(N +1, D , u )≥π∆(N +1, D , u −∆).

Next, we show by induction in N that if 0 < π∆(N , D , u ) < 1, then π∆(N + 1, D , u ) >

π∆(N , D , u ). To this end, note that for N +1<M (D ) and D ≥D∆
∗ (N , u +∆) we can write

by ii) for u > 0

π∆(N , D , u ) = E
��

∆λπ∆
�

N +1, max{D , D∆
∗ (N +1, u )}, u −∆

�

+

(1−∆λ)π∆(N , max{D , D∆
∗ (N +1, u )}, u −∆)

�

1
�

W ≥D∆
∗ (N +1, u )

�

�

�

�W ≥D
�
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because if no investor arrives in period u −∆, then the probability of success is as if the

investor in period u arrived a period later, but with a new donation threshold, i.e., it is

π∆(N , max{D , D∆
∗ (N +1, u )}, u −∆).

Induction start (N =M (D )−1): π∆(N +1, D , u ) = 1>π∆(N , D , u ).

Induction hypothesis for N <M (D )− 1: Assume π∆(N + 1, D , u ) > π∆(N , D , u ) if 0 <

π∆(N , D , u )< 1.

Induction step (N ⇝N −1): Let 0<π∆(N −1, D , u )< 1. If D ≥D∆
∗ (N , u +∆), then

π∆(N , D , u ) =E
��

∆λ π∆
�

N +1, max{D , D∆
∗ (N +1, u )}, u −∆

�

︸ ︷︷ ︸

>π∆(N , D , u −∆) by induction hypothesis
and monotonicity in D

+

(1−∆λ)π∆(N , max{D , D∆
∗ (N , u )}, u −∆)

︸ ︷︷ ︸

>π∆(N , D , u −∆)
by monotonicity in D

�

1
�

W ≥D∆
∗ (N +1, u )

�

�

�

�W ≥D
�

>π∆(N , D , u −∆)P(W ≥D∆
∗ (N +1, u )

︸ ︷︷ ︸

<D∆
∗ (N , u )

|W ≥D )≥π∆(N −1, D , u )

(3)

because P(W ≥D∆
∗ (N , u )|W ≥D ) = 1 for D ≥D∆

∗ (N , u ). If D <D∆
∗ (N , u +∆), then for

π∆(N −1, D , u )> 0,

π∆(N , D , u ) =P(D ≥ max
N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N ))

︸ ︷︷ ︸

< max
N−1<N ′≤M (D )
τu

N ′−N+1
<T

D∆
∗ (N

′, T −τu
N ′−N+1)

>π∆(N −1, D , u ).

Finally, we consider strict monotonicity in u . Consider N + 1 < M (D ). If D ≥

D∆
∗ (N , u +∆), then (3) implies π∆(N , D , u ) > π∆(N , D , u −∆), where we use the strict

monotonicity of π∆ in N . If D <D∆
∗ (N , u+∆), then since τu−∆

N ′−N and τu
N ′−N +1 are equally
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distributed by the Markov property, and since D∆
∗ (N , u ) is decreasing u for D∆

∗ (N , u )> 0,

P(D ≥ max
N<N ′≤M (D )
τu−∆

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N ))>P(D ≥ max

N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu−∆
N ′−N )).

Hence, π∆(N , D , u )>π∆(N , D , u −∆) as long as π∆(N , D , u ) ∈ (0, 1). ■

For the construction of the donation thresholds, it is useful to consider the auxiliary

probability of success in a state (N , D , u ) if the investor believed that donor wealth is dis-

tributed according to F0 truncated at D for all D :

π̃∆(N , D , u ) :=
u
∆
∑

i=1
(1−∆λ)i−1∆λ

1− F0(max{D , D∆
∗ (N +1, u − (i −1)∆)})

1− F0(D )

π∆
�

N +1, max{D , D∆
∗ (N +1, u − (i −1)∆)}, u − i∆

�

+(1−∆λ)u/∆
1− F0(G − (N +1)p )

1− F0(D )
.

(4)

The following is a corollary of Lemma 2. We use it in the proof of Proposition 1 to define

the donation threshold D (N , u ).

Corollary 1. The auxiliary probability of success π̃∆(N , D , u ) is continuous and (strictly)

increasing in D (as long as π̃∆(N , D , u ) ∈ (0, 1)).

Finally, Lemma 3 shows that the donor strategy specified in any PT assessment is a best

response to the specified investor strategy.

Lemma 3. For any PT assessment with donation threshold D∆
∗ (N , u ), the donor PT strat-

egy is a best response to the investor strategy.

Proof. We argue by backwards induction in t .

Induction start (t = T ): First, consider histories in the last period h D ,∆
T with cumulative

contributions NT and DT−∆. Ignoring the constraint imposed by previous donations, the

donor would want to donate min{w ,G −NT p}, since he would want to give just enough

for the campaign to succeed without exceeding his valuation. However, the donor cannot
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take out funds. Thus, a cumulative donation of max{DT−∆, min{w ,G −NT p}} is a best

response. Hence, in all histories that correspond to a state (N , D , 0), a Markov strategy of

D̃∆
+ (h

D ,∆
T ; w ) =D∆

+ (NT , DT−∆, 0; w ) =max{DT−∆, min{w ,G −NT p}} is optimal.

Induction hypothesis for s ≥ t : Next, we assume that for all s ≥ t and all h D ,∆
s with

corresponding cumulative contributions Ns and Ds−∆, the donor payoff is maximized by

D̃∆
+ (h

D ,∆
s ; w ) =D∆

+ (Ns , Ds−∆, T − s ; w ) =max{Ds−∆, min{w , D∆
∗ (Ns , T − s )}}.

Induction step (t ⇝ t −∆): Consider an arbitrary donor strategy D̃∆
+ where for all s ≥ t ,

D̃∆
+ (h

D ,∆
s ; w ) =D∆

+ (Ns , Ds−∆, T − s ; w ) =max{Ds−∆, min{w , D∆
∗ (Ns , T − s )}}. Consider an

on-path history h D ,∆
t−∆ with corresponding cumulative contributions Nt−∆, Dt−2∆ and a donor

valuation w ≥max{Dt−2∆, D∆
∗ (Nt−∆, T − (t −∆))} such that

D̃∆
+

�

h D ,∆
t−∆ ; w

�

<D∆
∗ (Nt−∆, T − (t −∆)).

According to the PT assessment, if an investor arrives in period t , the investor does not

pledge. Since D∆
∗ (Nt−∆, T −(t−∆))<D∆

∗ (Nt−∆, u ) for all u < T −(t−∆), the donor needs to

donate at least D∆
∗ (Nt−∆, T −(t −∆)) in order to make a future investor pledge and to prevent

the campaign from failing. Furthermore, D∆
∗ (Nt−∆, u ) > D∆

∗ (N
′, u ) for all N ′ > Nt−∆.

Hence, a donor with valuation w is strictly better off by donating D∆
∗ (Nt−∆, T −(t −∆)) after

history h D ,∆
t−∆ , so an optimal donor strategy must be to give at least D∆

∗ (Nt−∆, T − (t −∆)).

Similarly, monotonicity of D∆
∗ in N , u implies that it cannot be optimal that the donor gives

more than max{Dt−2∆, D∆
∗ (Nt−∆, T − (t −∆))}. If w <max{Dt−2∆, D∆

∗ (Nt−∆, T − (t −∆))},

the campaign succeeds with probability zero as cumulative donations are below w . Thus,

a best-response donor strategy is given by

D̃∆
+

�

h D ,∆
t−∆ ; w

�

=max{Dt−2∆, min{w , D∆
∗ (Nt−∆, T − (t −∆))}}.

■
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A.1.2 Properties of PT equilibria

Recall that a PT equilibrium is a PT assessment (b∆, D∆
+ , F ∆) such that given the induced

probability of success π∆(x) we have buyer optimality: π(x)> v0
v−p ⇒ b∆(x) = 1 and π(x)<

v0
v−p ⇒ b∆(x) = 0. Donor-optimality is guaranteed automatically by Lemma 3. The buyer

optimality condition allows us to define cutoff times ξ∆j (w ) as in Equation CT for each j , w

with j ≤M (w ). We can show that ξ∆j (w ) is monotone in j .

Lemma 4. In any PT equilibrium, the cutoff time ξ∆j (w ) is strictly increasing in j .

Proof. By Lemma 2 iv), we have for j ′ > j , that if π∆(M (w ) − j ′, w , u ) ≥ v0
v−p , then

π∆(M (w )− j , w , u −∆)≥π∆(M (w )− j ′, w , u )≥ v0
v−p , so

π∆(M (w )− j , w ,ξ∆j ′(w )−∆)≥π
∆(M (w )− j ′, w ,ξ∆j ′(w ))≥

v0

v −p
.

Hence, ξ∆j (w )≤ ξ
∆
j ′(w )−∆<ξ

∆
j ′(w ). ■

As a result, in a PT equilibrium, after ξ∆j (w ) is reached, no buyer pledges, i.e.,







π∆
�

M (w )− j , w , u
�

≥ v0
v−p for u ≥ ξ∆j (w )

π∆
�

M (w )− j , w , u
�

< v0
v−p for u <ξ∆j (w )

(5)

ξ∆j (w ) > ξ
∆
j ′(w ) for any j > j ′ if ξ∆j (w ) > 0. Furthermore, w ≥ D∆

∗ (N , u +∆)⇔ u ≥

ξ∆M (w )−N (w ). This allows us to re-write the probability of success in a different way. For

N <M (D )−1 and u > 0, the probability of success is given by

π∆(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆
�

N +1, max{D , D∆
∗ (N +1, u −∆(i −1))}, u −∆i

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�

�W ≥D

�

,

(6)

if D ≥D∆
∗ (N , u +∆). If D <D∆

∗ (N , u +∆), π∆(N , D , u )< v0
v−p .
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A.2 Proof of Proposition 1 (Success-Maximizing Equilibrium)

In Subsection A.2.1, we first construct a PT equilibrium. Subsection A.2.2 states that the

limit of these equilibria as ∆→ 0 exists and is as specified in Proposition 1. The limit is

formally derived in the Online Appendix. Finally, in Subsection A.2.3, we show that for

any ∆ > 0, the constructed equilibrium maximizes the probability of success and that the

outcomes of any sequence of success-maximizing PBE converge to the same limit.

A.2.1 Construction of a PT equilibrium

The following lemma specifies a PT equilibrium with a donation threshold that makes the

next investor just indifferent between pledging and not.

Lemma 5 (Success-maximizing equilibrium). Given any ∆> 0, there exists a PT equilib-

rium (b∆, D∆
+ , F ∆) with donation threshold D∆(N , u ) and induced probability of success

π∆(x), x ∈X∆ such that for u > 0







D∆(N , u ) = 0 if π∆(N , 0, u −∆)> v0
v−p ,

π∆
�

N , D∆(N , u ), u −∆
�

= v0
v−p if π∆(N , 0, u −∆)≤ v0

v−p .

We denote the corresponding probability of success from the investor’s perspective in

state N , D , u if the investor contributes by π(N , D , u ).

Proof. We construct the equilibrium strategies and beliefs for every state (N , D , u ) by in-

duction in j = M (D )−N . In order to define the donation threshold D (N , u ) such that

investors are indifferent between pledging and not, we need to know the probability of

success π∆(N , D , u ) induced by the assessment for arbitrary D . We tackle this issue by

constructing a sequence of PT assessments (b∆j , D∆
+, j , F ∆j ) for j = 1, . . . , M0 = M (0) such

that (b∆M0
, D∆
+,M0

, F ∆M0
) is a PBE and satisfies the properties in Lemma 5. We start with an

arbitrary PT assessment (b∆1 , D∆
+,1, F ∆1 ). The induction hypothesis assumes that for each

1 ≤ j ′ ≤ j − 1 there is a PT assessment (b∆j ′ , D∆
+, j ′ , F ∆j ′ ) such that in states (N , D , u ) with

M (D )−N ≤ j ′ investor strategies are optimal, i.e., in the continuation games after such
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states, the assessment specifies a PBE. Donor strategies are automatically optimal in a PT

assessment by Lemma 3. Then, in the induction step j − 1⇝ j , we construct a PT assess-

ment (b∆j , D∆
+, j , F ∆j ) such that for states (N , D , u ) with M (D )−N ≤ j , investor strategies

are optimal, and

b∆j (N , D , u ) = b∆j−1(N , D , u ),

D∆
+, j (N , D , u ) =D∆

+, j−1(N , D , u ),

F ∆j (N , D , u ) = F ∆j−1(N , D , u ),















for all states (N , D , u ) with M (D )−N ≤ j −1,

which implies that for the corresponding probabilities of success we have

π∆j (N , D , u ) =π∆j−1(N , D , u ) for M (D )−N ≤ j −1.

Figure 8 depicts pairs of (N , D ) such that j = M (D )−N for j = 0, 2, 3 and the shaded

region including the orange line captures all j ≤ 1, which is our induction start for the

equilibrium construction. The induction ends at j = M0, when the entire state space is

covered. Importantly, if the game is in state (N , D , u ), then N and D only increase in the

continuation game, i.e., j is decreasing over time.

While we denote by D∆
∗, j (N , u ) the donation threshold corresponding to (b∆j , D∆

+, j , F ∆j ),

we also construct ξ∆j (·) and parts of the threshold function D∆(N , u ) in each step. In partic-

ular, in step j , we define D∆(N , u ) for (N , u ) such that N =M0− j , or such that N <M0− j

and u ≤ ξ∆j (G − (N + j )p ). After the last step ( j =M0), D∆(N , u ) is defined for all N and

u and D∆(N , u ) = D∆
∗,M0
(N , u ). Figure 9 illustrates this construction schematically. For a

cleaner illustration that avoids drawing step functions, we assume ∆→ 0 in this figure.

Finally, Table 5 summarizes the relevant notation.

(a) Induction start ( j ≤ 1⇔D ≥G − (N + 1)p ): We set (b∆1 , D∆
+,1, F ∆1 ) to be an arbitrary

PT assessment (which trivially exists). Further, for j ≤ 1, we set ξ∆j (w ) := 0 for all w which

is consistent with Equation CT. We also set D (N , u ) := 0 for N ≥M0−1. Finally, consider

states (N , D , u ) with M (D )−N ≤ 1. The probability of success is π∆1 (N , D , u ) = 1, so it
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Figure 8: Schematic illustration of induction in j =M (D )−N

0
D

N

p 2p 3p G− 2p G− p G

M0

M0 − 1

M0 − 2

M0 − 3

M0 − 4

j = 0
j ≤ 1
j = 2
j = 3

Note: The figure depicts pairs of (N , D ) such that j =M (D )−N for j = 0, j ≤ 1, j = 2, j = 3. The induction
start considers states j ≤ 1 and each j > 1 corresponds to one induction step.

Table 5: List of Notation

Notation Description
(b∆j , D∆

+, j , F ∆j ) assessment in the j -th induction step
ξ∆j (w ) time threshold defined for all w in the j -th induction step
D∆
∗, j (N , u ) donation threshold corresponding to (b∆j , D∆

+, j , F ∆j )
D∆(N , u ) donation threshold that is defined inductively for N =M0− j , and

N <M0− j and u ≤ ξ∆j (G − (N + j )p )

is a best response for investors to pledge. Trivially, π∆1 (N , D , u ) is weakly increasing in

N , D , u for D ≥G − (N +1)p .

(b) Induction hypothesis ( j ′ ≤ j − 1): For the induction hypothesis, we suppose that we

have constructed PT assessments (b∆j ′ , D∆
+, j ′ , F ∆j ′ ) with a donation threshold D∆

∗, j ′(N , u ) for

j ′ = 1, . . . , j −1 with the following properties:

i) Time threshold ξ∆j ′(w ): For w < G − ( j ′ − 1)p , we define ξ∆j ′(w ) by (5). For w ≥
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Figure 9: Schematic illustration of construction of D∆(N , u ) and ξ j (D ) (for small ∆)
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G− (M0 − 4)p

j = 2
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j = 5

Note: The figure depicts the donation thresholds D (M0 − j , u ) as a function of u in the limit ∆→ 0. In step
j , the portion between ξ j−1(G − (N + j −1)p ) and ξ j (G − (N + j )p ) of each D (N , u ) is constructed.

G − ( j ′−1)p , we set ξ∆j ′(w ) = 0. ξ∆j ′(w )>ξ
∆
j ′−1(w ) if ξ

∆
j ′(w )> 0.

ii) Donation threshold D∆(N , u ): D∆(N , u ) is defined for (N , u ) such that either N ≥

M0− ( j −1), or such that N <M0− ( j −1) and u ≤ ξ∆j−1(G − (N + j −1)p ). For (N , u ) with

N ≤M0− j ′ and u ≤ ξ∆j ′(G − (N + j ′)p )

π∆j−1

�

N , D∆(N , u ), u −∆
�

=
v0

v −p
. (7)

Note that in that case, D∆(N , u )<G −(N +1)p . For N =M0− j ′, u >ξ∆j ′(0), D∆(N , u ) = 0.

D∆(N , u ) is strictly decreasing in N , u when it satisfies (7).

In Figure 10, the blue step functions represent the portion of D∆ at N and N + 1 that

are defined in the induction hypothesis, and black dotted lines show the corresponding
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Figure 10: Schematic illustration of construction of D∆(N , u ) for N and N +1

0 u

D

ξ∆
j−1

(
G− (N + j)p

)

ξ∆
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(
G− (N + j − 1)p

)ξ∆
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(
G− (N + 1 + j)p

)
ξ∆
j

(
G− (N + j)p

)

G− (N + 1 + j)p

G− (N + j)p

G− (N + j − 1)p

D∆(N + 1, u)

D∆(N, u)

π∆
j−1(N + 1, D, u) ≥ v0

v−p

0 ∆ 2∆

Note: The figure depicts the donation thresholds for cumulative purchases N and N + 1 with N <M0 − j .
In step j − 1 only the blue portion of D∆ is constructed, while in step j the orange portion is added. For
example, we construct D∆(N + 1, u ) for u ≤ ξ∆j−1(G − (N + 1+ j − 1)p ) in step j − 1 and extend it to u ≤
ξ∆j−1(G − (N + 1+ j )p ) in step j . With D ≥ G − (N + j )p , and N + 1 purchases, the campaign is active
until ξ∆j−1

�

G − (N + j )p
�

+∆ or longer, even if no additional donations are being made (shaded area). For
such states, strategies of the assessment (b∆j−1, D∆

+, j−1, F ∆j−1) are not optimal and π∆j−1 might not be increasing
and continuous in D . We only assume π∆j−1 ≥ 0. Hence, the donation threshold cannot be constructed for
(N +1, u ) with u >ξ∆j−1(G − (N + j )p ) in step j −1.

ξ∆j−1

�

G − (N + j −1)
�

and ξ∆j−1

�

G − (N +1+ j −1)p
�

= ξ∆j−1

�

G − (N + j )p
�

.

iii) PT assessment: (b∆j ′ , D∆
+, j ′ , F ∆j ′ ) are PT assessments (as in Definition 2) with dona-

tion thresholds D∆
∗, j ′(N , u ) satisfying

D∆
∗, j ′(N , u ) =D∆(N , u ) for u ≤ ξ∆j ′(G − (N + j ′)p ), and

for N =M0− j ′, u >ξ∆j ′(0).
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iv) Probability of success: For all N ≥ M (D )− j ′, π∆j ′(N , D , u ) satisfies (6) if D ≥

D∆
∗, j ′(N , u +∆) and π∆j ′(N , D , u )< v0

v−p if D <D∆
∗, j ′(N , u +∆).

Note that by monotonicity of π∆j ′(N , D , u ) in N , u (Lemma 2 iii),

π∆j ′(N , D , u )≥
v0

v −p
for u >ξ∆j ′(G − (N + j ′)p ), D ≥G − (N + j ′)p .

This is illustrated in Figure 10 in the shaded area. Similarly, it implies that u ≤ ξ∆j ′(D )⇔

D <D∆
∗, j ′(M (D )− j ′, u +∆) =D∆(M (D )− j ′, u +∆).

v) Best response: For the PT assessments (b∆j ′ , D∆
+, j ′ , F ∆j ′ ), investors best respond by

pledging if and only if D ≥D∆
∗, j ′(N , u +∆) in states all (N , D , u ) with N ≥M (D )− j .

(c) Induction step ( j − 1⇝ j , j ≥ 2): In this step, we assume the induction hypothesis

(b) and construct a PT assessment (b∆j , D∆
+, j , F ∆j ) such that the same statements are true for

states (N , D , u ) with N =M (D )− j , i.e., G − (N + j )p ≤D <G −
�

N + ( j −1)
�

p .

i) Time threshold ξ∆j (w ): First, note that for w ≥ G − (N + j )p , there is a j ′ ≤ j − 1

such that M (w )− j ′ =N +1. Then, we know by the induction hypothesis that



























for u ′ <ξ∆j ′(w ) : w <D∆
∗, j−1(N +1, u ′) =D∆(N +1, u ′)

for ξ∆j ′(w )≤ u ′ ≤ ξ∆j−1

�

G − (N + j )p
�

: w ≥D∆(N +1, u ′) =D∆
∗, j−1(N +1, u ′)

for u ′ >ξ∆j−1

�

G − (N + j )p
�

w ≥D∆
�

N +1,ξ∆j−1

�

G − (N + j )p
�

�

>D∆
∗, j−1(N +1, u ′)

Hence, w ≥D∆
∗, j−1(N + 1, u ′)⇔ u ′ ≥ ξ∆j ′(w ). Therefore, letting π̃∆j−1(N , D , u ) be the aux-

iliary probability corresponding to the assessment (b∆j−1, D∆
+, j−1, F ∆j−1) as defined in Equa-

tion 4, we can write

π̃∆j−1(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆j−1

�

N +1, max{D , D∆
∗, j−1(N +1, u −∆(i −1))}, u −∆i

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�W ≥D

�

.
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Next, note that the above also implies that for u−i∆<ξ∆j−1(D ), then D <D∆
∗, j−1(N +1, u−

(i−1)∆) =D∆(N +1, u−(i−1)∆) and for u−i∆≥ ξ∆j−1(D ), D ≥D∆
∗, j−1(N +1, u−(i−1)∆).

Hence, for j =M (D )−N

π̃∆j−1(N , D , u ) =EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

�

π∆j−1

�

N +1, D , u −∆i
�

1
�

u −∆i ≥ ξ∆j−1(D )
�

+ v0
v−p 1

�

u −∆i <ξ∆j−1(D )
�

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�W ≥D

�

.

Note that this expression only depends on ξ∆j ′(·), j ′ ≤ j − 1, and π∆j−1(N + 1, D , u ′) where

M (D )− (N +1)≤ j −1, which are defined in the induction hypothesis. Since π j−1(N , D , u )

is strictly increasing in u and π∆j−1

�

N + 1, D , u − ∆i
�

≥ v0
v−p for u − ∆i ≥ ξ∆j−1(D ),

π̃ j−1(N , D , u )< 1 is strictly increasing in u . Hence, for any j ≤M (D ) there is a unique

ξ∆j (D ) = arg min
§

u |π̃∆j−1

�

M (D )− j , D , u
�

≥
v0

v −p

ª

Recall that π∆j−1

�

M (D )− ( j −1), D , u
�

= π̃∆j−1

�

M (D )− ( j −1), D , u
�

for D ≥D∆
∗, j−1(M (D )−

( j − 1), u +∆), and by the induction hypothesis, π∆j−1

�

M (D ) − ( j − 1), D , u
�

< v0
v−p and

π̃∆j−1

�

M (D )− ( j −1), D , u
�

< v0
v−p for D <D∆

∗, j−1(M (D )− ( j −1), u +∆). Hence,







π̃∆j−1

�

M (D )− ( j −1), D , u
�

≥ v0
v−p for u ≥ ξ∆j−1(D )

π̃∆j−1

�

M (D )− ( j −1), D , u
�

< v0
v−p for u <ξ∆j−1(D )

,

and we have ξ∆j (w )>ξ
∆
j−1(w ) if ξ

∆
j (w )> 0.

ii) Donation threshold D∆(N , u ): Since (b∆j−1, D∆
+, j−1, F ∆j−1) is a PT assessment by the

induction hypothesis, π̃∆j−1

�

N , D , u
�

is strictly increasing in D by Corollary 1. For N ≥

M0− j and u <ξ∆j (G −(N + j )p ), we define D∆(N , u+∆) to be the unique value satisfying

π̃∆j−1

�

N , D∆(N , u +∆), u
�

=
v0

v −p
,
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which must also be satisfied for u < ξ j ′(G − (N + j ′)p ), N ≥ M0 − j ′, j ′ ≤ j − 1 by the

induction hypothesis ii). Since π̃∆j−1 is increasing in N , D and u , D∆ is decreasing in N

and u . Further, for N =M0− j , we set D∆(N , u +∆) = 0 for u >ξ∆j (0).

iii) PT assessment: We set

D∆
∗, j (N , u ) :=D∆(N , u ) for u ≤ ξ∆j

�

G − (N + j )p
�

, and

for N =M0− j , u >ξ∆j (0),

and otherwise, define D∆
∗, j (N , u ) arbitrarily so that it is overall decreasing in N and u . This

defines a PT assessment (b∆j , D∆
+, j , F ∆j ). Note that (b∆j , D∆

+, j , F ∆j ) = (b
∆
j−1, D∆

+, j−1, F ∆j−1) for

states (N , D , u )with M (D )−N ≤ j−1 because for all such states D∆
∗, j−1(N , u ) =D∆

∗, j (N , u ).

iv) Probability of success: The corresponding probability of success has the following

properties:

• π∆j (N , D , u ) =π∆j−1(N , D , u ) for M (D )−N ≤ j−1 by definition of the corresponding

donation thresholds because (b∆j , D∆
+, j , F ∆j ) = (b

∆
j−1, D∆

+, j−1, F ∆j−1) for these states and

all states (N ′, D ′, u ′) with N ′ ≥ N , D ′ ≥ D that can be reached in a continuation

game, as they satisfy M (D ′)−N ′ ≤ j −1.

• For D ≥ D∆
∗, j (N , u + ∆), π∆j (N , D , u ) = π̃∆j−1(N , D , u ) by Lemma 2 ii), and for

D < D∆
∗, j (N , u +∆), π∆j (N , D , u ) < v0

v−p and π̃∆j−1(N , D , u ) < v0
v−p by monotonic-

ity of the probabilities in D . Hence, ξ∆j (D ) satisfies (5). Further, this implies that

π∆j (N , D , u ) is strictly increasing in u for D ≥D∆
∗, j (N , u +∆), N + 1 <M (D ). Oth-

erwise, π∆j (N , D , u ) = 1 or π∆j (N , D , u ) is given by (2) which is strictly increasing in

u or equal to zero.

v) Best response: It is immediate from the construction and because π∆j is increasing

in D , that for all (N , D , u ) with N ≥ M (D )− j , π∆j (N , D , u ) ≥ v0
v−p if and only if D ≥

D∆
∗, j (N , u +∆). ■
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A.2.2 Taking the continuous time limit

The following lemma implies Proposition 1 ii):

Lemma 6 (Success-maximizing equilibrium limit). i) The point-wise limit of the donation

threshold D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) exists, where
�

u
∆

�

∆ is the smallest multiple of∆ that

is larger than u . Further, for any x= (N , D , u ) the following point-wise limits exist:

b (x) := lim
∆→0

b∆
�

N , D ,
�

u
∆

�

∆
�

, D+(x; w ) := lim
∆→0

D∆
+ (N , D ,

�

u
∆

�

∆; w ),

ξ j (w ) := lim
∆→0
ξ∆j (w ), F (w ; x) := lim

∆→0
F ∆

�

w ;
�

N , D ,
�

u
∆

�

∆
�

� (8)

Finally,

π(N , D , u ) := lim
∆→0
π∆(N , D ,

�

u
∆

�

∆) uniform in u and D . (9)

ii) Proposition 1 ii) holds for this limit.

The proof of this lemma is in the Online Appendix.

A.2.3 Optimality of constructed equilibrium

Proof Outline: Next, we show that the equilibrium constructed in Section A.2.1 maxi-

mizes the probability of success and that for any success-maximizing sequence of PT equi-

libria, the outcome converges point-wise to the same limit as specified in Proposition 1.

The proof proceeds in four steps. In Step 1, we formulate a relaxed version of the success

maximization problem. In Step 2, we solve the relaxed problem. In Step 3 we show that

the outcome of the solution is attained by the equilibrium constructed Section A.2.1. In

Step 4 we show convergence as ∆→ 0.

The key idea of the proof stems from the observation that the donor will always donate

enough to reach the goal at the deadline if needed and feasible. Hence, to maximize the

probability of success, the exact amount the donor donates during the campaign before

the deadline is not important as long as investors keep pledging. To find the PBE outcomes

that maximize the probability of success, we consider reduced histories that ignore donation

55



amounts and only keep track of whether a donation incentivizes the next potential investor

to pledge or not. This idea allows us to recast the success maximization problem into one

in which we choose probabilities of reaching these reduced histories, rather than choosing

over the set of PBEs.

Proof:

Step 1: The relaxed success-maximization problem

Consider a particular assessment
�

D̃∆
+ , b̃∆, F̃ ∆

�

. Given this assessment, any investor

history h B ,∆
t =

∏

s∈T∆,s≤t

�

Ns−∆, Ds−∆
�

corresponds to a reduced investor history

h̃ B
t :=

∏

s∈T∆,s≤t

�

Ns−∆, bs−∆
�

, where bs−∆ := b̃∆
�

∏

s ′∈T∆,s ′≤s

(Ns ′−∆, Ds ′−∆)

�

,

so that instead of the donation Ds−∆, the history records the probability bs−∆ ∈ [0, 1]

with which an investor arriving in period s pledges on observing cumulative donation

amount Ds−∆, and the entire history of donations and pledges. We omit the ∆-superscipts

for the reduced histories to simplify notation. LetRb̃∆ be the mapping so that

Rb̃∆ : h B ,∆
t 7→ h̃ B

t

as defined above. We will use this mapping in the proof of Proposition 3.

In a platform-optimal equilibrium, the investor always pledges when she is indifferent

between pledging and not pledging, so henceforth we assume bs−∆ ∈ {0, 1}. Let the set of

such reduced investor histories in period t be H̃ B
t . Further, let us denote the corresponding

set of reduced donor histories in period t by

H̃ D
t :=

�

h̃ D
t =

�

h̃ B
t , Nt

�

�

�

�

�

h̃ B
t ∈ H̃

B
t , Nt ∈ {Nt−∆, Nt−∆+1}

�

.

The assessment, the arrival process and distributions of donor valuation define a probability

measure P on the space of outcomes
∏

t ∈T∆
(Nt , Dt ) and hence on H̃ B

t and H̃ D
t . Given this

probability space, we define the following probabilities:
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i) κ(h̃ B
t ; w ) is the probability that h̃ B

t ∈ H̃
B

t is reached if the donor’s valuation is w ;

ii) P(h̃ D
t ; w ) is the probability that h̃ D

t ∈ H̃
D

t is reached if the donor’s valuation is w .

Figure 11: Transitions between reduced histories

h̃Dt

P(h̃Dt ;w)

Donor history
at t

Donation
induces pledge

bt+∆

1 − bt+∆

∆λ

1 − ∆λ

1

(h̃Dt , 1)

κ(h̃Dt , 1;w)

(h̃Dt , 0)

κ(h̃Dt , 0;w) =
P(h̃Dt ;w) − κ(h̃Dt , 1;w)

Investor history
at t+ ∆

Donor history
at t+ ∆

(h̃Dt , 1, Nt + 1)

P(h̃Dt , 1, Nt + 1;w)

(h̃Dt , 1, Nt)

P(h̃Dt , 1, Nt;w)

(h̃Dt , 0, Nt)

P(h̃Dt , 0, Nt;w)

Note: The blue brackets represent reduced histories and the orange expressions below the probability of
reaching the corresponding reduced history.

Note that this implies that for each w and t ∈T∆, we have

∑

h̃ B
t ∈H̃ B

t

κ(h̃ B
t ; w ) =

∑

h̃ D
t ∈H̃ D

t

P(h̃ D
t ; w ) = 1 and P(h̃ D

t ; w ) = κ(h̃ D
t , 1; w ) +κ(h̃ D

t , 0; w ),

and in particular

κ(h̃ D
t , 1; w )≤P(h̃ D

t ; w ) for all h̃ D
t ∈ H̃

D
t . (P)

Further, the following inter-temporal link between reduced histories must hold,

P(h̃ D
t , 1, Nt +1; w ) = ∆λκ(h̃ D

t , 1; w )

P(h̃ D
t , 1, Nt ; w ) = (1−∆λ) κ(h̃ D

t , 1; w )

P(h̃ D
t , 0, Nt ; w ) = P(h̃ D

t ; w )−κ(h̃ D
t , 1; w )















for all h̃ D
t ∈ H̃

D
t . (P− t )
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The reduced histories and probabilities are illustrated in Figure 11. The probabilities of

reaching investor histories after which an investor pledges uniquely determines all other

probabilities, so we define

H̃ 1
t :=

�

h̃ B
t =

�

h̃ D
t−∆, 1

�

�

�

�

�

h̃ D
t−∆ ∈ H̃

D
t−∆

�

⊂ H̃ B
t .

Formally, P(0; w ) = 1 and the sequence κ∆(0; w ) :=
�

(κ(h̃ B
t ; w ))h̃ B

t ∈H̃ 1
t

�

t≥∆ uniquely define
�

�

P(h̃ D
t ; w )

�

h̃ D
t ∈H̃ D

t

�

t≥0
and

�

�

κ(h̃ D
t , 0; w )

�

h̃ D
t ∈H̃ B

t

�

t≥0
. Thus, (κ∆(0; w ))w∈[0,∞) determines the

outcome of the game and will be the choice variable in the relaxed problem. In order to be

able to formulate investor IC constraints after reaching an arbitrary donor history h̃ D
t−∆, we

define continuation donor histories at times t ′ ≥ t by

H̃ D

t ′

�

h̃ D
t−∆

�

:=
�

h̃ D
t ′ ∈ H̃

D
t ′ : the first entries of h̃ D

t ′ are h̃ D
t−∆

	

.

The problem to maximize the probability of success can be written as

max
(κ∆(0;w ))w∈[0,∞]

∑

h̃ D
T−∆∈H̃

D
T−∆

∆λEF0
�

κ(h̃ D
T−∆, 1; W )1

�

G − (NT−∆+1)p ≤W
��

+

(1−∆λ)EF0
�

κ(h̃ D
T−∆, 1; W )1

�

G −NT−∆p ≤W
��

+

EF0
��

P(h̃ D
T−∆; W )−κ(h̃ D

T−∆, 1; W )
�

1
�

G −NT−∆p ≤W
��

,

subject to P(0; w ) = 1, Equation P, Equation P− t , and for all h̃ D
t ∈ H̃

D
t , t ∈ T∆, Nt ∈

N, w ∈ [0,∞),

∫

prob. of success if
period-t investor pledges
︷ ︸︸ ︷

qt+∆(h̃
D
t , 1, Nt−∆+1; W ) d F0(W )

∫

κ(h̃ D
t , 1; W ) d F0(W )

≥
v0

v −p
, (Investor IC)

where the unconditional probability of success if a period-t investor pledges after history
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h̃ D
t is given by

qt+∆(h̃
D
t+∆; w ) =

∑

h̃ D
T−∆∈H̃

D
T−∆(h̃

D
t+∆)

∆λκ(h̃ D
T−∆, 1; w )1

�

G − (NT−∆+1)p ≤w
�

+

(1−∆λ) κ(h̃ D
T−∆, 1; w )1

�

G −NT−∆p ≤w
�

+
�

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤w
�

].

This is a relaxed problem because the vectors (κ∆(0; w ))w∈[0,∞) that satisfy the above

constraints do not necessarily correspond to a PBE. Further, we are ignoring donor incen-

tives by considering reduced histories.

Finally, note that for a PT equilibrium, it must be that for any investor history (h̃ D
t−∆, 1) ∈

H̃ 1
t there exists D̃ ∗

��

P(h̃ D
t−∆; w )

�

w

�

≥ 0 such that

κ(h̃ D
t−∆, 1; w ) =







P(h̃ D
t−∆; w ) for w ≥ D̃ ∗

�

(P(h̃ D
t−∆; w ))w

�

0 otherwise
. (PT-κ)

Step 2: Solution to the relaxed problem

In the following, we show any solution satisfies Equation PT-κ. Such κ∆ with

D̃ ∗
�

(P(h̃ D
t−∆; w ))w

�

=W
�

(P(h̃ D
t−∆; w ))w

�

where

W
�

(P(h̃ D
t−∆; w ))w

�

:=

min
�

w
�

�(Investor IC) is satisfied for κ(h̃ D
t−∆, 1; w ) =P(h̃ D

t−∆; w )1(w ≥w )
	

(W )

is always a solution. We set W
�

(P(h̃ D
t ; w ))w

�

=∞ if the set on the right-hand side is

empty. Further, to establish uniqueness in the limit ∆→ 0, we show that for any solution

satisfying Equation PT-κ it must be that

D̃ ∗
�

(P
�

h̃ D
t−∆; w )

�

w

�

∈
�

W
�

(P(h̃ D
t−∆; w ))w

�

, max
¦

G −
�

Nt−∆+
T−(t−∆)
∆

�

p , W
�

(P(h̃ D
t−∆; w ))w

�

©

�

,
(D̃ ∗-Region)
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where G −
�

Nt−∆+
T−(t−∆)
∆

�

p is the amount that the donor needs to donate even if a investor

arrives and pledges in every future period. Note that as ∆→ 0, G −
�

Nt +
T−t
∆

�

p →−∞.

We show that the solution must satisfy Equation PT-κ with (D̃ ∗-Region) by contradic-

tion. Consider an arbitrary solution κ∗∆ and corresponding P∗ such that there is at least

one history in which it does not satisfy Equation PT-κ with (D̃ ∗-Region). Consider the

latest period t̄ in time after which Equation PT-κ with (D̃ ∗-Region) is satisfied for all his-

tories, and consider a period t̄ −∆ history h̃ D
t̄−∆ such that κ(h̃ D

t̄−∆, 1; w ) does not satisfy

Equation PT-κ with (D̃ ∗-Region). Then, the probability of success conditional on reaching

history h̃ B
t̄ = (h̃

D
t̄−∆, 1) given by

qt (h̃ D
t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w and independent of the

choice of κ(h̃ D
t̄−∆, 1; w ). Let

c (h̃ D
t̄−∆) :=

∫

κ∗(h̃ D
t̄−∆, 1; W ) d F0(W ).

We now construct a κ′∆ such that the objective function is higher than with κ∗∆, while

keeping
∫

κ′(h̃ D
t̄−∆, 1; W ) d F0(W ) ≤ c (h̃ D

t̄−∆) in all histories. To this end, let W c (h̃
D
t̄−∆) be

the uniquely defined by17

∞
∫

W c (h̃
D
t̄−∆)

P∗(h̃ D
t̄−∆; W ) d F0(W ) = c (h̃ D

t̄−∆).

Since
qt (ĥ D

t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w , κ(h̃ D
t̄−∆, 1; w ) = P∗(h̃ D

t̄−∆; w )1(w ≥ W c (h̃
D
t̄−∆))

satisfies Equation Investor IC. We set κ′(ĥ D
t ; w ) := κ∗(ĥ D

t ; w ) for all histories ĥ D
t at t <

t̄ −∆ and all histories ĥ D
t ̸∈ H̃

1
t (h̃

D
t̄−∆), t ≥ t̄ −∆. Further, let

κ′(h̃ D
t̄−∆, 1; w ) :=







P∗(h̃ D
t−∆; w ) for w ≥W c (h̃

D
t̄−∆)

0 otherwise,

and for histories ĥt ∈ H̃ 1
t (h̃

D
t̄−∆) where t > t̄ −∆, we set κ′(ĥ D

t ; w ) := P′(ĥ D
t ; w )κ

∗(ĥ D
t ;w )

P∗(ĥ D
t ;w )

so that all constraints remain satisfied and the transition probabilities remain unchanged.

17Uniqueness follows because for all t ≥ t̄ , κ(h̃ D
t̄ , 1; w ) satisfies Equation PT-κ.
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Figure 12 illustrates the transitions. In the objective function, this κ′ achieves states with

Figure 12: Schematic illustration of transition probabilities

Probability
of reaching
h̃Dt̄−∆ given w

Period t̄−∆
reduced

Donor history

Period t̄
reduced

Investor history

Period t̄
reduced

Donor history

Probability
of reaching

donor history in
period t̄ given w

P∗(h̃Dt̄−∆;w)
h̃Dt̄−∆ =

(h̃Bt̄−∆, Nt̄−∆)

h̃Bt̄ = (h̃Dt̄−∆, 1)

h̃Bt̄ = (h̃Dt̄−∆, 0)

h̃Dt̄ =
(h̃Dt̄−∆, 1, Nt̄−∆ + 1)

h̃Dt̄ =
(h̃Dt̄−∆, t, Nt̄−∆)

h̃Dt̄−∆ =
(h̃Dt̄−∆, 0, Nt̄−∆)

P′(h̃Dt̄−∆, 1, Nt̄−∆ + 1;w) =
P∗(h̃D

t̄−∆
,1,Nt̄−∆+1;w)

κ∗(h̃D
t̄−∆

,1;w)
κ′(h̃Dt̄−∆, 1;w)

P′(h̃Dt̄−∆, 1, Nt̄−∆;w)=
P∗(h̃D

t̄−∆
,1,Nt̄−∆;w)

κ∗(h̃D
t̄−∆

,1;w)
κ′(h̃Dt̄−∆, 1;w)

P′(h̃Dt̄−∆, 0, Nt̄−∆;w) =

P∗(h̃Dt̄−∆;w)− κ′(h̃Dt̄−∆, 1;w)

κ
′ (h̃

D
t̄−

∆
,1

;w
)

P∗
(h̃

D
t̄−

∆
;w

)

1−
κ ′(̃h D

t̄−
∆ ,1;w

)

P ∗
(̃h D

t̄−
∆ ;w

)

∆
λ

(1−
∆
λ)

1

Constructed from
κ∗(h̃Dt′ , 1;w), t′ < t̄−∆

such that
h̃Dt̄−∆ ∈ HDt̄−∆(h̃Dt′ )

Find better
κ′(h̃Dt̄−∆, 1;w)

Note: The blue brackets represent reduced histories and the orange expressions the probability of reaching
the corresponding reduced histories given a realized w .

higher NT−∆ more frequently, so κ′ yields strictly higher profits than κ∗. Thus, any solution

κ∗∆ must satisfy Equation PT-κ with (D̃ ∗-Region) almost surely.

Step 3: Implementation by equilibrium

Finally, we show that the optimal solution is achieved by the PBE constructed in Propo-

sition 1. To this end, it is useful to write the probability of success for donor type w after a
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history h̃ D
t−∆ recursively as a function of κt

�

h̃ D
t−∆; w

�

and P
�

h̃ D
t−∆; w

�

> 0:

Πt−∆
�

κt

�

h̃ D
t−∆; w

�

,P
�

h̃ D
t−∆; w

�

; w
�

=

∆λ
︸︷︷︸

arrival

κ
�

h̃ D
t−∆, 1; w

�

P
�

h̃ D
t−∆; w

�

︸ ︷︷ ︸

investor pledges

Πt

�

κt+∆(h̃ D
t−∆, 1, Nt−∆+1; w ),P(h̃ D

t−∆, 1, Nt−∆+1; w ); w
�

+ (1−∆λ)
︸ ︷︷ ︸

no arrival

κ
�

h̃ D
t−∆, 1; w

�

P
�

h̃ D
t−∆; w

�

︸ ︷︷ ︸

investor pledges

Πt

�

κt+∆(h̃ D
t−∆, 1, Nt−∆; w ),P(h̃ D

t−∆, 1, Nt−∆; w ); w
�

+

�

1−
κ(h̃ D

t−∆, 1; w )

P
�

h̃ D
t−∆; w

�

�

︸ ︷︷ ︸

investor does not pledge

Πt

�

κt+∆(h̃ D
t−∆, 0, Nt−∆; w ),P(h̃ D

t−∆, 0, Nt−∆; w ); w
�

,

(W-Π)

and for P(h̃ D
t−∆; w ) = 0, we set Πt−∆(κt (h̃ D

t−∆; w ),P(h̃ D
t−∆; w ); w ) = 0 without loss. Then,

we can write the Investor IC constraint as follows:

∫

prob. of
reaching h̃B

t
︷ ︸︸ ︷

κ(h̃ B
t ; W )

prob. of success if
period-t investor pledges

︷ ︸︸ ︷

Πt (κt+∆(h̃
B
t , Nt−∆+1; W ),P(h̃ B

t ; W ); W ) d F0(W )
∫

κ(h̃ B
t ; W ) d F0(W )

≥
v0

v −p
. (Investor IC’)

Consider the PT equilibrium (D∆
+ , b∆, (F ∆(·|x))x) from the proof of Proposition 1. This

assessment induces a probability measure P on outcomes and a corresponding systems

of probabilities κ(h̃ D
t , 1; w ) and P(h̃ D

t , ; w ) over reduced histories, as defined in the Step

1. Consider any on-path investor history in the last period h B ,∆
T =

∏

s∈T∆,s≤T
(Ns−∆, Ds−∆).

The PBE specifies that investors pledge if and only if the probability of success is at least
v0

v−p . In addition, in the preceding period, unless success is already guaranteed, donors

with w ≥ D∆(NT−∆,∆) donate max{DT−2∆, D∆(NT−∆,∆)}. This makes the next investor

just indifferent between pledging and not pledging if such a donation amount exists and

D∆(NT−∆,∆) =W otherwise.
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Therefore, for any on-path history h D ,∆
T−∆ =

�

∏

s∈T∆,s≤T−∆
(NT−∆, Ds−∆), NT−∆

�

, the induced

probabilities over reduced histories satisfy

κ(h̃ D
T−∆, 1; w ) =P(h̃ D

T−∆; w ) if and only if w ≥D∆(NT−∆,∆).

Notice that since D∆(NT−∆,∆) is calculated using the indifference condition for investors,

π∆(N , D , u ) is increasing in D , and F ∆ is a truncation given by Equation PT-belief,

this D∆(NT−∆,∆) is exactly W ((P(h̃ D
T−∆; w ))w , NT−∆) defined in Equation W in the so-

lution to the relaxed problem when we write the expression for the indifference con-

dition as in Equation Investor IC’. Analogous arguments apply to any history h D ,∆
t =

�

∏

s∈T∆,s≤t
(Ns−∆, Ds−∆), Nt

�

. Therefore, the PBE assessment from the proof of Proposition 1

induces exactly (κ∗∆(0; w ))w and it achieves the optimum in the relaxed problem. Hence,

(κ∗∆(0; w ))w is platform-optimal in the full class of PBEs.

Step 4: Uniqueness of limits

We have shown in Step 2 that solutions to the reduced problem satisfy Equation PT-κ

with Equation D̃ ∗-Region. Now, for a given t if ∆ is sufficiently small, then G −
�

N +
T−t
∆

�

p < 0, so any sequence of outcomes converges point-wise to the equilibrium outcome

attained by the Markov equilibrium constructed in Step 1.

A.3 Proof of Proposition 2 (Success-Minimizing Equilibrium)

We first show in Section A.3.1, we characterize a PT equilibrium for each ∆. In Sec-

tion A.3.2, we show that the limit of these equilibria as ∆→ 0 exists, and is as specified in

Proposition 2. Section A.3.3 establishes that this PBE minimizes the probability of success.

A.3.1 Characterization of PT equilibrium

Lemma 7 (Success-minimizing equilibrium). Given any ∆ > 0, a PT assessment

(b∆, D∆
+ , F ∆) with donation threshold D

∆
(N , u ) ∈ [0,G − (N + 1)p ) constitutes a PT equi-

librium.
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We denote the corresponding probability of success from the investor’s perspective in

state N , D , u if the investor contributes by π(N , D , u ).

Proof. Note that the donation threshold is well-defined in Section 3.4 (unlike in the con-

struction of the success-maximizing equilibrium): D
∆
(N , u +∆) := max{G − ( j − 1)p −

N p , 0} for u ∈
�

ξ
∆

j−1,ξ
∆

j

�

. This defines strategies and beliefs of the PT assessment. It is

immediate that D
∆
(N , u ) is strictly decreasing in N and u as long as D

∆
(N , u )> 0, weakly

decreasing otherwise, D
∆
(N , u ) ∈ [0,G − (N +1)p ), and D

∆
(N , u ) = 0 for (N +1)p ≥G . It

only remains to show that the investor strategies are optimal in every state (N , D , u ), since

the donor is best responding by Lemma 3. We show this by induction in j =M (D )−N and

for each j by backward-induction in u .

(a) Induction start ( j ≤ 1⇔D ≥G −(N +1)p ): For N ≥M (D )−1, the campaign is either

already successful, or an investor can complete the campaign. Hence π∆(N , D , u ) = 1 and

b∆(N , D , u ) = 1 for all u ∈ U∆, and D ∈ [0, W ] in any equilibrium. Note that ξ
∆

1 = 0 and

D∆
+ (N , D , u ; w ) =D .

(b) Induction hypothesis ( j ′ ≤ j −1): Assume that we have shown that the above strategy

profiles are best responses for investors for all states (N , D , u ) with N =M (D )− j ′ with

j ′ ≤ j −1.

(c) Induction step ( j − 1⇝ j , j ≥ 2): Consider an investor in state (N , D , u ) with N =

M (D )− j . If D <D
∆
(N , u+∆), then u <ξ

∆

j , and the belief system dictates that an investor

assigns a probability of success equal to

π∆(M (D )− j , D , u ) = P(τu
1 ≤ T −ξ

∆

j−1, . . . ,τu
j−2 ≤ T −ξ

∆

2 ,τu
j−1 ≤ T )<

v0

v −p
,

where τu
i is the arrival time of the i -th investor after period u . The inequality follows di-

rectly from the definition of ξ
∆

j . Hence, b∆(M (D )− j , D , u ) = 0 is optimal for the investor.
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If D ≥D
∆
(N , u +∆), then u ≥ ξ

∆

j ; by the induction hypothesis, we have

π∆(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆(N +1, max{D , D
∆
(N +1, u −∆(i −1))}, u −∆i )

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�W ≥D
�

>P(τu
1 ≤ T −ξ

∆

j−1, . . . ,τu
j−2 ≤ T −ξ

∆

2 ,τu
j−1 ≤ T )≥ v0

v−p ,

where the last inequality follows because u ≥ ξ
∆

j and the definition of ξ
∆

j via Proposition 1.

Hence, indeed b∆(M (D )− j , D , u ) = 1. ■

A.3.2 Taking the continuous time limit

We know from Proposition 1 that the point-wise limits ξ̄ j := lim
∆→0
ξ̄∆j and

D (N , u ) := lim
∆→0

D
∆�

N ,
lu

∆

m

∆
�

=max{G − ( j −1)p −N p , 0} for u ∈ (ξ̄ j , ξ̄ j−1]

exist. This implies that the point-wise limits D+(N , D , , u ; w ) := lim
∆→0

D∆
+

�

N , D ,
�

u
∆

�

∆; w
�

,

b (N , D , u ) = lim
∆→0

b∆
�

N , D ,
�

u
∆

�

∆
�

, and F (w ; (N , D , u )) = lim
∆→0

F ∆
�

w ;
�

N , D ,
�

u
∆

�

∆
�

�

exist.

This concludes the proof of Proposition 2 ii).

A.3.3 Minimization of probability of success

Next, we show that the equilibrium just constructed minimizes the probability of success

in the class of PBE. To this end, we consider an arbitrary PBE (b̃∆, D̃∆
+ , F̃ ∆). We show

by backward induction in t that for any investor history h B ,∆
t =

∏

s∈T∆,s≤t
(Ns−∆, Ds−∆) an

equilibrium investor history must satisfy

Dt−∆ >D
∆
(Nt−∆, T − (t −∆))⇒ b̃∆(h B ,∆

t ) = 1. (10)
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(a) Induction start (t = T ): D
∆
(N ,∆) =G − (N −1)p , so Equation 10 is satisfied for any

PBE.

(b) Induction hypothesis (s ≥ t ): Assume that Equation 10 is satisfied for any history

h B ,∆
s with s ≥ t .

(c) Induction step (t ⇝ t−∆): For an arbitrary history h B ,∆
t−∆, from an investor’s perspective

in period t −∆, the probability of success after a contribution is bounded from below by

π(Nt−2∆, Dt−2∆, T −(t −∆)) by the induction hypothesis. Thus, the investor must contribute

if π(Nt−2∆, Dt−2∆, T − (t −∆))≥ v0
v−p . Since for the constructed PT equilibrium,

D >D
∆
(N , T −2t )⇒π(N , D , T − (t −∆))≥

v0

v −p
,

we have Dt−2∆ >D
∆
(Nt−2∆, T − (t −2∆))⇒ b̃∆(h B ,∆

t−∆) = 1.

Finally, if Equation 10 is satisfied, then the probability of success in the PBE must

be at least as in the constructed PT equilibrium, since investors contribute whenever they

contribute in the PT equilibrium and the donor contributes up to his wealth at the deadline

in any PBE whenever necessary for success.

A.4 Proof of Proposition 3 (Donor-Preferred Equilibrium)

Proof Outline: Given any assessment, we use the same class of reduced histories and

systems of probabilities κ(h̃ B
t ; w ) and P(h̃ D

t , Nt ; w ), as in the proof of Proposition 1. Just

as in the equilibrium that maximizes the probability of success, in a donor-preferred equi-

librium, the investor always pledges when she is indifferent between pledging and not

pledging, so we can assume that bs ∈ {0, 1} for all histories. The induced probability mea-

sure P allows us to define (κ∆(0; w ))w , which determines the outcome of the game, except

for the donation amount.

The proof proceeds in four steps. Step 1 establishes that donor-preferred equilibrium

outcomes can be attained by PBE in a smaller class of assessments. In Step 2, we formulate

a relaxed donor problem (analogously to Proposition 1). In Step 3, we solve the donor’s
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problem and show that the success-maximizing solution also corresponds to a solution of

the donor’s problem. We also prove that all solutions that are PT equilibria converge to the

same limit as ∆→ 0. Finally, in Step 4, we verify that the donor strategy constructed in

Step 3 of the proof of Proposition 1 is consistent with the donor-preferred solution.

Proof:

Step 1: Limiting the class of assessments

To find a donor-preferred equilibrium, we first show (in Lemmata 8 and 9 below) that

donor-preferred equilibrium outcomes can be attained by PBE in a smaller class of assess-

ments. First, at histories at which investors are induced to pledge, all donor types that

donate positive amounts make the same cumulative donation. Second, if a donor does not

incentivize pledging, he donates nothing. Within the class of assessments satisfying these

two properties, the mapping from reduced histories to donations becomes unique, a fact we

use when we formulate the donor’s maximization problem.

Lemma 8. For any donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆), there exists a donor-preferred PBE

(b̂∆, D̂∆
+ , F̂ ∆) such that

i) both assessments generate the same probability measures (κ∆(0; w ))w ,

ii) for each h D ,∆
t , there exists a D∗(h D ,∆

t ) ∈R such that

D̂∆
+ (h

D ,∆
t ; w ) =







D̃+(h D ,∆
t ; w ) if b̃∆(h D ,∆

t , D̃+(h D ,∆
t ; w )) = 0

D∗(h D ,∆
t ) if b̃∆(h D ,∆

t , D̃+(h D ,∆
t ; w )) = 1

, and

b̂∆(h D ,∆
t−∆ , Dt−∆) =







1 if Dt−∆ =D∗(h
D ,∆
t−∆)

0 otherwise
.

(11)

Proof of Lemma 8. Given a donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆), define

D∗(h
D ,∆
t ) := inf

�

D̃∆
+ (h

D ,∆
t ; w )

�

� b̃∆(h D ,∆
t , D̃+(h

D ,∆
t ; w )) = 1

	

,
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which is the smallest donation amount that incentivizes pledging at a history h D ,∆
t . Donat-

ing this amount is feasible for all donor types w ≥D∗(h D ,∆
t ). Moreover, it is consistent with

play on equilibrium path. In particular, donating this amount is feasible for all types that

incentivize pledging after h D ,∆
t in (b̃∆, D̃∆

+ , F̃ ∆).

Then, define a new assessment (b̂∆, D̂∆
+ , F̂ ∆) where b̂∆ and D̂∆

+ are given by Equa-

tion 11. On equilibrium path, F̂ (w ; h D ,∆
t−∆ , Dt−∆) is derived by Bayes’ rule. Off path, if

Dt−∆ > D∗(h
D ,∆
t−∆), then let F̂ (w ; h D ,∆

t−∆ , Dt−∆) be such that it is optimal for the investor not

to pledge (e.g. F̂ (w ; h D ,∆
t−∆ , Dt−∆) = 1(w = 0)), and let F̂ (w ; h D ,∆

t−∆ , Dt−∆) = F̃ (w ; h D ,∆
t−∆ , Dt−∆)

otherwise.

Note that the strategies are such that (b̂∆, D̂∆
+ , F̂ ∆) and (b̃∆, D̃∆

+ , F̃ ∆) result in the same

probability measures (κ∆(0; w ))w , i.e., the same purchasing outcome after any realization

of arrivals and donor type. The donation amount with (b̃∆, D̃∆
+ , F̃ ∆) is by definition weakly

lower after any arrival and donor type realization. Hence, if (b̂∆, D̂∆
+ , F̂ ∆) is a PBE, then it

must be donor-preferred. It remains to be shown that (b̂∆, D̂∆
+ , F̂ ∆) is a PBE.

First, consider donor incentives. Given a PBE (b̃∆, D̃∆
+ , F̃ ∆), a donor type w with

b̃∆(h D ,∆
t , D̃+(h D ,∆

t ; w )) = 0 does not find it profitable to incentivize pledging after a history

h D ,∆
t . Pledging can be incentivized by donations of at least D∗(h

D ,∆
t−∆). Hence, also with as-

sessment (b̂∆, D̂∆
+ , F̂ ∆), deviating to incentivize pledging cannot be profitable. For a donor

type w with b̃∆(h D ,∆
t , D̃+(h D ,∆

t ; w )) = 1, it is optimal to donate in the PBE (b̃∆, D̃∆
+ , F̃ ∆).

Given the assessment (b̂∆, D̂∆
+ , F̂ ∆), the donor can donate weakly less and still incentivize

pledging, but the donor has a larger set of feasible donations in any future period. Thus, no

donor type has an incentive to deviate given the assessment (b̂∆, D̂∆
+ , F̂ ∆).

Next, consider investor incentives. Investors at a history (h D ,∆
t−∆ , Dt−∆) where Dt−∆ <

D∗(h
D ,∆
t−∆) have identical beliefs about donor types in both assessments, and the purchasing

outcome is also identical as argued above. Hence, the probability of success is the same

across assessments and an investor with such a history must prefer not to pledge given the

assessment (b̂∆, D̂∆
+ , F̂ ∆) because (b̃∆, D̃∆

+ , F̃ ∆) is a PBE. Investors at a history (h D ,∆
t−∆ , Dt−∆),

where Dt−∆ = D∗(h
D ,∆
t−∆), believe that they face donor types that they would face if they
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played a PBE (b̃∆, D̃∆
+ , F̃ ∆), and if they were at any of the histories (h D ,∆

t−∆ , Dt−∆) after which

an investor pledges. Hence, investors must prefer to pledge at a history (h D ,∆
t−∆ , Dt−∆), where

Dt−∆ = D∗(h
D ,∆
t−∆), given the assessment (b̂∆, D̂∆

+ , F̂ ∆). A history (h D ,∆
t−∆ , Dt−∆) with Dt−∆ >

D∗(h
D ,∆
t−∆) is now off equilibrium path for assessment (b̂∆, D̂∆

+ , F̂ ∆), and we assumed that F̂

is such that the investor does not wish to pledge in this case.

It follows that (b̂∆, D̂∆
+ , F̂ ∆) is a PBE.

Hence, to find a donor-preferred equilibrium, it suffices to restrict attention to assess-

ments (b̃∆, D̃∆
+ , F̃ ∆) such that for any h D ,∆

t , there exists a D∗(h D ,∆
t ) ∈R with

D̃∆
+ (h

D ,∆
t ; w ) =D∗(h D ,∆

t ), whenever b̃∆(h D ,∆
t , D̃∆

+ (h
D ,∆
t ; w )) = 1, (12)

and b̃∆ as is defined in Equation 11. Indeed, the success-maximizing equilibrium con-

structed in Proposition 1 is in this class.

Lemma 9. For any donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆) for which the donor strategy sat-

isfies Equation 12 and investor strategy Equation 11, there exists a donor-preferred PBE

(b̂∆, D̂∆
+ , F̂ ∆) so that

i) both assessments generate the same probability measures (κ∆(0; w ))w ,

ii) b̂∆ = b̃∆ and for each h D ,∆
t ,

D̂∆
+ (h

D ,∆
t ; w ) =







Dt−∆ if b̃∆(h D ,∆
t , D̃+(h D ,∆

t ; w )) = 0

D̃+(h D ,∆
t ; w ) if b̃∆(h D ,∆

t , D̃+(h D ,∆
t ; w )) = 1

. (13)

Proof of Lemma 9. Given the donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆) satisfying Equation 12,

let (b̂∆, D̂∆
+ , F̂ ∆) be given by Equation 13, b̂∆ = b̃∆, and F̃ ∆(w ; h D ,∆

t−∆ , Dt−∆), so

that it is consistent with Bayes’ rule on equilibrium path, and F̃ ∆(w ; h D ,∆
t−∆ , Dt−∆) =

F̂ ∆(w ; h D ,∆
t−∆ , Dt−∆) off path. Then, it follows immediately that the two assessments gen-

erate the same outcomes and hence, the same probability measures (κ∆(0; w ))w . It remains
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to show that (b̂∆, D̂∆
+ , F̂ ∆) constitutes a PBE. The donor does not have a profitable deviation

after histories after which the investor is incentivized to pledge as the donor plays exactly

the same strategy as in (b̃∆, D̃∆
+ , F̃ ∆). Whenever the donor does not incentivize pledging,

the donor cannot have a profitable deviation since incentivizing pledging is not profitable

for (b̃∆, D̃∆
+ , F̃ ∆), and moreover, D̂∆

+ (h
D ,∆
t ; w ) = Dt−∆ ≤ D̃∆

+ (h
D ,∆
t ; w ) implies that every

donor type w has a weakly larger set of feasible donations in the future under D̂∆
+ than

under D̃∆
+ . Each investor is also best-responding as she pledges after the same histories in

both assessments, and whenever she does not pledge, her belief is a mixture of beliefs after

histories after which she did not pledge in (b̃∆, D̃∆
+ , F̃ ∆).

Hence, in the following, we restrict attention to assessments (b̃∆, D̃∆
+ , F̃ ∆) that satisfy

Equation 13 and Equation 12. The donor strategy in such assessments only depends on the

reduced history Rb̃∆(h D ,∆
t ), so we can define D(h̃ D ,∆

t ) := D∗(h D ,∆
t ) for h̃ D ,∆

t =Rb̃∆(h D ,∆
t ).

Indeed, the platform-optimal equilibrium from Proposition 1 satisfies Equation 13.

Step 2: Relaxed donor problem.

Consider an arbitrary assessment (b̃∆, D̃∆
+ , F̃ ∆) that satisfies Equation 13. Recall that,

analogously to Proposition 1, we can define reduced histories, systems of probabilities

κ(h̃ B
t ; w ), P(h̃ D

t , Nt ; w ), the mappingRb̃∆ that maps general histories to the corresponding

reduced history, and D(h̃ D ,∆
t ) the corresponding donation threshold for reduced history

h̃ D ,∆
t . In order to formulate the donor’s payoff, we write for t ′ ≤ t that h̃ D

t ′ ⊆ h̃ D
t if h̃ D

t ′ is a

sub-history that leads to h̃ D
t . Then, let

D̄(h̃ D
t ) := max

h̃ D
t ′⊂h̃ D

t ,
t ′≤t bt ′=1

D(h̃ D
t ′ )

be the cumulative donations after period t if the donor follows a donation strategy as spec-

ified in Equation 13, so that he donates in all periods t ′ in which the reduced history h̃ D
t

dictates that bt ′ = 1.
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The donor’s problem can be written as

max
(κ∆(0;w ))w ,

(D(h̃ D
t ))h̃D

t ∈H̃
D
t , t ∈T∆

∑

h̃ D
T−∆∈H̃

D
T−∆

∆λEF0
�

κ(h̃ D
T−∆, 1; w )1

�

G − (NT−∆+1)p ≤W
� �

W −D̄(h̃ D
T−∆)

��

+

(1−∆λ)EF0
�

κ(h̃ D
T−∆, 1; w )1

�

G −NT−∆p ≤W
� �

W −D̄(h̃ D
T−∆)

��

+

EF0
��

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤W
� �

W −D̄(h̃ D
T−2∆)

��

,

subject to P(0; w ) = 1, Equation P, Equation P− t , and for all h̃ D
t ∈ H̃

D
t , t ∈ T∆, Nt ∈

N, w ∈ [0,∞) Equation Investor IC, and given

dt (h̃
D
t ; w ) :=

∑

h̃ D
T−∆∈H̃

D
T−∆(h̃

D
t )

∆λκ(h̃ D
T−∆, 1; w )1

�

G − (NT−∆+1)p ≤w
� �

w −D̄(h̃ D
T−∆)

�

+

(1−∆λ) κ(h̃ D
T−∆, 1; w )1

�

G −NT−∆p ≤w
� �

w −D̄(h̃ D
T−∆)

�

+
�

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤w
� �

w −D̄(h̃ D
T−2∆)

�

,

we can formulate a donor incentive compatibility constraint for all h̃ D
t−∆ ∈ H̃

D
t

dt (h̃ D
t−∆, 0, Nt−∆; w ))<∆λdt (h̃ D

t−∆, 1, Nt−∆+1; w ))+ (1−∆λ)dt (h̃ D
t−∆, 1, Nt−∆; w ))

⇒ κ(h̃ D
t−∆, 1; w ) =P(h̃ D

t−∆; w ).
(Donor IC)

This donor IC constraint puts a lower bound on donations as it imposes that the donor must

donate whenever it is optimal to do so, but does not impose that the donor does not donate

if it is optimal not to donate. Hence, this donor problem is a relaxed maximization problem.

We denote a solution to the above problem by κ∗∗∆ and
�

(D∗∗(h̃ D
t , 1))h̃ D

t ∈H̃ D
t

�

t≥0
. Recall

that the solution that we presented to the platform’s relaxed problem was denoted κ∗∆.

Step 3: Solution to the relaxed problem

Next, we show the following two statements:

i) Any solution of this relaxed problem must satisfy in Equation PT-κ with Equa-

tion D̃ ∗-Region;
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ii) κ∆ as in Equation PT-κ with D̃ ∗((P(h̃ D
t ; w ))w , Nt ) =W ((P(h̃ D

t ; w ))w ) is a solution.

Given these two statements, it follows immediately that in the limit as ∆→ 0, the outcome

is unique by the proof of Proposition 1.

Analogously to the proof of Proposition 1, we show that the solution must satisfy

Equation PT-κ with (D̃ ∗-Region) by contradiction. Consider an arbitrary solution κ∗∗∆ ,

corresponding P∗∗ and
�

(D∗∗(h̃ D
t , 1))h̃ D

t ∈H̃ D
t

�

t≥0
that does not satisfy Equation PT-κ with

(D̃ ∗-Region). Consider the latest period t̄ in time after which Equation PT-κ with

(D̃ ∗-Region) is satisfied for all histories, and consider a period t̄ −∆ history h̃ D
t̄−∆ such

that κ∗∗(h̃ D
t̄−∆, 1; w ) does not satisfy Equation PT-κ with (D̃ ∗-Region). Then, the probabil-

ity of success conditional on reaching history h̃ B
t̄ = (h̃

D
t̄−∆, 1) given by

qt (h̃ D
t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is

increasing in w and independent of the choice of κ(h̃ D
t̄−∆, 1; w ). We can also again define

c (h̃ D
t̄−∆) :=

∫

κ∗∗(h̃ D
t̄−∆, 1; W ) d F0(W ). Note that by Equation Donor IC, it must be for t ≥ t̄ ,

D̃ ∗∗(h̃ D
t ) =W ((P(h̃ D

t ; w ))w ). Further, by Equation Donor IC,

D̃ ∗∗(h̃ D
t̄ ) =min{D̃ ∗(h̃ D

t̄ ) | d t̄+∆(h̃
D
t̄ , 0, Nt̄ ; w ))≥

∆λd t̄+∆(h̃
D
t̄ , 1, Nt̄ +1; w ))+ (1−∆λ)dt (h̃

D
t̄ , 1, Nt̄ ; w ))

for all w such that κ(h̃ D
t̄ , 1; w )<P(h̃ D

t̄ ; w )}.

We now construct a κ′∆ such that the donor’s objective function is higher than with

κ∗∆, while keeping
∫

κ′(h̃ D
t̄−∆, 1; W ) d F0(W ) ≤ c (h̃ D

t̄−∆) in all histories. Analogously to

Proposition 1, we can uniquely define W c (h̃
D
t̄−∆) by

∞
∫

W c (h̃
D
t̄−∆)

P∗∗(h̃ D
t̄−∆; W ) d F0(W ) = c (h̃ D

t̄−∆).

Since
qt (ĥ D

t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w , κ(h̃ D
t̄−∆, 1; w ) = P∗∗(h̃ D

t̄−∆; w )1(w ≥ W c (h̃
D
t̄−∆))

satisfies Equation Investor IC. We set κ′(h̃ D
t ; w ) := κ∗∗(h̃ D

t ; w ) for all histories ĥ D
t at t <
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t̄ −∆ and all histories ĥ D
t ̸∈ H̃

1
t (h̃

D
t̄−∆), t ≥ t̄ −∆. Further, let

κ′(h̃ D
t̄−∆, 1; w ) :=







P∗∗(ĥ D
t−∆; w ) for w ≥W c (h̃

D
t̄−∆)

0 otherwise,

and for histories ĥt ∈ H̃ 1
t (h̃

D
t̄−∆) where t > t̄ −∆, we set κ′(ĥ D

t ; w ) := P′(ĥ D
t ; w )κ

∗(ĥ D
t ;w )

P∗(ĥ D
t ;w )

so that all constraints remain satisfied and the transition probabilities remain unchanged.

Further, the lowest donation amount by Equation Donor IC is then

D̃
′
(h̃ D

t̄ ) =W c (h̃
D
t̄−∆).

In the objective function, this κ′ achieves states with higher NT−∆ more frequently and

D̃
′(h̃ D

t̄ ) < D̃ ∗∗(h̃ D
t̄ ), so κ′ yields strictly higher donor payoffs than κ∗∗. Thus, any solution

κ∗∆ must satisfy Equation PT-κ with (D̃ ∗-Region) almost surely.

Step 4: Implementation by equilibrium

We have already shown in Proposition 1 that (κ∗∆(0; w ))w is induced by the constructed

assessment and established that the wealth threshold D∆(N , u ) corresponds to W (h̃
D

t ) if

there is a history h D ,∆
t with Rb∆(h D ,∆

t ) = h̃ D
t and u = T − t , Nt = N . This concludes the

proof.

A.5 Proof of Proposition 4 (Investor-Preferred Equilibrium)

Finding an equilibrium that maximizes the sum of investor surplus is a complex problem

since each investor’s decision has externalities both on past investors who have pledged al-

ready, and future investors. For sufficiently small period length ∆, we separately construct

a PT equilibrium yielding higher investor surplus than the success-maximizing equilibrium

and one yielding higher surplus than the success-minimizing equilibrium.

We start with the construction of a PT equilibrium with higher investor surplus than

the success-minimizing equilibrium for a general contribution game. First, note that if the
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realized donor valuation was known to be w ∈ [G −2p ,G −p ), then the campaign requires

exactly two investor pledges to succeed. Since the second investor can always lead the

campaign to succeed, the first investor pledges if and only if (v −p )
�

1− (1−∆λ)u/∆
�

= v0.

Conditional on such a W , investor surplus is maximized if the first investor pledges if

(v −p )
�

1− (1−∆λ)u/∆
�

︸ ︷︷ ︸

prob. of at least
one more arrival

−v0+ (v −p − v0)λu
︸ ︷︷ ︸

externality on
future investors

≥ 0 ⇔
(1−∆λ)u/∆

1+λu
≤ 1−

v0

v −p
,

because the expected number of arrivals time u is u
∆∆λ. Denote the smallest u ∈U∆ such

that the above inequality is satisfied ū , i.e., the inequality is equivalent to u ≥ ū (noting

that (1−∆λ)
u/∆

1+λu is decreasing in u). Note that ξ̄∆2 (G − 2p ) > ū because ξ̄∆2 (G − 2p ) solves

(v −p )
�

1− (1−∆λ)u/∆
�

= v0. We define a donation threshold D
∆

ε as follows:

• D
∆

ε (N , u ) :=D
∆
(N , u ) for N > 0, and for N = 0 with u ∈ [0, ū )∪ [ξ̄∆2 (G −2p ),∞),

• D
∆

ε (0, u ) :=D
∆
(0, u )−ε=G −p −ε for u ∈

�

ū , ξ̄∆2 (G −2p )
�

.

Consider a sufficiently small ∆ > 0. Then, the PT assessment with donation threshold

D
∆

ε (N , u ) for small ε > 0 still defines an equilibrium: All investors’ incentives to pledge

except the ones for a first investor arriving at u ∈
�

ū , ξ̄∆2 (G −2p )
�

do not change. If the first

investor arrives at u ∈
�

ū , ξ̄∆2 (G −2p )
�

, and the donor has wealth W ≥G −p −ε, then the

donor can contribute G −p−ε=D
∆

ε (0, u )−ε and incentivize the investor to pledge. Indeed

the probability of success is simply a truncation of F0 at G −p −ε which is close to 1 for

small ε, so

�

1− (1−∆λ)u/∆
�

+ (1−∆λ)u/∆
1− F0(G −p )

1− F0(G −p −ε)
≥ v0.

If the donor has valuation W <G −p −ε, then the first investor does not want to contribute

as she knows that W <G −p , by definition of ξ̄∆2 (G −p ) > ξ̄∆2 (G − 2p ). Furthermore, by

definition of ū , this PT equilibrium makes investors collectively better off.
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Next, we construct a PT equilibrium with higher investor surplus than the success-

maximizing equilibrium. We define a donation threshold D∆
ε,δ for small ε > 0, δ > ∆ as

follows:

• D∆
ε,δ(N , u ) :=D∆(N , u ) for N > 0 and (N , u ) = (0, u ) with u ≥δ, and

• D∆
ε,δ(0, u ) :=D∆(0, u ) +ε for u <δ.

This defines a PT equilibrium because the incentive to pledge only changes if the first

investor arrives in [0,δ) and if the donor valuation is in W ∈ [D∆(0, u ), D∆(0, u ) +ε). The

probability of success in the success-maximizing equilibrium satisfies

π∆(0, D∆(0, u ), u ) =
v0

v −p
,

so if investors knew W ∈ [D∆(0, u ), D∆(0, u )+ε), then the probability of success is smaller

than v0
v−p for sufficiently small ε, so it is optimal for the investor not to pledge. If W ≥

D∆(0, u ) + ε, the donor can keep incentivizing investors to pledge in states (0, u ), u < δ.

Furthermore, the equilibrium outcome of this PT equilibrium yields higher investor surplus

than the success-maximizing equilibrium since if W ∈ [D∆(0, u ), D∆(0, u ) +ε), N = 0 and

u <δ, then contributing creates collective investor surplus of less than

(v −p )
�

1− (1−∆λ)δ/∆
�

+ (v −p )λδ −−→
∆→0

(v −p )(1− e −λδ+λδ)

and not contributing a surplus of v0(1+λδ). Hence, for δ sufficiently small (and ∆ suf-

ficiently small), there is a PT equilibrium with higher investor surplus than the surplus-

maximizing equilibrium.

A.6 Alternative Campaign Designs

Recall the relaxed problem in the optimality proof of Proposition 1. The control variables

are simply probabilities of reaching reduced histories given realized w that ignore donation
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amounts and donor incentives. The objective is to maximize the probability of success

subject to investor participation. As a result, this relaxed problem can also be viewed as a

constrained information or mechanism design problem that maximizes the probability of

success.

Formally, let an allocation be a sequence (at )t ∈T ∈ [0, 1]T∆ that determines whether a

period-t investor (if she arrives) takes the outside option (at = 0) or stays in the game

(at = 1), and a variable ā that determines whether the project is successful. An allocation

is feasible if, given the realized arrival process At , ā = 1⇔
∑

t (At −At−∆)at p +DT ≥G .

Let us first assume that the mechanism designer knows the donor’s type. Given her

beliefs, an investor in period t can decide whether to participate in the mechanism or not.

And, beliefs are formed based on the chosen probabilities of reaching reduced histories.

Note that we cannot allow for transfers between investors. Then, it follows that the relaxed

problem in the proof of Proposition 1 corresponds to an information design problem where

the designer chooses an optimal dynamic signal structure representing the information re-

leased about W over time. This shows that, for example, revealing the donor’s valuation

prior to the campaign is not profit maximizing.

Alternatively, we can consider a mechanism design problem, assuming that the donor’s

valuation is private information. Consider direct mechanisms where the donor sends a mes-

sage m ∈ [0,∞) about his type. An investor in period t can decide whether to participate

in the mechanism or not. Then, a direct, donor-incentivizing mechanism is given by a

message strategy of the donor, a participation strategy of investors, an allocation mapping

that maps messages and participation decisions to feasible allocations, and a donor transfer

D ∈ [0,∞). Again, we cannot allow for transfers between investors. Then, it follows that

the relaxed problem in the proof of Proposition 1 is a relaxed problem of the mechanism

design problem that finds the success-maximizing, donor-incentivizing mechanism. This

shows that, for example, allowing the donor to only donate before or after the crowdfunding

stage is not profit maximizing.

76



A.7 Parameter Estimates

Table 6: Donor Valuation Parameter Estimates

Parameter Valuation Equation Selection Equation
Param Est. Std. Error Param Est. Std. Error

Corr. Coef. µ 0.708 0.005
Std. Dev. Unobs. τ 2.293 0.003 1 −
Comics 0.603 0.037 0.181 0.027
Crafts 0.047 0.031 0.352 0.040
Dance 0.843 0.083 -1.023 0.049
Design 0.704 0.028 0.735 0.024
Fashion 0.029 0.025 0.511 0.022
Film & Video 0.501 0.027 -0.587 0.024
Food 0.396 0.029 -0.097 0.029
Games 0.302 0.025 0.648 0.025
Intercept -0.880 0.035 -0.640 0.038
Journalism -0.036 0.057 -0.541 0.070
Love 1.433 0.050 -0.358 0.024
Music 0.302 0.027 -0.754 0.024
Photography 0.256 0.042 0.243 0.040
Publishing 0.451 0.025 -0.174 0.023
Technology 0.293 0.025 0.601 0.035
Theater 0.997 0.072 -0.931 0.052
log(G) 0.324 0.004 0.952 0.016
log(B) -0.993 0.016

Number of Parameters. 37
Number of Obs. 13,863
Log Likelihood -17,321.86

Note: Parameter estimates of donor valuations accounting for sample selection. We assume a bivariate normal
distribution on the unobserved components. Standard errors computed using 1,000 bootstrap samples.
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Table 7: Investor Arrival Process Parameter Estimates

Parameter Arrival Equation Selection Equation
Param Est. Std. Error Param Est. Std. Error

Corr. Coef. atanh(ρ) -0.016 0.001
Std. Dev. Unobs. log(σ) 0.057 0.000
Comics 0.653 0.002 0.248 0.003
Crafts 0.050 0.005 -0.531 0.004
Dance -0.200 0.004 0.476 0.005
Design 0.101 0.003 -0.131 0.003
Fashion -0.110 0.002 -0.214 0.002
Film & Video -0.196 0.002 0.044 0.002
Food -0.123 0.002 -0.168 0.003
Games 0.359 0.003 -0.453 0.003
Intercept -6.155 0.004 -0.847 0.003
Journalism -0.034 0.005 -0.347 0.006
Love 0.295 0.001 1.244 0.002
Music 0.114 0.002 0.367 0.002
Photography 0.106 0.003 -0.013 0.004
Publishing 0.116 0.002 -0.057 0.002
Technology -0.279 0.003 -0.528 0.003
Theater -0.016 0.003 0.556 0.004
Time-Linear -0.190 0.000 0.031 0.000
Time-Quadratic 0.007 0.000 -0.000 0.000
log(G) 0.730 0.001 -0.117 0.000
log(D) 9.474 0.014

Corr. Coef. ρ -0.016 0.001
Std. Dev. Unobs. σ 1.057 0.034 1 −

Number of Parameters. 41
Number of Obs. 845,643
Log Likelihood -385,554.946

Note: Parameter estimates of arrival process accounting for sample selection. We assume a bivariate normal
distribution on the unobserved components. Standard errors computed using 1,000 bootstrap samples.
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Aiming for the Goal: Online Appendix

B Additional Proofs and Examples

B.1 Proof of Lemma 6

(a) Induction start ( j ≤ 1⇔ D ≥ G − (N + 1)p ): For j ≤ 1 and x = (N , D , u ) with

M (D )−N ≤ 1, it is immediate that the point-wise limits in (8) exist and are given by

b (x) := lim
∆→0

b∆
�

N , D ,
�

u
∆

�

∆
�

≡ 1 D+(x; w ) := lim
∆→0

D∆
+

�

N , D ,
�

u
∆

�

∆; w
�

=D

ξ j (w ) := lim
∆→0
ξ∆j (w )≡ 0 F (w ; x) := lim

∆→0
F ∆

�

w ;
�

N , D ,
�

u
∆

�

∆
�

�

= F0(w )−F0(D )
1−F0(D )

1(w ≥D ),

where
�

u
∆

�

∆ is the smallest multiple of ∆ that is larger than u . Further, π(x) :=

lim
∆→0
π∆(N , D ,

�

u
∆

�

∆) = 1 uniformly in D ≥G − (N +1)p and u .

(b) Induction hypothesis ( j − 1): We assume that the point-wise limits (8) exist for all

x = (N , D , u ) with N ≥M (D )− ( j −1) and j ′ ≤ j −1, where for w <G −p :

π(M (w )− j ′, w ,ξ j ′(w )) =
v0

v −p
.

Further, assume that the point-wise limit D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) exists for u ≤

ξ j−1(G − (N + j − 1)p ). If π(N , 0, u ) < v0
v−p , then D is strictly decreasing in N and u ,

and

π(N , D (N , u ), u ) =
v0

v −p
.

Further, the uniform limit in D ≥G − (N + j − 1)p and u , π(N , D , u ) := lim
∆→0
π∆(N , D , u ),

exists and is equal to

EF0







max{u−ξM (W )−(N+1)(W )}
∫

0

λe −λsπ
�

N +1, max{D , D (N +1, u − s )}, u − s
�

d s

�

�

�

�

W ≥D






. (14)
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Finally, π(N , D , u ) is strictly increasing in N , D , u .

(c) Induction step ( j −1⇝ j , j ≥ 2): Consider a state (N , D , u ) with N ≥M (D )− j , i.e.,

G − (N + j )p ≤D .

L.1) Uniform convergence (in D and u) of π̃∆
�

N , D ,
�

u
∆

�

∆
�

for D ≥G − (N + j )p :

Recall that the auxiliary probability of success is given by

lim
∆→0
π̃∆

�

N , D ,
�

u
∆

�

∆
�

=

lim
∆→0
EF0

�max
�

⌈ u∆ ⌉∆−ξ∆M (W )−(N+1)(W ),0
	

/∆
∑

i=1
(1−∆λ)i−1∆λ

�

π∆
�

N +1, D ,∆
��

u
∆

�

− i
��

1
�

∆
��

u
∆

�

− i
�

≥ ξ∆j ′−1(D )
�

+ v0
v−p 1

�

∆
��

u
∆

�

− i
�

<ξ∆j ′−1(D )
�

�

+(1−∆λ)u/∆1(W ≥G − (N +1)p )
�

�W ≥D

�

,

where j ′ := M (D )−N ≤ j . The uniform convergence of π∆ (N +1, D , u ′) in D

(by the induction hypothesis) and the Arzelà-Ascoli Theorem imply that the fam-

ily of functions D 7→ π∆ (N +1, D , u ) is equicontinuous with respect to ∆. Hence,

we may replace π∆ by π. Finally, because lim
∆→0
ξ∆j ′−1(w ) = ξ j ′−1(w ), the dominated

convergence theorem allows us to conclude that

π̃ j (N , D , u ) := lim
∆→0
π̃∆j (N , D ,

�

u
∆

�

∆) =EF0

� max{u−ξM (W )−(N+1)(W ),0}
∫

0

λe −λs ·
�

π
�

N +1, D , u − s
�

1
�

u − s ≥ ξ j ′−1(D )
�

+ v0
v−p 1

�

u − s <ξ j ′−1(D )
�

�

d s

+e −λu1(W ≥G − (N +1)p )

�

�

�

�

W ≥D

�

.

Note that π̃∆(N , D ,
�

u
∆

�

∆) indeed converges uniformly in D ≥G − (N + j )p for fixed

u because the sum is bounded by one, F0 is (uniformly) continuous on [0,G ], and
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F0(G )< 1. Then, since

π
�

M (D )− ( j ′−1)
︸ ︷︷ ︸

N+1

, D ,ξ j ′−1(D )
�

=
v0

v −p
,

for u ′ < ξ j ′−1(D ), D < D (N + 1, u ′) π(N + 1, D (N + 1, u ′), u ′) = v0
v−p and for u ′ ≥

ξ j ′−1(D ), D ≥D (N +1, u ′). Hence, we have:

π̃(N , D , u ) := lim
∆→0
π̃∆(N , D ,

�

u
∆

�

∆) =EF0

� max{u−ξM (W )−(N+1)(W ),0}
∫

0

λe −λs ·

π
�

N +1, max{D , D (N +1, u − s )}, u − s
�

d s + e −λu1(W ≥G − (N +1)p )

�

�

�

�

W ≥D

�

.

(15)

L.2) Continuity and strict monotonicity of π̃ in D ≥G −(N + j )p and u: First, π̃(N , D , u )

is continuous in D and u because π̃ j (N +1, D , u ) is continuous in D and u , D (N +

1, u ) is continuous in u by the induction hypothesis and because F0 is continuous.

Furthermore, π̃ j (N , D , u ) is strictly increasing in D ≥ G − (N + j )p because

π̃(N + 1, D , u ) is weakly increasing in D by the induction hypothesis and 1
1−F0(D )

is

strictly increasing.

Now the integrand is strictly positive as long as u > ξM (w )−(N+1)(w ). Hence,

π̃(N , D , u ) is strictly increasing in u > ξM (w )−(N+1)(w ) because π̃ j (N + 1, D , u ) is

weakly increasing in u by the induction hypothesis and because u −ξM (w )−(N+1)(w )

is strictly increasing in u .

L.3) Point-wise convergence of D∆(N ,
�

u
∆

�

∆) and D∆
+, j (N , D ,

�

u
∆

�

∆; W ): First, note

that if π̃∆j
�

N , 0,
�

u
∆

�

∆
�

≥ v0
v−p then π̃ j (N , 0, u ) ≥ v0

v−p and hence, D (N , u ) :=

lim
∆→0

D∆(N ,
�

u
∆

�

∆) = 0. If π̃∆(N , 0, u ) < v0
v−p , then π̃(N , 0, u ) ≤ v0

v−p . Then, since

π̃(N , D , u ) is continuous and strictly increasing in D , there is a unique solution

D ′(N , u ) to

π̃ j (N , D ′(N , u ), u ) =
v0

v −p
.

Since π̃∆(N , D ,
�

u
∆

�

∆) converges uniformly, we have D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) =
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D ′(N , u ). It follows immediately that for all u > 0,

D+(N , D , u ; w ) := lim
∆→0

D∆
+, j

�

N , D ,
�

u
∆

�

∆; w
�

= lim
∆→0

min
�

max
�

D , D∆
�

N ,
�

u
∆

�

∆
�	

, w
	

= min{max{D , D (N , u )}, w }.

L.4) Point-wise convergence of b∆j
�

N , D ,
�

u
∆

�

∆
�

: Note that b∆j
�

N , D ,
�

u
∆

�

∆
�

= 1 if

D ≥ D∆

�

N ,
��

u
∆

�

∆ + 1
�

∆

�

and b∆j

�

N , D ,
��

u
∆

�

∆ + 1
�

∆

�

= 0 otherwise. Since

lim
∆→0

D∆

�

N ,
��

u
∆

�

∆+1
�

∆

�

=D (N , u ), b∆j (N , D , u ) converges point-wise to

lim
∆→0

b∆j (N , D , u ) =







1 if D ≥D (M (D )− ( j −1), u )

0 if D <D (M (D )− ( j −1), u )
.

L.5) Point-wise convergence of ξ j (w ) and π(M (w )− j ′, w ,ξ j ′(w )) =
v0

v−p .: If π̃∆(M (w )−

j , w , 0) ≥ v0
v−p , then it follows immediately that ξ∆j (w ) = 0. If π̃∆(M (w )− j , w , 0) <

v0
v−p , it follows that ξ∆j (w )> 0 and







π̃∆(M (w )− j , W ,ξ∆j (w ))≥
v0

v−p

π̂∆(M (w )− j , W ,ξ∆j (w )−∆)<
v0

v−p .

Furthermore, since π̂(M (w )− j , w , u ) is continuous and strictly increasing in u for

u ≥ ξ j−1(W ) and weakly increasing for u <ξ j−1(W ), there is a unique solution ξ′(w )

to

π̂(M (w )− j , W ,ξ′(w )) =
v0

v −p
.

Hence, as ∆→ 0, it must be that lim
∆→0
ξ∆j (w ) = ξ

′(w ).

L.6) Point-wise convergence of F ∆
�

w ;
�

M (D ) − j , D ,
�

u
∆

�

∆
�

�

: It follows immediately
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from point-wise convergence of D∆
�

M (D )− j ,
�

u
∆

�

∆
�

that

F (w ; (M (D )− j , D , u )) := lim
∆→0

F ∆
�

w ;
�

M (D )− j , D ,
�

u
∆

�

∆
�

�

=







F0(w )−F0(D )
1−F0(D )

1(w ≥D ) if D ≥D (M (D )− j , u )

1(w ≥D ) otherwise
.

L.7) π(N , D , u ) is strictly increasing in N , D , and u , as long as G − (N + 1)p > D ≥

D (N , u ): By Definition 2, D (N , u )≥D (N +1, u −∆)≥D (N +1, u ) and D (N , u )≥

D (N = 1, u ). An analogous argument to Lemma 2 iii) and iv) implies monotonicity

in N , D , u .

L.8) D (N , u ) is strictly decreasing in N and u , as long as π(N , 0, u )< v0
v−p : Strict mono-

tonicity of D (N , u ) in N and u follows from the strict monotonicity properties in

N , D , and u of π̃(N , D , u ) and because π̃(N , D (N , u ), u ) = v0
v−p for π(N , 0, u )< v0

v−p .

L.9) ξ j (w ) is strictly increasing in j as long as ξ j (w )> 0.

Since π(N + 1, w ,ξ j−1w )) = v0
v−p and π(N , D , u ) is strictly increasing in N ,

ξ j (w )>ξ j−1(w ).

B.2 Application: Crowdfunding

A widely-mentioned benefit of crowdfunding is that it enables potential investors to learn

about product quality from the behavior of other investors. In this section, we illustrate how

social learning interacts with the signaling incentive of the donor by presenting a 2-period

example. We highlight two insights. First, in the presence of social learning the donor is

less effective in solving the coordination problem. Second, our analysis is robust to some

amount of social learning.

Let q ∈ {0, 1} denote the unknown quality of the product. All players (the donor and

investors) share the prior that q = 1 with probability µ0 ∈ (0, 1). We view q as the inherent

quality of the product or an unknown common value component of demand. In order to
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keep the example simple, we assume that the quality of the product only affects investors’

payoffs but not the donor’s payoff. Investors value a product of quality q at v (q ) = v · q .

So, if an investor pledges, she gets payoff v q − p if the campaign is successful and zero

otherwise. If she does not pledge, she receives the outside option v0. As before, the donor

values a successful campaign at w ∼ F0. He receives a payoff w −DT if the campaign

succeeds, and zero otherwise. In the following, we set v = 3, p = 1, v0 = 1 and 1−F0(0.5) =

0.3. For simplicity let us define φ := µ0
1−µ0

.

In every period t = 1, 2, an investor arrives with probability ∆λ= 0.9. On arrival, each

investor privately observes a signal s ∈ {0, 1}. For simplicity, we consider a “bad news"

signal process: An investor who receives a bad signal s = 0 knows with certainty that

quality is low (q = 0). Specifically, we set Pr(s = 1|q = 1) = 1 and Pr(s = 1|q = 0) = 0.5.

First, we consider G = 1.5, so that the campaign is successful if at least two investors

pledge or if one investor pledges and the donor valuation w is greater or equal to 0.5.18

An investor in period t = 2 can socially learn only if the period-1 investor’s strategy is to

pledge if s = 1 and not to pledge if s = 0. In that case, the posterior belief of a period-2

investor if period-1 investor has pledged is by Bayes’ rule

µ2(1) =
µ0

µ0+ (1−µ0) ·0.25
=

4

4+φ−1

and if no pledge occured in period 1, it is

µ2(0) =
µ0 ·0.1

µ0 ·0.1+ (1−µ0)(0.1+0.9 ·0.5) ·0.5
=

4

4+11φ−1
.

Let us assume that φ is such that 3µ2(1) ≥ p + v0 = 2, so that the second investor with a

positive signal always pledges after a pledge in the first period. Let us further assume that

3µ2(0)< 2, so that the second investor never pledges if no pledge occured in the first period.

Hence, 2≥φ−1 > 2/11.

18The campaign can also succeed if no investor pledges and the donor valuation exceeds the goal amount,
but this case is irrelevant for strategic pledging incentives of investors.
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In the first period, an investor with a positive signal pledges if she believes that given

cumulative donations D , the donor valuations are distributued according to w ∼ F (·|D ) if

4

4+2φ−1
(0.9+0.1(1− F (0.5|D ))) (3−1)−

2φ−1

4+2φ−1
(0.45+0.55(1− F (0.5|D )))≥ 1

The left-hand side is decreasing in 1− F (0.5|D ) if φ−1 > 8/11. Furthermore, let

φ−1 ≤
2((0.9+0.1(1− F0(0.5))2−1)

0.45+0.55(1− F0(0.5))+1
≈ 1.07 (16)

to make it worthwile for the investor to pledge absent donations. Hence, e.g., for φ−1 =

0.8 > 8/11, in the success-maximizing equilibrium the donor optimally donates nothing

until the deadline. The campaign succeeds if either w > 1.5 or if two investors with a high

signal realization arrive.

If the scope of social learning is small, e.g. φ−1 = 0.5 < 8/11, then a PT equilibrium

in which the donor donates just enough to make the next investor buy exists. Hence, our

analysis is robust to some amount of social learning.

The example highlights several new forces: First, increasing donations is less effective

in increasing the probability of success because it also increases the probability of buying

the product when the quality is actually low. Second, the benefit from pledging might even

be decreasing in cumulative donations.

B.3 Application: Industrial Policy

We first consider the setting in which the government’s payoff is given by (W −DT )1(RT ≥

G ). Because there is uncertainty about the goal, participants only know if the goal is

reached once D + N p + X ≥ G . We can construct a PT equilibrium analogously to

the success-maximizing PT equilibrium in Proposition 1 such that the donation threshold

makes investors just indifferent between pledging and not. All expressions are analogous to
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where the inductive definition of the probability of success contains an additional integral:

π̃∆j−1(N , D , u ) =

EF0

�

∫

max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

�

1(D∆
∗, j−1(N +1, u −∆(i −1))+N p ≥G +X )+

π∆j−1

�

N +1, max{D , D∆
∗, j−1(N +1, u −∆(i −1))}, u −∆i

�

1(D∆
∗, j−1(N +1, u −∆(i −1))+N p <G +X )

�

+(1−∆λ)u/∆1(W +X ≥G − (N +1)p )d H (X )
�

�W ≥D

�

.

Similarly, we can construct a PT equilibrium analogous to Proposition 2 using cutoff times

ξ that correspond to a game without a donor, but an uncertain goal. In this equilibrium,

investors pledge even if they believed there were no additional donations. Hence, this

equilibrium coincides with one, in which investors know W . By construction, the donation

thresholds for this equilibrium are higher for any state (N,u) than the threshold for the

equilibrium that corresponds to Proposition 1. Thus, the probability of success in this

equilibrium yields a higher probability of success than the equilibrium in which there was

no signaling and W was made public. The same equilibria could be supported if the donor

was maximizing the probability of success subject to a budget constraint.

Next, we consider alternative donor payoffs (W − γDT )1(RT ≥ G )− (1− γ)DT , where

γ ∈ [0, 1] is the scrap value of investment if the goal is not reached. Solving a fully dynamic

game is beyond the scope of this paper, but we can highlight that there is value of signaling

using a two-period example.

We assume t = 1, 2 and that G is uniformly distributed on {2, 3}. We also assume that

the arrival rate of investors to be λ = 1, and each investment requires a contribution of

p = 1. We assume a cutoff probability of 0.5 (e.g., v = 2, v0 = 0.7, so v0
v−p = 0.5) and W to

be uniformly distributed on {0, 2}

If W is announced ex-ante, then investors recognize that the donor will commit up to W

at t = 2 to ensure success. Thus, investors effectively face a goal of G −W . If W = 2, one

investment suffices for success, so investors always contribute. Conversely, if W = 0, the

second-period investor never contributes, as the probability of success is at most 0.5< 0.7.

8



Consequently, the first-period investor also refrains from contributing even if G = 2.

If W remains private information, we can construct an equilibrium such that the project

succeeds if the realized donor valuation is W = 0 and the realized goal is G = 2. If an

investment occurred in period 1, then the probability of success for an investor at t = 2

is 0.5+ 0.5 · 0.5 = 0.75 ≥ 0.7, so she invests. A period-1 investor also contributes, with

a calculated success probability of 0.5+ 0.5 · 0.5 · 0.9 = .725 ≥ 0.7. An optimal strategy

for the donor is to only contribute at t = 2, and only if it facilitates success. Thus, the

project succeeds if G = 2 and W = 0. Thus, the probability of success is greater when W

is undisclosed.

B.4 Proof of Proposition 5 (Donation Dynamics of PT Equilibria)

i) Claim: P(NT p +DT−∆ <G |ST )> 1−∆λ and P(DT =G −NT p |ST )≥ 1−∆λ.

If the campaign has not succeeded by the beginning of the last period, then DT−∆ +

NT−∆p < G . Then, it can only be that NT p +DT−∆ ≥ G if a consumer arrives in

the last period which occurs with probability ∆λ. Even if a consumer arrives, the

campaign remains unsuccessful without a donation. If NT p +DT−∆ < G , then the

donor donates exactly such that DT =G −NT p if his valuation w is large enough. If

w is smaller, the campaign fails.

ii) Claim: P(Dτ−∆ <G −Nτp ) = 1 if τ< T .

In any PT equilibrium with donation threshold D∆
∗ , the donor never donates more

than max{D , D∆
∗ (N , u )} at u > ∆, where D∆

∗ (N , u ) < G − (N + 1)p . Thus, if the

campaign succeeds for u >∆, it must be due to a purchase.

iii) Claim: D∆
∗ (N , u +∆)≥D∆

∗ (N +1, u )

This is simply Condition i) in Definition 2 of PT assessments.

iv) Claim: Given donor realizations w > w ′, if a campaign is unsuccessful for both w

and w ′, then the failure time ι is larger for w than for w ′.
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We can write the failure time of a campaign in a PT equilibrium as ι =min j

�

τ j ≥

0
�

� W < D∆
∗ ( j , T −τ j )

	

. Hence, it follows immediately that a donor with valuation

w fails later than a donor with valuation w ′.

v) Claim: In success-minimizing PT equilibria, all donations are at least p .

This follows immediately from the definition of the success-minimizing threshold

D
∆
(N , u ) in Section 3.4.
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C Data Appendix

C.1 Data Construction

We directly observe pledge counts for each reward level (buyer pledges) as well as total

revenues. Total revenues are inclusive of donations and shipping costs—on Kickstarter,

shipping costs are included in the progress towards the goal but are not included in the

prices for rewards. This means that we observe both left-hand-side variables individually

in the following equation,

Total Revenuet −Buyer Revenuet =Donor Revenuet +Shipping Costst ,

but we only observe the sum of the right-hand-side variables. In order to recover donations,

we need an estimate of shipping costs.

We collect shipping costs for every campaign-reward-country combination and then

assign a shipping cost to every observed pledge. Since donations are positive contribu-

tions to campaigns, we also incorporate the constraint Shipping Costst ≤Total Revenuet −

Investor Revenuet .

In total, we collect over 516,000 shipping quotes. The most frequently observed ship-

ping options are free shipping, single-rate shipping, or worldwide shipping with region-

specific or country-specific prices. We complete our analyses under three shipping-cost

assignments: (i) least-expensive shipping, (ii) assuming all buyers are located in the United

States, and (iii) most-expensive shipping. Specifications (i) and (iii) provide lower and up-

per bounds on the importance of donations. We use (ii) as our main specification because

most campaigns originate in the U.S.

We define a buyer to be an individual who pledges for any reward, however, some

rewards may better be classified as a donation. For example, if the lowest reward is a

thank-you card, but the main reward is a novel product, the lowest reward may be better

treated as a donation. Another example may be the existence of an expensive option that
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includes the main reward but also allows the buyer to meet with the entrepreneur. We

repeat all of our analyses treating the most-expensive, the least-expensive rewards, or both

the least- and most-expensive rewards as donations.

For our empirical analysis, we use the following cleaning criteria:

i) Some entrepreneurs request that buyers pledge in excess of the posted price if they

are interested in obtaining additional product features—called “add-ons" or "optional

buys." Other campaigns have “stretch goals,” which means that the entrepreneur in-

formally adjusts the goal, and if met, adjusts the final product. Unfortunately, we do

not have access to individual-level data to measure the prominence of buyers con-

tributing in excess of the goal. We attempt to minimize the presence of these contri-

butions by removing any campaigns that include words related to add-ons, optional

buys, and stretch goals in the HTML pages.

ii) We winsorize the sample by dropping the bottom 0.5% and the top 0.5% of cam-

paigns in terms of the goal amount. This removes campaigns with low $1 goals

and campaigns with several million dollar goals (one in the billions). These extreme

values impact some means, such as average goal, but medians are unchanged.

iii) We drop campaigns that were removed by the creator, campaigns under copyright

dispute, and campaigns with optional add-ons.
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C.2 Additional Tables and Figures

Table 8: Top Category Summary Statistics

Design Film & Video Music Technology

Project Length 33.8 33.0 33.1 35.9
(10.9) (12.5) (12.3) (12.2)

Goal ($) 19185.6 18003.5 9849.1 36482.4
(32655.5) (44140.1) (27223.1) (61063.7)

Number of Rewards 8.1 7.4 7.1 6.2
(5.2) (5.6) (5.8) (4.6)

Donor Revenue 31.1 26.2 17.8 17.9
(per period) (525.8) (286.2) (160.6) (238.7)

Buyer Revenue 320.9 55.9 50.1 213.2
(per period) (2112.4) (488.7) (360.6) (1881.7)

Percentage Donations 17.3 40.9 37.8 29.5
at Deadline (25.1) (32.3) (31.5) (36.2)

Percentage Donations 18.5 22.6 24.5 8.3
of Goal (52.8) (51.6) (103.0) (28.6)

Percentage Successful 49.1 44.0 54.0 24.6

Number of Campaigns 4819 5176 4328 4804

Note: Summary statistics for the top four Kickstarter categories, based on the number of campaigns within
a category. Standard deviation reported in parentheses. Donor and buyer revenue are reported as 12-hour
averages. Rows involving percentages use final campaign outcomes.
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Figure 13: Percentage of Campaigns that Receive Purchases/Donations over Time

(a) Purchases
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(b) Donations
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Note: These figures show the percentage of campaigns that have purchases or donations over time, for 30 day
campaigns. 30 denotes the campaign deadline. Four lines are shown: early finishers (succeed within 3 days),
middle finishers (succeed between 3 and 27 days), late finishers (succeed in the last 3 days) and unsuccessful
campaigns. The lines are fitted values of polynomial regressions.

Figure 14: Percentage of Rev. from Buyers at Success Time
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Note: Histogram of the fraction of revenue from buyers in the period in which a campaign succeeds. Selected
campaigns finish at least one day before the deadline.
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Figure 15: Logistic Regression: Probability of Success for Campaigns that Eventually Fail

(a) Campaign Success Probability over Time
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(b) Last Period Alive for each Failed Campaign

0 5 10 15 20 25 30
Last time (u) in which Pr(success) > 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n 

of
 P

ro
je

ct
s

Note: (a) Fitted values of a logistic regression of campaign success over time for campaigns that eventually
fail. Controls are fraction of total revenues over the goal amount (or 1 if greater) interacted with time. Plotted
is the mean project, the median campaign, and the 90th percentile of projects. The results suggest that more
than half of projects have lower probability of success at the start. (b) A histogram of the last time a campaign
had a probability of success greater than 10%. Time rounded to three-day bins.

Figure 16: Projects We Love, Timing and Investor Contributions
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(b) Investor Contributions
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Note: Projects We Love is a designation assigned to campaigns by Kickstarter staff. These campaigns may
be featured on the site homepage as well as advertised in emails. The left panel (a) presents a histogram of
when the designation is applied, as a function of time remaining in the campaign. The right panel (b) presents
average buyer revenue for three scenarios: (1) campaigns that never receive the designation, (2) campaigns
that receive the designation after 10% of time has elapsed and (3) campaigns that receive the designation
within the first 10% of time.
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Table 9: Dynamic Donation Regressions

(1) (2) (3) (4)

Lag1 Above Median 10.327 11.437 -9.401 -8.200
(2.415) (2.415) (2.452) (2.452)

Lag2 Above Median -2.147 -1.888 -6.387 -6.017
(3.001) (3.000) (2.937) (2.936)

Lag3 Above Median -0.304 -0.084 -4.471 -4.136
(2.875) (2.874) (2.814) (2.812)

Lag4 Above Median 3.428 4.110 -9.886 -8.853
(2.205) (2.205) (2.210) (2.211)

Time Fixed Effects − ✓ − ✓

Campaign Fixed Effects − − ✓ ✓

Note: Results of panel data regressions where the dependent variable is Dj ,t and the independent variables
are 1

�

R j ,t−k/G j >median
�

R·,t−k/G·
��

, for k = 1, 2, 3, 4. That is, these variables mark is a campaign’s cu-
mulative revenue over the goal amount is above the median. We calculate the median at the time, category
level for 30-day campaigns that eventually succeed. We run regressions for 30-day campaigns that have not
yet reached success. Therefore, the interpretation of the model is donations as a function of whether or not
a given campaign is above the median in terms of reaching the goal. The number of observations in each
regression is 907,183.
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C.3 Bounding Donations

Our definition of a donation comes from contributors entering an amount in the donation

box, or from contributors paying more than the reward price. However, some rewards

may be interpreted as donations. Examples include a low-priced rewards that approximate

a thank-you, or an expensive reward that includes the product but also includes special

recognition. The bias is in only one direction: we are possibly understating the magnitude

of donations. This is not a problem, per se, but we investigate how it affects our results.

Given the number of projects and buckets per project, manually assigning a reward or

part of a reward as a donation is infeasible. There are over 500,000 rewards in the data.

Instead, we perform the following analyses. First, we assume the least expensive bucket

represents a donation. Next, we assume the most expensive bucket represents a donation.

Finally, we assume both the least and most expensive buckets constitute donations.

We also conduct robustness to our calculation of shipping costs. This is important

because donations are determined after subtracting off shipping costs. If we understate

shipping costs, we overstate donations. We reprocess all the data assuming all purchases

are made from the country with the lowest, and then most expensive, shipping costs.

In Figure 17 and Figure 18, we plot average contributions divided by total campaign

revenue over time for pledges and donations respectively under 12 scenarios. In Figure 19

and Figure 20, we plot the percentage of campaigns that see pledges and donations over

time, respectively, under 12 scenarios. The labeling in the figures uses the legend in Ta-

ble 10.

Table 10: Robustness Analysis Figure Legend

US Assumes all rewards shipped under USA shipping costs
Min Cost Assumes all rewards shipped to least expensive country
Max Cost Assumes all rewards shipped to most expensive country

No Adjust Treats all rewards as products
Bottom Adjust Treats the least expensive reward as a donation
Top Adjust Treats the most expensive reward as a donation
All Adjust Treats both the least and most expensive reward as a donation
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Figure 17: Robustness: Buyer Contributions over Time

(a) US - No Adjust
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(b) Min Cost - No Adjust
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(c) Max Cost - No Adjust
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(d) US - Bottom Adjust
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(e) Min Cost - Bottom Adjust
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(f) Max Cost - Bottom Adjust
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(g) US - Top Adjust
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(h) Min Cost - Top Adjust
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(i) Max Cost - Top Adjust
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(j) US - All Adjust
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(k) Min Cost - All Adjust
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(l) Max Cost - All Adjust
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Note: These figures show average buyer contributions over time (over total campaign revenue) for different
assumptions on shipping costs and what constitutes a donation. See Table 10 for label descriptions.
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Figure 18: Robustness: Donor Contributions over Time
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(c) Max Cost - No Adjust
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(d) US - Bottom Adjust
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(e) Min Cost - Bottom Adjust
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(f) Max Cost - Bottom Adjust
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(g) US - Top Adjust
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(h) Min Cost - Top Adjust
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(i) Max Cost - Top Adjust
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(j) US - All Adjust
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(k) Min Cost - All Adjust
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(l) Max Cost - All Adjust
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Note: These figures show average donor contributions over time (over total campaign revenue) for different
assumptions on shipping costs and what constitutes a donation. Table 10 for label descriptions.

19



Figure 19: Robustness: Percentage of Projects that Receive Purchases over Time
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(b) Min Cost - No Adjust
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(c) Max Cost - No Adjust
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(d) US - Bottom Adjust
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0 5 10 15 20 25 30
Time Index (0 is first period, 30 is deadline)

0

20

40

60

80

100

%
 o

f p
ro

je
ct

s w
/ b

uy
er

s Early Finishers
Middle Finishers
Late Finishers
Not Successful

(f) Max Cost - Bottom Adjust
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(g) US - Top Adjust

0 5 10 15 20 25 30
Time Index (0 is first period, 30 is deadline)

0

20

40

60

80

100

%
 o

f p
ro

je
ct

s w
/ b

uy
er

s Early Finishers
Middle Finishers
Late Finishers
Not Successful
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Note: These figures show the percentage of campaigns that receive pledges over time for different assump-
tions on shipping costs and what constitutes a donation. Table 10 for label descriptions.
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Figure 20: Robustness: Percentage of Projects that Receive Donations over Time
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(b) Min Cost - No Adjust
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(c) Max Cost - No Adjust
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(d) US - Bottom Adjust
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(e) Min Cost - Bottom Adjust
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(f) Max Cost - Bottom Adjust
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(g) US - Top Adjust
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(h) Min Cost - Top Adjust
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(i) Max Cost - Top Adjust
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(j) US - All Adjust
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(k) Min Cost - All Adjust

0 5 10 15 20 25 30
Time Index (0 is first period, 30 is deadline)

0

20

40

60

80

100

%
 o

f p
ro

je
ct

s w
/ d

on
at

io
ns Early Finishers

Middle Finishers
Late Finishers
Not Successful

(l) Max Cost - All Adjust
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Note: These figures show the percentage of campaigns that receive donor contributions over time for different
assumptions on shipping costs and what constitutes a donation. Table 10 for label descriptions.
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Table 11: Robustness: Donation Revenue per Period

Shipping Donation Adjust Mean
Median 5th % 95th %

(All) (Uns.) (Suc.)

US No Adjust 19.1 3.3 43.7 0.0 0.0 44.0
Min Cost No Adjust 20.7 3.5 47.4 0.0 0.0 50.0
Max Cost No Adjust 14.9 2.9 33.5 0.0 0.0 15.0
US Bottom Adjust 28.3 4.5 65.5 0.0 0.0 62.0
Min Cost Bottom Adjust 29.8 4.7 69.0 0.0 0.0 72.0
Max Cost Bottom Adjust 23.9 4.1 54.6 0.0 0.0 39.0
US Top Adjust 33.6 5.6 77.1 0.0 0.0 75.0
Min Cost Top Adjust 35.1 5.8 80.8 0.0 0.0 85.2
Max Cost Top Adjust 28.1 5.2 63.7 0.0 0.0 46.0
US All Adjust 42.1 6.7 97.2 0.0 0.0 100.0
Min Cost All Adjust 43.5 6.9 100.5 0.0 0.0 100.0
Max Cost All Adjust 36.9 6.3 84.5 0.0 0.0 70.0

Note: Summary statistics for the 42,462 campaigns in the sample. Means for all statistics are com-
puted for all campaigns (All), unsuccessful campaigns (Uns.), and successful campaigns (Suc.). Also
reported are the 50th, 5th, and 95th percentiles.
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Table 12: Robustness: Pledge Revenue per Period

Shipping Donation Adjust Mean
Median 5th % 95th %

(All) (Uns.) (Suc.)

US No Adjust 119.5 14.0 283.8 0.0 0.0 391.0
Min Cost No Adjust 117.7 13.8 279.8 0.0 0.0 384.0
Max Cost No Adjust 123.9 14.4 294.6 0.0 0.0 408.5
US Bottom Adjust 113.2 13.0 269.3 0.0 0.0 368.2
Min Cost Bottom Adjust 111.5 12.8 265.4 0.0 0.0 360.0
Max Cost Bottom Adjust 118.4 13.5 282.0 0.0 0.0 389.0
US Top Adjust 107.7 11.9 257.0 0.0 0.0 347.1
Min Cost Top Adjust 105.9 11.7 252.9 0.0 0.0 339.4
Max Cost Top Adjust 113.6 12.4 271.4 0.0 0.0 369.5
US All Adjust 101.8 11.0 243.4 0.0 0.0 325.0
Min Cost All Adjust 100.1 10.8 239.5 0.0 0.0 316.6
Max Cost All Adjust 108.0 11.5 258.4 0.0 0.0 348.0

Note: Summary statistics for the 42,462 campaigns in the sample. Means for all statistics are com-
puted for all campaigns (All), unsuccessful campaigns (Uns.), and successful campaigns (Suc.). Also
reported are the 50th, 5th, and 95th percentiles.
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Table 13: Robustness: Percentage of Revenues from Donations

Shipping Donation Adjust Mean
Median 5th % 95th %

(All) (Uns.) (Suc.)

US No Adjust 29.2 33.1 24.6 15.8 0.0 100.0
Min Cost No Adjust 30.5 34.3 26.1 17.9 0.0 100.0
Max Cost No Adjust 26.9 31.5 21.5 11.4 0.0 100.0
US Bottom Adjust 36.9 43.3 29.4 25.5 0.0 100.0
Min Cost Bottom Adjust 38.2 44.4 30.9 27.1 0.3 100.0
Max Cost Bottom Adjust 34.5 41.7 26.1 21.9 0.0 100.0
US Top Adjust 41.1 43.8 38.0 33.7 0.0 100.0
Min Cost Top Adjust 42.5 44.9 39.6 35.4 0.0 100.0
Max Cost Top Adjust 38.4 42.0 34.2 29.8 0.0 100.0
US All Adjust 47.8 52.3 42.4 43.5 0.0 100.0
Min Cost All Adjust 49.0 53.3 43.8 44.8 1.0 100.0
Max Cost All Adjust 45.1 50.6 38.6 40.3 0.0 100.0

Note: Summary statistics for the 42,462 campaigns in the sample. Means for all statistics are com-
puted for all campaigns (All), unsuccessful campaigns (Uns.), and successful campaigns (Suc.). Also
reported are the 50th, 5th, and 95th percentiles.
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C.4 Equilibrium Construction using Kickstarter Data

Estimation Sample: We incorporate five selection criteria when estimating the model:

i) Select projects that have a deadline of 30 days;

ii) Select projects in which the maximum number of pledges per period is below the

95th percentile;

iii) Select projects in which the maximum amount of donations per period is below the

95th percentile;

iv) Select projects in which the maximum ending revenue over the goal amount is below

the 75th percentile;

v) After implementing (i)-(iv), select the first quartile of projects by goal amount for

each category.

Estimation of Donor Valuations: We estimate the selection model (Heckman, 1979) in a

single step.

Estimation of Arrival Process: We estimate the selection model (Terza, 1998) in a single

step. We do not estimate the variance-covariance parameters directly. Instead, we estimate

the variance as log(σ). We estimate the covariance term as tanh(ρ). We approximate the

integrals in the log-likelihood using Gauss–Hermite quadrature with 25 integration points.

Calibration of Investor Utility: We calibrate the model using method of simulated mo-

ments (MSM). To calculate the success-maximizing equilibrium, we implement the dual

induction argument of Proposition 3.3 with the following adjustments:

i) We discretize donations in increments of $1. The donor’s strategy is defined over the

estimated log-normal distribution up to the 99.9th percentile;

ii) We adjust the length of a time interval so that arrival rates are less than 1, i.e., we

define λmax = ⌈maxt=0,...,T
bλt ⌉, and then define the length of a period to be 1/λmax for

all t . Estimated arrival rates are multiplied by 1/λmax;
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iii) The goal is set to be ⌈G ⌉ for each category and goal quartile. Donation thresholds,

time cutoffs, and beliefs are defined up to ⌈G ⌉;

We use derivative-free search over the parameter space, initially selecting candidate solu-

tions between v0 + p and v0 + p + 1. Our method searches over larger values of v if the

objective is minimized beyond v0+p +1. We also account for potential flat spots in the ob-

jective function. For example, the probability of success may be equal to zero over a range

of potential solutions because beliefs are sufficiently low. We use a stopping criterion of

1e-6 in our procedure.

We do not report results for the dance category as the valuation distribution and arrival

process parameters are such that the objective is flat over all potential v .

26


	Introduction
	Related Literature

	Model of Crowdfunding
	Characterization of Equilibrium Outcomes
	Preliminaries
	Pooling-Threshold Equilibrium Structure
	Success-Maximizing Equilibrium
	Success-Minimizing Equilibrium—No Signaling Benchmark
	Donor- and Investor-Preferred Equilibria
	Alternative Campaign Designs

	Extensions
	Relaxing Modeling Assumptions
	Application: Crowdfunding
	Application: Industrial Policy

	Empirical Application to Reward-based Crowdfunding
	Reward-Based Crowdfunding Platforms
	Data Sample and Summary Analysis
	Validating Model Assumptions and Theoretical Predictions
	Empirical Model of Reward-Based Crowdfunding
	Empirical Specification and Parameter Estimates
	Counterfactual Analysis

	Conclusion
	Proofs
	General properties of PT assessments and PT equilibria
	Properties of PT assessments
	Properties of PT equilibria

	Proof of Proposition 1 (Success-Maximizing Equilibrium)
	Construction of a PT equilibrium
	Taking the continuous time limit
	Optimality of constructed equilibrium

	Proof of Proposition 2 (Success-Minimizing Equilibrium)
	Characterization of PT equilibrium
	Taking the continuous time limit
	Minimization of probability of success

	Proof of Proposition 3 (Donor-Preferred Equilibrium) 
	Proof of Proposition 4 (Investor-Preferred Equilibrium) 
	Alternative Campaign Designs
	Parameter Estimates

	Additional Proofs and Examples
	Proof of Lemma 6 
	Application: Crowdfunding
	Application: Industrial Policy
	Proof of Proposition 5 (Donation Dynamics of PT Equilibria)

	Data Appendix
	Data Construction
	Additional Tables and Figures
	Bounding Donations
	Equilibrium Construction using Kickstarter Data




